12 United States Patent

Linnerud et al.

US008947438B2

US 8,947,438 B2
Feb. 3, 2015

(10) Patent No.:
45) Date of Patent:

(54) REDUCING FONT INSTRUCTIONS

(75)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

(56)

Inventors: Paul Linnerud, Woodinville, WA (US);
Gregory Hitchcock, Woodinville, WA

(US)
Assignee: Microsoft Corporation, Redmond, WA
(US)
Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 749 days.
Appl. No.: 13/195,232
Filed: Aug. 1, 2011
Prior Publication Data
US 2013/0033498 Al Feb. 7, 2013
Int. Cl.
GO06T 11/60 (2006.01)
GO6F 17/21 (2006.01)
U.S. CL
CPC e GO6rF 17/214(2013.01)
USPC e, 345/467
Field of Classification Search
CPC GO6T 11/203; GO6T 11/20
USPC e, 345/467

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,577,177 A
5,982,387 A
6,232,987 Bl
6,426,751 Bl
0,678,410 Bl
7,006,108 B2
7,184,046 Bl

* 11/1996
11/1999
5/2001
7/2002
1/2004
2/2006
2/2007

7,573,476 B2 8/2009 Matskewich et al.
2002/0118885 Al 8/2002 Smeets et al.
2003/0043151 Al 3/2003 Chot et al.
2006/0244985 Al1* 11/2006 Fahraeusetal. 358/1.12
2007/0011440 Al1* 1/2007 Nutsumaccceevvveen. 712/217
2008/0049023 A] 2/2008 Opstad
2008/0165193 A 7/2008 Stamm et al.
2013/0057554 A 3/2013 Linnerud et al.
OTHER PUBLICATIONS

International Search Report cited in PCT Application No. PCT/

US2011/055533 dated Jun. 21, 2012, 9 pgs.

“Designing with Interactive Example Galleries”, Brian Lee, Savil
Srivastava, Ranjitha Kumar, Ronen Bratman and Scott R. Klemmer,
CHI 2010: Perspectives on Design, Apr. 10-15, 2010, Atlanta, GA,
pp. 2257-2266.

“Reducing Truetype Font File Size for Embedded Systems”,
Retrieved at <<http://www.cnx-software.com/2010/02/19/reducing-
truetype-font-file-size-for-embedded-systems/>>, Feb. 19, 2010, pp.
8.

(Continued)

Primary Examiner — Javid A Amini

(74) Attorney, Agent, or Firm — Timothy Churna; Kate
Drakos; Micky Minhas

(57) ABSTRACT

One or more techniques and/or systems are disclosed for
reducing font execution instructions for a font, and thereby a
file size for the font. The font execution instructions can be
scanned (e.g., by examining tables) to identily one or more
common 1nstruction sets in the font execution instructions. A
function can be defined for a common 1nstruction set, and the
instances or appearances of the common instruction set in the
font execution 1nstructions can be replaced with a call to the

Collins etal. 345/469 function. Because the call 1s generally smaller (e.g., com-
gﬁllmﬂnﬂ prises fewer lines of code) than the common nstruction set 1t
Pat(;i ot 2l replaces, the number of execution instructions for the font 1s
Phinney | reduced.
Perry
Hawkins 20 Claims, 9 Drawing Sheets
100 w
102
N START)
IDENTIFY COMMON
104 N INSTRUCTION SET IN FONT

EXECUTION INSTRUCTIONS

Yy

DEFINE FUNCTION FOR
IDENTIFIED COMMON
INSTRUCTION SET

|

REPLACE COMMON
INSTRUCTION SET W/ CALL TO
DEFINED FUNCTION

110 Y
N END)

US 8,947,438 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Optimization options™, Retrieved at <<http://www.adobe.com/svg/

illustrator/optimization.html>> Retrieved Date: May 2, 2011, pp. 2.

“The Truelype instruction set”, Retrieved at <<http://www.
microsoft.com/typography/otspec/ttinst. htm>>, 1997, p. 1.

Yahya; et al., “An Automatic Generation of G1 Curve Fitting of
Arabic Characters using Rational Bezier Cubic with Weight Adjust-
ments”—Published Date: Dec. 6-8, 2005, http://eprints.usm.my/506/

1/An__Automatic_ Generation_ Of G1_ Curve_ Fitting Of Ara-
bic_ Characters_ Using Rational Bezier Cubic_ With__
Weight_ Adjustments.pdf.

Piska, Karel, “Creating Type 1 Fonts from Metafont Sources: Com-
parison of Tools, Techniques and Results”—Published Date: Sep. 3,

2004, http://www-hep2.1zu.cz/~piska/ TUG2004/piskatb2 .pdf,
“AAT Font Quality Specification”—Retrieved Date: May 6, 2011
http://developer.apple.com/fonts/TTQualSpec/QS02/FQS2 . html.
“Glyt—Glyf Data”, Retrieved Date: May 9, 2011, http://www.
microsoft.com/typography/otspec/glyf. htm.

* cited by examiner

U.S. Patent Feb. 3, 2015 Sheet 1 of 9 US 8,947,438 B2

102

104 —_| IDENTIFY COMMON
INSTRUCTION SET IN FONT
EXECUTION INSTRUCTIONS

106 ™ DEFINE FUNCTION FOR
IDENTIFIED COMMON
INSTRUCTION SET

108 —~_ REPLACE COMMON
INSTRUCTION SET W/ CALL TO
DEFINED FUNCTION

110
END

FIG. 1

U.S. Patent

200 ™\

202

204

206

208

210

214

Feb. 3, 2015 Sheet 2 of 9

SCAN FONT EXECUTION
INSTRUCTIONS

IDENTIFY COMMON
INSTRUCTION SET(S) FOR FONT

EVALUATE RESULT OF COMMON
INSTRUCTION SET(S)

COMPRESSION

NET
REDUCTION?

YES SN

OVERHEAD
COST OK?

YES

PERFORM COMPRESSION OF
COMMON INSTRUCTION SET(S)

NO

US 8,947,438 B2

NO
COMPRESSION

NO

U.S. Patent

300 ﬂ‘

Glyph 18
302

SZP1
NPUSHB
SZP0O
SRP1
SZP1
SRP2
SLOOP
IP

(11):

Glyph 167

o 304

SZP0
NPUSHB
SZP0O
SRP1
SZP1
SRP2Z
SLOOP
IP

(11):

Glyph 520

N 306

SLOOP
MDAP][rd]
NPUSHB
SZPO
SRP1
SZP1
SRP2
SLOOP
P

(11):

Feb. 3, 2015 Sheet 3 0of 9
10 11 49 48 35 36 14
10 11 49 48 35 36 14
10 11 49 48 35 36 14

12

12

12

0

0

2

US 8,947,438 B2

2 4)

> 308

4)

FIG. 3

U.S. Patent

Feb. 3, 2015 Sheet 4 of 9
450 COMMON
INSTRUCTION
SET(S)

402 # OF SETS >

US 8,947,438 B2

REPLACEMENT
THRESHOLD

404
NO N

'

406 ~_| CREATE FUNCTION(S) FOR
COMMON INSTRUCTION
SET(S)

408 —~_ | DEFINE FUNCTION IN FONT
PROGRAM

410 ™\ INSERT CALL TO DEFINED
FUNCTION IN FONT
EXECUTION INSTRUCTIONS

FIG. 4

YES

PRIORITIZE SETS
FOR REPLACEMENT

U.S. Patent

Feb. 3, 2015

Sheet S of 9

502
ya

US 8,947,438 B2

NFUSHB
SZP0
SRP1
SZP1
SRPZ
SLOOP
IP

(11): 10

171

49 48 35 36 14

12

0

2

4

504
e

PUSHB 205
FDEF
NPUSHB
SZP0

SRP1

SZP1

SRP2
SLOOP

IP

ENDF

(11): 10

11

49 48 35 36 14

12

0 2 4)

> 516

506
yd

SZP1
PUSHB 205

CALLN_ 514

Glyph 167

\ 510
SZP0O

PUSHB 205

CALL_ 514

Glyph 520
\ 512
SLOOP

PUSHB 205

CALL™_ 514

FIG. 5

U.S. Patent Feb. 3, 2015 Sheet 6 of 9 US 8,947,438 B2

600 ﬂ‘

650

FONT EXECUTION
INSTRUCTIONS

/ 606

PROCESSOR
COMMON INSTRUCTION
INSTRUCTION REPLACER
IDENTIFIER

604 / 602 /

COMPRESSED
FONT EXECUTION
INSTRUCTIONS

652 7

FIG. 6

U.S. Patent Feb. 3, 2015 Sheet 7 of 9 US 8,947,438 B2

750

FONT EXECUTION
INSTRUCTIONS

PRIORITIZOR REPLACER

‘ I
|
‘ 604 602 ‘
| COMMON PROCESSOR ‘
| INSTRUCTION ‘
| IDENTIFIER
| |
| i 710 }
T Ny
A= /| comwon ;
} INSTR. SET(S)(DEFINER ‘
AN |
} 712 ~ 714 ‘
|| REDUCTION COMMON 606 |
‘ NETERMINER INSTR. INSTRUCTION }
‘ |
|

COMPRESSED
FONT EXECUTION
INSTRUCTIONS

7152

FIG. 7

U.S. Patent Feb. 3, 2015 Sheet 8 of 9 US 8,947,438 B2

800
Y

802 ~ .

804

COMPUTER
INSTRUCTIONS

806

01011010001010
10101011010101

101101011100...

U.S. Patent Feb. 3, 2015 Sheet 9 of 9 US 8,947,438 B2

900 4\‘

. : _—920
|
: : STORAGE
| |

|
i PROCESSING : 922
: UNIT : OUTPUT DEVICE(S)
| |
: i _—924
| |
: : INPUT DEVICE(S)
: MEMORY |
: : _—926
| | COMMUNICATION
: ~— 918 : CONNECTION(S)
e |

928

v

COMPUTING | 930
DEVICE

FIG. 9

US 8,947,438 B2

1
REDUCING FONT INSTRUCTIONS

BACKGROUND

In a computing environment, a computer font can comprise
a style of characters (e.g., alphanumeric characters) 1n a par-
ticular typeface. Computer fonts can typically be scaled to
larger or smaller sizes, bolded and/or 1talicized while retain-
ing their typetace style. Characteristics of a font can comprise
a stroke width (weight), character slope or angle, and char-
acter width (e.g., as well as height). Metrics for rendering
(e.g., rasterizing) fonts on a display may comprise metadata
describing 1individual glyphs for respective characters of the
font. Computer fonts can comprise or rather be comprised
within programs (e.g., 1n one or more font files) that may
utilize programming language to describe how the respective
glyphs are rendered by a rasterizing component, for display to
a user.

SUMMARY

This Summary i1s provided to mtroduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This Summary 1s not intended to
identify key factors or essential features of the claimed sub-
ject matter, nor 1s 1t intended to be used to limit the scope of
the claimed subject matter.

Some computer fonts may comprise a mechanism where a
scaled outline of a character can be adjusted to achieve
desired output on a target device. An op code based inter-
preted language, which 1s similar to assembly language, may
be used by many fonts and may be interpreted by a rasterizer
to accomplish the adjustments known as instructing or hints.
In a font, there may be instructions associated with respective
glyphs as well as global instructions that can be applied to text
s1zes and/or the font 1tself.

Some computer fonts comprise a collection of tables, for
example, where respective tables are identified by a unique
tag. Glyphs in a font can be defined 1n a glyph table. As an
example, a glyph definition may comprise instructions that
are executed with respective glyphs of the font and a math-
ematical representation of the outline of the font. A set of
global instructions that are executed for respective font sizes
can be contained 1n a pre-program, sometimes referred to as a
control value program (prep) table, for example. Another set
of global instructions that are executed for the font can be
comprised in a font program (fpgm), for example. All ofthese
instructions can add significantly to a size of the one or more
files associated with any particular font.

Accordingly, one or more techniques and/or systems are
disclosed for reducing an amount of font execution instruc-
tions, for example, comprised in the one or more files of the
tont. For example, a total volume of instructions contained 1n
one or more tables for a font can be reduced, while a func-
tional equivalence of these mstructions for the original font
can be maintained. The font execution 1nstructions can coms-
prise sets of instructions that are the same 1n several places in
the font, for example. Accordingly, at least some of these
“common’ 1nstructions (e.g., common instruction sets) may
be replaced with merely a few (e.g., one or two, etc.) line
function calls to functions that have been defined for the
common 1nstruction sets. Replacing the common instruction
sets with function calls, for example, can result in compressed
font execution 1nstructions, while maintaining the functional
equivalence of the uncompressed font.

In one embodiment of reducing font execution mnstructions
for a font, one or more common 1nstruction sets can be iden-

10

15

20

25

30

35

40

45

50

55

60

65

2

tified 1n the font execution instructions. Further, a function
can be defined 1n the font for an 1dentified common 1nstruc-
tion set. Additionally, the identified common instruction set
can be replaced 1n the font execution instructions with a call
to the corresponding defined function, resulting 1n a reduced
set of font execution instructions.

To the accomplishment of the foregoing and related ends,
the following description and annexed drawings set forth
certain 1llustrative aspects and implementations. These are
indicative of but a few of the various ways 1n which one or
more aspects may be employed. Other aspects, advantages,
and novel features of the disclosure will become apparent
from the following detailed description when considered 1n
conjunction with the annexed drawings.

DESCRIPTION OF THE DRAWINGS

FIG. 1 15 a flow diagram 1illustrating an exemplary method
for reducing execution nstructions for a font.

FIG. 2 1s a flow diagram 1illustrating an example embodi-
ment where one or more portions ol one or more techniques
described here may be implemented.

FIG. 3 1s a diagram 1llustrating an example embodiment of
font execution instructions.

FIG. 4 1s a flow diagram illustrating an example embodi-
ment where one or more portions ol one or more techniques
described herein may be implemented.

FIG. 5 1s a diagram that illustrates an example embodiment
where one or more portions of one or more techniques
described herein may be implemented.

FIG. 6 1s a component diagram 1llustrating an exemplary
system for reducing execution instructions for a font.

FIG. 7 1s a component diagram 1illustrating an example
embodiment where one or more systems described herein
may be implemented.

FIG. 81s anillustration of an exemplary computer-readable
medium comprising processor-executable instructions con-
figured to embody one or more of the provisions set forth
herein.

FIG. 9 illustrates an exemplary computing environment
wherein one or more of the provisions set forth herein may be
implemented.

DETAILED DESCRIPTION

The claimed subject matter 1s now described with reference
to the drawings, wherein like reference numerals are gener-
ally used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough understand-
ing of the claimed subject matter. It may be evident, however,
that the claimed subject matter may be practiced without
these specific details. In other instances, structures and
devices are shown 1n block diagram form 1n order to facilitate
describing the claimed subject matter.

As provided herein, a method may be devised that provides
for reducing a file size of a font by reducing (e.g., consolidat-
ing) font execution instructions contained 1n one or more of
tables, for example, for the font, while maintaining functional
equivalence of the font prior to reduction. As an example,
fonts may utilize an “op-code” based interpreted language
that 1s similar to assembly language, comprising instructions
or “hints”. This op-code language can be interpreted by a
rasterizer when rendering the font on a target device. A font
may comprise a collection of tables, for example, which
respectively comprise the font instructions (e.g., glyph

US 8,947,438 B2

3

instructions and global instructions). In this example, a total
amount of instructions (e.g., mn the font tables) can be
reduced.

FIG. 1 1s a flow diagram 1llustrating an exemplary method
100 for reducing font execution instructions for a font. The
exemplary method 100 begins at 102 and involves identifying
a set of common instructions in the font execution instruc-
tions, at 104. As an example, a set of common 1nstructions can
comprise a same pattern of mstructions that 1s found 1n more
than one location 1n the font execution instructions.

At1106, a function 1s defined for the common functions set.
For example, the language used for the font execution mstruc-
tions can provide for functionalization of sets of instructions,
which can be called from within the font execution nstruc-
tions. At 108, the common instruction set 1n the font execution
instructions 1s replaced with a call to the defined function. For
example, at respective common 1nstruction set locations 1n
the font execution instructions, the common instruction set
can be removed and the call to the defined function can be
inserted 1n its place. In this way, for example, the font execu-
tion 1nstructions can be reduced by replacing a set of mnstruc-
tions, 1 a plurality of locations, with a call to a function. It
may be appreciated that this may be repeated such that other
common 1nstruction sets are replaced with merely respective
calls to defined functions to further reduce the font execution
instructions.

FIG. 2 1s a flow diagram 1llustrating an example embodi-
ment 200 where one or more portions of one or more tech-
niques described here may be implemented. At 202, font
execution mstructions can be scanned to 1dentify one or more
of common 1nstruction sets, at 204. In one embodiment, a
common 1nstruction set can comprise a set ol one or more
common font execution instructions (e.g., common glyph
execution nstructions) that are identified 1n at least two loca-
tions 1n the font execution istructions. As an example, a prep
table can be scanned for 1nstructions that are found in more
than one location, where a set of 1nstructions may comprise
one or more lines of code used to execute the font on a target
device.

As an 1llustrative example, FIG. 3 1s a diagram 1llustrating
an example embodiment 300 of font execution 1nstructions.
In this example 300, the font execution mnstructions comprise,
among other things, portions of glyph instructions for three
glyphs 302, 304, 306. Further, glyph eighteen 302 comprises
a set of instructions 308, which can also be found, at 310, in
glyph one-hundred and sixty-seven 304, and found, at 312, 1n
glyph five-hundred and twenty 306. The same set of mstruc-
tions 308, 310, 312 can comprise a common instruction set for
the font execution instructions. It may be appreciated that the
respective font execution instructions for glyphs 302, 304,
306 comprise more than merely sets 308, 310, 312, respec-
tively. That 1s, merely the common or overlapping sets 308,
310, 312 for glyphs 302, 304, 306 are illustrated for purpose
of simplicity, explanation, etc. (e.g., and additional portions
of respective font execution instructions for glyphs 302, 304,
306 are not 1llustrated).

Returning to FIG. 2, at 206, results of a compression (e.g.,
replacing the common instruction set(s) with a function) of
the one or more common 1nstruction sets can be evaluated, for
example, to determine whether the compression yields a
desired improvement 1n font file size while not overly bur-
dening computing resources used to perform the compres-
sion. In one embodiment, the evaluation of the compression
can comprise determining whether a desired file size reduc-
tion threshold 1s met when compressing the common nstruc-
tion set in the font execution 1nstructions.

10

15

20

25

30

35

40

45

50

55

60

65

4

At 208, determining whether there 1s a desired file size
reduction (e.g., meeting a reduction threshold) can comprise
determining whether there 1s a net reduction in file size, for
example, by reducing the execution instructions of the font. If
the reduction threshold 1s not met (e.g., no net reduction) (NO
at 208), no compression may be performed on the font execu-
tion instructions, at 212. If the reduction threshold 1s met
(YES at 208), a computing resource cost for performing the
compression may be determined, at 210.

In one embodiment, determining whether a desired file size
reduction threshold 1s met can comprise 1dentifying a perfor-
mance cost for reducing the size of the font execution mnstruc-
tions. In this embodiment, the performance cost (e.g., com-
puting resource cost, such as processor use, power
consumption, time, and/or actual cost, etc.) can be compared
against a desired performance cost threshold (e.g., where
improvement 1in compression outweighs performance cost).

I1 the performance overhead cost does not meet the desired
threshold (NO at 210) no compressionis performed, at212. IT
the performance overhead cost meets the desired threshold
(YES at 210) compression of the one or more common
instruction sets can be performed, at 214. For example, one or
more of the common instruction sets may be replaced with a
defined function, 1n the font execution instructions, to reduce
a si1ze of the font execution instructions.

In one aspect, a font may comprise, or rather be comprised
by, an mstruction set that comprises one or more operations to
define one or more functions, such as removing a value from
an operations stack. As an example, a TrueType font provides
for at least two types of functions, the function definition
(FDEF) and the instruction defimition (IDEF). In this
example, the FDEF comprises a standard function definition
and 1s 1indicated by an FDEF at a beginning of the function
block; and the IDEF comprises a custom instruction defini-
tion and 1s indicated by an IDEF at the beginning of a custom
instruction block. Further, both of these types of functions can
be terminated with the ENDEF. As an illustrative example,
when called, the FDEF removes a value from an operations
stack to be used as a unique function number; and the IDEF
removes a value from the stack to be used as a custom 1nstruc-
tion. Additionally, 1n this example, standard functions are
called using a “CALL” instruction that takes the function
number from the stack, and custom 1instructions are simply
executed using their defined op code.

FIG. 4 1s a flow diagram 1illustrating an example embodi-
ment 400 where one or more portions of one or more tech-
niques described herein may be implemented. At 402, 1t may
be determined whether a number of common instruction sets
450 1s greater than a replacement threshold for the font execu-
tion instructions. For example, some font types (e.g., Tru-
c¢Type fonts) provide for a limited number of replacement
functions. As an example, the Truelype fonts typically pro-
vides for a limited number of custom functions (IDEFs) for a
font. In this example, 1f there are more common 1nstruction
sets than custom functions available for use for replacement,
the replacement threshold may be exceeded.

In one embodiment, a custom function may be used for
replacing a common instructions set before using a standard
function, as a call to a custom instruction (e.g., IDEF) may
comprise less computational overhead and may result 1n
greater instruction compression than a call to the standard
function (e.g., FDEF). As an example, an IDEF may comprise
executing merely one instruction (e.g., “execute custom
instruction 127°), while an FDEF may comprise executing two
instructions (e.g., (“push 12 onto the stack; jump to the func-
tion 1dentified by the top stack entry™). Therefore, in this
embodiment, custom functions may be prioritized over stan-

US 8,947,438 B2

S

dard functions until the replacement threshold 1s met (e.g., for
the custom functions), and then the standard functions can be
used, for example, for any remaining common instruction
sets.

In one embodiment, the use of a custom 1nstruction may be
disabled for the common instruction set. For example, font
programmers/providers may utilize the custom instructions
(e.g., IDEFs) for other purposes. As an example, IDEFs are
often used as patches for future instructions, such as for future
versions or updates of the font. In thus embodiment, for
example, disabling the use of the custom instructions may
mitigate possible collisions, and/or problems, with the font
program. In one embodiment, the use of the standard function
(e.g., FDEF) may be disabled, for example, and merely the
custom 1instructions may be used for the common 1nstruction
Sets.

At 404, 1n FIG. 4, the common 1nstruction sets can be
prioritized for replacement. In one embodiment, a first com-
mon instruction set can be prioritized over a second common
instruction set, for example, for compression 1f the threshold
number of common 1nstruction sets 4350 1s met (YES at 402).
In one embodiment, prioritization may comprise prioritizing
the first common instruction set over the second common
instruction set 1f the first common nstruction set 1s found 1n
more locations 1n the font execution instructions than the
second common 1nstruction set (1s found 1n the font execution
instructions). In one embodiment, prioritization may com-
prise prioritizing the first common 1nstruction set, which has
a greater number of font execution instructions, over the
second common 1nstruction set that has fewer font execution
instructions.

At 406, a function can be created for a common 1nstruction
set, for example, for the respective identified common
instruction sets. As an 1illustrative example, FIG. 5 1s a dia-
gram that illustrates an example embodiment 500 where one
or more portions of one or more techniques described herein
may be implemented. A common nstruction set 502 com-
prises font execution instructions that may have been 1denti-
fied 1n more than one location 1n a font program, or 1n respec-
tive font execution instructions for multiple glyphs (e.g.,
instructions for glyphs 302, 304, 306 of FIG. 3). Further, 1n
this example embodiment 500, a function 504 can be created
for the common instruction set 502. In this example, the
created function 504 comprises the font execution mnstruction
516 from the identified common 1nstruction set S02.

Returming to FIG. 4, at 408, defining the function can
comprise functionalizing the common nstruction set in a font
or pre-program for the font, where the created function may
be defined 1n a font control program, such as in the fpgm table.
For example, a function may be defined (e.g., functionalized)
in the Font Program (Ifpgm) table, and/or the pre-program
(prep) for the font. Further, in one embodiment, the defined
function may merely be functionalized in one location 1n the
font program, for example, thereby by allowing the function
of the common nstruction set to be compressed. In one
embodiment, defining the function for the common instruc-
tion set may comprise creating a function, comprising the
common 1nstruction set, 1n a font table of the font program.

In one embodiment, defining a function can comprise
defining a custom instruction for the common nstruction set.
As described above, a custom function can comprise a custom
instruction definition function, which may be defined 1n a
control program for the font (e.g., ipgm and/or pre-program).
As an example, a custom instruction definition function may
be provided in a font platform for customizing fonts, such as
to add functionality for future versions of the font. In this
example, undefined op code (e.g., the common instruction

10

15

20

25

30

35

40

45

50

55

60

65

6

set) may be used to define the custom instruction definition
function (e.g., IDEF), such as 1n a font program table.

At 410 1n the example embodiment 400, a call to the
defined function can be 1nserted 1n the font execution mnstruc-
tions. For example, at the respective location 1n the font
execution 1nstructions where the common instruction set 1s
identified, the common nstruction set can be replaced with
the call to the function that 1s defined 1n the font program file.
In one embodiment, the common instruction set 1n the font
execution instructions can be replaced with the defined cus-
tom 1nstruction. Further, respective defined functions, or
defined custom 1nstructions, can replace corresponding com-
mon instruction sets 1dentified in the font execution nstruc-
tions, for example, thereby reducing a size of the font execu-
tion 1nstructions.

As an 1illustrative example, in FIG. 5, compressed font
execution nstructions 506 comprise respective execution
instructions for glyphs 508, 510, 512, for the font, where the
common 1nstruction set 502 has been replaced with a call 514
to the defined function 504. Further, when compared to the
uncompressed font execution instructions, 300 in FIG. 3, 1t
can be seen that the lines of execution instructions have been
reduced from twenty five (300 1n FIG. 3) to nineteen (504 and
506 1n FIG. 5), for example, including the defined function
(e.g., 1n the font program table). In one embodiment, for
example, the compression ratio may increase dramatically
when a common 1nstruction set 1s found in even more (e.g.,
than three) locations, and/or for those common instruction
sets that comprise a larger amount (e.g., lines of op code) of
execution structions, for example.

In one aspect, the identification of a common 1nstruction
set may be used for compressing more than one font. In one
embodiment, 1n this aspect, the 1dentified common 1nstruc-
tion set may be used to 1dentily a common 1nstruction set in
font execution structions for a different font. For example,
identification of the common instruction set can comprise a
brute force character search, where respective characters,
and/or sets of characters are selected and compared agamst
the characters 1n the font execution instructions. However, in
this embodiment, respective common 1nstruction sets, such as
identified 1n one or more font execution 1nstructions, may be
used as base search criteria to attempt to 1dentify the same sets
in other fonts.

For example, the common instruction set 502 of FIG. 5
may be 1dentified 1n a first font, and may be used as a search
criteria to match against font execution instructions in a sec-
ond font. In this way, for example, a time, and/or computation
resource cost, for common instruction set identification for a
font may be reduced by starting with known common instruc-
tion sets.

Further, 1n one embodiment in this aspect, a function that 1s
defined for a common 1nstruction set may be used for more
than one font. In this embodiment, the function (e.g., a stan-
dard and/or custom function) may be functionalized 1n a font
control program that 1s used for more than one font. As an
example, a common table may be employed by a font control
program, where the common table comprises one or more
defined functions for corresponding common 1nstruction sets.
In this way, for example, the font execution instructions may
be further compressed by reducing an amount of defined
functions for respective fonts.

In one aspect, a common 1nstruction set may be nested 1n
another common 1nstruction set. In one embodiment, 1n this
aspect, a first function can be defined (e.g., 1n the font pro-
gram table) for a first common 1nstruction set, where the first
common 1nstruction set 1s nested 1nside a second common
instruction set, in the font execution instructions for a font.

US 8,947,438 B2

7

Further, a second function can be defined for the second
common 1nstruction set. In one embodiment, the first com-
mon 1nstruction set can be replaced with a call to the defined
first function, and/or the second common instruction set can
be replaced with a call to the defined second function.

As an example, the second (nested) common instruction set
may be replaced with the second call to the second defined
function. Further, 1n this example, the first common 1nstruc-
tion set, now comprising the call to the second defined func-
tion, can be defined as the first function. Additionally, the first
common 1nstruction set may be replaced with a call to the first
function (e.g., which also comprises a call to the second
defined function). In this way, for example, the font execution
instruction may be further compressed by reducing an
amount of instructions 1n the defined functions.

A system may be devised for reducing a size of a font
execution program (e.g., comprising one or more font files). A
font execution program can comprise programming code and
programming tables that provide for rendering glyphs on a
display according to a designer’s desired output. Similar to
other types of programming code, respective lines of the font
execution program can comprise mstructions on how to ren-
der the font. A number of font execution 1nstructions can be
reduced, for example, by replacing portions of the same font
execution instructions, which may be common 1n several
areas of the program, with a call to a function defined for the
common execution instructions.

FIG. 6 1s a component diagram 1llustrating an exemplary
system 600 for reducing execution instructions for a font. A
computer-based processor 602 1s configured to process data
for the system and 1s operably coupled with a common
instruction identification component 604. The common
instruction identification component 604 1s configured to
identily a common instruction set in the font execution
instructions 650. For example, the font execution instructions
650 can comprise instructions, such as programming code, on
how to render a font (e.g., interpreted by a rasterizer). Further,
the font execution instructions 650 may comprise a set of
instructions that are the same 1in more than one location, for
example, comprising a common instruction set. In this
example, the common 1nstruction identification component
604 can scan the font execution instructions to identify one or
more sets of common 1nstructions.

In the exemplary system 600, an instruction replacement
component 606 1s operably coupled with the processor, and 1s
configured to replace an 1dentified common 1nstruction set 1n
the font execution instructions with a call to a function
defined for the identified common instruction set. For
example, respective functions can be defined for one or more
identified common i1nstruction sets, and the instruction
replacement component 606 can create compressed font
execution instructions 6352 by removing the respective com-
mon 1nstruction sets throughout the font execution nstruc-
tions and replacing them with a call to corresponding defined
functions. In this way, for example, a number of lines of code
used for the font execution instruction are reduced, as a func-
tion call 1s typically much smaller than the corresponding
common 1nstruction set (used to replace a common instruc-
tion set).

FIG. 7 1s a component diagram illustrating an example
embodiment 700 where one or more systems described herein
may be implemented. In this example 700, an extension of
FIG. 6 1s provided and thus description of elements, compo-
nents, etc. described with respect to FIG. 6 may not be
repeated for stmplicity. In one embodiment, common nstruc-
tion set(s) 754 identified 1n font execution mstructions 750 by
the common 1nstruction identification component 604 can

10

15

20

25

30

35

40

45

50

55

60

65

8

comprise a set of one or more common font execution instruc-
tions (e.g., common glyph execution instructions) that are
identified 1n a plurality of locations 1n the font execution
instructions.

In the example embodiment 700, a reduction determination
component 712 can be configured to determine whether a
desired file size reduction threshold 1s met when compressing
the common 1instruction set(s) 754 1n the font execution
instructions 750. In one embodiment, the instruction replace-
ment component 606 can be configured to replace the com-
mon 1nstruction set(s) 754 merely 1f the desired file size
reduction threshold 1s met. For example, 1t the reduction
determination component 712 determines that replacing the
one or more common instruction sets in the font execution
instructions with corresponding calls to a function reduces
the font files by a desired threshold amount, the 1nstruction
replacement component can perform the replacement; other-
wise, for example, the compression (e.g., replacement with a

call) may not occur.

In the example embodiment 700, a common 1nstruction
prioritization component 714 can be configured to prioritize
one or more common instruction sets 754 for replacement 1n
the font execution mstructions 750, based at least 1n part upon
a threshold number of instruction replacements for the font.
For example, a font type may restrict a number of functions
that can be used to replace instructions 1n the font execution
instructions. In this example, the common 1nstruction priori-
tization component 714 can determine which common
istruction set(s) may be functionalized and replaced 1n the
font execution instructions based on a number of times a
common instruction set appears 1n the font execution mstruc-
tions and/or a length of a common instruction set. For
example, replacing a common 1nstruction set that appears
more Irequently and/or 1s longer than other common 1nstruc-
tion sets may generally lead to greater compression.

In the example embodiment 700, a common 1nstruction
defining component 710 can be configured to define the func-
tion for the common 1nstruction set(s) 754. In one embodi-
ment, the defined function can comprise a standard function
(e.g., a FDEF function for TrueType fonts), and/or a custom
instruction function (e.g., an IDEF function for TrueTlype
fonts). For example, the common instruction defiming com-
ponent 710 can create a function for an i1dentified common
instruction set, and define the function in the font execution
instructions (e.g., mn a font program (Ifpgm) table). In this
example, calls to one or more defined functions can be used to
replace corresponding common instruction sets, resulting in
compressed font execution instructions 752.

Still another embodiment involves a computer-readable
medium comprising processor-executable instructions con-
figured to implement one or more of the techniques presented
herein. An exemplary computer-readable medium that may
be devised 1n these ways 1s 1llustrated 1n FIG. 8, wherein the
implementation 800 comprises a computer-readable medium
808 (e.g., a CD-R, DVD-R, or a platter of a hard disk drive),
on which 1s encoded computer-readable data 806. This com-
puter-readable data 806 1n turn comprises a set ol computer
instructions 804 configured to operate according to one or
more of the principles set forth herein. In one such embodi-
ment 802, the processor-executable nstructions 804 may be
configured to perform a method, such as at least some of the
exemplary method 100 of FIG. 1, for example. In another
such embodiment, the processor-executable mstructions 804
may be configured to implement a system, such as at least
some of the exemplary system 600 of FIG. 6, for example.
Many such computer-readable media may be devised by

US 8,947,438 B2

9

those of ordinary skill 1n the art that are configured to operate
in accordance with the techniques presented herein.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

As used 1n this application, the terms “component,” “mod-
ule,” “system”, “interface”, and the like are generally
intended to refer to a computer-related entity, either hard-
ware, a combination of hardware and software, software, or
soltware 1n execution. For example, a component may be, but
1s not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a controller and the controller can be
a component. One or more components may reside within a
process and/or thread of execution and a component may be
localized on one computer and/or distributed between two or
more computers.

Furthermore, the claimed subject matter may be imple-
mented as a method, apparatus, or article of manufacture
using standard programming and/or engineering techniques
to produce software, firmware, hardware, or any combination
thereof to control a computer to implement the disclosed
subject matter. The term “article of manufacture™ as used
herein 1s intended to encompass a computer program acces-
sible from any computer-readable device, carrier, or media.
Of course, those skilled 1n the art will recognize many modi-
fications may be made to this configuration without departing
from the scope or spirit of the claimed subject matter.

FI1G. 9 and the following discussion provide a brietf, general
description of a suitable computing environment to 1mple-
ment embodiments of one or more of the provisions set forth
herein. The operating environment of FIG. 9 1s only one
example of a suitable operating environment and i1s not
intended to suggest any limitation as to the scope of use or
functionality of the operating environment. Example comput-
ing devices include, but are not limited to, personal comput-
ers, server computers, hand-held or laptop devices, mobile
devices (such as mobile phones, Personal Digital Assistants
(PDAs), mediaplayers, and the like), multiprocessor systems,
consumer electronics, mini computers, mainirame comput-
ers, distributed computing environments that include any of
the above systems or devices, and the like.

Although not required, embodiments are described 1n the
general context of “computer readable instructions™ being
executed by one or more computing devices. Computer read-
able 1nstructions may be distributed via computer readable
media (discussed below). Computer readable instructions
may be implemented as program modules, such as functions,
objects, Application Programming Interfaces (APIs), data
structures, and the like, that perform particular tasks or imple-
ment particular abstract data types. Typically, the Tunctional-
ity of the computer readable instructions may be combined or
distributed as desired in various environments.

FI1G. 9 illustrates an example of a system 900 comprising a
computing device 912 configured to implement one or more
embodiments provided herein. In one configuration, comput-
ing device 912 includes at least one processing unit 916 and
memory 918. Depending on the exact configuration and type
of computing device, memory 918 may be volatile (such as
RAM, for example), non-volatile (such as ROM, flash
memory, etc., for example) or some combination of the two.
This configuration 1s 1llustrated 1n FIG. 9 by dashed line 914.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

In other embodiments, device 912 may include additional
features and/or functionality. For example, device 912 may
also 1include additional storage (e.g., removable and/or non-
removable) including, but not limited to, magnetic storage,
optical storage, and the like. Such additional storage 1s 1llus-
trated 1n F1G. 9 by storage 920. In one embodiment, computer
readable instructions to implement one or more embodiments
provided herein may be 1n storage 920. Storage 920 may also
store other computer readable 1nstructions to implement an
operating system, an application program, and the like. Com-
puter readable instructions may be loaded 1n memory 918 for
execution by processing unit 916, for example.

r

The term “computer readable media” as used herein
includes computer storage media. Computer storage media
includes volatile and nonvolatile, removable and non-remov-
able media implemented 1n any method or technology for
storage of information such as computer readable instructions
or other data. Memory 918 and storage 920 are examples of

computer storage media. Computer storage media includes,
butis not limited to, RAM, ROM, EEPROM, flash memory or

other memory technology, CD-ROM, Digital Versatile Disks
(DVDs) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can be accessed by device
912. Any such computer storage media may be part of device
912.

Device 912 may also i1nclude communication
connection(s) 926 that allows device 912 to communicate
with other devices. Communication connection(s) 926 may
include, but 1s not limited to, a modem, a Network Interface
Card (NIC), an integrated network interface, a radio fre-
quency transmitter/receiver, an inirared port, a USB connec-
tion, or other interfaces for connecting computing device 912
to other computing devices. Communication connection(s)
926 may include a wired connection or a wireless connection.
Communication connection(s) 926 may transmit and/or
receive communication media.

The term “computer readable media” may include commu-
nication media. Communication media typically embodies
computer readable 1nstructions or other data i a “modulated
data signal” such as a carrier wave or other transport mecha-
nism and includes any information delivery media. The term
“modulated data signal” may include a signal that has one or
more of 1ts characteristics set or changed 1n such a manner as
to encode information 1n the signal.

Device 912 may include input device(s) 924 such as key-
board, mouse, pen, voice mput device, touch mput device,
inirared cameras, video mput devices, and/or any other input
device. Output device(s) 922 such as one or more displays,
speakers, printers, and/or any other output device may also be
included 1n device 912. Input device(s) 924 and output
device(s) 922 may be connected to device 912 via a wired
connection, wireless connection, or any combination thereof.
In one embodiment, an 1nput device or an output device from
another computing device may be used as input device(s) 924
or output device(s) 922 for computing device 912.

Components of computing device 912 may be connected
by various 1nterconnects, such as a bus. Such interconnects
may include a Peripheral Component Interconnect (PCI),
such as PCI Express, a Universal Serial Bus (USB), firewire
(IEEE 1394), an optical bus structure, and the like. In another
embodiment, components of computing device 912 may be
interconnected by a network. For example, memory 918 may
be comprised of multiple physical memory units located in
different physical locations interconnected by a network.

US 8,947,438 B2

11

Those skilled i the art will realize that storage devices
utilized to store computer readable instructions may be dis-
tributed across a network. For example, a computing device
930 accessible via network 928 may store computer readable
instructions to implement one or more embodiments pro-
vided herein. Computing device 912 may access computing,
device 930 and download a part or all of the computer read-
able 1nstructions for execution. Alternatively, computing
device 912 may download pieces of the computer readable
instructions, as needed, or some nstructions may be executed
at computing device 912 and some at computing device 930.

Various operations of embodiments are provided herein. In
one embodiment, one or more of the operations described
may constitute computer readable instructions stored on one
or more computer readable media, which 1f executed by a
computing device, will cause the computing device to per-
torm the operations described. The order 1n which some or all
of the operations are described should not be construed as to
imply that these operations are necessarily order dependent.
Alternative ordering will be appreciated by one skilled in the
art having the benefit of this description. Further, 1t will be
understood that not all operations are necessarily present in
cach embodiment provided herein.

Moreover, the word “exemplary” 1s used herein to mean
serving as an example, instance, or 1llustration. Any aspect or
design described herein as “exemplary” 1s not necessarily to
be construed as advantageous over other aspects or designs.
Rather, use of the word exemplary i1s intended to present
concepts 1 a concrete fashion. As used 1n this application, the
term ““or” 1s intended to mean an 1inclusive “or” rather than an
exclusive “or”. That 1s, unless specified otherwise, or clear
from context, “X employs A or B” 1s intended to mean any of
the natural inclusive permutations. That 1s, if X employs A; X
employs B; or X employs both A and B, then “X employs A or
B” 1s satisfied under any of the foregoing instances. Further,
at least one of A and B and/or the like generally means A or B
or both A and B. In addition, the articles “a” and “an’ as used
in this application and the appended claims may generally be
construed to mean “one or more” unless specified otherwise
or clear from context to be directed to a singular form.

Also, although the disclosure has been shown and
described with respect to one or more implementations,
equivalent alterations and modifications will occur to others
skilled 1n the art based upon a reading and understanding of
this specification and the annexed drawings. The disclosure
includes all such modifications and alterations and 1s limited
only by the scope of the following claims. In particular regard
to the various functions performed by the above described
components (e.g., elements, resources, etc.), the terms used to
describe such components are intended to correspond, unless
otherwise 1ndicated, to any component which performs the
specified function of the described component (e.g., that 1s
tfunctionally equivalent), even though not structurally equiva-
lent to the disclosed structure which performs the function in
the herein 1llustrated exemplary implementations of the dis-
closure. In addition, while a particular feature of the disclo-
sure¢ may have been disclosed with respect to only one of
several implementations, such feature may be combined with
one or more other features of the other implementations as
may be desired and advantageous for any given or particular
application. Furthermore, to the extent that the terms
“includes™, “having”, “has™, “with”, or variants thereof are

used 1n eirther the detailed description or the claims, such
terms are intended to be inclusive 1n a manner similar to the

term “‘comprising.”

10

15

20

25

30

35

40

45

50

55

60

65

12

What 1s claimed 1s:

1. A method for reducing font execution instructions for a
font on a device having a processor, the method comprising:

executing by the processor instructions that cause the

device to:

identify, within the font execution instructions, a com-
mon 1nstruction set having at least two occurrences
within the font execution 1nstructions;

isert into the font execution instructions a function
encapsulating the common instruction set; and

replace the common 1nstruction set 1n the font execution
instructions with a call to the function.

2. The method of claim 1, wherein executing the instruc-
tions further causes the device to, using the common nstruc-
tion set, 1dentily the common 1nstruction set 1n font execution
instructions of a second font.

3. The method of claim 1, wherein executing the instruc-
tions further causes the device to:

determine whether a desired file size reduction threshold 1s

met when compressing the common 1instruction set 1n
the font execution instructions; and

define the function for the common 1nstruction set if the

desired file size reduction threshold 1s met.

4. The method of claim 3, wherein determinming whether the
desired file s1ze reduction threshold 1s met further comprises:
identifying a performance cost for reducing the size of the
font execution instructions.

5. The method of claim 1, wherein defining the function
turther comprises: defining a custom instruction for the com-
mon 1nstruction set that invokes the call of the function.

6. The method of claim 5, wherein executing the instruc-
tions further causes the device to replace the common 1nstruc-
tion set 1n the font execution instructions with the defined
custom instruction.

7. The method of claim 5, wherein defining the function
turther comprises functionalizing the common instruction set
in a control program for the font.

8. The method of claim 1, wherein executing the nstruc-
tions further causes the device to prioritize a first common
instruction set over a second common instruction set for
compression 1f a threshold number of instruction replace-
ments 15 met.

9. The method of claim 1, wherein executing the instruc-
tions further causes the device to disable use of the function
for the common instruction set.

10. The method of claim 1, wherein executing the nstruc-
tions further causes the device to:

define a first function for a first common instruction set, the

first common instruction set comprising a nested
instruction set 1n a second common 1nstruction set 1den-
tified 1n the font execution instructions:

define a second function for the second common instruc-

tion set;

replace the first common instruction set 1n the font execu-

tion 1nstructions with a call to the defined first function;
and

replace the second common instruction set in the font

execution instructions with a call to the defined second
function.

11. A system for reducing execution instructions for a font
on a device having a memory and a processor, the system
comprising;

a common instruction identifier comprising instructions

stored 1n the memory that, when executed by the proces-
sor, cause the device to:

US 8,947,438 B2

13

identify, within the font execution instructions, a com-
mon 1nstruction set having at least two occurrences
within the font execution instructions; and

isert mto the font execution instructions a function
encapsulating the common instruction set; and

an instruction replacer comprising instructions stored in

the memory that, when executed by the processor, cause
the device to replace the common 1nstruction set 1n the
font execution 1nstructions with a call to the function.

12. The system of claim 11, further comprising: a reduction
determiner comprising instructions stored in the memory
that, when executed by the processor, cause the device to
determine whether a desired file size reduction threshold 1s
met when compressing the common instruction set 1n the font
execution structions.

13. The system of claim 12, wherein the instruction reducer
turther replaces the common instruction set only 11 the desired
file size reduction threshold 1s met.

14. The system of claim 11, further comprising: a priori-

10

15

tizer comprising instructions stored in the memory that, when 2¢

executed by the processor, cause the device to prioritize at
least one common 1nstruction set for replacement in the font
execution instructions based at least 1n part upon a threshold
number of instruction replacements for the font.

15. A memory device storing instructions that, when ;5

executed by a processor on a computer, cause the computer to
reduce font execution instructions for a font, by:

identifying, within the font execution mstructions, a com-

mon 1instruction set comprising a set ol one or more

14

common execution mnstructions 1dentified 1n at least two
locations 1n the font execution instructions:

determining whether a desired file size reduction threshold
1s met when compressing the common instruction set 1n
the font execution instructions;

inserting 1nto the font execution instructions a function
encapsulating the common instruction set 1f the desired
file s1ze reduction threshold 1s met; and

replacing the common 1nstruction set 1n the font execution

istructions with a call to the function.

16. The method of claim 3, wherein defining the custom
instruction further comprises: creating the custom instruction
for the common nstruction set 1 a control program for the
font.

17. The method of claim 1, wherein executing the nstruc-
tions further causes the device to disable use of a custom
instruction for the common instruction set.

18. The system of claim 12, wherein the reduction deter-
miner further 1dentifies a performance cost for reducing the
s1ze of the font execution instructions.

19. The system of claim 11, wherein the a common 1nstruc-
tion 1dentifier further identifies the common instruction set in
the font execution 1nstructions of a second font.

20. The memory device of claim 15, wherein the instruc-
tions, when executed on the processor, further cause the com-
puter to 1dentily a performance cost for reducing the size of
the font execution instructions.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

