12 United States Patent

US008918590B2

(10) Patent No.: US 8.918.590 B2

Minami et al. 45) Date of Patent: Dec. 23, 2014
(54) READING CORE DATA IN A RING BUS TYPE 2002/0042860 Al* 4/2002 Murakamietal. 711/118
MUILTICORE SYSTEM 2004/0230726 Al1* 11/2004 Blakeetal. 710/100
2004/0230752 Al1* 11/2004 Blakeetal. 711/147
: : _ .y 2005/0240735 A1* 10/2005 Shenetal. 711/144
(75) Inventors: Aya Minami, Yamato (JP); Yohichi 2007/0055828 AL* 3/2007 TSien ..ooooovvvvvvvorerreeero 711/141
Miwa, Yamato (JP) 2009/0007119 Al* 1/2009 Blumrichetal. 718/102
2009/0144524 Al1* 6/2009 Shenetal. 712/30
(73) Assignee; International Business Machines 2009/0193232 Al* 7/2009 Watanabe 712/205
Corporation, Armonk, NY (US) 2012/0151152 Al 6/2012 Minamui et al.
j j 2012/0287779 Al1* 11/2012 Sugawara 370/228
: : : : : 2013/0144626 Al* 6/2013 Shaucooovviviniiinnnn, 704/270
(*) Notice: Subject to any disclaimer, the term of this 2014/0214955 Al* 7/2014 Vashetal. oo, 709/204
patent 1s extended or adjusted under 35
U.5.C. 154(b) by 574 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/311,349 JP 06-314239 A 11/1994
JP 11-134312 A 5/1999
(22) Filed: Dec. 5, 2011 JP 2001-222517 A 8/2001
;__P 2006244460 A 9/2006
(65) Prior Publication Data 1P 2009176179 A 8/2009
. .
US2012/0151152 A1 Jun. 14, 2012 cited by examiner
(30) Foreign Application Priority Data Primary Examiner — Sean D Rossiter
(74) Attorney, Agent, or Firm — James R. Nock
Dec.9,2010 (IP) oo, 2010-274556

(51) Int.CL

(57) ABSTRACT

The present invention provides a ring bus type multicore

Goor 13/00 (2006.01) system including one memory, a main memory controller for

Goor 12/05 (2006.01) connecting the memory to a ring bus; and multiple cores

(52) U.S. Cl. connected 1n the shape of the ring bus, wherein each of the
CPC e, GO6F 12/0831 (2013.01) cores further includes a cache interface and a cache controller
USPC 711/141; 711/E12.026 for controlling or managing the interface, and the cache con-

(58) Field of Classification Search troller of each of the cores connected in the shape of the ring
CPC e, GO6F 12/0882; GO6F 12/0822 bus executes a step of snooping data on the request through

See application file for complete search history. the cache interface; and when the cache of the core holds the

data, a step of controlling the core to recerve the request and

(56) Reterences Cited return the data to the requester core, or, when the cache of the

U.S. PATENT DOCUMENTS

6,253,292 B1*
7,069,362 B2 *

6/2001 Jhangetal. 711/146
6/2006 Blakeetal. 710/107

core does not hold the data, the main memory controller
executes a step of reading the data from the memory and
sending the data to the requester core.

8,140,828 B2* 3/2012 Shenetal.cocooeevvvnrnnn.. 712/30 6 Claims, S Drawing Sheets
ADDRESS DATA READING STEPS {1) TO (5)
G‘Fu GGRE'E -----
e 5

< = (5)) —1
. WY &
3 |3 .[COHERENT RING BUS (3| 3
318 3| ;
: e —
5 ‘
Y s
CACHE

CPUCORE £

MAIN MEMORY CONTROLLER

LOGIC ~9
|: MEMORY FOR
STORING ACCESS[~—8
HISTORY

10 ~{ MAIN MEMORY

: CACHE INTERFAGE
3] : READ/WRITE INTERFACE TO MAIN MEMORY

U.S. Patent Dec. 23, 2014 Sheet 1 of 5 US 8.918.590 B2

COHERENT RING BUS

CPU CORE A

MAIN MEMORY CONTROLLER

LOGIC 9

MEMORY FOR
STORING ACCESS 8
HISTORY

10 ~4{MAIN MEMORY

DIAGRAM OF GENERAL STRUCTURE
7,27] : CACHE INTERFACE
- READ/WRITE INTERFACE TO MAIN MEMQORY

FI1G. 1

U.S. Patent Dec. 23, 2014 Sheet 2 of 5 US 8.918.590 B2

READ/WRITE
INTERFACE FROM
CACHE CPU CORE TO
INTERFACE MAIN MEMORY
2 3

o =1

CACHE
(CONTROLLER)

READ INTERFACE FOR CACHE IN EACH CPU CORE
AND INTERFACE FOR ISSUING READ/WRITE REQUEST
FROM EACH CPU CORE TO MAIN MEMORY

FIG. 2

U.S. Patent Dec. 23, 2014 Sheet 3 of 5 US 8.918.590 B2

ADDRESS DATA READING STEPS (1) TO (5)

CACHE

RN

CPU CORE A

MAIN MEMORY CONTROLLER

MEMORY FOR
STORING ACCESS
HISTORY

10 ~4 MAIN MEMORY

] : CACHE INTERFACE
[3] : READ/WRITE INTERFACE TO MAIN MEMORY

IR

FIG. 3

U.S. Patent Dec. 23, 2014 Sheet 4 of 5 US 8.918.590 B2

DATA READING FLOW IN RING BUS TYPE MULTICORE STRUCTURE

(1) CPU CORE X ISSUES READ COMMAND TO MEMORY
CONTROLLER. FOR EXAMPLE, SUPPOSE THAT MEMORY
CONTROLLER SELECTS NEAR PATH.

CPU CORES Y AND Z
ARE SNOOPING ACCESS
THROUGH CACHE INTERFACE. CORE Y
OR Z HAS CORRESPONDING
ADDRESS DATA ?

NO

YES

(2) CORE Y OR Z RECEIVES REQUEST AND RETURNS
CORRESPONDING ADDRESS DATA TO CPU CORE X, AND AFTER
THAT, SENDS MEMORY CONTROLLER CONTENT OF REQUEST WITH
FLAG ATTACHED TO INDICATE THAT CORE Y OR Z ITSELF DESIRES
TO PERFORM PROCESSING. AFTER RECEIPT, MEMORY
CONTROLLER UPDATES CACHE ACCESS HISTORY.

(3) WHEN CPU CORE Y AND Z DO NOT HAVE CORRESPONDING DATA
REQUESTED, MEMORY CONTROLLER RECEIVES REQUEST,
AND REFERENCES ACCESS HISTORY OF EACH CPU CORE TO
CHECK WHETHER CPU CORES A TO W ON OPPQOSITE BUS
SIDE HAVE CORRESPONDING ADDRESS DATA IN CACHE.

FOR EXAMPLE,
CPU CORE B HAS CORRESPONDING
ADDRESS DATAIN
CACHE 7?

NO

YES MAIN MEMORY CONTROLLER
READS ADDRESS DATA

FROM MAIN MEMORY .

(4) MAIN MEMORY CONTROLLER SENDS READ
COMMAND TO CACHE CONTROLLER OF CPU
CORE B AS READ REQUEST FROM CPU CORE X.

(0) CACHE CONTROLLER OF
CPU CORE B SENDS CORRESPONDING
ADDRESS DATA TO CPU CORE X.

FIG. 4

US 8,918,590 B2

Sheet 5 of 5

Dec. 23, 2014

U.S. Patent

di1dH 1ON
vVivd dvdd

N

L0 V1Vd SSJ4ddayv Sdvdd X 4400 NIHM AdO1SIH SS400V 40 INJd1INOD

AHOWNIN JHOVD
40 AdLN4 $534dav

US 8,918,590 B2

1

READING CORE DATA IN A RING BUS TYPE
MULTICORE SYSTEM

FIELD OF THE INVENTION

The present invention relates to reading core data in a ring,
bus type multicore system 1n which one memory interface 1s
shared among multiple CPU cores (also sitmply called CPUs,
Processors, or cores).

BACKGROUND OF THE INVENTION

In a ring bus type multicore CPU {for sharing one memory
interface among multiple cores, accesses to a main memory
are concentrated. In the normal operation, each CPU core has
a cache, respectively, to read data actually from a shared main
memory. Instead of reading of data {from one main memory, 1t
1s considered a method of reading the data from cache data
stored 1n each CPU core.

For example, a Read request 1s 1ssued from a certain CPU
core (called a “requester core”). In a conventional multicore
structure, a main memory controller makes inquiries to the
other CPU cores about the presence or absence of cache data
instead of reading the data from the main memory. The CPU
cores receiving the inquiries searches their caches for the
data.

In a multicore operating environment, it 1s often the case
that any of the CPU cores holds, 1n 1ts cache, data of the same
address as the main memory (called the address data). In this
case, there 1s a conventional method in which the main
memory controller 1ssues an istruction to a requester core to
transier the cache content so that the data will be sent. How-
ever, this method takes time 1n proportion to the number of
packed cores because inquiries to respective cores have to be
made 1n order. Further, the inquiries to the respective CPU
cores suller from a high load placed on the main memory
controller.

The following will describe snooping for coherence to
ensure the coherency of data held in each cache 1n a structure
of multiple CPU cores. In a multiprocessor equipped with
cache memories, the coherency of data used 1n processing
among multiple processors needs to be maintained. Bus
snooping 1s often employed to maintain the coherency of data
in conventional processors. Bus snooping 1s a function to
watch transactions on a memory interface bus shared among,
respective processors and detect whether a transaction related
to data 1n a cache memory allocated to each processor occurs.

When a transaction related to data in the cache memory
allocated to a specific processor occurs, the processor updates
a corresponding entry 1n the cache memory. Each of the other
processors 1s notified of this update by snooping to set a dirty
flag for the data stored 1n its cache so that the data will not be
used, thus managing data in the entire multiprocessor system.

Japanese Patent Application Publication No. 2006-244460
provides a processor equipped with a cache memory capable
ol keeping the coherency of data among processors with
excellent operational efficiency 1n a multiprocessor system.
However, Patent Document 1 describes a model 1n which
multiple processor cores have a single cache, which 1s differ-
ent from a model 1n which respective processor cores have
respective caches.

Japanese Patent Application Publication No. 2009-1761779
discloses a technique using multiple processor cores having
respective caches to make effective use of cache data held in
respective processor cores. This technique shows a process-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing method used when a processor core fetches data from a
main memory and a different processor core fetches the same
memory data.

SUMMARY OF THE INVENTION

Patent documents or the like disclose that snooping 1s used
to perform an update for the coherency of address data. How-
ever, upon reading multiple CPU cores connected in the shape
of a ring bus, each core 1s not used for bus transaction refer-
ence. In other words, no conventional techniques mention
that upon reading address data on multiple CPU cores con-
nected 1n the shape of a ring bus, each core snoops bus
transactions.

Therefore the present invention provides a ring bus type
multicore system for sharing one memory interface among
multiple cores, and data reading method by each core.

In order to achieve this, the present invention provides a
ring bus type multicore system in which one memory inter-
face 1s shared among multiple cores and one core (requester
core) makes a read request for data present 1n the memory.
This ring bus type multicore system includes one memory, a
main memory controller for connecting the memory to a ring
bus; and multiple cores connected in the shape of the ring bus,
wherein each of the cores further includes a cache interface
and a cache controller for controlling or managing the inter-
face, and the cache controller of each of the cores connected
in the shape of the ring bus executes:

(1) a step of snooping data on the request through the cache
interface; and

(2) when the cache of the core holds the data, a step of
controlling the core to receive the request and return the data
to the requester core, or

(3) when the cache of the core does not hold the data, the
main memory controller executes a step of reading the data
from the memory and sending the data to the requester core.

The present mvention further provides a ring bus type
multicore system in which one memory interface 1s shared
among multiple cores and one core (requester core) makes a
Read request for data present in the memory. This ring bus
type multicore system includes one memory, a main memory
controller for connecting the memory to a ring bus, and mul-
tiple cores connected 1n the shape of the ring bus, wherein
cach of the cores further includes a cache interface and a
cache controller for controlling the interface, and the main
memory controller further includes a history of data held in
caches of all the cores, and 1n response to the request flowing
in a predetermined path direction from the requester core to
the main memory controller, the cache controller of each of
the cores connected 1n the shape of the ring bus executes:

(1) a step of snooping data on the request through the cache
interface; and

(2) when the cache of the core connected 1n the predeter-
mined path direction holds the data, a step of controlling the
core to receive the request and return the data to the requester
core, or

(3) when the cache of the core connected 1n the predeter-
mined path direction does not hold the data, the main memory
controller

(a) references the history of each core, and

(b) when any core connected 1n the shape of the ring bus in

a reverse path direction to the predetermined path direc-
tion holds corresponding data, executes: a step of send-
ing the request to the core and causing the cache con-
troller of the core to send the data held 1n the cache to the
requester core; or

US 8,918,590 B2

3

(c) when no core connected to the ring bus in the reverse
path direction to the predetermined path direction holds
corresponding data, a step of reading the data from the
memory and sending the data to the requester core.

In one embodiment of this ring bus type multicore system,
the history includes, for each of the cores, a flag indicative of
holding data on the address (address data) of the memory and
a write flag to another core.

Another feature of this ring bus type multicore system 1s
such that the cache controller selects, as the predetermined
path direction, a path direction with a larger number of cores
connected 1n two path directions from the requester core to
the main memory controller.

Still another feature of this ring bus type multicore system
1s such that the cache controller references the history to
calculate traffic of the ring bus from the data hold flag and
select a path direction with less traffic as the predetermined
path direction.

Yet another feature of this ring bus type multicore system 1s
such that the main memory controller references the history
to check for the presence of the data 1n a core connected to a
path reverse to that 1n the predetermined path direction.

Further, the present invention provides a method of causing,
one core (requester core) to read data present 1n a memory 1n
a ring bus type multicore CPU for sharing one memory inter-
face among multiple cores. In this method, the multicore CPU
includes one memory, a main memory controller for connect-
ing the memory to a ring bus, and the multiple cores con-
nected 1n the shape of the ring bus, and each of the cores
turther 1includes a cache interface and a cache controller for
controlling pr managing the interface, and the main memory
controller turther includes a history of data held in all the
cores, and

in response to the request flowing 1n a predetermined path
direction from the requester core to the controller, the cache
controller of each core connected 1n the shape of the ring bus
includes:

(1) a step of snooping data on the request through the cache
interface; and

(2) when the cache of the core connected in the path direc-
tion holds the data, a step of controlling the core to recerve the
request and return the data to the requester core, or

(3) when the cache of the core connected in the path direc-
tion does not hold the data, the main memory controller

(a) references the history of each core, and

(b) when any core connected 1n the shape of the ring bus 1n
a reverse path direction to the path direction holds cor-
responding data, executes: a step of sending the request
to the core and causing the cache controller of the core to
send the data held in the cache to the requester core; or

(c) when no core connected 1n the shape of the ring bus 1n
the reverse path direction to the path direction holds
corresponding data, a step of reading the data from the
memory and sending the data to the requester core.

As described above, according to the present invention, the
load on the main memory controller and the total time
required for all memory accesses can be reduced in the ring
bus type multicore system for sharing one main memory.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the general structure of a ring bus type mul-
ticore system for sharing one memory interface among mul-
tiple cores;

FIG. 2 shows a cache interface 2 1n each CPU core and a

Read/Write request interface 3 to the main memory;

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 indicates, by the arrows of steps (1) to (5), a tlow of
data reading transactions in the general structure of the ring
bus type multicore system:;

FIG. 4 15 a flowchart showing the data reading steps (1) to
(3) of the present invention; and

FIG. 5 shows the content of an access history of each core
held 1n a main memory controller.

DETAILED DESCRIPTION OF THE INVENTION

Data reading in a ring bus type multicore system for shar-
ing a memory interface among multiple CPU cores according
to an embodiment (heremafter simply called the “embodi-
ment”) of the present invention will be described. Note that
the following embodiment 1s an 1llustrative example and not
intended to limit the content of the present invention.

A chip with a ring bus type multicore system packed
thereon includes the following;

1. Each CPU core 1s equipped with a cache interface. This
interface enables a main memory side controller and each
core to read the content of a cache in another core directly.
The content of a cache i1s fixed-length data specified by an
address of the main memory (called address data).

2. The main memory controller holds the content of caches
of all the CPU cores as a history (called address history). As
shown 1n FIG. §, the address history stores the presence or
absence of cache address data in each core.

FIG. 1 shows the general structure of a ring bus type mul-
ticore system for sharing one memory interface among mul-
tiple cores.

1. A main memory controller 7 manages, in an access
history, a log of memory access status from each core 6. The
access history accounts for which CPU core has which
address data 1n 1ts cache.

2. Each CPU core 6 1s equipped with a cache controller to
enable the main memory controller 7 to read the content of a
cache 11.

A certain CPU core 1ssues a request to the main memory
controller for reading of specific address data. This CPU core
1s called a requester core. The cache controller 11 of each of
the cores connected on the ring bus up to the main memory
controller 7 snoops the content of the coming read request.
When having corresponding data in 1ts cache 11, each core
picks up the request and returns the data to the requester core.

Suppose {irst that no CPU core 6 on the way (first path) to
a main memory 10 has corresponding data. In this case, the
main memory controller 7 receives the request and references
an access history 8 of each core. Suppose next that a CPU core
6 connected on a side of the ring (second path) opposite to the
direction from which the request comes has the correspond-
ing data. In this case, the read request to a cache 11 1s 1ssued
to the CPU core 6 having the address data, rather than to the
main memory 10.

In the first path, the cache controller sends the address data
from the cache 11 of the CPU core through a cache interface
2. Snooping by this controller makes the requester core 6 look
as 1f 1t has 1ssued the read request to the core having the
address data. In this case, the read address data can be sent to
the requester core without through the main memory control-
ler 7.

In the second path, the main memory controller pretends to
be the requester core to 1ssue the read request directly to the
cache of each core. In this case, no extra load 1s applied to
cach of the CPU cores (the requester core and the cores
having caches to be read). The method of the present inven-
tion 1s effective 1n terms of reduction in the load on the main
memory controller (the effect of reducing the load on the

US 8,918,590 B2

S

main memory in the first path) and reduction in the time
required for memory accesses 1n all cores (the effect of reduc-
ing the load on each core 1n the second path).

FIG. 2 shows a cache interface 2 1n each CPU core and a
Read/Write request interface 3 to the main memory. This 1dea
1s considered based on a structure 1n which multiple CPU
cores are packed 1n a chip and a memory 1s connected through
the main memory controller. Each CPU core and the main
memory are connected by a ring bus having coherency. Each
CPU core 1s equipped with the cache interface 2 and the
interface 3 through which the CPU core accesses the main
memory. Note that the two interfaces 2 and 3 are not neces-
sarily provided separately. For example, the interface 3 may
serve as the two interfaces. The separation of the interfaces
for each core to snoop a track of the ring bus and to request the
main memory to read/write data can avoid a delay 1n each
process.

FIG. 3 indicates, by the arrows of steps (1) to (8), the order
of flows of data reading transactions 1n the general structure
of the ring bus type multicore system. FIG. 4 1s a flowchart
showing the data reading steps (1) to (3) as a typical example
of the present invention.

(1) CPU core X 1ssues a Read command to the main
memory controller. It 1s assumed that a near path is selected as
the first path. In this case, for example, the selection of either
the near path or the far path as the distance to the main
memory controller 1s decided by the cache controller of the
requester core in consideration of factors including tratfic and
the like:

Near distance leads to fewer CPU cores through which the

path to the main memory controller 1s routed.

Far distance leads to more CPU cores through which the
path 1s routed and by which the path 1s snooped, thereby
increasing the probability of hitting.

(2) CPU core Y and CPU core Z are snooping accesses.
When either of the CPU cores has corresponding data, the
CPU core recetves the request and returns the data to CPU
core X, and after that, sends the main memory controller the
content of the request with a tlag attached to indicate that the
CPU core 1tself desires to perform processing. After receipt,
the main memory controller updates the access history of the
cache. For example, when CPU core Z has the corresponding

data, CPU core Z returns the data to CPU X.

(3) When CPU core Y and CPU core 7Z do not have the
corresponding data requested, the main memory controller
receives the request. The main memory controller references
the access history, 1.¢., it references a log of memory accesses
of each CPU core to check whether CPU cores A to W on
opposite bus side (second path) have corresponding address
data in their caches.

(4) For example, suppose that the access history indicates
that CPU core B has corresponding data in its cache. In this
case, the main memory controller sends the Read command to
the cache controller of CPU core B istead of the Read
request from CPU core X. As viewed from the cache interface
of CPU core B, this looks as 11 the CPU core B has received
the Read request directly from CPU core X.

(5) The cache controller of CPU core B sends the address
data to CPU core X. CPU core X receives information from
CPU core B as data 1n response to the Read command 1ssued
to the main memory controller.

FI1G. 5 shows the content of the access history of each core
held 1n the main memory controller. This history 1s held by the
main memory controller to record whether each of cores A to
7. holds data on the address of the main memory (address
data) in its cache. The address data normally has a fixed
length. When a write flag 1s Y, it means that request data has

10

15

20

25

30

35

40

45

50

55

60

65

6

been written to the requester core X. At this time, the cache
interface of core B snoops the transactions on the ring bus to
confirm that core B itself holds the address data of core X.
Since core B responds directly to the Read request from core
X, the intervention of the main memory controller can be
omitted, thereby improving reading performance. After core
B completes the processing for sending data to the requester
core X, the main memory controller updates the access his-
tory.

In step 3 of FIG. 4, the main memory controller checks, 1n
an access history table, whether any of the caches of cores A
to W on the opposite bus side holds the requested data. By
referencing the access history table, the main memory con-
troller can confirm earlier in the middle of the second path that
the cache of core B holds address data 01. The controller
sends the Read request and an instruction to core B to send
data to core X.

The features of the present invention are as follows: First,
since direct reading to each cache 1tself, rather than to each
CPU core, 1s enabled, no load 1s applied to each CPU. Since
cach core on the bus to the main memory snoops and directly
returns data, transactions flowing through the ring bus can be
omitted, avoiding traific congestion. Further, when the main
memory controller performs reading to the cache of anther
core, since the response 1s directly passed to the requester
core, the number of transactions can be reduced even through
the main memory controller. In other words, the number of
transactions 1s smaller than that by a method in which the
main memory controller side once pertorms reading from the
cache of each CPU core, and after receiving data, returns the
read data to the CPU.

In a multicore CPU system of the present invention, the
congestion of traific to the main memory controller on which
the number of accesses 1s anticipated to be high can be
avoided. It 1s contemplated that the more the number of CPU
cores, the higher the effect of the present invention. For
example, a CPU design plan as a multicore CPU with 128
cores or the like 1s proposed as a Power PC architecture.
According to the present invention, the effect 1s exerted 1n a
multicore architecture in which the number of cores 1s espe-
cially large.

The mvention claimed 1s:
1. A multicore system in which a requester core makes a
read request for data present 1n a memory, comprising:

one memory;

a main memory controller for connecting the memory to a
ring bus; and

a plurality of cores connected to the ring bus, wherein

cach of the cores further includes a cache interface and a
cache controller for controlling the interface,

the main memory controller further includes a cache his-
tory of all the cores, and

in response to the request flowing 1n a predetermined path
direction from the requester core to the main memory
controller, the cache controller of each core connected to
the ring bus executes:

a step of snooping data on the request through the cache
interface; and

when the cache of the core connected 1n the predetermined
path direction holds the data, a step of controlling the
core to recerve the request and return the data to the
requester core; or

when the cache of the core connected 1n the predetermined
path direction does not hold the data, the main memory
controller references the history of each core, and when
any core connected to the ring bus in a reverse path

cache controller references the history to calculate tra
the ring bus from the data hold flag and select a path direction
with less traffic as the predetermined path direction.

US 8,918,590 B2

7

direction to the predetermined path direction holds cor-
responding data, the main memory controller executes:

a step of sending the request to the cache of the core and
causing the cache controller of the core to send the data
held 1n the cache to the requester core; or

when no core connected to the ring bus 1n the reverse path
direction to the predetermined path direction holds cor-
responding data, a step of reading the data from the
memory and sending the data to the requester core.

2. The multicore system according to claim 1, wherein the

history includes, for each of the cores, a flag indicative of
holding data on an address of the memory and a write flag to
another core.

3. The multicore system according to claim 2, wherein the

cache controller selects, as the predetermined path direction,

a path with a larger number of cores connected 1n two path
directions from the requester core to the main memory con-
troller.

4. The multicore system according to claim 3, wherein the

e

5. The multicore system according to claim 4, wherein the

main memory controller references the history to check for
the presence of the data in a core connected to a path reverse
to that in the predetermined path direction.

6. A method of causing a requester core 1n a ring bus type

multicore CPU to read data present in a memory, in which

1c of

10

15

20

25

8

the multicore CPU 1includes one memory, a main memory
controller for connecting the memory to a ring bus, and
a plurality of cores connected to the ring bus, and

cach of the cores further includes a cache interface and a
cache controller for controlling the interface, and the
main memory controller further includes a history of
data held 1n all the cores, and

in response to the request flowing 1n a predetermined path
direction from the requester core to the controller, the
cache controller of each core connected to the ring bus
includes:

a step of snooping data on the read request through the
cache interface: and

when the cache of the core connected 1n the path direction
holds the data, a step of controlling the core to recerve
the request and return the data to the requester core, or

when the cache of the core connected 1n the path direction
does not hold the data, the main memory controller
references the history of each core, and when any core
connected to the ring bus 1n a reverse path direction to
the path direction holds corresponding data, the main
memory controller includes:

a step of sending the request to the core and causing the
cache controller of the core to send the data held 1n the
cache to the requester core; or

when no core connected to the ring bus in the reverse path
direction to the path direction holds corresponding data,
a step of reading the data from the memory and sending,
the data to the requester core.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

