12 United States Patent

US008930663B2

(10) Patent No.: US 8,930,668 B2

Engle et al. 45) Date of Patent: Jan. 6, 2015
(54) STORAGE BLACK BOX 2008/0155208 Al1* 6/2008 Hiltgenetal. 711/154
2010/0057913 Al 3/2010 DeHaan
: : : : 2012/0102291 Al 4/2012 Cherian et al.
(71) Applicant: gﬁnlf OfAll\IIléI'lCElSCOI‘pOI'athII,, 20120979937 Al 102017 Baror
arlotte, NC (US) 2014/0156925 Al* 6/2014 Baronetal. ... 711/114
(72) Inventors: Ronald Engle, Minooka, IL (US);
Prentice O. Dees, Jr., Atlanta, GA (US) OTHER PUBLICATIONS
, ‘ _ _ United Kingdom Search Report dated Apr. 14, 2014 for Application
(73) Assignee: Bank of America Corporation, No. GR1319977 &
Charlotte, NC (US)
. .
(*) Notice: Subject to any disclaimer, the term of this cited by examiner
patent 1s extended or adjusted under 35
U.5.C. 154(b) by 215 days. Primary Examiner — Hiep Nguyen
(21) Appl No - 13/678,419 (74) AﬁO?"H@JJ Agﬁi’ﬂfj OF FH’?’H — Michael A. Springs; Moore
and Van Allen, PLLC; Patrick B. Horne
(22) Filed: Nov. 15, 2012
(65) Prior Publication Data (57) ABSTRACT
US 2014/0136809 Al May 15, 2014 Embodiments of the invention are directed to a system,
method, or computer program product for providing a storage
(51) Int. CL. allocation to a virtual machine 1n response to a service request
GO6F 12/02 (2006.01) including recewving a service request including a virtual
GO6F 3/06 (2006.01) machine and storage parameters and runmng a policy engine
(52) U.S. Cl. | to determine appropriate storage allocation to achieve storage
CPC s, GO6F 3/0631 (2013.01); GOglg 113 26 ‘;2 parameters recerved from the requester, which may include
USPC (11 /'17 3 applying a set of policy-based rules to the recerved storage
SPC s e parameters to determine one or more appropriate logical
(58) Field of Clas_ﬁlﬁcaturn Search _ _ _ components of storage to map, to determine one or more array
CPC ... GO6:: 1 /2/ 02, _GO6F 12ﬁ0223f GO6:: 3?063 1 f ports to enable, and to determine one or more network ports to
GUGE' 3/0655; GOOE 3/0662; GUGL' 3/066; enable 1n order to establish one or more communication chan-
Lention file f | b hGO6F 3/067 nels between the operating system of the virtual machine and
See application lile Tor complete search history. the provisioned component space. Component space 1S pro-
(56) References Cited visioned and a communication channel i1s established

8,103,776 B2 *
8,171,201 Bl

U.S. PATENT DOCUMENTS

1/2012 DeHaanc........... 709/226
5/2012 Edwards, Sr.

between the operating system to the component space based
on the policy engine.

21 Claims, 13 Drawing Sheets

DETERMINE SPECIFIC INTERFACE CONTROLS FOR ONE
OR MORE VENDOR STORAGE COMPONENTS 1302

RECEIVE CALL FOR STORAGE INCLUDING REQUIRED
STORAGE PARAMETERS, E.G., FROM MODULE OR ENTITY

1304
RUN POLICY ENGINE TO DETERMINE APPROPRIATE
STORAGE COMPONENTS, COMPONENT PORTS, NETWORK

PORTS AND OPERATING SYSTEM PARTS FOR ACHIEVING
REQUIRED PARAMETERS 1306

PROVISION COMPONENT SPACE AND ESTABLISH

CHANNEL FROM OPERATING SYSTEM 10 RESERVED
COMPONENTS FOR STORAGE USAGE 1308

PRESENT SINGLE STORAGE SFACE TO OPERATING
SYSTEM FOR USAGE 1310

1300

U.S. Patent Jan. 6, 2015 Sheet 1 of 13 US 8,930,668 B2

100

COMPUTE HOSTING PROGRAM ENVIRONMENT ABSTRACTION 110

o

AUTOMATION INTELLIGENCE WORKLOAD MANAGER
120

RESOURCE MANAGEMENT LAYER
130

rasrmre L e

PHYSICAL INFRASTRUCTURE
140

U.S. Patent Jan. 6, 2015 Sheet 2 of 13 US 8,930,668 B2
RESOURCE MANAGEMENT LAYER
130
SERVER PROVISIONING STORAGE PROVISIONING
202 204
VIRTUAL MAGHINE 7 HYPERVISOR
AT CLOUD INTELLIGENCE
208
206
BOWER MANAGEMENT CLOUD USAGE TRACKING
210 212
NETWORK AUTOMATION DENTITY MANANGEMENT
214 216
CLOUD CONFIGURATION SYSTEM MANAGEMENT
MANAGEMENT INTEGRATION
218 220
COMPUTE RESOURCE ANALYSIS | | APPLICATION BUILD AND
0 LAUNCH
259

Figure 2

U.S. Patent Jan. 6, 2015 Sheet 3 of 13 US 8,930,668 B2

RECEIVE SERVICE REQUEST FOR PLATFORM BUILD 302 300
RECEIVE PLATFORM PARAMETERS FROM REQUESTER 304 ‘)
v

DETERMINE WHETHER PHYSICAL OR VIRTUAL MACHINE(S) 306

Figure 3

PHYSICAL OR VIRTUAL
MACHINE(S) 306

INITIATE BUILD OF PHYSICAL INITIATE BUILD OF VIRTUAL
MACHINE(S) BASED ON MACHINE(S) BASED ON
RECEIVED PLATFORM RECEIVED PLATFORM

PARAMETERS 308 PARAMETERS 310

‘L_—I

PROVISION PHYSICAL AND VIRTUAL STORAGE BASED ON RECEIVED PARAMETERS 312

PROVISION PHYSICAL AND VIRTUAL PROCESSING POWER BASED ON RECEIVED PARAMETERS
314

CREATE SHELL AND BUILD/MANAGE VMs 316

PROVIDE VISION INTO BUILD PROCESS BY COMMUNICATION WITH HYPERVISOR OR
OTHERWISE FOR RMs or USER 318

MANAGE POWER OF RESOURCES, E.G., POWER UP, POWER DOWN, STANDBY, IDLE AND
REBOOT 320

!

TRACK CLOUD USAGE ASSOCIATED WITH PARAMETERS FOR VMs 322

v

INTEGRATE PLATFORM WITH NETWORK SERVICES 324

v

MANAGE ADD AND PARTICIPATION OF ACTIVE DIRECTORY FOR USER AUTHENTICATION 326

v

TRACK AND SHARE CONFIGURATION AND PLACEMENT OF ALL RESOURCES 328 |

v

PROVIDING OFFLINE DATABASE OF NEAR REAL-TIME DATA FOR NON-BUILD ACCESS 330 ‘

U.S. Patent Jan. 6, 2015

Sheet 4 of 13

PERFORMING PERIODIC CH

ECKS FOR PROBLEMS AND

ANALYZING RESULTS 402

REMEDIATION OF DETECTED PROBLEMS 404

CALLING EXTERNAL SYSTE
FOR INSTALLING APPLICAT

BUILDING AND LAUNCHING PLATFORM, INCLUDING

M(S) USING OPEN FORMAT
JION(S) TO MAKE BUSINESS

READY 406

US 8,930,668 B2

400

US 8,930,668 B2

Sheet So0f 13

Jan. 6, 2015

U.S. Patent

705
Jld8Va NVS

e o mm—a——

e L

da 71

805
OdLINOO

7k

[

908
JOVAEOLS

05
AHOMLAN

U.S. Patent Jan. 6, 2015 Sheet 6 of 13 US 8,930,668 B2

Lerar

AUTOMATION INTELLIGENCE WORKLOAD MANAGER
602

CONTINUALLY UPDATE
WORKLOAD,
RESOURCES, AND
STATE

W

e YRR

-

L
e

el e
PR

[SLTE -
LT N

H

3

;

a

:

L.

b

T .
v, .

. -
S
':

T

WAy

(=8
i
.1
7
T
R
¥ 3
- . ES H
I 0 -5 2 ?)
=, e 't .
1 b 3 LI
] P o : .
i - - i
I & 2 Eooe
A - .
= R L P
a - L. L. Fe =
v 4 - .
- i . e a L ' ' . :
A A e L e L A B D e S W S

ARV N PP N)

o

=

B i e e

P B R

S

o T S e S SR PR AR

EICHL Jr

e e
A I e e e e

-

S A e ey, g e S s L A L

=

TR R T I Y

PR R PEr FAN

[P W L PR T Ly
-

L RE T PP LT ULy

-n

T
S

"

U.S. Patent Jan. 6, 2015 Sheet 7 of 13 US 8,930,668 B2

- , OMDB SYSTEM 704
END TO END SYSTEM 701 - i} A . -
K COMMUNICATION DEVIGE 727
7 R—
] commummﬁgﬁ ; J PROCESS‘N{';’ DEVICE 24
_ﬂ ! MEMORY DEVICE 726
L PROCESSING DEVICE 714 COMPUTER READABLE
o ! INSTRUCTIONS 728
MEMORY DEVICE 716 - -
“ i OMDB
COMPUTER READABLE APPLICATION
INSTRUCTIONS 718 720

el T Sl el T Tl AR L - e

MODULAR IT APPLICATION
MODULAR IT APPLICATION

709
IR 709
— =
___DAT ASTOREE/ —
_DATASTORE 729

STORAGE BLLACK BOX SYSTEM 703 |\ ?/ | ~ USER SYSTEM 708
COMMUNICATION DEVICE 742 COMMUN!CATION DEVICE 732
¢ :
PROCESSING DEVICE 744 PROCESSING DEV!CE 734
¢ . % B
MEMORY DEVICE 748 MEMORY DEVICE 736
COMPUTER READABLE COMPUTER READABLE
INSTRUCTIONS 748 INSTRUCTIONS 738
SBB APPLICATION
740

MODULAR IT APRLICATION
709

gTASTORE zgi

MODULAR T APPLICATION
709

&TASTORE@

U.S. Patent

Jan. 6, 20135 Sheet 8 of 13

el B el b el =™ B s M T bl o P T T o o 0 T N8 o= S e S o e =]

L e

CAPACITY RECLAMATION AND R

L=

=-SOURCE ADJUSTMENT

APPLICATION 810

F & el I T P 0 o el T b P el b A W e My

HOST NAMING APPLICATION PROGRAMMING INTERFACE

APPLICATION 820

US 8,930,668 B2

US 8,930,668 B2

Sheet 9 0of 13

Jan. 6, 2015

U.S. Patent

P
;

e
S -Cl\.'q:"_'-_':\-"'."'

e T
D

P

.......,. e e ot : |...|.,.H~.a.r.|..”_........uy.. - = ..u...,.......ﬁ...ﬂ.,... ...-.r.-au.ﬁh{-.n. - a "..;..f.m_..u-.“r.” ..-ln...,.
ﬁm...m.....qﬂ..ww“.h.__. “.H....._n.mhﬁ.u L TEwmcRATET PSRN AhEAT .wﬂ.ﬁ%.n.u.:rﬂ.. i

.
o
AR

FA]
Tay

L

R HE
R sl
:-'\-'ur'.".".r.-':-".r"l::‘:'

T

Eor g
)

o
o

R
AE
b

Al

LU Y AL T P -

3
L

wrsdeie nStwdruaeg ?._.,ﬁm.p
b - -

el SIHp
SRR GEREM

UG

S R

By

.
-

—a

gt

L,

g
“A T rrer,

Sl

-

HAOVYNYIA
F0EN0S3H O

VENDOR THRE

St
]
=

e A
vl
4

Lo

i

e

EH “
.";_\-\..I“:E""
Dt

.

e

ERER]

AR

...L
=
<
H

u..r

718 HIDYNYI
3041053 SV

[T T

NDOR TWO

el

V

I Lk

]
Pakir
==

hasad b,

726
HIDVYNYN JO&N05ds
ANTHOVIN TVNLaIA

AT RS o

VENDOR ONE

RESOURCE
MANAGER AFI
2

o0

8y6
H318¥NZ SNCILITICS

i L 8 e e e o Y B Y bl e ' i £l Tl

WEB SERVICES
4

-

B S Al W fol o R Gl oN) ek Do

e .._..."n. = ,,.. .,__...M.w ..,m...T.__ P _....n_._.m_........,..“.....“...”,.w. S, .,__..,....u....; BT s Rty ”..u..w BN oty

St

B e S Y
WL AT 3

SR

_.:E\'-\.'H'.'.':."-‘-
B
i
T

e
SEEE

T
A
H

B

-

A
EaTa F

g

Ry

"
-
s

Ao

L
e S

s

B

i
e
=

i

-
S
1
23
Fra
L

53

Wit

A i W

“alia

AR
: >

N P
)
S

£

%

==
==
B

i
e

by

B
e

-

-

ST
LY il

'R
L

LS

)
ST

A
e

B

ah
A
“m
. _......m._n

Lt
ik

Tl

e}

siaipaen
i,

e St

e
e

it
L

- "..n..._rm

L
-
1

-
ey

o
L

et

]
L

e Er

L

NG

i
1

e

=
.

-
n

L [e L e e

L T T
mmn
AT

iy
L

3

T " _

e

A
e

A
! 3
R
o

e
L
¥

etk

R
5 "

e
2

-

oy
RLEY)

ﬁ:u_._-_‘_‘\."!
R
- L

206 Y3OVNY
30dN0534 9V

PR
de
P

SR A e
e B et
o
o dunt

LR
T

4

-
Y

By

_
i

s

e
-"n-d:'l-:‘
Ml

B

i
h)
wn

-

i

T
LEL

o . 1 LM, by
2 e

e . - . YT . i - R . A ane e i et et P
% e d 1 . - . ! o [P L S A
e S A R R P o BT A AN L, i R

— l. 4

e
T

alee
i
i

ST RS
R

Ly . =
s

‘_‘:? W
ot

-

i

e
i

S

.E_, A

e
L

e [
{2

it

Ve
L,
=

=

'i: -

b
IR

ik

il

.
wE

.
-\..k:.r

) R
Frho

-

-
e
3

e
T

sk
el

s
.)
u....u..nu. e e ars et e amet . .. gt et et o . o e e Rt
ey FTEER S TR TR T R L R R R A e Mt S A - PRy St 2| e LY
TR SENIAR Rl REen BIRITAS FRTERE NN R ADNERRAD SGEEN U

At
AL

Ll

o sl Db Oiodr oiveld Uit mlad el PR SR o e s Bt S e I ey o | e e e i
HIOMBLUBL] [0JJU0d
ot - ”u......

pUB SSD00E |

-

e i e D i i
e
S R
r i ...|.

Say

il

B T TS i T
Cr U e e T A
L A i
s T ﬁmw =

; .F...,.a.ﬁm. h..ﬁ

'
=

o
1
T
£
b2l
LR
P
5

E AN
S T
% RO i

YR
g
L T E

RS
= :Ld'i-?
i
S

Ly

B2 gy .n...,. ot ke
m,____n vﬁu%.\ﬂﬂ.wn..p o i
LR P

SEO e

Sine ;

T

L M A T T e

]
et

e

i el B St
o i Xhol T R T e oy
i .%mﬁ».% T i ._..M\ i
GE g e
' e

e '!I-::"\-E:_’:; .
T
T

i

o
i

At
5

P NN

e Tnr....n. Foadiii
. x

e A LY
TR T AR

ey "..,”

. alu.n.”n.“nu.m”u..l Hlf:. ..L

LR e T ST
RN e ...""..._..m..,_..w S M,.F...ﬂ._.“.w
;.

PR

Y

L. .--
o_..."n..a_..mmr

il
SR
Heiiniong
R

. [e
..J_,.,.m m.w nf..u....m.#f

ey
ol

X
i

“

L._,w_... " % 2 I

et L MR ;

i J; ST iy :

WL e - H.;.._ﬁ.w £ mwh.g_.m.\ w.wﬁ 4 ..m:m\wﬁ,. :

e Lk : PR R e S e L e VS S S s
e N S B R e A e S B et St
BRCTH ATEEH TR B ey a........._r.nw”_..w_.."...,.... T L R B e ..Hu..:...-..,._..._...".....u...r,._ W S T T N

v
i

L

T

._“m.mﬂ.“ SRR

. r
o ."....,.."“u....m‘@w«.“..Ww..,.w,?,..u_.-.m.]
TR T e e T S o) X we
o ..u“.._m_.._._..mw.ﬁ.. TR iy AR R ..M.,..hm.u__ﬁ_m........__....w.w...“m. P
e T AR b T e o A P R R IR

AR e S =t
A e R e i i

=l
-.-...W-.l._.

b
=
-

o

o
u
A

A
5?2-:;.3?3
EELE
i

1!
o

......- . .
I S
,,,.._.m“.uw A

SEEA

ey
:

dald
LRl

S

44, A
i

bt
)

-
B

e

L

o

s

£iF

B
e

R

e
LA)

-
-

i
- e
-

nemmnn
R,
o '.':E'a

oty
)

-t et g
Pl

iy e
R R
™ -

R L
_\f
b

- T
AL
.
;

o

o
-
Ay

5
o
=

-,

A

)
Nt

Ly
-,

%-:.

1

poat
I

%

RN

e
=

19

:
A
R

ig?

e A Lt A

L A e
MTEeE
wr,
]

-
)
Eoks

R
i

]

U.S. Patent

Jan. 6, 20135 Sheet 10 of 13

L

OPERATING SYSTEM SEES AVAILABLE STORAGE AS ONE
PIECE 1000

OPERATING SYSTEM PORTS 1050

NETWORK PORTS 1040

REAL POTENTIAL SPACE AVAILABLE FOR MAPPING 1030

LOGICAL COMPONENTS, E.G., INCLUDING VIRTUAL SPACE
1020

PHYSICAL DISK OR ARRAY 1071

US 8,930,668 B2

1000

U.S. Patent Jan. 6, 2015 Sheet 11 of 13 US 8,930,668 B2

Jrodr o dr dr o dr o Jr e Jr o dr Jr Jr o Jdr o Jr o Jr o Jdr o dr o Jr Jr o dr o dr Jm mm e e e e e e e e e e e o = = = . = = = = e e = = e e = = e = e = e = = = = e e = = = = = = = . — — — —— — — — —— = —— —— —— — — — — ——

OS Mult
Pathing
1165

TR R R R R R R R e e

i 0S HBA
- Driver View

1160

- Emulated

[
|

... B S e e e L T e e T i
-.. B o i e e T N Tl R CRa Rl Ul Ul U Ul VR Ui VR A)

. w AL S
4 h L3
g " v

T -

.*.'.*.'.*.'.*.'.-'.'.-'.'.-'.'.-'.'.-'.’.-'.'.-'.'.-'.’.-'.'.".'.".'.-'.'.-'.'.".'.-'.'.-'.'.-'.'.-'.'.-'.'.-'.’.-'.'.-'.'.-'.'.-'.'.".'.".'.*.'.*.'.*.'.*.'.

F F F EF FFFEFEFFFEFEFFEFFFFFgL TR rFFrErFEFEFEF N EFEEFEEETEEEE

F
]
r
]
4
]
F
]
r
]
4
]
-r-
]
F
]
4
]
F
]
r
]
4
]
F

I I T I T I T A T T I T T T R T T T TR T R R I N TN T T S

AN

L) L) I I L I I I T L I T L)
I"Jr xx I"Jr":r"' A-"u-"a-*n-"' "u-*#"a-*a-"a-"a-*a-*&""*"’ e e e e e e e e
v 'rJrJr A Jr"' JrJrJr *Jr'rlr#'rklrklrlrk#lr#lrlr#ll:
NN N NN,

Xy .

)

>

1]
[]
1]
. *** *,, *:,,
. e ,,* NN oy
' .HH Rl ol *HHHHH"”*””””
b L T T T T LT T T T LT s, .. ** .
h T Lt s e,
1]
[]
1]

A A A L A A A AR A LR AR AN LR AR AL L AR AL LR,
Jr'rJr'rJrJrJrJrJrJrJr'rJr'rJrlrJr'rJrJrJrJrJrJrJr'rJrlrJr'rJr'rJrJrJrJrJrJrJrlrJr'rJr'r

N N N N
Jr
N g o el e g
o g g g e
XX EEFEEEEEEEEEREEEELEEE NN E RN N RN E
LI B A I R R I R R A R R I R R R R R R R R R R R R R I R R R R A B R R A R R A

L]

T ¥
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

L) -
Jr x

..-
x
x
x
x
x
x
x
x

-

-

¥
o o
x

i o
i
i o
oo
x
& o
i o
oo
i o
i o
o
o
o
o
o
o
o
o
o
o
o
o
o
ax

-'r-'r-'rdrdr
J o dr o
4 i b ooy
I
X
L)
I
-u-:-u-:-u-:q-:-.
o dr
I
I
oo
X a
i o
oo
X a
i o
i o
X a
i o
oo
I
i o
oo
I
o o
oo
I
i o
oo
X a
i o
oo
I
i o
oo
I
i o
oo
I
i o
oo
X a
i o
oo
I
i o
oo
I
i o
i b oo
-\'-t*q'*q".
LR

i

iy

iy

Xy

Xy

Xy

Xy

Xy

Xy

Xy

Xy
oda

.

P

i
i
i
i
i
i

X
X
a»
oy
¥
X
X
i
X
oy
N

-

E I I I B I

i
B

i
N)
.

LX)
bdr & X X x
X 4 dr
Jdr XX
o d o gk
I
LX)
Jdr kX
Bk
':*-h'_‘_-l'*-'r*-t*q' T
:-ﬁ-:-t:-t*-ﬁ-
Jdr kX
N M)
b dr X
Y
EN M)
Jdr kX
I
N M)
o d o gk
'y
EN M)
Jdr kX
I
N M)
b dr X
N
d dr o dr X
Jdr kX
X i
N M)
b dr X
N
EN M)
Jdr kX
X i
N M)
b dr X
N
EN M)
Jdr kX
X i
N M)
b dr X
N
EN M)
Jdr kX
X i
N M)
b dr X
N
EN M)
b dr & kX
:-h:-u-"'-t
i r ik k korx
K

¥ x
o Eal)
X xx XX X E XX E X EEE X LR
_; a-_q-.a-._ Jr_a-.. Ly .Jra-ara-q-a-ar

o
i

&+ & _F o 4

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
)
L]

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
¢
1
1
1
1
1
.
-+
P A N A A)

- Chassis
FCOE Switch i

oS
o

MMM'-\.r.\.MM'-\.r.\.MM'-\.r.\.M%ﬂMMMMMMMMMMMMMMMMMMMMMMM“

- 1145

- rTrTYTrTrTYTrTYTFrTFro-To-oTTToOTOF
' iMMMMMMMMMMMMMMt-

E O I E I A

.1'

T o o o ol o R

f
i
A
i
i
i

'
-h-Il
'l-llﬂr'r'r'r'r'r'r'r'r'r'r'r'r'r-r

L]
-h-h

Array Front ?5 x %

-h

- End Port
1140

LJ.LLLLL&LL&LLLLL&LLLLLLL&LLLLLLLLL

LLLLLLLLLLLLLL&LLLLLLLLLLLLL' LLLLLLLLLLLLLLLL

Perf C

LLLLL&LLLLLLLLLLLLLLL

Port A

&y L L L L L J. L L L & g ey deey g ey ey ey e e ey ey ey e e ey ey g e e e ey e e e ey ey e e e ey ey e e ey ey e e e ey ey b b ey e b b kg kg R

.l

drdrdrdrdrdrdrdr-'r

-i

- Ports
- 1135

LG LI N N A I LI I I

B e D e e I e D D I B I I B ', b e b e b D b D A I S I D S I D e I D I D I I I D I D I I

- META
1130

=+ = s e s e s e s = s = s = oa =4 == o= oa omos om s omosomoaomox o mox o omoa o omoaomoaomoaomoa o omos o omosomo: o= o= gpEEEErEEEE NN NNy NN NN NN NN NN NN N s = ° = : = = = & = 1 = & = & m & = = = &+ = + = & m o+ om s o m a o m o x m o4 m o= om o+ om s+ o= s o= o4 m o4 om o= om s om s omox omo s om s om s omox omox o omoa o omoaomosomoaomoa o omoa omoaomoaomoaom
e e e e e e e e e e e e e T

T
'
'
[
'
'
[
'
'
[
'
'
[
'
'
[
'
'
[
'
'
[
'
'
[
'
'
[
'
'
[
'
'
[
'
'
[
'
'
[
'
'

T
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.
.
]
.

o
'

o logical
Component © ’ B
 Layer e R R R S e i e e R
apaveyys
Thin Pool _;;;;;;;;;;;;5;;;i_g;;;;;g;g;‘g:g;g;g;g;g;;;5;5;55:5:;5;:5555:::;_5_;:;:5:555_5:5555:5_:5_:5_:5_:5_:5_:5_:5_:5_:z_:z_:5_:z_:z_:5;5;5;5;5;5;;;;;;;;5;;5
o110 EREE

~ Parts of
~ Physical

 Disk

' I R R E R E R E N RN E RN E N E N R E R R R R E R R E R T E N ERE R E R E R R E N E N E R E N E N E R E RN E N R R N RN

1
iﬁihihﬁhihihﬁhihﬁhﬁhihih-hhihih-hhihih-hhihih-hhihih-hhihih‘hhihih‘hhihih‘hhihih‘hhihih‘hhihihﬁhihihﬁhihihﬁhf_'_'_

o

Container
sy
By

i e s ode s s e s sl ol ksl ks bshss s s ssssssssssSssSSsSSsSSSsSSSSSSS.SSSSSS.SS.SSS.SSS.S.SS.SSS.SSS.S a8 LSS aSS A SESESSSSSS.SS.SSS.SSS.SSS.SSS.S..SS.SSS.sSSS.SSSsS.SSS.S..S.sSS.SSS..SSSsS.SSS.SSS.SSS.SS.S.SSSsS.SSS.SsSSS.SSS.SSS.SS S .SS S E. S .. aE s s ..

US 8,930,668 B2

Sheet 12 of 13

Jan. 6, 2015

U.S. Patent

oW W A W wp W W ar s
A T e T T T T T g .
o

b o S S L O e e e e
LR T T T T T TR TR T R TR R R T T Y | .

J._....,.r.r......h.b._...., x .. ¥ h..r...,.r.b._....,.h.b._.......r.b._....,.h.b._....,.r.r...,.h.r.r.r.r.r.h.r.r.r.r.r.h.b._....,.r.b._. ¥ h.b._....,.r.b._..r.h ¥ t x b._....,.h.b._....,.r.b._. ¥ h.b._....,.r.b._. P
&
e et el e et e et el et el e e e el et e el e e e e el e e e e e e

71, ainb1

r Ir i & L] L] L * L]
P) %) [} [}) [} [} o) [} o) [} [} [} [} [}
”n".uﬂ.q“...“ . .-4”4“4“4“4-.4-_4”4“4 .-_.4“.4”.4“...”.4”4 .-_.4“.4“.4“._..”.4H.4“._..“.4.-_.4“.4”.4H#H#H#H#H&H&H#H&H&H#HJ—.& w .4.-_.4“...“.4”.4“...”4.-.4 . ”.4”.4.._._..“.4 .4“._..”.4”4“...“4 .4“._..”.4”4“...“4 .4“._..”.4H.4.._._..“.4”.4“._..”.4.-.4“4“4”4“4”4-.4“4“4”4“4”4H
Bl S St S o A e A S Sntonl Sl Rl Rl At At A e e ol el ARl ARl Ml A e e e et el Tt o LRtk o ik i ik i ik i ek i ek e e e
T T e e R R RN AT,
S
e
T
-
-

ol " i e i " "o e "o " " "l e e e e e "o "o " "l " ' e e e "o e " o e A 'l " i e e e

LI -

-
"l -..Jln...._._
i b o .l.-l.._......
N X i
T T T T T T T T T S T T T T T T T T T T T T S [T T T T T T T & 4 i Jr i
= = = m = m m m m m m m E m m om m® m ®m m m = E mE ® =Em = m EE EE = E EE EE EEEEEEEEE wm [T AL m oL om o . e i e r e rm oL m B s _-......._......._......._.........-_
L
NN
X e
PN
P
N)
g
)
ECAE N
e i
PN
)
L
”...H...H....._.tus_ [«
P
L)

)
e

W TR T R T T T T E T T T T T

gL L e Lp e L LR g g g
WO g T T T T T g Tl T D Tl Dl T T gl T T T gl T g Tt g g T g gl gl gl gt g g g g g vt ot rrrrrrrrrrrrrrrrrrrrrErErErRErCE R FQ

soAEem
o opAyeden paishud | S jedisRug

L]
- moa g . . . 5
L TR ek kaoaoaa .
L B I R =

e e e . rror
F e oy oa o
' . . e P N T
' NN N N N N N
e P N
' A N N N N N
F] rror rrrrrrr R rrrE R R R R R R E
' A N N N R N R R
A * e P N T
. = . . = . . = . . = . = . . = . . = . . L] L} L] L} L} L] L} L} L] L} L} L] L} L} L] L} L} L] L} L} L]
—-- ¥ = P e N N N e N Y e e N ' e N N A A e e e W Y e W Y e i Y i L FFpFrFPFP PP PP PR FPFRPFFPFFF
' A N N N N N
e e e e e e e e O e e e il e el e e el e e e e e amamamamcammeamamy ce e e e e e

M I M M MMM N

UMW)
.___W
L) L) ...m
M
L)

i

[y ror rfr r Fr o rrrFrFrFr P FP PO

o LR NN) P reeie' el NN
L e e e e e e e e e e e e e) o
O N N N N) N N N N N N) ror rrrrFrFrPFEFEFEFE®RFPE PP P PP PO
G R M I M M ML A M AL o R R i R R R R R

F F F F F FFFFFEFFEFEFEFEEFEEFEFEFFEFEEF

: T » R R
I = = = ®m § ®E = ®m ® E 5 N = N N N E N N SN N ¥ S ¥ N E E N N N N S S N N N ™ N ®NH " m = o ®oEoEoEE NN " = o= ® oW oEoEE NN - - o ' P T T T T R T T
' - drodp Jpodr Jdrodp dr o dp Jpodr Jr dp dr dp Jrodr Jdrodr drodr Jrodr E A - LI rr o L L
Tr .._J.__...ﬂ_....___kﬂ#.___..ﬂ#.___.ﬂ_....___..ﬂ#._._..ﬂ#.___.q._.#.___.ﬂ#.___......n#.__..ﬂ#.___.ﬂ#.___...._."_c#&H#;kﬂ#ﬁ#ﬂ#ﬁ#ﬂ#&kﬂﬂ#ﬂ#ﬁ#ﬂﬂk a a Tatatetat n” oL, x L
L) L) N] L) i - rror rr FFFP P FEFFPEFPEFPFPFPOFoO
& [} L IR N N N T

| ']
H.___“. oL,

L e e)
MMM MMM MR M LT
L [T T |

CoasiAan

. k. .
. '
. P
R pain c._.___OU
. e .. Frr e e e . Pe e e e e e e
m & = = = 2 & a2 2 m 2 & o a = 2 = & m m a = w s om o [T T) r L T T T Y T T N N N B | [T T R T R T T |
" = ®m ®E ®E 2 E N 2 E E N E N S E E N S ®E S E N S N N N N _®H_® " = 2 ®E 2 E N N E E N E N N E N HN W "= = = ®mE 2 2 E = =2 = & r . 1 rFr rFrr rrrrrrr FFr rar r r rFr r
. . com i e i b e T e T T P I e e ul
"a"n"n"n"n"n"aﬂ:”a"a"nln"n"n"a"aan"n"n"n"n"n"n“aaa"n"n"n"n"a"a"n"a"l"n" "n"n" e n"l"n"n"a"l"n"n"a"n"n"l"nan"a"na . i 1 R R e e e e o 4o L)) L
R - e e e e L e e g T, TEL "] i - m _.L_ w.ln @ m mh - . . . R R e e oy |
a__.a..:...u" - .u:__ L E R N i . e A A X Llaaanlnalaaalaaan:aall [d - .
- B 3 h F ER . [.
ana.nv x5] o J_n.-.-_ il " J_aaaannnananaaaaanaaaaxn.!] ¥ R L L N
e e . pe R R L SRR R RN . . al
R X X X X x " _x "X e R R R KR K ¥ M N8 1
ERERERNERDRN EER EFEEFREREN EFEFEEFERERERENSL .m D_mem
R e R e R R R e “xn.v_v. ! ' ﬂ H
"l

.
e e e

. :H
L A
- oo A
P
‘™
o
s

T 'R
e
e P el e e n.n.q“II"ln.l ““

"
.
2
.
-
.

u u L
rl“"_..nm_.. ._“l"“"llllllll“"l . .

T

e

+
L
L rrrrrerkrrFrErErFEFFFRFEFEFFERF

n
1
. P S T P X - x
- . .‘I"I"I"‘.‘"Iﬁ."l' ...L i..
il e e e e el el Al TR e T e T T e T e T T e T ey R ke ke X .
L e T e R ..- .|-_. .__-.] . . ¥ . .r.. [L] .-.L .-... ¥
e e e e e e e e = == - - e e e e e = e e e e e = e = = = e e = = = = e e e e = = a e = - - - - - - e e e e = = e e = = a e = e e e e = = a e = - - - - e e e e e e e e = e e e = = = a m = = = e e e e e e e e = - - - - - e e e e e e e e = e = e e e e = e e e e e e e a = = a = - - e
.._.:l.ll:l.l.l.l.ll:l.ull_?__l.v_lll_ll..__:l.ll:l.l.._.:l.l.l.l.lIIIII.-“IIIIIIIII.I"III.“III .._.:l.ll:l.l.._.:l.ll:l.l.._._I._-.......___II.._.:l.ll:l.ll.l.ll_l.l_l_l.i.IIIIIIIIIIIIIIIIIIIII ui:ll:l.l.._._I.ll_lﬂ.lIII..—.IIII".IIIIIIIIIIII.II IIIIIIIIIIIIIIIIIIJ,II bl Ll ”l”I”l”lf
r . L]]) r . . X
-..v. -“ .-“ 5 . -_- . gt ..-_.. ¥ - & - ¥ . & ..-.. .-.” ¥
l.._.. -i . .-L . . e .-_.. ¥ - - ¥ . L] .h.. .-.. - X
-..v. -i .-L - ..-_.. r - . ¥ . M ..4. _-.. I
-..v. -i . .-L . . e .-_.. ¥ [. [R .-.. .-.. . ¥
lh_. -h .-L gt ..-.. ¥ - - ¥ . & ..-.. .-.. x
-.._.. -i . .-L . . . - .-_.. r & . & . L] .4. .-.. . x
. -..v. -l .-L gt ..-_.. ¥ - . ¥ . M ..-.L _-.. ¥
A l.._.. -i . .-L . . . e ..-_.. ¥ - - ¥ . L] .h.. .-.. - X
\ -..v. -i .-L |-_ e ..-_.. r - . ¥ . M ..4. _-.. I
-..v. -l..-n. .l___ . gt .-_.. ¥ & - [R .4. .-... ¥
-1 a - m .- - - - - . ¥ . u . T f
.._. Y o - Y - ¥ . X '
-.._.. -i. .-L . l1 . - .-_.. ¥ . & . L] .4. .-... x
LIEEL . i r e ¥ “___...l.lrlrlrl.l.lrlrlrl.l..l.l,l.l.,. .. ¥ - i et oy L ¥
- 8. & - - R . - Al - . oA - . . R - - [& . . . - .] . T - x
) Y a - Y » ¥] n a . . - N " X '
-.._. -i .-L B l1 T ..-_.. ¥ .__- .- .-_n [. ¥ - . l1 . .._.._ . .__.. ..4. .-.. r
-..v. -l..-n. .-...-..-..-..-..-..-...-_.-..-_l.-..-_a‘ l-_ . gt gt i . v .__.. .-.. ..-_l .r.. ¥ . .- l‘_. . ___.__ . __.. x .-... ¥
A .-L . .-.. . ..r ..r li . . . -.. » .-.. - ..-_.. ¥ A i .-.. _r. . [li . .__.._4. .-... g
[4 . * * [[¥ - - Y - o a » - - * -] . + ¥ rrrrrrrrrr e
- - - - - a » - r Iy ¥] n a . - » ™ X ' T T T T T T T T T T T T
L . ¥ - * » A % B . ¥ - Al - o . a1 5 . - - " - . . T - x rrrFrrFrrFrEFrPFrPEFrE PP
Y a . - - - a » . Y » ¥] n a . - N " X ' R R R R)
[] E] ¥ » » [3 B ¥ - - e - o] & [. Y Y] . a 3 r rrroror rrrrrorcr
- o - - - a Y - » » r] u a . - * - ¥ ' o T T T T T P T T T T
| . ¥ - » ‘ " % [¥ . - Y e o . o R . 1 - [] L + - ¥ rror r r r rrror o
- - . - - - a » . r Iy ¥] n a . - » » X ' o ' 1 1 ' oo
F] [] A ¥ * » [» r - .- S .- ol a1 Ey - - " .l] LA . T x rror r r rrroror o
Y a - - - a » - Y » ¥] n a . - N " X ' o ' 1 1) 1) R]
. 4. X . » » - m . B . ¥ - . - o . - & . 'Y " - '] . T . I rror r r r Frrror oo
- o . - - - a Y . » » ¥] u a . - * - ¥ ' o ' ' ' R oo
[4 ¥ * * [[¥ - .. Y e o a » - * .k] e . + r - rror r rroror rrrrrrrerer rrror oo
L .-_ eyl N ..-..-..-. = -..-. o ;5 . " " - . » ¥ Y * .__. . . - - LA . X oy M R R R B N, L R
. R R R R NN R R R N) R N N R N R R R e L -) i) L el » . ¥) ') : . * T i) O
.“-“.r.4.___.__..___.4._._.4.._.4.._.4.._4.._....._.4...4.._4.._4.._4.._4.._4... ‘. ...».-.H.._. At ”.__..4.._....._.4....4.._.4.._.4...4.._....._.4...4.._....._4.._4 x o T K - > ¥ . T p % Y, . ¥ ¥ - T S o P u._ﬁnnu.__.u.___....-_.-_ N R R A R
S N R R R R I T N ¥ - * [} k ¥ . ¥ L d - ¥ . * " L L s L e reor
REESENE 0 0 3 30 30 B A C A0 B 30 a0 B0 SR Y EC R A S I 0 S A0 AC BC M R AC E M A0 . - - . 1 . i . . - * " X L I
I R Ll L el x * * ¥ O *]]) " L L e) e reor
Ol 3 kAl) L NI Rk il - - 4 1 - L) i . 4 - * . ' raa
U a3l ol ol e A ka3 Al) ¥ - * [¥ . ¥ L a - ¥ . ") L ..N".-_.q e rror
e dp e p e e ey g e iy e e e dp ey e dp e e e dp iy e e e e . - » . § * * LAl
N B L B R R R B L N R R L N M R M) ¥ . “a v ¥ o a ¥ “a e N B oy et et
el dai el il dl-all Sl il Jui Fial il JaiFlal J srs [2all Talf Rall Ralf Ralf Rkl Tkl Bl Tall Ralf Tall Rall Rall ekl Rall Bl gl iy - - a » -] n a - N " [l o oo
P - T N) ¥ - * » B . ¥ . o . o 5 . " .l] L) ror rroroa
rr & ' . - - a » . ..] . a - N - . oo
r i ' r » » [. . o a4 » 1 . A ror rroroa
" x . - - a Y ¥] u a - .._.__ . L NN
g * - * » b - -) " . W -) - o o
1.r.._|1 .-... * .1‘ -_n . .-.u.. .__-. l1 ..__.._ ._.- T, L
" & ¥ » » » . -k ol " .l] ror Fror o
. ko - - a » -] - » ™ o oo
. - s - . o mE ¥ - e | ¥ . o . " -] ror rroroa
a2 a2 s s a s mama “aaa .i.i.i.i.i.i.iiii.i.iiiii.i.i.i.i.i.i.i.i.i.i.i.i.i......._h 'y s o .-El‘.._ .__. l1 * * - et
- O N N N N AN W Ll § - r v
¥ i i de L I R e e ey .l..__.ul_.l..l- - - - l.."l"-_lll__.l_._ili_al_._ - “n#n o [JE) L-_'“ll“t..l-_.. . e et
. ' .
e e e ...H... E) H.._.H....H.._.H...H.._.H...H....H.._.H.._.H...H....H...H.._.H.._.H.._.H...H....H.._.H.._.H.._.H...H.._.H...H...H...H...H...H...H...H...H...H...H...H...H...“. o .__.q.._.r.__.-.._..-” ” e-.4”.-" . . ,.__iu.qun._..._H..H...H...H...H...HJH.._“...”_- .""" .-" ”._...._. rE ln.n___”# L] ”.__..4._._.__..-_.___ e " .4!”“”.!” A H Aty - u . "l 1” .
i i iy i i i iy dr e i i e i e R TR o R R T SR dr I e i el i H'......_—....qm e N N N .l".q] - .q.r.r..,.......q....._.._-_-lﬁ‘n__.m-. e rleiea
ar iy Eal i dpdp ey dp ey e ar W e e eyl i e e il W e ap e e g ap iy e e e iyl e W i ey L M Ea el sl sy 'y PN R N i ol v
A Lk oA) e N N B N N . R N N kN ki Nl L e . Wl dr ke dr d ke d k& e & Pt N e reor
i ﬁm#& s i iy e e dp e e e ap e dr kg 2T e e e ey iy iy eyl e e e dp b e e e I e e e e e 0y e dp e iy dp e dedp e i ke e o e al a3l kel b bl al L o ol e D alal al I
d iy dr iy e iyl i iyl i e ay dr iy iy g ey g i ey i ey ey R N N T N A L R N N N N e e reor
o Lk * dp by e e de dp e e e dp ok e gk By e ey p iy e ey e i iy b ey ey ey ey e e ey dr iy e b dr de U e e dp dp e dp e iy e ey i I e U ey e 0y e dp e iy dr e de oyl i dp ke ' raa
i iy dr iyl e iy iy i el e i i i i dr i A kel el Lt Sl Eak aE kM I . B N N A L L L 2 R . Lt o o L L L k) M . o o Al ol kL 2 e rror
r Ty gy p iy g iy e e dp e e ey i e e e g ¥ i Ealy NN dpdp e dp e e ey e ar W ey dp iy el e B Wy e ey e b Wy e ey dy dp iy iy i ke b E W e e ey e ey iy ey il i i e E -
e B Cnnesss B T IR XX
1|.._.q....q....q ...q.._.q...q...q...q...q...q.._.q...q...q.._.q.._.q...q...q...q...q.._.q...q...q...q...q...q...q...q...q.._.q...q...q...q...q...q.._.q...q...q.._.q.._.q.._.q.._.q.._.q...q.._.q...q...q...q...q...q...q...q...q.._.q.._.q...q...q.._. ...1.._.1...1...1...1.._._.....1...1..._.....1.._.1...._......1.._.1.._._...._.1...1.._._.....1.._.1...1...1...1...1...1....1...1...1...1...!...[.- 1.__ —_.—_.__.__ . . - et
. el

00¢1

U.S. Patent Jan. 6, 2015 Sheet 13 of 13 US 8,930,668 B2

DETERMINE SPECIFIC INTERFACE CONTROLS FOR ONE
OR MORE VENDOR STORAGE COMPONENTS 1302

A Ll T Ll 8 8 W TANLT TR

roraraer

STORAGE PARAMETERS, E.G., FROM MODULE OR ENTITY
1304

RUN POLICY ENGINE TO DETERMINE APPROPRIATE
STORAGE COMPONENTS, COMPONENT PORTS, NETWORK
PORTS AND OPERATING SYSTEM PORTS FOR ACHIEVING

REQUIRED PARAMETERS 1306

PROVISION COMPONENT SPACE AND ESTABLISH
CHANNEL FROM OPERATING SYSTEM TO RESERVED
COMPONENTS FOR STORAGE USAGE 1308

PRESENT SINGLE STORAGE SPACE TO OPERATING
SYSTEM FOR USAGE 1310

US 8,930,668 B2

1
STORAGE BLACK BOX

BACKGROUND

Traditional information technology infrastructures for
entities usually require several operating environments, ven-
dor resource deployment, authentication repositories and
mechanisms, and several application servers working
together 1n order to operate a large entity’s information tech-
nology.

Furthermore installing and/or implementing core func-
tions, such as new software or hardware within an entity’s
information technology infrastructure requires several time
consuming steps. For example, ordering and installing a new
physical server and/or associate work station requires a logi-
cal process to load the necessary operating systems, secure
the server, install applications, ensure licensing from proper
vendors, and the like. In some cases this process can take
several weeks or months for the server(s) to become opera-
tional and business-ready for the entity.

Furthermore, the new physical server and/or associate
work station may have hardware or soiftware features that
provide functionality to the physical server and/or associate
work station that are not being utilized. For example, the
associate work station may have a large amount of memory
that the associate may have requested, but may not be utilized.
Thus, the entity may be paying for information technology
infrastructure that 1s not being utilized to 1ts fullest capacity.

Theretfore, a need exists for a logical management system
of imnformation technologies within an entity that drastically
limits the time required for core functions to be completed
and intelligently monitors the core functions once imple-
mented.

BRIEF SUMMARY

The {following presents a simplified summary of all
embodiments 1 order to provide a basic understanding of
such embodiments. This summary 1s not an extensive over-
view ol all contemplated embodiments, and 1s mtended to
neither 1dentify key or critical elements of all embodiments
nor delineate the scope of any or all embodiments. Its sole
purpose 1s to present some concepts of all embodiments 1n a
simplified form as a prelude to the more detailed description
that 1s presented later.

Embodiments of the invention address the above needs
and/or achieve other advantages by providing apparatus (e.g.,

a system, computer program product, and/or other devices)
and methods for providing an information technology build
service for building a platform in response to a service
request.

According to some embodiments of the invention, a system
has a memory device with computer-readable program code
stored thereon, a communication device, and a processing
device operatively coupled to the memory device and the
communication device. The processing device 1s configured
to execute the computer-readable program code to receive a
service request for a platform build from a requester, the
platform build comprising a virtual machine; receive a plu-
rality of storage parameters from the requester; run a policy
engine to determine appropriate storage allocation to achieve
storage parameters received from the requester; and provision
component space and establishing a communication channel
from an operating system of the virtual machine to the pro-
visioned component space.

In some embodiments, the processing device 1s further
configured to execute the computer-readable program code to

10

15

20

25

30

35

40

45

50

55

60

65

2

present a single storage space to the operating system of the
virtual machine for usage. In some embodiments, running the
policy engine comprises applying a set of policy-based rules
to the recerved storage parameters to determine one or more
appropriate logical components of storage to map, to deter-
mine one or more array ports to enable, and to determine one
or more network ports to enable 1n order to establish one or
more communication channels between the operating system
of the virtual machine and the provisioned component space.

In some embodiments, running the policy engine com-
prises applying a set of policy based rules comprising a risk
tolerance determination, whereby a risk tolerance associated
with the service request 1s determined based on one of a table
of predetermined risk tolerances associated with one or more
storage parameters or one or more virtual machine param-
cters or based on an analysis of the importance of the virtual
machine to which the storage 1s allocated or the importance of
the mtended function of the storage to be allocated to the
virtual machine.

In some embodiments, the processing device 1s further
coniigured to execute the computer-readable program code to
communicate with one or more vendor application program-
ming interfaces to interface with a plurality of vendor storage
components according to a preprogrammed set of configura-
tion standards associated with a vendor and the vendor stor-
age components. In some embodiments, the processing
device 1s Turther configured to execute the computer-readable
program code to run a web services client for providing an
application programming interface for receirving service
requests and storage parameters from requesters. In some
embodiments, the processing device 1s further configured to
execute the computer-readable program code to provide a
product catalog for presenting a list of available storage solu-
tions to a potential requester, regularly monitor functionality
of communication across one or more communication chan-
nels established by the system between an operating system
and storage components to check for errors, and, 1n response
to a request, present a report comprising information related
to the functionality of the communication channels.

According to embodiments of the invention, a computer
program product provides a storage allocation to a virtual
machine 1n response to a service request. The computer pro-
gram product has at least one non-transitory computer-read-
able medium having computer-readable program code por-
tions embodied therein. The computer-readable program
code portions include an executable portion configured for
receiving a service request for a platform build from a
requester, the platform build comprising a virtual machine, an
executable portion configured for receirving a plurality of
storage parameters from the requester, an executable portion
configured for running a policy engine to determine appro-
priate storage allocation to achieve storage parameters
received from the requester; and an executable portion con-
figured for provisioning component space and establishing a
communication channel from an operating system of the vir-
tual machine to the provisioned component space.

In some embodiments, the computer-readable program
code portions include an executable portion configured for
presenting a single storage space to the operating system of
the virtual machine for usage. In some embodiments, running
the policy engine comprises applying a set of policy-based
rules to the received storage parameters to determine one or
more appropriate logical components of storage to map, to
determine one or more array ports to enable, and to determine
one or more network ports to enable 1n order to establish one

US 8,930,668 B2

3

or more communication channels between the operating sys-
tem of the virtual machine and the provisioned component
space.

In some embodiments, running the policy engine com-
prises applying a set of policy based rules comprising a risk
tolerance determination, whereby a risk tolerance associated
with the service request 1s determined based on one of a table
of predetermined risk tolerances associated with one or more
storage parameters or one or more virtual machine param-
eters or based on an analysis of the importance of the virtual
machine to which the storage 1s allocated or the importance of
the intended function of the storage to be allocated to the
virtual machine.

In some embodiments, the computer-readable program
code portions include an executable portion configured for
communicating with one or more vendor application pro-
gramming interfaces to iterface with a plurality of vendor
storage components according to a preprogrammed set of
configuration standards associated with a vendor and the
vendor storage components. In some embodiments, the com-
puter-readable program code portions include an executable
portion configured for running a web services client for pro-
viding an application programming interface for receiving,
service requests and storage parameters from requesters. In
some embodiments, the computer-readable program code
portions include an executable portion configured for provid-
ing a product catalog for presenting a list of available storage
solutions to a potential requester, regularly monitoring func-
tionality of communication across one or more communica-
tion channels established by the system between an operating
system and storage components to check for errors, and, 1n
response to a request, presenting a report comprising infor-
mation related to the functionality of the communication
channels.

According to embodiments of the invention, a computer-
implemented method provides a storage allocation to a virtual
machine in response to a service request. The method 1s
embodied 1n at least one non-transitory computer-readable
medium having computer-readable program code embodied
therein. The computer-readable program code 1s to cause a
computer processor to receive a service request for a platiorm
build from a requester, the platform build comprising a virtual
machine, receive a plurality of storage parameters from the
requester, run a policy engine to determine appropriate stor-
age allocation to achieve storage parameters received from
the requester, and provision component space and establish-
ing a communication channel from an operating system of the
virtual machine to the provisioned component space.

In some embodiments, the computer-readable program
code 1s further to cause a computer processor to present a
single storage space to the operating system of the virtual
machine for usage. In some embodiments, running the policy
engine comprises applying a set of policy-based rules to the
received storage parameters to determine one or more appro-
priate logical components of storage to map, to determine one
Oor more array ports to enable, and to determine one or more
network ports to enable 1n order to establish one or more
communication channels between the operating system of the
virtual machine and the provisioned component space.

In some embodiments, running the policy engine com-
prises applying a set of policy based rules comprising a risk
tolerance determination, whereby a risk tolerance associated
with the service request 1s determined based on one of a table
of predetermined risk tolerances associated with one or more
storage parameters or one or more virtual machine param-
eters or based on an analysis of the importance of the virtual

10

15

20

25

30

35

40

45

50

55

60

65

4

machine to which the storage 1s allocated or the importance of
the mtended function of the storage to be allocated to the
virtual machine.

In some embodiments, the computer-readable program
code 1s Turther to cause a computer processor to communicate
with one or more vendor application programming interfaces
to interface with a plurality of vendor storage components
according to a preprogrammed set of configuration standards
associated with a vendor and the vendor storage components.
In some embodiments, the computer-readable program code
1s Turther to cause a computer processor to run a web services
client for providing an application programming interface for
receiving service requests and storage parameters from
requesters. In some embodiments, the computer-readable
program code 1s further to cause a computer processor 1o
provide a product catalog for presenting a list of available
storage solutions to a potential requester, regularly monitor
functionality of communication across one or more cominu-
nication channels established by the system between an oper-
ating system and storage components to check for errors, and,
in response to a request, present a report comprising informa-
tion related to the functionality of the communication chan-
nels.

The features, functions, and advantages that have been
discussed may be achieved independently 1n various embodi-

ments of the present mnvention or may be combined with yet
other embodiments, further details of which can be seen with

reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Having thus described embodiments of the imnvention 1n
general terms, reference will now be made the accompanying
drawings, wherein:

FIG. 1 illustrates an ETE system 100 by way of a compute
hosting program environment abstraction 110 according to
embodiments of the invention;

FI1G. 2 1llustrates the resource management layer 130 origi-
nally presented in FIG. 1 1in greater detail and according to
embodiments of the invention;

FIG. 3 illustrates a flowchart of a method 300 for building,
a platform according to embodiments of the invention;

FIG. 4 illustrates a flowchart of a method 400 for potential
post-build processing;

FIG. 5 1llustrates an information technology infrastructure
500 according to embodiments of the invention;

FIG. 6 1llustrates intelligent management of the provision-
ing of resources within the information technology infra-
structure 600, 1n accordance with embodiments of the inven-
tion;

FI1G. 7 1s a block diagram that 1llustrates a cloud computing,
system environment 700 wherein various systems of the
invention and various methods of the invention operate
according to embodiments of the invention;

FIG. 8 1s a block diagram that illustrates the modular I'T
application 709 originally presented 1n FIG. 7 1in greater detail
according to embodiments of the invention;

FIG. 9 1s an 1llustration of a storage automation framework
900 1including the storage black box 910 according to embodi-
ments of the invention;

FIG. 10 1s a combined flowchart and block diagram that
illustrates a representation of an example storage allocation
1000 according to embodiments of the invention;

FIG. 11 1s a diagram 1illustrates a representation of a
detailed example storage allocation 1100 using block layers
of storage according to embodiments of the imnvention;

US 8,930,668 B2

S

FIG. 12 1s a diagram 1llustrates a representation of another
detailed example storage allocation 1200 using NAS layers of
capacity according to embodiments of the imnvention; and

FIG. 13 1s a flowchart that 1llustrates a method 1300 for
provisioning storage in response to a storage call according to
embodiments of the mvention.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

Embodiments of the present invention will now be
described more fully heremnatiter with reference to the accom-
panying drawings, in which some, but not all, embodiments
of the mvention are shown. Indeed, the invention may be
embodied in many different forms and should not be con-
strued as limited to the embodiments set forth herein; rather,
these embodiments are provided so that this disclosure waill
satisty applicable legal requirements. Where possible, any
terms expressed 1n the singular form herein are meant to also
include the plural form and vice versa, unless explicitly stated
otherwise. Also, as used herein, the term “a” and/or “an” shall
mean “one or more,” even though the phrase “one or more” 1s
also used herein. Furthermore, when 1t 1s said herein that
something 1s “based on” something else, 1t may be based on
one or more other things as well. In other words, unless
expressly 1ndicated otherwise, as used herein “based on”
means “based at least in part on” or “based at least partially
on.” Like numbers refer to like elements throughout.

In accordance with embodiments of the invention, the term
“information technology data™ as used herein includes any
data that may be needed for an entity to provide information
technology inirastructure. For example, this data may include
soltware, hardware, memory, storage, programs, operating
systems, programming notes, mstructions, output resulting
from the use of any software program, including word pro-
cessing documents, spreadsheets, database files, charts,
graphs and outlines, electronic mail or “e-mail,” personal
digital assistant (“PDA”) messages, mstant messenger mes-
sages, source code of all types, programming languages, link-
ers and compilers, peripheral drives, PDF files, PRF files,
batch files, ASCII files, crosswalks, code keys, pull down
tables, logs, file layouts and any and all miscellaneous files or
file fragments, deleted file or file fragment. Information tech-
nology data may also include any and all items stored on
computer memory or memories, hard disks, floppy disks, zip
drives, CD-ROM discs, Bernoulli Boxes and their equiva-
lents, magnetic tapes of all types and kinds, microfiche,
punched cards, punched tape, computer chips (including but
not limited to EPROM, PROM, ROM and RAM of any kind)
on or in any other vehicle for digital data storage or transmiut-
tal, files, folder tabs, or containers and labels appended to or
associated with any physical storage device associated with
cach original and each copy. In accordance with embodi-
ments of the mvention, the term “information technology
infrastructure” as used herein refers to the totality of inter-
connecting hardware and software that supports the flow and
processing of information. Information technology infra-
structures include all information technology data, physical
components, and the like that make up the computing, inter-
net communications, networking, transmission media, etc. of
an entity.

Furthermore, embodiments of the present invention use the
term “user.” A user may be an individual, financial institution,
corporation, or other entity that may require electronic data,
soltware, and/or hardware though an information technology
infrastructure. Embodiments of the present invention also use
the term “vendor” to describe a company, business, 1ndi-

10

15

20

25

30

35

40

45

50

55

60

65

6

vidual, or other entity that provides systems, software, hard-
ware, and other technology required for operation of an entity.

Although some embodiments of the invention herein are
generally described as mvolving a “financial institution,”
other embodiments of the invention may ivolve other busi-
nesses that take the place of or work 1n conjunction with the
financial institution to perform one or more of the processes
or steps described herein as being performed by a financial
istitution. Still 1n other embodiments of the mvention the
financial institution described herein may be replaced with
other types of entities that have an information technology
infrastructure.

According to embodiments of the invention, an end to end
modular information technology system (ETE system) pro-
vides responses to requests for service. A user or entity may
submit a request for a build of a platform of one or more
functional information technology (IT) servers. The request
for the build may involve a umique configuration for the
platform. A “platform” refers to a set of one or more servers
to be built, being built or previously built to a specific con-
figuration. The platform for a requested build may be chosen
from a collection of predefined common configurations or
may be customized by the requester. The platform for a build
may also be chosen from a collection of predefined templates
and customizable features may then be added as desired.
Some components of the platform may include the number of
virtual central processing umts (CPUs), the amount of
memory and the amount of storage to be included 1n one or
more ofthe IT servers. The ETE system, 1n order to determine
and configure the proper amount of storage for the platform,
for example, calls the storage black box system (SBB), which
accepts detailed mput from the requester and/or the ETE
system 1n order to configure the necessary number of unique
storage components and their respective parameters. Once
the requester has specified the parameters of the needed plat-
form, the ETE system builds one or more useable servers as
requested. The E'TE system 1s discussed 1n concurrently filed
U.S. patent application Ser. No. 13/678,413, entitled “End to
End Modular Information Technology System”, which 1s
assigned to the assignee of this application.

The one or more servers of the platform may be virtual or
physical servers. A virtual or logical server may be built using
a hypervisor that functions similarly to an operating system
and allows multiple servers to run on one machine as though
they were each individually running on a unique physical
machine. In this scenario the end user cannot tell whether the
server(s) being used are virtual or physical. In applications
requiring less processing power or memory, such virtual serv-
ers may be stacked on one physical box, or 1n a situation
where high performance 1s needed, a very large, very high
performance physical machine may be built to the specifica-
tions of the requester. In this regard, the ETE system 1s con-
sidered to include a modular process for building servers.
Among other benefits, the ETE system, 1n conjunction with
the Orchestration Management Database, the Host Naming
Application Programming Interface, the Storage Black Box
and the Capacity Reclamation and Resource Adjustment Sys-
tems, provides streamlined building of servers based on a
configuration associated with a particular requested platiorm.
For example, 1n various instances the time from buld request
to completed build may be approximately 30 minutes to three
hours whereas the process prior to implementation of the ETE
system and 1ts tools may take 60 to 90 hours to complete.

Referringnow to FI1G. 1, an ETE system 100, which may be
operating using cloud computing, 1s illustrated by way of a
compute hosting program environment abstraction 110. The
abstraction 110 has three layers including an automation

US 8,930,668 B2

7

intelligence workload manager 120, a resource manager 130
and a physical infrastructure 140. The workload manager 120
1s configured to balance the workload of the various compo-
nents of the resource management layer 130 and/or the com-
ponents of the physical infrastructure 140. The resource man-
agement layer 130 represents an 1solation and
compartmentalization of specific functions needed to manage
the physical device or devices of the physical infrastructure
140 so that efficiency of use of the physical device(s) 1s
maximized. Fach of the specific functions of the resource
management layer 130 are represented by one of the boxes
illustrated 1n FIG. 2 and 1s considered a stand-alone compo-
nent despite the possibility that each of the specific functions,
in various embodiments, may be performed by a standalone
physical computing device or multiple physical computing
devices 1n collaboration. In various embodiments, one or
more physical computing devices may function as a single
component or system of the ETE system 100, such as the
OMDB, and in some embodiments a single component or
system of the ETE system 100 may perform one or several of
the specific functions discussed with reference to FIG. 2
and/or other functions.

Referring now to FIG. 2, the resource management layer
130 oniginally presented 1n FIG. 1 1s shown 1n greater detail.
The resource management layer 130 includes several boxes
representing specific, modular functions categorized as vari-
ous resource managers (RMs) of the ETE system 100. The
first box represents a server provisioning RM 202. The server
provisioning RM 202 functions similarly to a person direct-
ing tratfic. When a request for service 1s recerved by the ETE
system 100, RM 202 recognizes the request and then 1nstructs
the various systems and components of the ETE system 100
regarding timing ol processes. The RM 202 1s, 1n some
embodiments, an open source package that sequentially man-
ages the service request. The RM 202 receives the mput
parameters for the build from the requester and 1s used to
automate the “build” servers and operating system configu-
ration based on those input parameters.

The next box represents a storage provisioning RM 204. In
some embodiments, the storage provisioning RM 204 1s or
includes the Storage Black Box (SBB) system, which 1s dis-
cussed 1n greater detail with reference to FIG. 9, et seq.
Storage provisioning RM 204 provides for the automated
creation, expansion, contraction and deletion of storage allo-
cations for hosts. The storage allocations may be or include
network file system (NFS) storage (or network-attached stor-
age or Internet Protocol storage), fiber channel storage (or
Storage Area Network (SAN)), or virtual storage. The storage
provisioning RM 204 1s mitiated by the server provisioning,
RM 202, which calls RM 204 and passes necessary param-
eters from a requester’s service request to RM 202. According
to some embodiments of the RM 204, a system, method, or
computer program product provides a storage allocation to a
virtual machine in response to a service request including
receiving a service request including a virtual machine and
storage parameters and running a policy engine to determine
appropriate storage allocation to achieve storage parameters
received from the requester, which may include applying a set
of policy-based rules to the receved storage parameters to
determine one or more appropriate logical components of
storage to map, to determine one or more array ports to
enable, and to determine one or more network ports to enable
in order to establish one or more communication channels
between the operating system of the virtual machine and the
provisioned component space. Component space 1S provi-

10

15

20

25

30

35

40

45

50

55

60

65

8

sioned and a communication channel 1s established between
the operating system to the component space based on the
policy engine.

The next box represents a virtual machine/hypervisor man-
agement RM 206. RM 206 describes the aggregate function-
ality for building virtual machines (VMs). Thus, 1f the build
requires one or more virtual machines to be built rather than
a more traditional physical server or “bare metal machine”,
then RM 206 communicates through one or more hypervisors
for interacting with the virtual machine. RM 206 manages
multiple sequential steps that must be taken to prepare for
creating the virtual machine and to build and manage the
virtual machine.

The next box represents a cloud mtelligence RM 208. RM
208 provides vision into the building process by communi-
cation with the hypervisor and/or other components. In some
embodiments, the E'TE system 100 creates a temporary vir-
tual construct called a shell to facilitate the build of a virtual
machine. RM 208 communicates with and gains intelligence
from the shell for use by other resource managers or for
presentation to a user.

The next box represents a power management RM 210.
RM 210 controls the power of resources being used during the
building process. For example, RM 210 may control power
up, power down, standby, i1dle and reboot of physical
machines being used during the building process. For
example, an automated build may require multiple reboots.

The next box represents a cloud usage tracking RM 212.
RM 212 provides vision into numerous parameters for each
virtual machine being used in the buld process. In some
embodiments, RM 212 uses an orchestration management
database (OMDB), which 1s discussed in concurrently filed
patent application Ser. No. 13/678,029, entitled “Orchestra-
tion Management of Information Technology”, which 1s
assigned to the assignee of this application and 1s incorpo-
rated by reference 1n its entirety herein. In short, the OMDB
1s a single, authoritative source for accurate data or metadata
storage and retrieval. In some scenarios, the OMDB main-
tains data regarding over one hundred parameters associated
with a single virtual machine, and RM 212 provides usage
tracking information regarding the virtual machine based on
the metadata provided by the OMDB. Examples of param-
eters tracked by RM 212 using the OMDB 1include when the
VM was created, how long has 1t been running, how much
physical storage, how much wvirtual storage, identity of
requester, when was the last time the VM performed a specific
function and the like. Any of these parameters may be pro-
vided to the user of the E'TE system using RM 212 to retrieve
metadata stored in the OMDB.

The next box represents a network automation RM 214.
RM 214 provides an interface whereby the ETE system can
register, add, change, delete or otherwise manipulate domain
name system (DNS) and Internet Protocol (IP) data. RM 214
presents a host name for an IP address match and promulga-
tion to the network. In order for the machine being built to be
recognizable to the network, 1t must be matched with an IP
address and that IP address must be promulgated through the
network so that 1t 1s known.

The next box represents an 1dentity management RM 216.
RM 216 provides access management functionality. For
example, once the server has been fully built and turned over
to the requester, RM 216 ensures that the requester (and/or
any other authorized person) 1s granted access to the server.

Thenext box represents a cloud configuration management
RM 218. RM 218 tracks and shares configuration and place-
ment of all resources. In some embodiments, RM 218 is or
includes the OMDB. RM 218 represents the configuration of

US 8,930,668 B2

9

the OMDB such that metadata regarding each of the VMs 1s
stored and retrieved appropriately. The next box represents a
system management integration RM 220, which 1n some
embodiments, 1s or icludes the OMDB. RM 220 provides
two different types of commumnication, namely, data may be
published and may be submitted. A requester can submit a
demand for data as 1t 1s needed using various methods of
access. RM 220 also represents a near real-time copy of the
data that 1s stored in an off-line database so that any external
system or user who needs access to the data may get it without
impacting the performance of the “real-time” production
copy ol the data being used 1n the build process.

The next box represents a compute resource analysis RM
250. In some embodiments, RM 250 provides administrators
an opportunity to perform preventive maintenance on the
ETE system. For example, the administrator may run some
tests designed to stress the infrastructure and the wvirtual
machines to ensure no problems exist. RM 250 may detect
patterns or conflicts, systems that should not be within the
ETE system environment (e.g., because they consume too
many resources).

The next box represents an application build and launch
RM 252. RM 252 provides multiple ways to put an applica-
tion on a server. Once the ETE system has built a platform,
which generally includes the network, host name, working,
server with operating system and any un-configured database
or middleware, applications may need to be installed for the
server(s) to be ready for use by the business. In some embodi-
ments, the RM 252 must pull down one or more applications
from an external system. The ETE system 1s considered an
“open” system, 1.¢., it functions in an open format such that 1t
may access any type ol external system.

Additionally, the ETE system periodically performs qual-
ity assurance checks throughout the build process. For
example, 11 a requester requests a basic server with a common
operating system for hosting a website, the ETE system
builds the virtual server through the automated process with-
out further manual imput after the platform parameters have
been 1nput by the requester. The ETE system may build the
server to a certain point, reboots the server, does some addi-
tional work, reboots the server again, and throughout per-
torms periodic QA checks on the server to ensure appropriate
parameters are met. If the build passes the QA check, then the
process continues, and 1f the build does not pass the QA
check, then the process remediates the problem.

Referring now to FIG. 3, a flowchart illustrates a method
300 for building a platform according to embodiments of the
invention. The first step, as represented by block 302, is
receiving a service request for a platform build, and the sec-
ond step, as represented by block 304, 1s receiving platiform
parameters from the requester. In various embodiments, the
service request may be recerved in different ways. For
example, a user may access an intranet or Internet page
including a form having multiple questions and/or fields for
inputting information regarding the request for service or
build request. In other embodiments, a user may prepare a
document or message including parameters for a service
request and the document may be manually or automatically
received and processed in order to extract the parameters for
the service request. For example, the document or message
may be scanned and key words extracted so that the param-
eters for the service request may be known or determined. In
some 1nstances, after such an automated extraction, the useris
asked to confirm the parameters 1n some way, such as by
email, message, phone call or otherwise. In some embodi-
ments, the requester 1s not a person or entity, but rather 1s a
software module, resource manager or other automated

10

15

20

25

30

35

40

45

50

55

60

65

10

requester. For example, in some embodiments, a software
module 1s configured to recognize when a line of business
requires one or more additional servers and to determine the
parameters necessary for the additional servers to fill the
needs of the line of business.

The next step, as represented by block 306, 1s to determine
whether the service request requires any standalone physical
machine and/or any virtual machines. In some 1nstances, the
requester may 1ndicate a preference for one or the other. For
example, 1n one instance, a requester may specily that they
want a single physical machine in response to the service
request. In other instances, where the requester does not
specily or where the requester may specily that the ETE
system should take the build the most efficient machine(s)
possible, the system typically determines that one or more
virtual machines or virtual servers will be appropriate end
products of the build. The next step, as represented by block
308, 1s to mitiate a build of one or more physical machines
based on the recerved parameters in the case where it 1s
determined that one or more physical machines 1s needed.
Alternatively, or in combination with step 308, block 310
represents 1mtiating a build of one or more virtual machines
based on the recerved parameters in the case where it 1s
determined that one or more virtual machines 1s needed.

The next step, as represented by block 312, 1s provisioning,
physical and virtual storage based on the recetved parameters.
In some embodiments, the SBB system 1s used to provision
storage. The SBB provides a framework for accepting and
managing storage from any external vendor. The SBB 1s
programmed to recognize the specific interface controls for
cach of the storage vendors and each storage component such
that 1t provides a touch-iree, logical provisioning of storage
based on the parameters required for the build. For example,
a particular platform may include storage provisioned at
many different physical sites each utilizing different interface
protocols on the cloud.

The next step, as represented by block 314, 1s provisioning,
physical and virtual processing power based on the received
parameters. The ETE system may determine that a platform
requires a specific amount of processing power based on the
parameters received and may provision the processing power
from one or more processors that match the characteristics
required for the processing. For example, the processing
speed and the types of calculations that will be required of the
server may factor ito the provisioning of the processing
power. In some embodiments, the processing power 1s provi-
sioned 1n a real-time or near-real-time way such that process-
ing power 1s provisioned as it 1s needed, and once it 15 no
longer needed for a specific task, 1t may be reclaimed and
either used by one or more other virtual machines for pro-
cessing or by the same virtual machine for processing a dii-
terent task, rather than sitting 1dly and awaiting another pro-
cessing task similar to the completed task. In this regard,
processing resources may be utilized 1n an extremely efficient
manner. This processing allocation or provisioning, reclama-
tion and adjustment 1s described 1n concurrently filed patent
application Ser. No. 13/678,414, entitled “Capacity Reclama-
tion and Resource Adjustment”, which 1s assigned to the
assignee of this application and 1s incorporated by reference
in 1ts entirety herein.

The next step, as represented by block 316, 1s creating a
shell and building and managing the virtual machines based
on the recetved parameters. The build may involve many steps
such as 1nstallation of operating systems and other software
and configuration changes and/or powering adjustments such
as reboots 1n order for the installations and configurations to
function properly. Vision may be provided into the build

US 8,930,668 B2

11

process by communication with the hypervisors that are man-
aging the virtual machines or from other sources such as the
resource managers that are running the build process, as rep-
resented by block 318.

The next step, as represented by block 320, 1s managing
power ol resources. For example, the power of the various
physical components that are being used 1n the build may be
managed. If a virtual machine has an operating system
installed on a physical component and that physical compo-
nent must be restarted for the operating system to become
appropriately functional, then the ETE system manages the
physical component such that any other virtual machine’s
resources that are currently utilizing the physical component
are either suspended temporarily or transierred to secondary
or alternate physical components or resources during the
power change. In some embodiments, power 1s managed on a
micro level within a physical component. In other words, the
portions of the physical component requiring power change
or cycling 1n order to achieve a goal for one or more virtual
machines are manipulated, while the remaining portions of
the physical component retain power configurations other-
wi1se running.

The next step, as represented by block 322, 1s tracking
cloud usage associated with parameters for the wvirtual
machines. As discussed above, metadata associated with the
virtual machine(s) 1s stored regularly and can be retrieved as
necessary in response to a user request and/or a request from
a software module or resource manager. The next step, as
represented by block 324, 1s integrating the platform with
network services. This allows the virtual machine to appear to
the network, internally and/or externally so that 1t may be
queried, searched, used for processing or otherwise utilized 1n
accordance with its design parameters.

The next step, as represented by block 326, 1s managing
addition and participation of active directory for user authen-
tication. This allows the authorized users to access and use the
platform upon completion of the build and also allows for
modification of those granted access and their access param-
eters.

The next step, as represented by block 328, 1s tracking and
sharing configuration and placement of all resources. This
step, in some embodiments, involves the OMDB. The OMDB
provides for aggregation of vendor and institution data nec-
essary for information technology inifrastructure deployment,
management, and federation. Utilizing cloud computing
technology, the OMDB provides an aggregation of all data
necessary for information technology infrastructures within
an entity into one useable database that dramatically simpli-
fies the ability to perform core functions and integrate exter-
nal vendors and components with the entity’s information
technology infrastructure. In this way, the present invention
modularly stores data required for an entity’s information
technology infrastructure and allows for easy deployment,
intelligent monitoring, federation of data, and feedback asso-
ciated with all aspects of the entity’s information technology
infrastructure.

Finally, the next step, as represented by block 330, 1s pro-
viding an oifline database ol near-real-time data for non-build
access. In some embodiments, a copy or partial copy of the
OMDB or other datastore and/ or database used 1 n conjunc-
tion with a build process 1s created and used for oftline access
of non-build access. This eliminates efficiency drops 1n the
OMDB or other primary data source due to non-build related
functions and therefore further increases the speed with
which the build takes place.

Referring now to FIG. 4, a flowchart illustrates a method
400 for potential post-build processing. The first step, as

10

15

20

25

30

35

40

45

50

55

60

65

12

represented by block 402, 1s performing periodic and/or regu-
lar checks for problems and analyzing the results of the
checks. In instances where problems with the build are
detected, the system may then pause the current build process
or continue the current build process and perform a remedia-
tion concurrently, as represented by block 404.

The last step, as represented by block 406, 1s building and
launching the platform. This build refers to building the
desired software 1nto the machines for functionality meeting
or exceeding the expectations of the requester based on the
requested build parameters. This may include calling external
systems using an open format for installing one or more
applications to make the machines business ready. Once the
software build has been completed, the machines may be
launched and used for their intended business purpose.

In various embodiments, a host naming application pro-
gramming interface (HAPI) 1s used. The HAPI 1s a new IP
service that provides a unique name for the platform on the
network. The naming framework accounts for any unique
naming schema associated with any of the various systems of
the cloud such that no other name provided by the HAPI
naming framework will be a duplicate. The name assigned a
service request 1s used for asset tracking, application interac-
tion and 1t1s published as part of the platform’s IP address and
host name. The HAPI1s described in concurrently filed patent
application Ser. No. 13/678,424, entitled “Host Naming
Application Programming Interface”, which 1s assigned to
the assignee of this application and 1s incorporated by refer-
ence 1n 1ts entirety herein.

As 1llustrated 1n FIG. 5, the automation intelligence work-
load manager 120 of FIG. 1 may momnitor the systems within
the information technology infrastructure 500, which may
also be referred to as or be part of the “cloud” as referred to
herein, which functions over and using a network 502. In the
illustration of FIG. 5, there are three different virtual local
areanetworks (VLAN) 510 1llustrated. Any number of VLAN
may be present within the information technology infrastruc-
ture. As 1llustrated, VLAN1, VLLAN2, and VL ANx all include
multiple hypervisors 512 within each of the VLANSs. The
hypervisors 512 are virtual managers of individual virtual
machines within an information technology infrastructure.
The hypervisors 512, for example, may provide the OMDB
with an indication as to the use of the information technology
data within each virtual machine. As illustrated in FIG. 5, one
of the hypervisors 514 within VL ANX 1s only using a limited
amount of the information technology data deployed to the
virtual machine associated with the hypervisor 514. Because
the OMDB 1nteracts with resource managers and/or an auto-
mation intelligence workload manager that 1s capable of
monitoring each of the information technology components
or inirastructures, including the network 502, VL ANs 510,
individual hypervisors 512, 514 associated with each virtual
machine, the ETE system 1s capable of determining which
virtual machines may be over capacity or under capacity with
respect to the mformation technology data the wvirtual
machine 1s utilizing. Also shown 1n the infrastructure 500 1s
the storage 306, such as the SBB, the storage controller 508
and a SAN fabric 504, which 1s the hardware that connects
workstations and servers to the storage 506. The SAN fabric
504 enables any-server-to-any-storage device connectivity
through the use of Fibre Channel switching technology.

FIG. 6 1llustrates intelligent management of the provision-
ing of resources within the information technology infra-
structure 600, 1n accordance with embodiments of the inven-
tion. The automation intelligence workload manager 602 may
continually update workload, resources, and state, as 1llus-
trated 1n block 604, by being 1n constant communication with

US 8,930,668 B2

13

the virtual machines through the system’s hypervisors 605,
606, 608, 610. Asillustrated, the hypervisors are monitored to
determine the amount of resources (e.g., storage and process-
ing power) being used by each virtual machine and/or other
system within the information technology infrastructure. The
automation 1ntelligence workload manager 602, in this
embodiment, provides a monitoring display of all the hyper-
visors within an information technology infrastructure for the
user to monitor. As discussed herein, software modules or
resource managers may also request information regarding,
the status of current resources being utilized by each 1ndi-
vidual virtual machine.

As 1llustrated in FIG. 6, a monitoring display illustrates
several different statuses within each hypervisor. A hypervi-
sor that 1s utilizing approximately half of 1ts designated
resources 1s 1llustrated as hypervisor 6035. A hypervisor that 1s
utilizing all of 1ts designated resources 1s 1llustrated as hyper-
visor 610. A hypervisor that 1s using none of its designated
resources 1s illustrated as hypervisor 606. A hypervisor that 1s
using one third of its designated resources 1s illustrated as
hypervisor 608. In each of these cases the ETE system may be
able to drill down within each hypervisor to determine spe-
cifically what resources are being utilized and what resources
are available for reclamation and re-allocation. In this way,
the E'TE system may pinpoint specific resources, such as a
particular program, memory, etc. that 1s not being utilized,
and re-allocate 1t to a new purpose. Furthermore, the moni-
toring of the information technology infrastructure allows for
monitoring of every iformation technology infrastructure
component built, the information technology data used for the
builds, the data on the cloud, the inventory available, capacity
available, performance, billing, building sequences, etc. that
may be necessary to build and/or operate an information
technology inirastructure for an entity.

In some embodiments, the monitoring of individual hyper-
visors with the ability to drill down to the individual resources
being utilized by the a virtual machine may further allow the
ETE system to provide feedback with respect to the opera-
tional status of the virtual machine and/or resources associ-
ated with 1t. For example, the monitoring of a virtual machine
may recognize an error or virus within data or resources
within a single virtual machine. As such, the recognized error
may be sent 1n the form of feedback to a user or other indi-
vidual, such that the error may be monitored and/or remedi-
ated to ensure smooth operation of the rest of the information
technology inirastructure.

Referring now to F1G. 7, a block diagram illustrates a cloud
computing system environment 700 wherein an ETE system
701, a storage black box system 703, an OMDB system 704
and/or other components and/or systems of the invention and
the various methods of the mmvention operate according to
various embodiments.

A cloud 702 may allow for on-demand network access to a
shared pool of configurable resources provided by the OMDB
704, user system 708, vendor systems (not shown), the ETE
system 701, the SBB system 703 or otherwise. These
resources may include but are not limited to hardware, soft-
ware, networks, servers, storage, services, applications, sys-
tems, programs, packages, etc. and updates or programs to
operate the same. The ETE system allows for these resources
to be rapidly provisioned and released within the modular
system. The network access may be a global area network
(GAN), such as the Internet, a wide area network (WAN), a
local area network (LLAN), or any other type of network or
combination of networks. The network may provide for wire-
line, wireless, or a combination wireline and wireless com-
munication between devices on the network.

10

15

20

25

30

35

40

45

50

55

60

65

14

In some embodiments, resources and data may be stored on
the cloud 702 and not at a local computing device, such that
the memory of the local computing device 1s not aiffected by
the work associated with the resources on the cloud 702.
Furthermore, the cloud 702 may provide processing capabili-
ties, such that the user may access processing power and/or
other resources from the cloud 702 and not on his/her local
computing device. Inthis way, a shared pool ol resources may
be accessed, processed, and stored by users of the cloud
computing environment 700 all within the cloud 702. In some
embodiments, the OMDB 704 may store data that may be
accessible via the cloud 702. In this way, the data and asso-
ciated resources may be stored on the cloud 702.

The cloud 702, 1n some embodiments, may take the form of
several different service and/or deployment models as
required by the managing entity of the cloud 702. The service
models include, but are not limited to cloud software as a
service, cloud application as a service, cloud platform as a
service, and count infrastructure as a service. Cloud software
as a service model provides the user with the ability to run
programs and applications on the cloud infrastructure as
opposed to the user system 708. Cloud application as a ser-
vice 1s similar to cloud software as a service, but 1n this model
the user 1s able to specily and save customer server configu-
rations and application templates. Cloud platform as a service
allows a user to be able to deploy onto the cloud user-created
or acquired applications and programs. Cloud inirastructure
as a service allows a user to control portions of the cloud’s
operating systems, deployment applications, storage, net-
working, and other fundamental computing resources of the
cloud 702.

The deployment models may include, but are not limited to
private model, public model, community model, and hybnd
model. In some embodiments, the cloud 702 may be provided
in a private model. The private model allows the cloud 702 to
only be used only be a single entity. In some embodiments,
the cloud 702 may be provided 1n a public model. The public
model allows the cloud 702 to be available to the public or to
multiple entities. In some embodiments, the cloud 702 may
be provided in a community model. The community model
allows the cloud to be accessed and/or used by a group of
related entities. In some embodiments, the cloud 702 may be
provided in a hybrid model. In the hybrid model the cloud 702
may be used both publicly and privately based on the provid-
er’s requests 702 may each be utilized for the cloud 702
associated with the E'TE system 701. However, some models
may require more monitoring than others. For example, 1n the
public deployment model, a larger number of users may
access the cloud 702 and therefore there 1s more likely going
to be a security 1ssue, simply based on the number of indi-
viduals who have access to the cloud 702 and the data or
applications located on the cloud 702. In some embodiments,
a private cloud 702 may provide the most security protection
to an entity such as a financial 1nstitution and other users of
the cloud 702.

In some embodiments, the user 1s an 1ndividual. The 1ndi-
vidual may be an associate and/or other employee within a
financial institution. In other embodiments, the user may be a
financial institution, government organization, corporation,
or other entity with an information technology infrastructure.
The user may wish to retrieve vendor provided data oif of the
cloud 702 for use on his/her user system 708. In some
embodiments, the user may be provided with data from the
cloud 702 via one or more of the other systems in the envi-
ronment 700.

An end to end system (ETE) system 701 1s a computer
system, server, multiple computer systems and/or servers or

US 8,930,668 B2

15

the like and may include one or more of the other system
and/or components shown in FIG. 7. The ETE system 701
may be part of the cloud 702 rather than merely connected to
it. The facility management system 701, in the embodiments
shown has a communication device 712 communicably
coupled with a processing device 714, which 1s also commu-
nicably coupled with a memory device 716. The processing,
device 1s configured to control the communication device 712
such that the facility management system 701 communicates
across the network 702 with one or more other systems. The
processing device 1s also configured to access the memory
device 716 1n order to read the computer readable instructions
718, which 1n some embodiments includes a modular IT
application 709. The memory device 716 also has a datastore
719 or database for storing pieces of data for access by the
processing device 714.

The modular IT application 709 1s configured for mstruct-
ing the processing device 714 to perform various steps of the
methods discussed herein, and/or other steps and/or similar
steps. In various embodiments, the modular IT application
709 1s 1included 1n the computer readable 1nstructions stored
in a memory device of one or more systems other than the
ETE system 701. For example, in some embodiments, the
modular I'T application 709 1s stored and configured for being,
accessed by a processing device of one or more other systems
connected with the ETE system 701 through cloud 702.

An OMDB system 704 1s configured for storing informa-
tion as detailed herein. The OMDB system 704 1s a computer
system, server, multiple computer system, multiple servers, a
mobile device or some other computing device configured for
use by the ETE system 701 1n conjunction with the methods
discussed herein. The OMDB 704 may have a communica-
tion device 722 communicatively coupled with a processing,
device 724, which 1s also communicatively coupled with a
memory device 726. The processing device 724 1s configured
to control the communication device 722 such that the
OMDB system 704 communicates across the cloud 702 with
one or more other systems. The processing device 724 1s also
configured to access the memory device 726 1n order to read
the computer readable instructions 728, which 1n some
embodiments include an OMDB application 720. The
memory device 726 also has a datastore 729 or database for
storing pieces ol data for access by the processing device 724
and other components, virtual machines and systems of the
environment 700. The OMDB application 720 1s configured
to provide a secondary near-real-time copy of the data for
non-build usage as discussed herein and/or other functions.

The storage black box (SBB) system 703 1s configured for
providing storage for one or more of the pieces of data used by
the E'TE system 701 when runming the modular IT application
709 as discussed herein. In some embodiments, the SBB
system 703 includes a communication device 742 communi-
catrvely coupled with a processing device 744, which is also
communicatively coupled with a memory device 746. The
processing device 734 1s configured to control the communi-
cation device 742 such that the SBB system 703 communi-
cates across the cloud 702 with one or more other systems.
The processing device 744 1s also configured to access the
memory device 746 1n order to read the computer readable
instructions 748, which 1n some embodiments include
istructions for communicating with the ETE system 701,
and 1n some embodiments, includes some or all of the modu-
lar I'T application 709.

The user system 708 1s configured for providing access to
the ETE system 701 and/or the other components, virtual
machines and/or systems of the environment 700 when run-
ning the modular I'T application 709 as discussed herein. In

10

15

20

25

30

35

40

45

50

55

60

65

16

some embodiments, the user system 708 includes a commu-
nication device 732 communicatively coupled with a process-
ing device 734, which 1s also communicatively coupled with
a memory device 736. The processing device 734 1s config-
ured to control the communication device 732 such that the
user system 708 communicates across the cloud 702 with one
or more other systems. The processing device 734 1s also
configured to access the memory device 736 1n order to read
the computer readable instructions 738, which 1 some
embodiments 1nclude instructions for communicating with
the ETE system 701, and 1n some embodiments, includes
some or all of the modular IT application 709. In some
embodiments, the user system also includes a datastore 739.

In various embodiments, one of the systems discussed
above, such as the ETE system 701, 1s more than one system
and the various components of the system are not collocated,
and 1n various embodiments, there are multiple components
performing the functions indicated herein as a single device.
For example, 1n one embodiment, multiple processing
devices perform the functions of the processing device 714 of
the ETE system 701 described herein. In various embodi-
ments, the ETE system 701 includes one or more of the
OMDB system 704, the SBB system 703, and/or any other
system or component used in conjunction with or to perform
any of the method steps discussed herein.

Referring now to FIG. 8, the modular I'T application 709,
which may be stored 1n the cloud 702 1n one or more memory
devices, for example memory device 716, as computer read-
able istructions, for example computer readable instructions
718, may 1nclude computer readable mstructions forming a
capacity reclamation and resource adjustment (CRRA) appli-
cation 810 and/or a host naming application programming
interface (HAPI) application 820. In various embodiments,
the CRRA application 810 and/or the HAPI application 820
are embedded 1n the end to end system 701 and used during a
build of a platform and/or during multiple platform bulds for
improving elliciency and subsequent accuracy of network
communication, respectively. The CRRA application 810
and/or the HAPI application 820 may be completely stored
and executed on one device or portions of one or both may be
stored and/or executed on multiple devices and/or over the
cloud 702.

According to embodiments of the invention, a storage
black box system, such as system 703 of FIG. 7, or some other
system or systems running an application such as SBB appli-
cation 740, provides a centralized storage management solu-
tion that can leverage existing vendor storage to hide the
complexities of the storage allocation and usage from the
requester, whether a software module or an entity. The SBB
enables policy-based storage management across multiple
capacity resources, including vendor physical and virtual
storage solutions. The SBB provides a policy-based rule set
that analyzes a request for storage in light of the available
storage components and determines what allocation details
can best meet the requirements of the requested storage. Once
the determination 1s made, the SBB provisions the storage by
reserving the storage from the vendor(s) and establishes the
communication channel across appropriate array, network
and operating system ports so that the allocated storage 1s
seen by the operating system of the associated virtual
machine, for example, as a single supply of storage available
for usage.

Referring now to FI1G. 9, an 1llustration of a storage auto-
mation framework 900 including the storage black box 910 1s
shown according to embodiments of the invention. The stor-
age automation framework 900 includes three primary com-
ponents: a portal and application programming interface

US 8,930,668 B2

17

(API) access and control framework component 902 (““por-
tal”), an automation engine 904 and component tools and
interfaces 906 (“‘component interfaces™).

The component interfaces 906 box represents one or more
interfaces for interacting with a vendor’s storage solution(s)
and/or other external services or systems. The SBB functions
in some regards as a repository for the knowledge of how to
communicate with external systems, such as the vendor sys-
tems. There may be many types of resources including many
types of storage resources and network types. Additionally,
every vendor may have different solutions for primary, sec-
ondary and backup storage needs. For example, backup stor-
age solutions may include tape or disk based solutions sets.
The SBB, once 1t 1s programmed to interface with a vendor’s
storage solution, may automatically receive a request and
provision resources using all the available resources at its
disposal.

The component interfaces 906, 1n various embodiments,

may 1nclude several pieces. For example, component inter-
faces 906 may include a vendor two API 912. API 912 may

interface with a well-known network attached storage (NAS),
which 1s file-level computer data storage connected to a com-
puter network providing data access to clients, or IP-sharing,
type of storage technology. In some instances, vendors may
also provide storage area networks (SANs), which are dedi-
cated networks that provide access to consolidated, block
level data storage, 1ISCSI, which 1s an abbreviation of Internet
Small Computer System Interface, IP-based storage network-
ing standard for linking data storage facilities, and/or other
platforms or storage solutions. In some solutions, a vendor
uses a Network File System (NFS) protocol, which 1s a dis-
tributed file system protocol allowing a user on a client com-
puter to access files over a network in a manner similar to how
local storage 1s accessed. Some vendors have preexisting
interfaces or resource managers, as represented by NAS
resource manager 914. The SBB may utilize some of the
interface functionality of the preexisting interface i order to
access the vendor solution. However, despite a vendor having
a pre-existing interface, the SBB, in most embodiments, must
still be programmed to interact with some or all the compo-
nents of the interface in order to apply the policy-based pro-
visioning functionality to achueve efficient and accurate stor-
age provisioning in a multiple vendor type scenario. As
another example, the SBB may interact with a vendor three
API 916 and the SBB 1nteracts with the FC resource manager
917. Additionally, some vendors have not developed a preex-
1sting interface or resource manager such as resource man-
ager 914. In some embodiments, the SBB must be configured
to interact with the storage solution(s) of a vendor without the
benelit of drawing from a preexisting interface or resource
manager.

The SBB 910 1n conjunction with the storage automation
framework 900 provides a package response to a request for
storage. For example, 11 a requester requires a storage solution
having certain parameters such as time to access storage,
duration of data storage, how fast can storage be accessed 1n
various situations, how fast does the storage medium operate,
how quickly can additional storage be provided, what are the
input/output rates and the like, the SBB provides that storage
solution similar to a customer shopping at a store being able
to search for characteristics of a product and purchase a
product based on its advertised characteristics. The requester
of the SBB achieves the storage solution because of 1ts real-
time capacity planning and mapping ol component and net-
work channel(s)/ports at a micro-scale and optimization of
those parameters to meet the storage request.

10

15

20

25

30

35

40

45

50

55

60

65

18

With this discussion 1n mind, the embodiment of the SBB
910 of the automation engine 904 shown in FIG. 9 includes a
block automation intertace 918 and a NAS automation inter-
tace 920, each configured to interact with one or more vendor
solutions through their respective APIs 1n order to properly
map and provision a storage solution individualized for a
specific request. In various other embodiments, additional,
fewer and/or different automation interfaces may be pro-
grammed 1nto the SBB for interacting with different vendors’
solutions and/or different types of storage solutions. The
block automation interface 918 communicates with the SBB
block or fibre channel disk.

In some embodiments, the SBB 910 includes a storage
resource manager 922, which may communicate with a ven-
dor’s API, such as a vendor’s virtual machine resource man-
ager 924 through, for example, a resource manager API 926.
Using the vendor’s virtual machine resource manager 924, a
user can manually perform various tasks, such as publish
more storage to host pieces, begins to use the storage through
the virtual machine resource manager 924 and the like. The
SBB 910°s storage resource manager 922 1s programmed to
talk to the vendor’s virtual machine resource manager 924 in
order to recognize new available storage, add new storage to
an allocation for one or more virtual machines, establish a
connection between the storage solution and the operating
system such as storage 1s allocated as needed, and the storage
resource manager 922 may also be able to determine the best
location for reserving the storage based on the parameters
required for the storage by accessing characteristics of the
storage solution from the vendor’s virtual machine resource
manager 924.

In order to make this determination, the storage resource
manager 922 uses the policy engine 928, which includes a set
of policy-based management rules that determines the best
vendor, type, size and other parameters of the storage to
reserve and allocate for the request. The policy engine 928
runs the parameters submitted by the requester through the set
of policy rules, that have vision into the available resources
and their functional characteristics 1n order to determine the
proper storage solution(s). The policy engine 928 takes into
account not only the physical components available but also
the logical components of the real and virtual storage com-
ponents available. In some embodiments, the set of rules
includes rules specific to a type of virtual machine being built
or otherwise limiting and/or dictating the types, sizes, etc. of
the storage solution(s) being chosen. In various embodi-
ments, the policy engine 928 uses weighted policy rules. For
example, various characteristics of a build may be considered
to have a different priority than others. As a specific example,
a number of virtual machines included in a single array may
be restricted such that 11 the number of VMs on a single array
reaches or surpasses the threshold, then no further resources
of the array may be allocated elsewhere. Similarly, the latency
or time to access a resource may be weighted such that, if the
latency of the physical representation of the NAV device (see
FIG. 12) rises to a threshold, then no further resources may be
allocated from the physical representation of the NAV device.
Another characteristic that may be taken into consideration
by the policy rules i1s the NFS input/output per second.
Accordingly, in some embodiments, various characteristics
of the build and/or characteristics of the resources potentially
available for use 1n the build, are weighted and applied to the
build process. In some of the same embodiments and/or other
embodiments, one or more thresholds are established that
dictate the use of resources during build 1nitiatives.

Further, in some embodiments, the policy engine set of
rules may include a risk component that manages risk. In

US 8,930,668 B2

19

many applications, storage may be over-allocated, that 1s,
more storage may be allocated than actual real disk space
available. This 1s called thin provisioning or over-provision-
ing. The risk component of the policy engine manages this
risk by recetving parameter(s) from the requester mandating
the risk tolerance for the requested storage solution. In some
embodiments, where the requester does not mandate the risk
tolerance, one 1s assigned based on a predetermined set of
rules for determiming a risk tolerance. For example, in one
embodiment, the risk tolerance 1s determined based on the
importance of the functionality of the virtual machine for
which the storage 1s being requested and/or the purpose of the
storage being allocated to the virtual machine. Thus, 1f the
storage 1s being used as the operating system for a virtual
machine providing key functionality to an institution, then the
risk tolerance may be determined to be very low, whereas 11
the storage 1s being used to mstall an easily accessible execut-
able application that 1s not expected to be accessed regularly,
then the risk tolerance may be very high for over-allocation.
Accordingly, a table of predetermined risk tolerances may be
created and stored by the SBB 910 and/or policy engine 928
so that, 1n instances where risk tolerance 1s not provided by
the requester, the risk tolerance may be determined. In other
instances, where a table of risk tolerances does not exist or
where the request cannot be reconciled with a table of preex-
1sting risk tolerances, the SBB 910 may analyze the request to
determine the risk tolerance. In some embodiments, this may
be done by analyzing the importance of the virtual machine to
which the storage 1s to be allocated and/or the intended use for
the storage to be allocated. For example, 11 a critical function
such as installation of firmware 1s intended for the storage,
then the SBB 910 may determine the risk tolerance 1s low.
Conversely, 1f the virtual machine for which the storage is
being allocated 1s a duplicate of other virtual machines that
may take up the functions of the virtual machine 11 1t fails, and
thus provide a backup, then the SBB 910 may determine the
risk tolerance for the storage to be allocated to the virtual
machine 1s high. In this event, the storage may be more greatly
over-allocated than were the risk tolerance determined to be
low, 1n which case the storage may be only slightly over-
allocated or not over-allocated at all.

The SBB 910 has several other modules or components in
various embodiments. The product catalog 930 provides a
listing of the possible storage solutions or examples of the
possible storage solutions available through the SBB 910. For
example, the types of disks available, the types of backups
available, the speeds of the available disks, the protocols
being used to access the available disks, as well as different
virtualization protocols/concepts being available for use. The
monitoring component 934 integrates with the product cata-
log such that the product catalog retlects an accurate repre-
sentation of the available resources at a given time. The moni-
toring component 934, 1n some embodiments, may also be
configured to monitor proper functionality of the storage
solutions as well as communication channels established
between operating system(s) and storage solution(s). The
metrics and reporting component 932 provides reports detail-
ing the allocations of the storage solutions such as to what
virtual machines they are allocated, how many resources are
allocated, physical and virtual, measured characteristics of
the performance of the storage solutions and the like. The
SBB 910 also includes logical provisioning 936, data man-
agement 938 and configuration standards 940 that are dis-
cussed elsewhere herein. For example, the logical provision-
ing component 936 provisions the storage solution to the
virtual machine(s) once the policy engine 928 has determined
the proper location and channel for the storage, the data

10

15

20

25

30

35

40

45

50

55

60

65

20

management component 938 ensures data 1s properly read,
written, modified and deleted from the storage solutions, and
the configuration standards 940 houses some or all the con-
figurations required for communicating both with the various
vendor APIs and storage components as well as with the
various network configurations and the operating systems of
the virtual machines.

The application storage template 942 1s a template tool that
allows requesters or users flexibility to dictate certain char-
acteristics of their storage solutions, such as speciiying that a
certain number of shares or physical allocations be included
in the provided storage solution. The application storage tem-
plate 942 allows the requester or user to preconfigure the
storage solution using specific parameters necessary for their
build. The template 942 interacts with one or more of the
other components or modules of the SBB and/or the vendor
solution(s) 1n order to determine capacity plans, and other
characteristics for reserving proper storage. Then, an agent
may be used to engage the operating system of a virtual
machine to automatically create and mount the storage con-
figured by the application storage template 942. In some
embodiments, one or more of the other components shown 1n
the SBB 910 of FIG. 9 are part of the storage resource man-
ager 922. For example, the storage resource manager may be
or be part of the application storage template 942. Addition-
ally, the SBB 910 may interact with a vendor’s web services
component 946, which may include a solutions enabler 948.
The requester or user may generally interact with these com-
ponents directly to create certain storage solutions, however,
the SBB includes interfacing capabilities for interacting auto-
matically with the web services component 946.

In the portal 902, the SBB 910 interacts with a requester,
user and/or administrator. A web services client 944 provides
an interface for interaction. In some embodiments, outputs
from one or more of the components or modules of the SBB
910 may be presented to the user for viewing, printing, com-
municating or otherwise using. For example, the metrics and
reporting component 932 may present reports to an adminis-
trator of the SBB 910. The web services client 944 may also
include an API such that a requesting software module or
entity may call the SBB and request a storage allocation and
input the parameters of the request.

Thus, the SBB 910 may be considered a “plug-n-play”
docking station for storage having a built 1n configuration set
for various vendor storage solutions, thereby allowing a
requester to achieve effective and fast storage allocations
through touchless, logical provisioning. The SBB may accept
and manage storage from any vendor, and as part of the
tframework, provided specific configuration of interface con-
trols. Thus, when the requester calls for a storage solution, the
SBB 910 builds the solution and includes a customer storage
allocation that might include one type of storage or many
types of storage.

Referring now to FIG. 10, a combined flowchart and block
diagram 1illustrates a representation of an example storage
allocation 1000 according to embodiments of the invention.
The bottom layer 1s a physical disk or array layer 1010. This
1s the layer representing the physical storage components
provided by the vendor(s) or otherwise. The next layer 1s the
logical components layer 1020. This layer may include vir-
tual space, achieved through, for example, over-allocation.
The next layer 1s the real potential space available for map-
ping (or allocation) layer 1030. Thus, when the SBB 910
allocates storage, this i1s the available “pool” of storage
resources available for mapping to storage solutions for
requests. The next layer 1s the network ports layer 1040. In
order to establish a channel from the physical disk 1010 to the

US 8,930,668 B2

21

virtual machine, the SBB 910 must configure the proper
network ports 1040 as well as the proper operating system
ports 1050. Once the storage solution has been configured and
provisioned (allocated), the operating system of the virtual
machine may see the available storage as one piece (or mul-
tiple pieces if desired), as represented by block 1060.

Referring now to FIG. 11, a diagram 1llustrates a represen-
tation ol a detailed example storage allocation 1100 using
block layers of storage according to embodiments of the
invention. The bottom layers are physical component layers.
The system bay layer 11035 and the disk bay layer 1110 house
the parts of the physical disks, as represented by layer 1115.
The physical disks are represented by the thin pool 1120,
which represents all the actual physical memory available for
allocation by the SBB 910. The next layer 1s the logical
component layer 1125, which can be manipulated to be any
s1ze as desired. The logical component layer 1125 includes
both real and virtual storage space. The logical components
may be represented by the META-LUN or meta-Logical Unit
Number (LUN) layer 1130. The meta-LUN 1s a construct that
represents multiple logical components based on how much
space the SBB 910 needs to present to the end server or the
end operating system. The meta-LUN represents areal poten-
tial space. When the storage 1s provisioned, the server and/or
operating system 1s provided with access to this layer, which
1s the real potential space layer of the storage. One or many
meta-LUNs may be accessible by a single server or operating,
system.

In some embodiments, a single meta-LUN 1130 may be
presented to a server across multiple channels or ports, as
represented by layer 1135. In layer 1135, the SBB 910 may
determine for performance reasons, to allow access to the
meta-LUN 1130 through four network ports: A, B, C and D.
For example, the storage solution may require certain perfor-
mance capacity parameters that fibre channel port A may not
support but port B does support and so on. The policy engine
928 15 cognizant of the requirements of the request and can
configure the ports in order to take advantage of specific
performance characteristics of different ports. In one embodi-
ment, for example, for performance reasons such as redun-
dancy the policy engine 928 may use “zomng” over the fibre
channel SAN, which 1s represented by layer 1140. Zoning
refers to the process, similar to the way a V-LAN 1s setup in
networking, where the meta-LUN 1s constructively split into
zones that are each associated with one or more ports. The
SBB 910 may configure the zones so that the server can
communicate with the storage piece similar to a routing tool
creating a channel. This may be done 1n some embodiments,
by configuring the zones such that, 1in that zone, the server’s
worldwide name can talk to the array worldwide name that
represents the desired port or ports.

Thus, the SBB 910 has configured the array components
and the fibre channel ports and SAN. The operating system
has also been configured to boot up with fibre channel host
bus adapters (HBAs) and send out a query, as represented by
the OS multi-pathing layer 1165, the OS HBA dniver view
layer 1160, which controls the OS ports, and the emulated
HBA layer 1155. Layers 1145 and 1150 represent network
switches. The multi-pathing layer 1165 combines the mul-
tiple views of the meta-LUN (communicated over different
ports, switches and/or channels) so that the OS sees the mul-
tiple view as one single pieces of storage. Thus, the OS can
then, once the handshaking and confirmations are complete,
perform typical Tunctions on the storage space, such as for-
matting, putting 1n logical volume groups, applications may
be installed on the space, etc. In summary, the setup of the
channels used for the example, were performed by the policy-

10

15

20

25

30

35

40

45

50

55

60

65

22

based rules so that many, many different implementations for
various requests may be provisioned.

In various other embodiments, such as those involving a
vendor network of virtual machines, the same representative
steps must be taken, although they are performed 1n slightly
different ways. As shown 1n the FIG. 12, a diagram illustrates
a representation of another detailed example storage alloca-
tion 1200 using NAS layers of capacity according to embodi-
ments of the invention.

Referring now to FIG. 13, a tlowchart illustrates a method

1300 for provisioning storage in response to a storage call
according to embodiments of the invention. The first step, as
represented by block 1302, 1s determining specific interface
controls and/or configurations for one or more vendor storage
components and one or more network configurations. For
example, 1n FIG. 11 discussed above, a block storage con-
figuration example allocation was illustrated and in FI1G. 12,
a NAS storage configuration example allocation was 1llus-
trated. Step 1302 represented programming the SBB 910 to
account for the intricacies of variations in the storage con-
figurations and those interfaces and solutions provided by
various vendors.
The next step, as represented by block 1304, 1s to receive a
call for storage include the required storage parameters. This
call may come from, for example, a software module or
application or from an individual user or entity. The next step,
as represented by block 1306, 1s to run the policy engine to
determine the appropriate storage components and the array
and network configurations necessary for achieving the
required parameters. The next step, as represented by block
1308, 1s to provision the component space and establish the
channel from the operating system to the reserved compo-
nents for storage usage. Finally, the next step is to present the
single storage space to the operating system for usage, as
represented by block 1310.

In summary, embodiments of the invention are directed to
a system, method, or computer program product for provid-
ing a storage allocation to a virtual machine 1n response to a
service request including recerving a service request includ-
ing a virtual machine and storage parameters and running a
policy engine to determine appropriate storage allocation to
achieve storage parameters received from the requester,
which may include applying a set of policy-based rules to the
received storage parameters to determine one or more appro-
priate logical components of storage to map, to determine one
or more array ports to enable, and to determine one or more
network ports to enable 1n order to establish one or more
communication channels between the operating system of the
virtual machine and the provisioned component space. Com-
ponent space 1s provisioned and a communication channel 1s
established between the operating system to the component
space based on the policy engine.

The 1invention may be embodied as a method (including,
for example, a computer-implemented process, a business
process, and/or any other process), apparatus (including, for
example, a system, machine, device, computer program prod-
uct, and/or the like), or a combination of the foregoing.
Accordingly, embodiments of the present invention may take
the form of an entirely hardware embodiment, an entirely
soltware embodiment (including firmware, resident software,
micro-code, etc.), or an embodiment combining software and
hardware aspects that may generally be referred to herein as
a “system.” Furthermore, embodiments of the present inven-
tion may take the form of a computer program product on a
computer-readable medium having computer-executable
program code embodied 1n the medium.

US 8,930,668 B2

23

Any suitable transitory or non-transitory computer read-
able medium may be utilized. The computer readable
medium may be, for example but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor system, apparatus, or device. More specific examples of
the computer readable medium include, but are not limited to,
the following: an electrical connection having one or more
wires; a tangible storage medium such as a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), a compact disc
read-only memory (CD-ROM), or other optical or magnetic
storage device.

In the context of this document, a computer readable
medium may be any medium that can contain, store, commu-
nicate, or transport the program for use by or 1n connection
with the mstruction execution system, apparatus, or device.
The computer usable program code may be transmitted using
any appropriate medium, mcluding but not limited to the
Internet, wireline, optical fiber cable, radio frequency (RF)
signals, or other mediums.

Computer-executable program code for carrying out
operations of embodiments of the present invention may be
written 1n an object oriented, scripted or unscripted program-
ming language such as Java, Perl, Smalltalk, C++, or the like.
However, the computer program code for carrying out opera-
tions of embodiments of the present mnvention may also be
written 1n conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages.

Embodiments of the present invention are described above
with reference to flowchart illustrations and/or block dia-
grams ol methods, apparatus (systems), and computer pro-
gram products. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and/or combi-
nations of blocks 1n the flowchart 1llustrations and/or block
diagrams, can be implemented by computer-executable pro-
gram code portions. These computer-executable program
code portions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a particular
machine, such that the code portions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create mechanisms for implementing the
functions/acts specified 1in the flowchart and/or block diagram
block or blocks.

These computer-executable program code portions may
also be stored 1n a computer-readable memory that can direct
a computer or other programmable data processing apparatus
to function 1n a particular manner, such that the code portions
stored 1n the computer readable memory produce an article of
manufacture including nstruction mechanisms which imple-
ment the function/act specified 1n the flowchart and/or block
diagram block(s).

The computer-executable program code may also be
loaded onto a computer or other programmable data process-
ing apparatus to cause a series of operational phases to be
performed on the computer or other programmable apparatus
to produce a computer-implemented process such that the
code portions which execute on the computer or other pro-
grammable apparatus provide phases for implementing the
functions/acts specified 1in the tlowchart and/or block diagram
block(s). Alternatively, computer program implemented
phases or acts may be combined with operator or human
implemented phases or acts 1n order to carry out an embodi-
ment of the mvention.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

As the phrase 1s used herein, a processor may be “config-
ured to” perform a certain function 1n a variety of ways,
including, for example, by having one or more general-pur-
pose circuits perform the function by executing particular
computer-executable program code embodied 1n computer-
readable medium, and/or by having one or more application-
specific circuits perform the function.

Embodiments of the present invention are described above
with reference to tlowcharts and/or block diagrams. It will be
understood that phases of the processes described herein may
be performed 1n orders different than those illustrated 1n the
flowcharts. In other words, the processes represented by the
blocks of a flowchart may, 1n some embodiments, be 1n per-
formed 1n an order other that the order illustrated, may be
combined or divided, or may be performed simultaneously. It
will also be understood that the blocks of the block diagrams
illustrated, 1n some embodiments, merely conceptual delin-
cations between systems and one or more of the systems
illustrated by a block 1n the block diagrams may be combined
or share hardware and/or software with another one or more
of the systems illustrated by a block 1n the block diagrams.
Likewise, a device, system, apparatus, and/or the like may be
made up of one or more devices, systems, apparatuses, and/or
the like. For example, where a processor 1s illustrated or
described herein, the processor may be made up of a plurality
ol microprocessors or other processing devices which may or
may not be coupled to one another. Likewise, where a
memory 1s 1llustrated or described herein, the memory may be
made up of a plurality of memory devices which may or may
not be coupled to one another.

While certain exemplary embodiments have been
described and shown in the accompanying drawings, 1t 1s to
be understood that such embodiments are merely illustrative
of, and not restrictive on, the broad invention, and that this
invention not be limited to the specific constructions and
arrangements shown and described, since various other
changes, combinations, omissions, modifications and substi-
tutions, 1 addition to those set forth in the above paragraphs,
are possible. Those skilled 1in the art will appreciate that
various adaptations and modifications of the just described
embodiments can be configured without departing from the
scope and spirit of the invention. Therefore, 1t 1s to be under-
stood that, within the scope of the appended claims, the inven-
tion may be practiced other than as specifically described
herein.

What 1s claimed 1s:

1. A system for providing a storage allocation to a virtual
machine 1in response to a service request, the system compris-
ng:

a memory device with computer-readable program code

stored thereon;
a communication device:
a processing device operatively coupled to the memory
device and the communication device, wherein the pro-
cessing device 1s configured to execute the computer-
readable program code to:
receive a service request for a platform build from a
requester, the platform build comprising a virtual
machine;

receive a plurality of storage parameters from the
requester;

run a policy engine to determine appropriate storage
allocation to achieve storage parameters received
from the requester; and

provision component space and establishing a commu-
nication channel from an operating system of the vir-
tual machine to the provisioned component space.

US 8,930,668 B2

25

2. The system of claim 1, wherein the processing device 1s
turther configured to execute the computer-readable program
code to:

present a single storage space to the operating system of the

virtual machine for usage.

3. The system of claim 1, wherein running the policy
engine comprises applying a set of policy-based rules to the
received storage parameters to determine one or more appro-
priate logical components of storage to map, to determine one
or more array ports to enable, and to determine one or more
network ports to enable 1n order to establish one or more
communication channels between the operating system of the
virtual machine and the provisioned component space.

4. The system of claim 1, wherein running the policy
engine comprises applying a set of policy based rules com-
prising a risk tolerance determination, whereby a risk toler-
ance associated with the service request 1s determined based
on one of a table of predetermined risk tolerances associated
with one or more storage parameters or one or more virtual
machine parameters or based on an analysis of the importance
of the virtual machine to which the storage 1s allocated or the
importance of the intended function of the storage to be
allocated to the virtual machine.

5. The system of claim 1, wherein the processing device 1s
turther configured to execute the computer-readable program
code to:

communicate with one or more vendor application pro-

gramming interfaces to interface with a plurality of ven-
dor storage components according to a preprogrammed
set of configuration standards associated with a vendor
and the vendor storage components.

6. The system of claim 1, wherein the processing device 1s
turther configured to execute the computer-readable program
code to:

run a web services client for providing an application pro-

gramming interface for recerving service requests and
storage parameters from requesters.

7. The system of claim 1, the processing device 1s further
configured to execute the computer-readable program code
to:

provide a product catalog for presenting a list of available

storage solutions to a potential requester;

regularly monitor functionality of communication across

one or more communication channels established by the
system between an operating system and storage com-
ponents to check for errors; and

1n response to a request, present a report comprising nfor-

mation related to the functionality of the commumnication
channels.

8. A computer program product for providing a storage
allocation to a virtual machine 1n response to a service
request, the computer program product comprising at least
one non-transitory computer-readable medium having com-
puter-readable program code portions embodied therein, the
computer-readable program code portions comprising;:

an executable portion configured for receiving a service

request for a platform build from a requester, the plat-
form build comprising a virtual machine;
an executable portion configured for recerving a plurality
ol storage parameters from the requester;

an executable portion configured for running a policy
engine to determine appropriate storage allocation to
achieve storage parameters received from the requester;
and

an executable portion configured for provisioning compo-

nent space and establishing a communication channel

10

15

20

25

30

35

40

45

50

55

60

65

26

from an operating system of the virtual machine to the
provisioned component space.

9. The computer program product of claim 8, wherein the
computer-readable program code portions comprising;:

an executable portion configured for presenting a single

storage space to the operating system of the virtual
machine for usage.

10. The computer program product of claim 8, wherein
running the policy engine comprises applying a set of policy-
based rules to the recerved storage parameters to determine
one or more appropriate logical components of storage to
map, to determine one or more array ports to enable, and to
determine one or more network ports to enable 1n order to
establish one or more communication channels between the
operating system of the virtual machine and the provisioned
component space.

11. The computer program product of claim 8, wherein
running the policy engine comprises applying a set of policy
based rules comprising a risk tolerance determination,
whereby a risk tolerance associated with the service request 1s
determined based on one of a table of predetermined risk
tolerances associated with one or more storage parameters or
one or more virtual machine parameters or based on an analy-
s1s of the importance of the virtual machine to which the
storage 1s allocated or the importance of the intended function
of the storage to be allocated to the virtual machine.

12. The computer program product of claim 8, wherein the
computer-readable program code portions comprising;:

an executable portion configured for communicating with

one or more vendor application programming interfaces
to interface with a plurality of vendor storage compo-
nents according to a preprogrammed set of configuration
standards associated with a vendor and the vendor stor-
age components.

13. The computer program product of claim 8, wherein the
computer-readable program code portions comprising:

an executable portion configured for running a web ser-

vices client for providing an application programming
interface for receiving service requests and storage
parameters from requesters.

14. The computer program product of claim 8, wherein the
computer-readable program code portions comprising;:

an executable portion configured for providing a product

catalog for presenting a list of available storage solutions
to a potential requester;

regularly monitoring functionality of communication

across one or more communication channels established
by the system between an operating system and storage
components to check for errors; and

in response to a request, presenting a report comprising,

information related to the functionality of the commu-
nication channels.

15. A computer-implemented method for providing a stor-
age allocation to a virtual machine in response to a service
request, the method embodied 1n at least one non-transitory
computer-readable medium having computer-readable pro-
gram code embodied therein, the computer-readable program
code to cause a computer processor to:

recerve a service request for a platform build from a

requester, the platform build comprising a virtual
machine;

recetve a plurality of storage parameters from the

requester;

run a policy engine to determine appropriate storage allo-

cation to achieve storage parameters received from the
requester; and

US 8,930,668 B2

27

provision component space and establishing a communi-
cation channel from an operating system of the virtual
machine to the provisioned component space.

16. The method of claim 15, wherein the computer-read-
able program code 1s further to cause a computer processor to:

present a single storage space to the operating system of the

virtual machine for usage.

17. The method of claim 15, wherein running the policy
engine comprises applying a set of policy-based rules to the
received storage parameters to determine one or more appro-
priate logical components of storage to map, to determine one
or more array ports to enable, and to determine one or more
network ports to enable 1n order to establish one or more
communication channels between the operating system of the
virtual machine and the provisioned component space.

18. The method of claim 15, wherein running the policy
engine comprises applying a set of policy based rules com-
prising a risk tolerance determination, whereby a risk toler-
ance associated with the service request 1s determined based
on one of a table of predetermined risk tolerances associated
with one or more storage parameters or one or more virtual
machine parameters or based on an analysis of the importance
of the virtual machine to which the storage 1s allocated or the
importance of the intended function of the storage to be
allocated to the virtual machine.

10

15

20

28

19. The method of claim 15, wherein the computer-read-
able program code 1s further to cause a computer processor to:
communicate with one or more vendor application pro-
gramming interfaces to interface with a plurality of ven-
dor storage components according to a preprogrammed
set of configuration standards associated with a vendor
and the vendor storage components.
20. The method of claim 15, wherein the computer-read-
able program code 1s further to cause a computer processor to:
run a web services client for providing an application pro-
gramming interface for recerving service requests and
storage parameters from requesters.
21. The method of claim 15, wherein the computer-read-
able program code 1s further to cause a computer processor to:
provide a product catalog for presenting a list of available
storage solutions to a potential requester;
regularly monitor functionality of communication across
one or more communication channels established by the
system between an operating system and storage com-
ponents to check for errors; and
1n response to a request, present a report comprising infor-
mation related to the functionality of the communication
channels.

	Front Page
	Drawings
	Specification
	Claims

