12 United States Patent

Junker

US008909584B2

(10) Patent No.: US 8.909,584 B2
45) Date of Patent: Dec. 9, 2014

(54) MINIMIZING RULE SETS IN A RULE
MANAGEMENT SYSTEM

(75) Inventor: Ulrich M. Junker, Valbonne (FR)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 70 days.
(21) Appl. No.: 13/597,419
(22) Filed: Aug. 29,2012

(65) Prior Publication Data
US 2013/0085977 Al Apr. 4, 2013

(30) Foreign Application Priority Data
Sep. 29,2011 (EP) . 11290448
(51) Int.CL
GO6N 5/00 (2006.01)
GO6F 1/00 (2006.01)
GO6N 5/02 (2006.01)
(52) U.S. CL
CPC e, GO6N 5/025 (2013.01)
USPC i 706/47; 715/266; 709/223
(58) Field of Classification Search
USPC e 706/47

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,943,667 A 8/1999 Aggarwal et al.
7,152,075 B2 12/2006 Vining et al.
7,337,230 B2 2/2008 Zehavi

7,792,775 B2 9/2010 Matsuda

2002/0049720 A 4/2002 Schmudt

2004/0030786 Al 2/2004 Zehavi

2005/0278431 Al* 12/2005 Goldschmidtetal. ........ 7097207
2006/0277601 Al 12/2006 Gouda et al.

2008/0147584 Al* 6/2008 BuUSs ...cooooevvivviiiiniiinnennnnn, 706/47
2011/0082826 Al 4/2011 Junker

2012/0158628 Al 6/2012 Junker

2012/0317541 Al* 12/2012 Kaulgudetal. ... 717/102

FOREIGN PATENT DOCUMENTS

CN 1924908 A 3/2007
OTHER PUBLICATIONS

Junker, Ulrich, “Quick Xplain: Preferred Explanations and Relax-
ations for Over-Constrained Problems,” Proceedings of the Associa-

tion for the Advancement of Artificial Intelligence (AAAI), 2004, all

pages.
International Search Report and Written Opinion for International
Application No. PCT/IB2012/054966 dated Feb. 28, 2013.

* cited by examiner

Primary Examiner — Jeflrey A Gallin
Assistant Examiner — Kalpana Bharadwa
(74) Attorney, Agent, or Firm — Winstead, P.C.

(57) ABSTRACT

A method, system and computer program product for mini-
mizing a rule set. A rule set application graph that describes a
set of rules including actions and cases 1s built, whereby each
rule defines an action for one or more cases. A rule violation
graph for each rule describing the actions and cases not
defined for thatrule 1s built. A subset ofrules having a reduced
number of rules with the same set of actions and cases as the
rule set application graph 1s determined by exploring candi-
date subsets of the rule set that are suificient for reproducing
the behavior of the original rule set.

19 Claims, 13 Drawing Sheets

A DECISION POLICY
. CISION POLIC
i
A0t
” PLATINUM
S T GOLD
SILVER
| ~ VALUE
2 40
RULE PROJECT 1
AGE
i
20—t
102~ ¢ o
20 12 |,
sl g3
— VALUE
20 A0




U.S. Patent Dec. 9, 2014 Sheet 1 of 13 US 8,909,584 B2

A DECISION POLICY
nE CISION POLIC
40
O PLATINUM
20
SILVER
VALUE
RULE PROJECT 1
AGE
40
102 2 2
20 2 |,
5] g3
VALUE
20 40)
(. 1B
RULE PROJECT 2
AGE
40 |
g
o] pl
105 g/
20
3
5] i2 3
VALUE
20 40)



U.S. Patent Dec. 9, 2014 Sheet 2 of 13 US 8,909,584 B2

RULE PROJECT 2
AJG_E
gl
1 1
201 : 2 :
20
3I
J| 22 03
VALUE
20 A0
Fl(5. 2A
CLEANED SET
AGE
A
] 1
202 : I :
20
s] g3
VALUE
0 40
Fl(5, 2B
DAMAGED SET
AGE

205

VALUE




U.S. Patent Dec. 9, 2014 Sheet 3 of 13 US 8,909,584 B2

RULE PROJECT 3
AGE AGE
1 OYALTY 15 LOW i LOYALTY IS HIGH
gl ] g0 1
S0~ g 2 % Y, :
) ~ ) .
| g3 oh 03
S g/ 2 g
- VAlE ———————F—VALE
) )
FlG. DA
CLEANED SET 1
AGE AGE
1 LOYALTY 1S LOW t LOYALTY IS HGH
gl ]
V2~ o . N+ & |,
5] 03 g3
| -~ VALUE = VALUE
) )
FlG. 5B
CLEANED SET 2
AGE AGE
1 LOYALTY 1S LOW t LOYALTY IS HIGH
gb J g ]
305~ 20— ¥, 20— <
] gl
= VALUE | = VALUE
) )

FIG. &C



U.S. Patent Dec. 9, 2014 Sheet 4 of 13 US 8,909,584 B2

REDUNDANCY ELIMINATOR
PREFERENCES
ON RULES

400 400 40z 452
TOPOLOGICAL
RULE SORTER
ORDERED LIST
OF RULES
A54
RULE SET RULE
APPLICATION [ 404 406~ yioLATION
MODELER 410 MODELER
CONSISTENCY
CHECKER
458 456
RULE SET
APPLICATION RULE VIOLATION
GRAPH GRAPHS
CONFLICT-SET
MINIMIZER
A60 4086

RULE EXTRACTOR . 41>

402

MINIMAL
REDUNDANCY-FREE
RULE SET

FlG. 4




U.S. Patent Dec. 9, 2014 Sheet 5 of 13 US 8,909,584 B2

FlG. D

SET THE
CATEGORY



U.S. Patent

US 8,909,584 B2

4086

Dec. 9, 2014 Sheet 6 of 13
CONSISTENCY CHECKER
458 G52
RULE SET DIDATE SET OF
APPLICATION E VIOLATION
GRAPH GRAPHS

OBJECT
©OZ~ | EXTRACTOR

OBJECT
o4 DOMAINS

oQo

olole

\

CONJ

UNCTION

BL
Slele,

ILDER

DAMAGED
RULE SET
GRAPH

GOS DAMAGED RULE
SET GRAPH SOLVER

218,

MISSING CASE OR
MISSING DECISION

FlG. ©

INSTANCE VIOLATION

Y
QUANTIFICATION
PRESOLVER 004

RULE

GRAPHS




U.S. Patent Dec. 9, 2014 Sheet 7 of 13 US 8,909,584 B2

SET THE
CATEGORY

5 O
0305000
©

FlG. 7




U.S. Patent Dec. 9, 2014 Sheet 8 of 13 US 8,909,584 B2

©
O3 BE
®
- \. ® Y
N
oYo /NaoVlie
A/
YO VANV
0N
VSN
o) e‘oy o
oA =6

SET THE SET THE
CATEGORY CATEGORY

THE RULE
SET ACTION

FlG. &

SET THE
CATEGORY



U.S. Patent Dec. 9, 2014 Sheet 9 of 13 US 8,909,584 B2

©
P
C
PN
O 000
NNAY; vl
D a0 ©
BN,
9} ‘ovo ©
®

OET ACTION

SET THE
CATEGORY



U.S. Patent Dec. 9, 2014 Sheet 10 of 13 US 8,909,584 B2

FlG. 10

SET THE
CATEGORY



U.S. Patent Dec. 9, 2014 Sheet 11 of 13 US 8,909,584 B2

FlG. 11

CATEGORY



U.S. Patent Dec. 9, 2014 Sheet 12 of 13 US 8,909,584 B2

FlG. 12




) o
= AR
% el
ot e
> < T
7
= il
AL dvaY 3L dvay Q4YOIAIN
AYTdSI 0 IR ES)
e,
- 212l
s Gl&l ollell
= 202!
3 \31dvay 3L dvay
S SNOLLYOINAIND e e e dU53
&
S _
= 602l LOZ 202! GOg!
N3LSAS
MHOMLIN NI 1 Y30
- — _
S 20c1
~
~ =z NOI LY ddY
. 00¢!
/)
-

0%

«0%|

0%l



US 8,909,584 B2

1

MINIMIZING RULE SETS IN A RULE
MANAGEMENT SYSTEM

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

This application claims priority under 35 U.S.C. §119(a)
from European Patent Application No. 11290448.7, filed on
Sep. 29, 2011, the contents of which are incorporated herein
by reference.

TECHNICAL FIELD

The present invention relates generally to a rule manage-
ment system, and more particularly, to mimimizing rule sets in
a rule management system.

BACKGROUND

Business Rule Management (BRM) technology relates to
the area of decision-making automation in business prob-
lems, such as loan approval, imnsurance claim processing or
customer loyalty programs. A Business Rule Management
System (BRMS) 1s implemented to work with rule projects. A
BRMS allows rule edition in a controlled natural-like lan-
guage, which makes 1t easy to use without specific knowledge
on generating rules. The rules can be kept in different versions
in a rule repository. A BRMS further allows the execution of
the rules by a rule engine, which also performs a rule analysis
for detecting contlicting rules, redundant rules, and missing
rules. Another feature 1s rule validation by test and simula-
tion.

Business rules are a convenient way to represent decision
making policies that are making decisions depending on
given cases. A case usually consists of a combination of
features and a decision may be a combination of elementary
choices. A business rule makes a decision by applying an
action to a given case. A business rule cannot handle all cases,
but only those that satisfy a condition. A business rule thus
consists of a condition, which usually 1s a combination of
tests, and an action, which may consist of a sequence of
clementary steps. As a business rule treats only certain cases,
it defines only a part of the whole decision making process.
Further business rules are needed to make a decision for the
remaining cases. If the given business rules are making a
decision for each relevant case, then such a collection of rules
1s complete. Otherwise, the rules will not treat every case and
turther rules need to be added to make the rules complete.

Decision automation for problems, such as mnsurance claim
processing, loan approval, or discount calculation for shop-
ping carts consists in making decisions for a huge number of
cases 1n a consistent and predictable way. Decision automa-
tion 1s achieved through business policies comprising busi-
ness rules, which map each possible case to a single decision.
Business rules provide a convenient way to represent coms-
plex policies which make decisions for diverse and complex
forms of cases. Each rule represents an independent part of
the policy and makes a decision for a subset of the cases. A
business rule consists of a condition describing the cases
treated by the rule and an action which consists 1n making the
decision for a case. As cases may be complex and consist of
different objects (such as the different 1items in a shopping
cart), a business rule may treat only selected objects of the
case and thus has a scope describing the kinds of objects 1t
may treat. A complex policy can thus be represented by a set
of business rules 1n a simple way.

10

15

20

25

30

35

40

45

50

55

60

65

2

As there are numerous ways to represent a policy 1n terms
of rules, additional criteria are necessary to determine good
representations for decision automation. Firstly, 1t 15 1mpor-
tant to keep the representation manageable and as small as
possible. The number of rules can be reduced by making the
rules as general as possible and by avoiding redundant rules.
Secondly, different rules should be independent of each other
in order to facilitate modification of rules due to a change of
a business policy. If the business policy 1s changing for some
cases, then the business user needs to adapt all rules treating
this case to the new policy. It the rules are overlapping, then a
policy change may require a modification of several rules.
This overhead 1n rule editing 1s acceptable 11 the overlaps are
due to the fact that the rules are as general as possible. How-
ever, 1t 1s not acceptable 1t there are redundant rules, which
can be removed without changing the decision-making
behavior of a rule set.

A manageable and agile representation of a business policy
attempts to prohibit redundant rules. However, redundant
rules are difficult to avoid 1f rules are automatically generated
by rule learning and data mining tools or assembled from
different sources, such as multiple rule authors. Due to the
combinatorial nature of the rule conditions, there may be
unforeseen interactions between rules, which lead to redun-
dant rules even 11 the rules are written by a single author. For
these reasons, existing business rule management and rule
learning systems seek to eliminate redundancy by a dedicated
rule analysis module.

Existing approaches for redundancy elimination differ in
the form of redundancy that they are able to detect and 1n the
form of rules that they are able to process. Most of these
approaches consider simple forms of rules that make deci-
s10ns for business problems involving a finite number of cases
only. Those cases are characterized by a finite number of
attributes over finite domains. As the number of those cases 1s
finite, a redundancy analyzer can explore the set of treated
cases of each rule. It can then compare these sets of treated
cases for those rules that are making the same decision. Some
redundancy analyzers limit this comparison to pairs of rules
and determine whether a rule 1s made redundant by some
other rule. For this purpose, such an analyzer checks whether
all the treated cases of the examined rule are also treated by
some other rule that makes the same decision. If yes, the
analyzer notifies a local redundancy by stating that the first
rule 1s made redundant by the other rule. Usually, such alocal
redundancy analyzer distinguishes between strict and simple
redundancies. There 1s a simple redundancy between two
rules 11 the two rules are equivalent, that 1s, make the same
decision and treat exactly the same set of cases. A local
analyzer may remove any of two equivalent rules to eliminate
a simple redundancy. There 1s a strict redundancy between
two rules 11 the second rule makes the first rule redundant, but
the firstrule does not make the second rule redundant. In order
to eliminate a strict redundancy, the local redundancy ana-
lyzer will eliminate the redundant rule and not the other rule.
This behavior 1s justified by the fact that the local redundancy
analyzer has no knowledge of global redundancies.

A global redundancy analyzer seeks rules that are globally
redundant, that 1s that can be removed from a rule set without
changing the decision-making behavior of this rule set. A
global redundancy analyzer detects aredundant rule 1f each of
the treated cases of this rule 1s treated by some other rule in the
rule set that makes the same decision as the examined rule.
Locally redundant rules are also globally redundant, but the
converse does not necessarily hold. For example, 11 the rules
are mostly general conditions, then there are no locally redun-
dant rules, but 1t may still be possible to remove some rules




US 8,909,584 B2

3

without changing the behavior of the rule set. It may even
happen that all rules 1n a rule set are globally redundant and
that removing some of these rules fixes all redundancies.
Existing approaches to redundancy elimination focus on the
problem of finding redundant rules, but do not address the full
problem. The full redundancy elimination problem consists
in finding a redundancy-iree subset of the business rules that
represents the same decision policy as the original rule
project. The problem may take into account preferences
between rules speciiying which rules should be preserved and
which rules should be eliminated if there are different ways
for eliminating redundancies. Moreover the existing
approaches for global redundancy elimination are limited to
attributes over finite domains. For example, one approach
checks whether a rule set makes a rule redundant by comput-
ing the number of cases that are treated by both the rule setand
this rule. If this number 1s equal to the number of cases treated
by the rule, then the rule 1s redundant. IT it 1s strictly smaller
than the number of cases treated by the rule, then the rule 1s
not redundant. However, this reasoning 1s no longer valid it
the rules are treating an infinite number of cases due to
attributes with infinite domains (such as integer domains)
such as:

rl: 1f the value of the customer 1s at least 1000 then set the

category of the customer to “Gold™;

r2: if the age of the customer 1s at least 40 then set the

category of the customer to “Gold™;

Rule r1 1s not made redundant by rule r2. Rule r1 treats all
cases ol customers having a value of at least 1000 and an
arbitrary age. If no artificial bound 1s imposed on the value
attribute, then there are an infinite number of such cases. Now
rules rl and r2 treat both all cases of customers having a value
of at least 1000 and an age of at least 40. Again there are an
infinite number of such cases. According to one approach,
rule r2 thus makes rule rl redundant, which is wrong.

Other approaches extend local redundancy analysis to
business rules of arbitrary form, such as the redundancy ana-
lyzer of IBM WebSphere Ilog JRules BRMS 7.0 and 7.1.
These approaches find redundancies among rules that make
decisions for cases that are characterized by an unbounded
number ol objects and thus an unbounded number of
attributes. Moreover, the attributes may have infinite
domains. Those approaches use an implicit representation of
the treated cases of the rules 1n form of constraint models and
use logical problem solving methods to do a pairwise com-
parison ol the treated cases of two rules. Although those
approaches handle arbitrary rules, they only detect locally
redundant rules and are insufficient to determine a redun-
dancy-iree policy-preserving subset of a rule set. IBM and
WebSphere are trademarks 1in the US and/or other countries of
International Business Machines Corporation.

Still other approaches use a different notion of redundancy.
For example, one approach determines overlaps among the
sets of treated cases of two rules and eliminates those overlaps
by making one rule more specific, thus favoring overlap-
freeness over generality.

Another approach detects and repairs conflicts between
rules for network flow management enforcement. These rules
are applied to given data packets and perform several actions
on those packets, such as packet filtering by a firewall or
load-balancing. These rules check whether given attributes of
the data packets (‘fields’) match given bit strings. The bit
string may consist of set bits, clear bits, and don’t care bats.
The rules are thus able to test whether a string of fixed length,
such as an IP address, matches a given pattern, but are not able
to test attributes with infinite domains. The approach com-
pares each pair of individual rules and determines whether

10

15

20

25

30

35

40

45

50

55

60

65

4

they treat disjoint, overlapping, or equal sets of data packets
or whether one of these set 15 a subset of the other set. If the
sets are overlapping, the approach repairs contlicts according
to a priority policy. The approach can merge the two rules,
modily the condition of one of the rules or include the actions
of the higher priority rule into the action list of the lower
priority rule. I the lower priority rule becomes redundant in
this process, the approach deletes 1it.

The approach 1s thus able to eliminate a rule that 1s made
redundant by a single other rule supposing that the condition
of the rules are restricted to match operations on strings of
fixed length. The approach cannot find redundancies between
rules that involve attributes with infinite domains. For
example, the approach 1s unable to treat rules of the following
kind and to detect that rule r1 makes rule r2 redundant:

rl: 11 the value of the customer 1s at least 1000 then set the

category of the customer to “Gold”;

r2: 11 the value of the customer 1s at least 2000 then set the

category of the customer to “Gold”;

More general rules may also differ 1n their scope, that 1s,
match objects of different type, which poses particular diifi-
culties for redundancy analysis. Those difficulties are not
addressed by the patent application. Finally, another
approach 1s unable to detect rules that are made redundant by
a whole set of rules.

This approach facilitates the understanding of the filtering
rules, optimizes the rule set, increases execution speed, and
detects whether two filtering processes are equivalent. As
cach packet has a finite number of numeric attributes, the
whole set of packets can be characterized 1n terms of a Car-
tesian space. Each filtering rule treats the packets within a
rectangular region 1n this space. This supposes that the rule
condition consists of interval membership tests and this 1s the
same restriction that other approaches impose on the rules.

The approach splits Cartesian space into a set of minimum
regions and characterizes each mimimum region by a start and
end point. This approach computes the relationship between
the rules and the minimum regions treated by the rules. For
this purpose, 1t processes the rules 1n the given preference
order and labels the regions with the rules that cover them. If
a rule covers only regions that are already covered by higher
priority rules, then the approach says that the rule 1s concealed
and eliminates 1t. Whereas the approach 1s thus able to com-
pute a redundancy-iree subset of the rules while preserving
the decision-making behavior of the rule set, 1t has draw-
backs. Firstly, 1t supposes that all rule conditions are interval
membership tests. More complex tests mvolving arithmetic
expressions and arbitrary comparison involving attributes
with infinite domains are not handled by this. Secondly, the
approach supposes that all rules match the same kind of
object, namely a data packet, and cannot detect the relation-
ship between rules that match different objects. For example,
a rule that matches a customer object may make a rule match-
ing a customer object and a shopping cart redundant. The
approach does not provide any mechanism for handling rules
matching different objects. Finally, the approach 1s prohibi-
tive even for filtering rules as soon as these rules ivolve
hundreds or thousands of attributes. For example, 11 there are
already forty attributes and each attribute occurs in a test of
some rule, then this will already generate a trillion of mini-
mum regions. This explosion in space 1s the price of expand-
ing the whole space that 1s covered by the rules.

The above examples show that existing approaches for
redundancy analysis either impose limitations on the form of
redundancies that they are capable to find or on the form of
rules that they are capable to analyze. Moreover, there 1s no
approach that treats the redundancy elimination problem as a




US 8,909,584 B2

S

whole and that 1s capable of computing a preferred redun-
dancy-iree and policy-preserving subset of business rules of

arbitrary form.

BRIEF SUMMARY

In one embodiment of the present invention, a method for
mimmizing a rule set comprises building a rule set application
graph that describes a set of rules including actions and cases,
whereby each rule defines an action for one or more cases.
The method further comprises building a rule violation graph
for each rule describing the actions and cases not defined for
that rule. In addition, the method comprises determining, by
a processor, a subset of rules having a reduced number of rules
with a same set of actions and cases as the rule set application
graph by exploring candidate subsets of the set of rules that
are suilicient for reproducing a behavior of an original rule
set.

Other forms of the embodiment of the method described
above are 1n a system and 1n a computer program product.

The foregoing has outlined rather generally the features
and technical advantages of one or more embodiments of the
present invention in order that the detailed description of the
present invention that follows may be better understood.
Additional features and advantages of the present invention
will be described hereinaiter which may form the subject of
the claims of the present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description 1s consid-
ered 1n conjunction with the following drawings, 1n which:

FIGS. 1A-1C 1llustrate an upper graph, a middle graph and
a lower graph representing an example set of decisions and
two corresponding rule sets in the attribute space of an
example policy 1n accordance with an embodiment of the
present invention;

FIGS. 2A-2C illustrate an upper graph, a middle graph and
a lower graph representing a rule set, a cleaned rule set and a
damaged rule set from the example of FIG. 1 1n accordance
with an embodiment of the present invention;

FIGS. 3A-3C 1llustrate left and right upper graphs repre-
senting rule set 3, left and right middle graphs representing a
first way of cleaning rule set 3 and the lower graphs repre-
senting a second way of cleaning rule project 3 in accordance
with an embodiment of the present invention;

FI1G. 4 1llustrates components of a preference-based redun-
dancy eliminator and data flow steps between these compo-
nents 1n accordance with an embodiment of the present inven-
tion;

FI1G. 5 illustrates a rule set application graph for a rule set
2 1n accordance with an embodiment of the present invention;

FIG. 6 illustrates components of a consistent checker and
the data flow steps between these components 1n accordance
with an embodiment of the present invention;

FIG. 7 1llustrates example rule violation graphs which are
an 1nput to the damaged-rule set checker of FIG. 6 1n accor-
dance with an embodiment of the present invention;

FIG. 8 1llustrates the rule instance violation graphs of all
rules of rule project 2 1n accordance with an embodiment of
the present invention;

FI1G. 9 illustrates a damaged rule set graph for a candidate
subset that includes all five rules pl, g2, g1', ¢3', sl of
example rule project 2 1n accordance with an embodiment of
the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 10 illustrates a labelled damaged rule set graph for a
candidate set of four rules pl, g2, g1', g3' (s1 removed) of

example rule project 2 1n accordance with an embodiment of
the present invention;

FIG. 11 illustrates a labelled damaged rule set graph for a
candidate set of four rules pl, g2, g1', s1 (g3' removed) of
example rule project 2 in accordance with an embodiment of
the present invention;

FIG. 12 1llustrates a labelled damaged rule set for a candi-
date rule set of four rules pl, gl', g3', s1 (g2 removed) 1n
accordance with an embodiment of the present invention; and

FIG. 13 depicts an embodiment of a hardware configura-
tion of a computer system which 1s representative of a hard-
ware environment for practicing the present invention.

DETAILED DESCRIPTION

The principles of the present invention disclose a method,
system and computer program product for computing redun-
dancy-iree subsets of business rules of arbitrary form that
represents the same decision policy as the original rules. The
method, system and computer program product of an embodi-
ment of the present mvention guarantee that the computed
subset of rules does not contain any redundant rule or non-
applicable rule, but has exactly the same decision making
behavior as the original rule set without making any assump-
tion about the number and order of rule applications. In par-
ticular, the method does not alter the behavior of the rule set
even 1 a single rule 1s applied. The method, system and
computer program product do not limit the redundancy elimi-
nation to locally redundant rules that are made redundant by
a single rule, but it 1s capable of 1dentiiying globally redun-
dant rules that are made redundant by a combination of other
rules. Furthermore, the method achieves the redundancy
climination for business rules of general form, which may
differ in their scope, that 1s, in the number and types of objects
that they are matching. In particular, the method 1s not limited
to rules that are formulated over a finite number of attributes
with finite domains.

As there may be different redundancy-iree policy-preserv-
ing subsets of a rule set, the method takes into account pret-
erences of importance between rules to guide the redundancy
climination process in choosing the rules to be kept and the
rules to be eliminated. As such, the method, system and
computer program product are adapted to keep more general
rules and eliminate more specific rules. This particular adap-
tion guarantees that the rules in the resulting rule set are as
general as possible and cannot be replaced by more general
rules contained in the original rule set. The method thus
permits an informed way of reducing the size of a rule set
without any impact on rule application. The benefits are a
reduced effort in storing, managing, and changing rules.
Indeed, logical independence and redundancy elimination are
necessary for an effective agility of a rule set, that 1s, for
allowing an easy adaption of the rules to changing business
needs.

The method, system and computer program product
achieve the rule set minimization by leveraging consistency-
based explanation techniques such that different candidate
subsets of the rule set are explored to see 11 they are suilicient
for reproducing the decision-making behavior of the original
rule set. If a candidate subset does not reproduce the behavior
ol the original rule set, then either some of the treated cases of
the original rule set are missing in the candidate subset and/or
some of the decisions that the original rule set may make for
such a case 1s not made by the candidate subset. The second
situation only arises 11 the original rule set contains rules that



US 8,909,584 B2

7

are making multiple decisions for some of the cases. A can-
didate subset 1s minimal and thus redundancy-iree 11 1t 1s not
possible to remove any rule from this subset without intro-
ducing any missing case or any missing decision.

In one embodiment, said determining step comprises
building rule violation graph candidate subsets from the rule
violation graphs, each rule violation graph candidate subset
comprising actions and cases not defined and further deter-
mimng for each rule violation graph candidate subset 11 those
actions and cases not defined are logically distinct from the
actions and cases defined by the rule set application graph.

Furthermore, the method further comprises determining,
more than one valid reduced subset of rules and using pret-
erences between rules to choose a preferred valid reduced
subset of rules. The reduced subset of rules 1s valid 1n the
sense that it preserves the actions and cases of the original rule
set. In one embodiment, a topological rule sorter determines
a total ordering of the rules by performing a topological sort
of a graph that 1s formed by a rule set (as nodes) and given
preferences on the rules of the rule set (as edges).

Advantageously said further determination comprises:
building respective damaged-rule set graphs by joining the
rule set application graph and each respective rule set viola-
tion graph candidate subset; and testing each damaged rule
set graph for logical consistency.

More advantageously a rule set can define more than one
object from an object type and wherein said building each
damaged-rule set graph comprises building a damaged-rule
set graph for each object defined by the rule set. Although the
embodiment discusses building rule instance violation graphs
for each object, the advantage comes from having a damaged-
rule set graph for each object defined by the rule set including
cach object of a type or class of objects. I the embodiment
only created damaged rule set graphs for the object type, then
it would miss a significant number of damaged rule set graphs
for solving to see 1f they had no missing cases or missing
actions.

Suitably the method further comprising: identifying rules
whereby the action of the rule 1s independent of the case of the
rule; and 1gnoring the 1dentified actions in the rule application
graph and rule violation graph. More suitably, the rule set 1s
split 1nto parts, namely one for each action, and each part
contains only the rules having the corresponding action; the
method 1s then applied to each part.

Business rules are a convenient way to represent decision
policies as used for routine decision-making tasks, such as
loan approval, insurance claim processing, or discounting of
shopping carts. The business rules capture knowledge about
what 1s the best decision for which case. Each rule consists of
a condition describing the cases treated by the rule and an
action that makes a decision when being executed. On one
hand, the business rules permit an effective vehicle for busi-
ness automation as they can be applied to a huge number of
cases via a decision service. On the other hand, they constitute
an effective instrument 1n the hand of business analysts and
decision makers to monitor and modify the decision policy 1f
needed. If used correctly, business rules are an agile repre-
sentation of the decision policy 1n the sense that a small
change of the policy amounts to a small change 1n the rules.
For example, if the decision maker wants to change the deci-
sion for a family of similar cases, then only a small number of
rules should be impacted by such a change. Or said otherwise,
it 1s sullicient to change a small number of rules 1n order to
modily the decision-making behavior for a larger family of
similar cases.

Firstly, the agility principle requires that each rule treats
more than one case. If the cases and the rules were 1n a

10

15

20

25

30

35

40

45

50

55

60

65

8

one-to-one relationship, then the decision maker would have
to change the decision of each individual case and cannot
change the decision-making behavior of a whole family of
similar cases with a few edits of the rules. Furthermore, the
number of possible cases may be huge or even infinite, thus
prohibiting such a case-wise description of the decision
policy. It 1s indeed a major advantage of business rules to
provide a finite representation of a decision policy that con-
cerns an infinite number of cases. It 1s another advantage of
business rules that they split the description of more complex
decision policies mto different parts, namely the different
rules. This split 1s done for parts of the decision policies that
make different decisions or that concern groups ol cases
which are too distinct to be treated by a single rule. However,
it needs to be understood that the same decision policy can be
represented by different business rule sets as there are difier-
ent ways to split the set of all cases 1nto families of similar
cases.

Table 1 shows an example business rule project 1 that
represents the decision policy of a simple customer categori-
zation problem as 1t occurs in customer loyalty programs. The
policy makes decisions about the customer category depend-
ing of the customer age and the cart value, that 1s, the value of
the 1tems that the customer has bought. These two attributes
therefore characterize a case of the customer categorization
problem and the space of all cases corresponds to a two-
dimensional space as 1t 1s depicted 1n FIGS. 1A-1C 1n accor-
dance with an embodiment of the present invention. FIGS.
1A-1C illustrate an upper graph 101, a middle graph 102, and
a lower graph 103 representing an example set of decisions
and two corresponding rule sets, respectively, 1n the attribute
space of an example policy. Graph 101 of FIG. 1A shows the
decision policy by indicating the decision for the cases. This
decision policy can be represented by rules making up a rule
set. For example, rule project 1 in Table 1 comprises a rule set
of non-overlapping rules, that i1s, each case 1s treated by
exactly one rule. Graph 102 of FIG. 1B shows the cases
treated by each rule of the rule set in the form of rectangular
areas. The area covered by rule s1 corresponds to the part of
the decision policy for which the category Silver i1s chosen.
The area covered by rule pl corresponds to the part of the
decision policy for which the category Platinum 1s chosen.

The remaining rules g1, g2, and g3 divide the area for which
the category Gold 1s chosen 1nto different parts.

TABL.

L1

1

Rule Project 1

sl  1f the age of the customer 1s less than 20 and the value of the
customer 1s less than 20 then set the category of the customer
to “Silver”;

if the age of the customer is at least 20 and the value of the
customer 1s less than 20 then set the category of the customer
to “Gold™;

if the value of the customer is at least 20 and the value of the
customer 1s at most 40 then set the category of the customer

to “Gold”;

if the age of the customer is less than 20 and the value of the
customer 1s more than 40 then set the category of the customer
to “Gold”;

if the age of the customer is at least 20 and the value of the
customer 1s more than 40 then set the category of the customer

to “Platinum”;

When reviewing rule project 1, a business analyst detects
that rules gl and g3 are not 1n a most general form. More
general rules have the advantage that they cover larger areas
in the case space and make it easier to change the decision for



US 8,909,584 B2

9

larger groups of cases supposing that those cases are similar
enough. The analyst therefore decides to replace rule gl:
ol: 11 the age of the customer 1s at least 20 and

the value of the customer 1s less than 20

then set the category of the customer to “Gold”;

by the more general rule gl

g1": 1f the age of the customer 1s at least 20 and

the value of the customer 1s at most 40

then set the category of the customer to “Gold™;
Similarly, the analyst decides to replace rule g3

o3: 11 the age of the customer 1s less than 20 and

the value of the customer 1s more than 40

then set the category of the customer to “Gold

by the more general rule g3*:

o3": 11 the age of the customer 1s less than 20 and

the value of the customer 1s at least 20

then set the category of the customer to “Gold”;

This leads to a new rule project, namely business rule
project 2, which 1s described in Table 2. Graph 103 of F1G. 1C
shows that business rule project 2 represents the same deci-
s10n policy as business rule project 1. The difference consists
in the way how the group of cases that are subject of category
“Gold” 1s splitamong therules g1, g2, ¢3 and among the rules

ol', g2, g3’

TABLE 2

Rule Project 2

sl if the age of the customer is less than 20 and the value of

the customer is less than 20 then set the category of the customer
to “Silver”;

if the age of the customer is at least 20 and the value of

the customer 1s at most 40 then set the category of the customer
to “Gold”;

if the value of the customer is at least 20 and the value of

the customer is at most 40 then set the category of the customer
to “Gold”;

if the age of the customer is less than 20 and the value of

the customer is at least 20 then set the category of the customer
to “Gold”;

if the age of the customer is at least 20 and the value of

the customer 1s [ Imore than 40 then set the category of the customer
to “Platinum”;

As the rules of rule project 2 have more general conditions
than the rules of rule project 1 and thus treat more cases, 1t 1s
possible that this rule project has redundant rules even 11 the
original rule project was redundancy-iree. Indeed, rule g2 1s
redundant in rule project 2. The cases of rule g2 are either
treated by rule g1' or by rule g3' and this in the same way as by
rule g2, 1.e., rules gl' and g3' are making the same decision as
o2 for each of the cases treated by g2. As a consequence, 1t 1s
possible to remove rule g2 from rule project 2 without chang-
ing the behavior which 1s illustrated in FIGS. 2A-2C 1n accor-
dance with an embodiment of the present invention. FIGS.
2A-2C 1llustrate an upper graph 201, a middle graph 202 and
a lower graph 203 representing a treated rule set, a cleaned
rule set and a damaged rule set, respectively, from the

example of FIGS. 1A-1C. FIG. 2 A shows the treated modified
cases of rule project 2 1n graph 201. Graph 202 of FIG. 2B
shows the treated cases of the cleaned rule set that 1s obtained
alter removing rule g2. The removal of g2 does not introduce
any missing case. Graph 203 of FIG. 2C shows the effect of
removing a non-redundant rule. For example, the removal of
rule g1 introduces missing cases characterized by an age of at
least 20 and a value of less than 20. Whereas the cleaned rule
set represents the decision policy of the first example, the
damaged rule set obtained by removing the non-redundant
rule r2 does not represent this policy as 1t has missing cases.

10

15

20

25

30

35

40

45

50

55

60

65

10

In this first example, there 1s a single redundant rule and it
1s suilicient to remove this rule from the rule project to elimi-
nate this redundancy. In general, there may be multiple redun-
dant rules and different ways of eliminating redundancies,
meaning that a system for redundancy elimination has to
make some choice.

The following rule project 3 provides an example for
redundant rules that can be eliminated 1n different ways. It has
eight rules s1, p1, and gl to g6 which are listed 1n Table 3.
They represent a decision policy that determines a customer
category based on three attributes, namely the customer age,
the value of the 1tems bought by the customer, and the cus-
tomer loyalty, which may be low or high. Hence, the cases of
this rule project are characterized 1n terms of a three-dimen-
sional space as 1llustrated in FIGS. 3A-3C 1n accordance with
an embodiment of the present invention. FIGS. 3A-3C 1llus-
trate left and right upper graphs 301, left and right middle
graphs 302 and left and right lower graphs 303, respectively.
Upper graphs 301 of FIG. 3A represent treated rule projects 1
and 2, middle graphs 302 of FIG. 3B represent a first way of
cleaning rule project 3 and lower graphs 303 of FIG. 3C
represent a second way of cleaning rule project 3. The left
graphs shows the treated cases for low loyalty customers and
the right side graphs shows the treated cases for high loyalty
customers. Upper graphs 301 of FIG. 3A show the treated
cases of the rules 1n form of two two-dimensional layers of
this three-dimensional space.

TABL

L1

3

Rule Project 3

sl if the age of the customer 1s less than 20 and the value of the
customer 1s less than 20 and the loyalty of the customer is low
then set the category of the customer to “Silver”;

if the age of the customer is at least 20 and the loyalty of

the customer is low then set the category of the customer

to “Gold”;

if the value of the customer 1s at least 20 and the loyalty of
the customer 1s low then set the category of the customer

to “Gold”;

if the age of the customer is at most 20 and the value of

the customer is at least 20 then set the category of the customer
to “Gold”;

if the age of the customer is at most 20 and the loyalty of

the customer is high then set the category of the customer

to “Gold”;

if the value of the customer 1s at most 20 and the loyalty of

the customer 1s high then set the category of the customer
to “Gold”;

if the age of the customer is at least 20 and the value of

the customer is at most 20 then set the category of the customer
to “Gold™;

if the age of the customer i1s more than 20 and the value of

the customer 1s more than 20 and the loyalty of the customer

1s high then set the category of the customer to “Platinum”™;

There are six rules that choose a customer category of
Gold. A close inspection of their treated cases shows that each
of these rules 1s made redundant by some of the other rules:

Rule g1 1s made redundant by rules g6 and

Rule g2 1s made redundant by rules gl and

Rule g3 1s made redundant by rules g2 and

Rule g4 1s made redundant by rules g3 and

Rule g5 1s made redundant by rules g4 and g6é.

Rule g6 1s made redundant by rules g5 and g1.

Although all rules are made redundant by some other rules,
removing all rules will not only eliminate all these redundan-
cies, 1t will also lead to arule set that no longer assign the Gold
category to any customer. Indeed, the resulting rule set does
not represent the part of the decision policy that concerns
Gold decisions. This example shows that redundancy elimi-




US 8,909,584 B2

11

nation cannot be achieved by two separate tasks, where the
first task consists in detecting all redundant rules and the
second task consists 1n eliminating them. Indeed, redundancy
climination consists of a single task, namely that of comput-
ing a redundancy-iree subset of the given rule set that repre-
sents the same decision policy as the rule set. In general, there
may be several of those redundancy-iree subsets of a rule set.
For example, rule project 3 has two redundancy-iree subsets
that represent the given decision policy. The first redundancy-
freerule setconsists of therules s1, gl, g3, g5, p1. Graphs 302
of FIG. 3B show the treated cases of this rule set and 1t
comncides with those of rule project 3. The second redun-
dancy-iree rule set consists of the rules sl1, g2, g4, g6, pl.
Graphs 303 of FIG. 3C show the treated cases of this rule set,
which again coincides with those of rule project 3.

Whereas the tasks of finding all redundant rules 1n a rule set
and of eliminating these redundant rules have unique results,
the task of making a rule set redundancy-iree may have mul-
tiple results. A redundancy eliminator therefore has to make a
certain choice when computing a redundancy-iree subset of
the same behavior. A redundancy eliminator may either com-
pute an arbitrary redundancy-iree subset or a redundancy-
free subset that 1s preferred by the business analyst who 1s
deciding how to represent the decision policy 1n terms of
rules.

A redundancy eliminator requires additional input to com-
pute a preferred redundancy-iree subset of rules that repre-
sents the given decision policy. An interactive redundancy
analyzer presents a list of redundant rules to the business
analyst 1n each step and asks this user to choose one rule to
climinate. It then eliminates this rule, thus producing a
reduced rule set that represents the same decision policy as
the non-reduced rule set. The system then recomputes the list
of redundant rules and again asks the business analyst to
choose one rule for elimination. The system 1terates this pro-
cess until the remaining rules no longer contain any redundant
rule. As the decision policy 1s preserved in each step, the final
subset 1s redundancy-iree and represents the decision policy
of the original rule set.

Whereas this interactive approach gives the business ana-
lyst a complete control over the redundancy elimination pro-
cess, 1t requires frequent user interactions and may submuit
long lists of redundant rules to the user each time. The list may
shrink slowly, meaning that the user has to re-examine the
same rules again and again. It appears that this repeated
examination of long lists of rules 1s not needed, since the
redundancy eliminator simply requires an ordering of all the
rules and this 1s independent of the fact whether the rules are
redundant or not. Instead of asking a user to repeatedly exam-
ine long lists of redundant rules, a preference-based redun-
dancy analyzer simply asks for a total ordering of the rules as
additional mput belfore starting the redundancy elimination
process. IT a rule precedes another rule 1n the ordering, it 1s
preferred to this other rule. The non-pretferred rule should be
climinated first and the preferred rule should be eliminated
last.

Whereas the task of ordering all rules 1s easier than that of
repeatedly examining lists of redundant rules, 1t still requires
significant effort from the business analyst. Often, the busi-
ness analyst may be indifferent with respect to the ordering of

some of the rules and express preferences between only some
other rules. The analyst may thus specily a partial preference
(pre)order between rules, which can be represented 1n terms
of graphs or logical expressions.

10

15

20

25

30

35

40

45

50

55

60

65

12

For example, the analyst may express the following impor-
tance preferences between the rules:
le g2 1s preferred to gl.
le g1 1s preferred to g5.
le g5 1s preferred to g6.
le g1 1s preferred to g3.
le g3 1s preferred to g4.
le g4 1s preferred to g6.

A preference-based redundancy eliminator will first
choose a way to complete such a partial preference ordering
of the rules 1n the rule set by a total ordering. One possible
completion 1s the total ordering s1, pl, g2, g1, g5, g3, g4, 6.
This ordering satisfies each of the preferences listed above as
cach preferred rule of a preference precedes the non-preferred
rule of the preference 1n the ordering. It gives rise to a single
preferred redundancy-free policy-preserving subset of the
original rule set. Some other ordering may lead to a different
preferred subset.

As explained 1n terms of these two examples, a preference-
based redundancy eliminator receives a business rule project
and a description of a partial preference ordering between the
rules of this project as iput. It computes a preferred redun-
dancy-iree subset of these rules that preserves the decision
policy of the original rule set.

FIG. 4 shows the components 402-412 of a redundancy
climinator 400 according to an embodiment of the present
invention; data stages 450-462 are shown between these com-
ponents.

Redundancy eliminator 400 comprises: a topological rule
sorter 402; arule set application modeler 404; a rule violation

modeler 406; a contlict-set minimizer 408; a consistency
checker 410 and a rule extractor 412.

Topological rule sorter 402 determines a total ordering of
the rules 454 by performing a topological sort of a graph that
1s formed by a rule set 450 (as nodes) and given preferences
on the rules 452 of the rule set (as edges).

Rule set application modeler 404 models the decision
policy represented by the whole rule set 450 1n terms of a
constraint graph called rule set application graph 458; liter-
ally modelling the application of the rules. Rule set applica-
tion graph 458 describes 1n an 1mplicit logical form that some
rule 1s applicable and that 1ts decision 1s made by the policy.
The nodes of this graph correspond to expressions, tests,
conditions, and actions occurring 1n the rules. An action node
describes that the decision made by the rule 1s made by the
rule set. This 1s modeled by an equality between a global rule
set action and the action of the rule. A logical problem solver
(part of consistency checker 410) can find solutions of this
graph which correspond to combinations of the treated cases
of the rules and the decisions made for these cases.

Rule violation modeler 406 models the violations of the
rules (the actions and cases missing from the rule set) rather
than the application of rules (the treated actions and case of
the rule set); 1t constructs an ordered list of rule violation
graphs 456, one for each rule. Each rule violation graph 1s a
type of constraint graph and describes that either the rule 1s
not applicable or that 1ts action 1s not made by the policy. A
combination of a case and an action satisfies this graph 1f
cither the case 1s not treated by the rule or the action 1s
different to the action made by the rule. The rule violation
modeler 406 constructs graphs for each rule in the given
ordering and returns an ordering of rule violation graphs that
corresponds to the ordering of the rules. The rule violation
graphs are modeled by a difference constraint between the
global rule set action and the action of the rule. A logical
problem solving engine finds solutions of this graph which

=222 ¢




US 8,909,584 B2

13

correspond to a combination of a missing case and an arbi-
trary action or a combination of a treated case and a missing
action.

Conflict-set minimizer 408 determines a preferred and
mimmal subset of the rule violation graphs that are suificient
to be 1n logical contradiction with the rule set application
graph 458. Conflict-set minimizer 408 uses the rule set appli-
cation graph 458 as background and the individual rule vio-
lation graphs 456 as foreground. The set of solutions of graph
4358 and the sets of solutions of graphs 456 do not intersect,
meaning that the combination of the rule set application graph
4358 and all the rule violations graphs 456 has no solution and
1s logically inconsistent. A subset of rule violation graphs that
in combination with the rule set application graphs has no
solution will be mconsistent with the original rule set. The
conflict-set minimizer 408 then determines subsets of the
rules such that the rule violation graphs of those rules are still
inconsistent with respect to the rule set application graph 458,
meaning that there 1s no treated case of the rule set that 1s a
missing case for the rules 1n the subset and there 1s no decision
made by the rule set for some case that cannot be made by the
rules 1n the selected subset for the same case. The contlict-set
mimmizer 408 1dentifies a subset of rules that comprises a
mimmal set of rules still inconsistent with the original rule
set; this 1s referred to as the minimal subset of rules. Hence,
the minimal subset of rules 1s sufficient to reproduce the
decision-making behavior of the original rule set and the
mimmal condition ensures that the minimal subset 1s redun-
dancy-iree. It 1s possible to accelerate the redundancy elimi-
nation for rule sets that have many redundant rules by remov-
ing whole blocks of redundant rules 1n a single step. It 1s
turther possible to use importance preferences between rules
for guiding the choice of rules that are removed during the
redundancy elimination process. The accelerated redundancy
climination and rule choice guidance are not dissimilar to
methods described 1n a document QuickXplain. “QuickX-
plain: Preferred Explanations and Relaxations for Over-Con-
strained Problems™ by U. Junker published in the Proceedings
of the Association for the Advancement of Artifical Intell:-
gence (AAAI) 2004.

The redundancy elimination method can be simplified and
its computational effort can be reduced 11 the decision made
by a rule 1s independent of the case that 1s treated by the rule.
In this situation, each subset of rules that 1s making the same
decision can be processed separately and the rule decision can
be 1gnored 1n the rule application and rule violation graphs.
As the simplified method 1gnores the decision, 1t is capable to
climinate redundancy from sets of missing rules, which do
not have an action part.

Consistency checker 410 provides the processing engine
for determining the preferred and minimal subsets of the rule
violation graphs and 1s described 1n more detail with refer-
ence to FIG. 6 below.

Rule extractor 412 recerves a minimal set of rule violation
graphs 460 and extracts the rules associated to the rule vio-
lation graphs 1n the selected subset. This extracted subset of
rules 1s the minimal redundancy-iree rule set 462.

Redundancy eliminator 400 returns the minimal redun-
dancy-iree rule set 462 as the result.

Hence, redundancy eliminator 400 uses conflict-set mini-
mizer 408 and consistency checker 410 to reduce rule sets and
determine a minimal subset of foreground constraints that are
in logical contradiction with a given background constraint.
Redundancy eliminator 400 provides the model of the deci-
sion policy, that 1s, the rule set application graph as back-
ground constraint and the rule violation graphs as foreground
constraints. These foreground constraints are satisfied by

10

15

20

25

30

35

40

45

50

55

60

65

14

missing cases of the original rule set (that 1s, cases that are not
treated by any rule of the original rule set) or by missing
decisions for treated cases of the original rule set (that 1is,
decisions that are not made by the original rule set for these
cases). The background constraint 1s satisfied by the treated
cases of the oniginal rule set and the decisions made by this
rule set for the treated cases. There 1s no combination of a case
and a decision that satisfies both the background constraint
and the foreground constraints, meaning that the conjunction
of the background constraint and all the foreground con-
straints 1s 1nconsistent. Contlict-set mimmizer 408 then
explores different subsets of the foreground constraints, that
are subsets of the set of all rule violation graphs generated for
the rules 1n the original rule set. Each subset of rule violation
graphs corresponds to a subset of the rules. If a subset of
foreground constraints has a solution that satisfies also the
background constraint, then there exists a case treated by the
original rule set that 1s a missing case for the subset of rules or
that has a missing decision for this subset of rules. Graph 203
of FI1G. 2C illustrates such a missing case for a subset of rules
for rule project 2. This subset 1s obtained by removing rule gl
and consists of the rules s1, g2, g3, pl1. As the removal of gl
creates a missing case, this subset does not represent the
decision policy of the original rule set. This 1s modeled inside
the conflict-set minimizer 406 by the removal of the rule
violation graph of rule gl. The removal of a rule violation
graph can thus increase the missing cases or missing deci-
s1ons of the candidate subset.

In one embodiment, the contlict-set detection problems are
recursively split into smaller parts and accelerate the detec-
tion if the resulting contlict set 1s small compared to the
original set of foreground constraints. If a rule set contains
many redundant rules, whole blocks of redundant rules are
removed by doing a single consistency check. Such a mecha-
nism 1s already known in conflict-set minimization, but it 1s
not known to optimize rule set minimization. For example,
QuickXplain 1s able to a compute minimal and preferred
contlict-set but does not discuss how 1t might be applied in the
reduction of rule sets.

Rule set application modeler 404 builds a constraint graph
that represents the treated cases and actions of a rule set 1n an
implicit form as a data tree structure having a root node and
child nodes connected by edges. The cases and actions are
formed of logical expressions and the rule set application
modeler 404 recursively traverses the logical expressions of
cach rule 1n the rule set, a rule comprising and maps each
visited logical expression to a node 1n the graph. It guarantees
a unique representation, that 1s, two occurrences of the same
expression are mapped to the same graph node. Rule set
application modeler 404 maps primitive expressions, such as
numbers, string literals, and objects matched by the rules to
leat nodes, and 1t maps composed expressions, such as arith-
metic operations, comparisons, accesses to attributes of
objects to 1nner nodes which are labelled by an operator and
which have outgoing edges to the nodes that represent their
expressions. Leal nodes that represent an object matched by
the rule are canonically renamed by type and number for each
rule to reduce the size of the graph. For example, 11 the rule
matches an object called *“the customer,” then the modeler
renames 1t mto “Customerl.” Rule set application modeler
404 constructs the rule applicability graph of a rule by intro-
ducing a graph node that represents the conjunction of tests of
this rule and that has outgoing edges to the nodes representing
these tests. Finally, rule set application modeler 404 intro-
duces the root node of the rule set applicability graph which
represents the disjunction of the different rule applicability
graphs and which has outgoing edges to the nodes represent-




US 8,909,584 B2

15

ing these rule applicability graphs. A labelling of the graph
nodes, thatrespects the operations of the nodes and that labels
the root node by “true,” represents a treated case.

In this way, rule set application modeler 404 1s similar to a
treated-case modeler 1n  European patent application
EP20100306464.8 by the present inventor, titled “Method
and System for Detecting Missing Rules with Most-General
Conditions.” However, the treated-case modeler only takes
the condition of the rule into account, whereas; rule applica-
tion modeler 404 also models the action of a rule by an
adequate constraint. Redundancy elimination as considered
in the embodiment removes rules that are redundant for all
sequences of rule applications. In particular, a rule 1s only
considered redundant 11 it does not change the behavior of a
rule set even 1t a single rule 1s applied. In more complex
settings, several rules may be applied 1n sequence to a case. It
1s possible that a rule 1s made redundant by longer sequences
of rule applications, but not by shorter sequences. When
climinating redundant rules, 1t 1s thus suificient to look at the
shortest sequences and the shortest sequences have the length
one, that 1s, 1t just consists of a single rule. In other words, this
means that sequences of rules need not be examined when
climinating redundancies.

Redundancy analysis needs to consider only a single rule
application and determines the action that 1s made by apply-
ing this rule. This action may be the same for all the cases
treated by the rule or depend on certain objects of the case or
on the values of certain of their attributes. The rule action
takes these objects and attributes values 1nto account.

FIG. 5 shows the rule set application graph for the rule set
of rule project 2 in accordance with an embodiment of the
present invention; the rule set application graph describes that
a rule 1s applied by the rule set and has an action equal to the
rule set action. Referring to FIG. 4, 1n conjunction with FIG.
4, rule set application modeler 404 models the action of arule
by a specific action node (for example, the node labelled ‘set
the category’ in the Figure) that has outgoing edges to the
nodes representing the objects (for example, the nodes
labelled ‘customerl’) and values on which the action depends
(for example, the nodes labelled ‘platinum’; ‘gold” and sil-
ver’ ). Executing a rule action changes the state such that the
decision 1s made 1n the new state. As the rule action will only
modily those parts of the state that concern the decision and
keep the remaining parts of the state unchanged, different rule
actions necessarily differ in the decision they are making. The
rule set application modeler 404 therefore does not model the
decision made by a rule set, but the action that makes this
decision. For example, the rules of rule projects 1, 2, and 3
have actions, such as “set the category of the customer to
Gold.” This action consists of an action scheme, namely, “set
the category of some customer object to some value” which 1s
applied to the object “the customer” and the value “Gold™ (see
‘set the category’ nodes 1n FIGS. 5 and 7 to 12).

An action 1s thus parameterized by expressions that depend
on the case. Two actions are equal 1f they use the same scheme
and same parameters. It 1s also possible that there are two
different ways to express the same action. For example, there
may be two different methods, namely, “set the category of
some customer to Gold” and “classify some customer as Gold
customer” that assign Gold to the category of a customer
object. If this 1s possible, then the redundancy analyser needs
additional knowledge stating that these two different methods
represent equal actions under certain conditions.

As the rule set application modeler 404 supposes that the
rule set makes a single decision, 1t models the action that
makes this decision by a specific leal node titled the ‘rule set
action’ node (see FIGS. § and 7 to 12). The rule set action

10

15

20

25

30

35

40

45

50

55

60

65

16

node will be equal to the action of some rule. The rule set
application modeler 404 models this by equality nodes rep-
resenting the equalities between the rule set action and the
actions of the different rules (see the nodes labelled ‘=’ 1n
FIG. 5 and FIGS. 7 to 12). Each equality node has two
outgoing edges, namely, one leading to the rule set action
node and the other one leading to the rule action node. A rule
application graph of a single rule then consists of a conjunc-
tion node that represents the conjunction of the tests of the
rules and the equality of the rule set action and the action of
the rule (see the nodes labelled ‘and’ 1n FI1G. § and FIGS. 7 to
12). The conjunction node has outgoing edges to the nodes
representing these sub-expressions. Once the rule set appli-
cation modeler has built a rule application graph for each of
the rules 1n the rule set, it forms them 1nto a rule set applica-
tion graph by creating a disjunction node connecting all the
rule application graphs (see the node labelled ‘or” atthe top of
FIGS. 5, 11 and 12).

The rule violation modeler 406 processes the rules 1n the
ordering that has been determined by the topological rule
sorter 402. Rule violation modeler 406 constructs a rule vio-
lation graph for each rule and returns the rule violation graphs
in the same ordering as their rules. The rule violation modeler
406 maps the matched objects of the rule to leat nodes that
represent logical variables. The variables of a rule are canoni-
cally named by type and number. Hence, rule violation mod-
cler 406 will introduce two nodes “?customerl” and “’cus-
tomer2” 11 a rule matches two customer objects. If another
rule matches a single customer object, then the modeler will
introduce a single leat node “?customerl.” The modeler maps
the tests 1n the rule condition and its sub-expressions to
adequate graph nodes 1n the way as 1t has been described for
the rule set application modeler. Similar to the rule set appli-
cation modeler 404, rule violation modeler 406 creates a
graph node representing the equality of the rule set action and
the action of the rule. Similar to the rule set application
modeler 404, rule violation modeler 406 creates a node rep-
resenting the conjunction of the tests of the rule and of the
equality of the rule set action and the action of the rule. This
node has outgoing edges to the nodes representing the tests
and the equality. The modeler further introduces a graph node
that represents the rule body, that 1s, the negation of the
before-mentioned conjunction of tests and equality of the rule
set action and rule action; and this node has an outgoing edge
to the graph node representing the before-mentioned con-
junction. Finally, the rule violation modeler 406 builds the
rule violation graph by creating a closure node that represents
the universal closure of the rule body. This closure node lists
all the variables occurring 1n the rule and describes that the
rule body holds for all combination of objects that can be used
to instantiate the variables. The resulting rule violation graph
thus describes that each instance of the rule 1s non-applicable
or has an action that 1s different to the rule set action.

The conftlict-set minimizer 408 receives a full set of
ordered rule violation graphs. Node by node, the conflict-set
minimizer 408 examines a subset of these rule violation
graphs and checks whether the examined subset has a missing
case or missing decision among the treated cases of the deci-
sion policy and the decisions that are made by it. IT this
happens, then the subset of rules 1s msuificient to reproduce
the decision policy; this subset of rules constitutes a damaged
rule set. The purpose of the consistency checker 1s to see
whether the subset of selected rules reproduces the decision
policy or constitutes a damaged rule set.

FIG. 6 shows a data-flow diagram of consistency checker
408 which 1s employed by the contlict-set minimizer 1n accor-
dance with an embodiment of the present invention. Consis-




US 8,909,584 B2

17

tency checker 408 comprises: object extractor 602; quantifi-
cation presolver 604; conjunction builder 606; and damaged-
rule set graph solver 608. Consistency checker 408 receives a
candidate subset of the rule violation graphs 652 and the rule
set application graph 458.

Object extractor 602, 1n a first step, extracts all objects from
the rule set application graph 458 and forms object domains
654; 1n the present example ‘customerl’ 1s the only domain.

Quantification pre-solver 604, 1n a second step, instantiates
universally quantified rule instance violation graphs 656 from
a candidate set ol rule violation graphs 652 and object domain
654. Quantification pre-solver 604 determines all combina-
tions of objects from the object domain that may be used to
instantiate the variables of the rule violation graph 610. Quan-
tification pre-solver 604 then creates a rule instance violation
graph 656 for each combination of an object 1n a class of
objects and a rule violation graph by replacing each occur-
rence of each object variable by the object that 1s used to
instantiate the object variable. For example, 11 the variables of
a rule consists of “?customerl” and there are three customer
objects “Customerl,” “Customer2,” and “Customer3” in the
object domain, then quantification pre-solver 604 creates
three imnstances of the rule violation graph. It produces the first
one by replacing all occurrences of variable “?customer1”™ 1n
the rule body by “Customerl,” the second one by replacing all
occurrences of “?customerl” in the rule body by “Cus-
tomer2,” and the third one by replacing all occurrences of
“?customerl” 1n the rule body by “Customer3.”

Conjunction builder 606 builds a damaged-rule set graph
658 by creating a graph node that represents the conjunction
of the rule set application graph 4358 and all rule instance
violation graphs 656 of all rules 1n the candidate subset.

FIG. 7 shows the damaged-rule set graph 614 of rule
project 2 which 1s mnput to the damaged-rule set graph solver
608 of FIG. 6 1n accordance with an embodiment of the
present invention. At this stage, the damaged-rule set graph
658 uses a variable “?Customerl” that will be changed to an
object “Customerl™ later 1n the process. Damaged-rule set
graph 658 uses universal quantifiers to express that for all
customers that the respective rules are violated. Dotted lines
are used from the nodes labelled “forall” to the node labelled
“?Customerl” m order to keep the drawing readable.

For comparison, FIG. 8 shows a graph of all the rule
instance violation graphs of rule project 2 1n accordance with
an embodiment of the present invention.

Referring to FIG. 6, 1n the final step, damaged-rule set
graph solver 608 traces logical states through the graph nodes
of damaged-rule set graph and labels the graph nodes 1n away
that respects the operations expressed by the graph nodes and
that labels the root node by “true.” The damaged-rule set
graph solver starts at the root node and traverses from parent
node to child node along edges calculating the logical state at
each child node; 1t checks the node for the existence of a label
and marks the node with the label 1t there 1s no pre-existing
label. Certain logical states are easy to trace. If a parent ‘and’
node 1s labelled true, then all child nodes will be true. A parent
‘not’” node will have a child node that i1s the reverse of the
parent. Other logical states are more difficult. A parent ‘and’
node labelled false will have at least one false child. A parent
‘or’ node labelled true will have at least one true child node.
Using these logical rules, 1t 1s possible to find a child node that
1s true according to one parent node and false according to
another parent node; such an inconsistency in the rule set
graph 1dentifies a candidate rule set that 1s inconsistent. If
damaged-rule set graph solver 608 does not run into such an
inconsistency, but finds a valid labelling, then there 1s a miss-
ing case or a missing decision 660 for the candidate subset of

5

10

15

20

25

30

35

40

45

50

55

60

65

18

rules, meaning that this subset 1s insufficient to represent the
decision policy of the original rule set. However, if the dam-
aged-rule set graph solver 608 shows that there 1s no such
labelling, then the candidate subset 1s suificient to represent
this decision policy and all rules outside the candidate subset
can definitely be removed from 1t without changing the
behavior of the rule set.

FIG. 9 shows a damaged-rule set graph for a candidate
subset that includes all rules 1n accordance with an embodi-

ment of the present invention; this graph illustrates a graph
having inconsistent labelling. (FIG. 9 does not show the root
node of this damaged-rule set graph for lack of space.) The
labelling process firstly labels the root node (a conjunctive
‘and’ node) of the damaged-rule set graph with ‘true.” Sec-
ondly, the root nodes of all rule 1nstance violation graphs and
of the rule set application graph (all connected to the root
node of the damaged-rule set graph) are labelled with “true’
because the root node 1s a conjunctive ‘and’ node. IT this
labelling 1s extended, then some operation 1s violated.
Thirdly, damaged-rule set graph solver 608 labels the chil-
dren of the root nodes of the rule instance violation graphs
with “false” since these root nodes represent a logical nega-
tion. However, the third step of labelling violates the disjunc-
tion represented by the root node of the rule set application
graph because the ‘true’ state of the ‘or’ node 1s inconsistent
with having all child nodes labelled “false’(see dashed circle
true ‘or’ parent node and five false children nodes). Therefore,
this damaged-rule set graph has only 1inconsistent labelling
and demonstrates that this rule set treats the same cases and
makes the same decisions as the original rule set.

When applied to rule project 2 and a rule ordering p1, g2,
ol' ¢3' s1, conflict-set minimizer 406 explores different can-
didate subsets consisting of the rule violation graphs of
selected rules. It first removes the least preferred rule s1 from
the rule set and explores the candidate setpl, g2, g1', g3'. FIG.
10 shows the damaged-rule set graph for candidate set pl, g2,
ol', g3' (without showing the root node again for conve-
nience) in accordance with an embodiment of the present
invention. This graph has consistent labelling, meaning that
removing rule s1 damages the rule set and that this rule set
does not treat the same cases and does not make the same
decisions as the original rule set. Therefore, rule s1 cannot be
removed from the rule set.

Similarly, the tentative removal of rule g3' damages the rule
set as the corresponding damaged-rule set graph has consis-
tent labelling as shown in FIG. 11. FIG. 11 illustrates a
labelled damaged-rule set graph for a candidate set of four
rules p1, g2, g1', s1 (g3' removed) of rule project 2 1n accor-
dance with an embodiment of the present invention. This rule
set does not treat the same cases and does not make the same
decisions as the original rule set. Therefore, rule g3' cannot be
removed from the rule set.

Next, contlict-set minimizer 406 tentatively removes rule
g1' (not shown 1in Figures). Again the resulting damaged-rule
set graph has consistent labelling meaning that g1' can not be
removed and the rule set pl, g2, g3', s1 does not treat the same
cases and does not make the same decisions as the original
rule set.

FIG. 12 illustrates a labelled damaged-rule set graph 658
(FI1G. 6) of candidate rule set p1, g1', g3', s1 (g2 removed) and
a damaged-rule set graph which has inconsistent labelling
(see the dotted circle false ‘and’ node with three ‘true’ chil-
dren) 1n accordance with an embodiment of the present inven-
tion. Rule g2 1s therefore redundant and can be removed. The
conflict-set minimizer 406 (F1G. 4) thus reduces the rule setto
pl, g1', 3", s1. Therefore, this damaged-rule set graph has

[,




US 8,909,584 B2

19

only inconsistent labelling and demonstrates that this rule set
treats the same cases and makes the same decisions as the
original rule set.

Referring to FIGS. 4, 6 and 12, 1n a final step, rule p1 1s
removed. The candidate rule set g2, g1', g3', s1 has a dam-
aged-rule set graph (not shown) which can be successiully
labelled. Therefore, rule pl1 cannot be removed.

Conflict-set minimizer 406 therefore returns the rule vio-
lation graphs of the rules pl, gl', g3', s1 from the damaged-
rule set graph of FIG. 12.

Rule extractor 410 extracts the rules and returns pl, gl',
o3' sl as the redundancy-free rule set that represents the same
decision policy as the original rule set 2.

If the damaged-rule set graph solver 608 runs into a tim-
eout, then 1t 1s not able to show whether the current candidate
set 1s damaged or not. As the damaged-rule set solver 608 1s
not sure that this tentatively reduced rule set represents the
decision policy, 1t handles it as a damaged rule set, meaning
that it rejects the candidate set even 11 its damaged rule set
graph has no labelling. Therefore, time-outs can thus lead to
non-minimal reductions of the original rule set, but do not
prevent the redundancy eliminator from removing redundant
rules.

Although the example of rule set 2 has a single redun-
dancy-iree policy-preserving subset, other rule sets such as
rule set 3 have multiple redundancy-iree policy-preserving,
subsets. Conflict-set minimizer 406 would then choose one of
these subsets depending on the preferences between the rules
which influence the rule ordering. For example, 1t will return
the subset s1, g1, g3, g5, pl 1t 1t uses the rule ordering s1, p1,
g2 o1, 25 93 o4, 06.Asall rules areredundant in this rule set,
the conflict-set minimizer 406 will first remove the least
preferred rule, namely, rule g6. Sumilarly, 1t will remove rule
o4, However, rules g1, g5, ¢3 are not redundant in the reduced
sets1, pl, g2, g1, g5, g3 and will not be removed. Conflict-set
mimmizer 406 will further remove g2 andkeep s1 andpl. The
redundancy eliminator 400 returns the subset s1, pl, gl, g5,
o3 as the preferred redundancy-iree subset that represents the
same decision policy as rule set 3.

As the rule sets 2 and 3 are very small, conflict-set mini-
mizer 406 will best perform an iterative minimization
approach as elaborated above. For large rule sets that contain
many redundant rules, contlict-set minimizer 406 will split
those sets 1n the middle and divide the redundancy elimina-
tion problems 1n two subproblems of same size. It repeats this
approach until subproblems of small si1zes are obtained that 1t
better minimizes by an iterative approach. Patent application
“Method and System for Detecting Missing Rules with Most-
General Conditions™ describes this contlict-set minimization
strategy 1n detail. For redundancy elimination, this strategy 1s
interesting 1f a rule set contains many redundant rules. This
may in particular happen if rules are assembled from different
sources and written by different rule authors. The redundancy
climinator 400 of this disclosure therefore provides new per-
spectives for redundancy elimination in projects of this kind.

FIG. 13 depicts an embodiment of a hardware configura-
tion of a computer system 1300 which 1s representative of a
hardware environment for practicing the present invention.
Referring to FIG. 13, computer system 1300 has a processor
1301 coupled to various other components by system bus
1302. An operating system 1303 may run on processor 1301
and provide control and coordinate the functions of the vari-
ous components of FIG. 13. An application 1304 1n accor-
dance with the principles of the present invention may run 1n
conjunction with operating system 1303 and provide calls to
operating system 1303 where the calls implement the various
functions or services to be performed by application 1304.

10

15

20

25

30

35

40

45

50

55

60

65

20

Application 1304 may include, for example, an application
for minimizing rule sets 1n a rule management system as
discussed above.

Referring again to FIG. 13, read-only memory (“ROM”)
1305 may be coupled to system bus 1302 and include a basic
input/output system (“BIOS”) that controls certain basic
functions of computer system 1300. Random access memory
(“RAM”) 1306 and disk adapter 1307 may also be coupled to
system bus 1302. It should be noted that software components
including operating system 1303 and application 1304 may
be loaded into RAM 1306, which may be computer system’s
1300 main memory for execution. Disk adapter 1307 may be
an integrated drive electronics (“IDE”) adapter that commu-
nicates with a disk unit 1308, e.g., disk drive.

Computer system 1300 may further include a communica-
tions adapter 1309 coupled to bus 1302. Communications
adapter 1309 may interconnect bus 1302 with an outside
network thereby allowing computer system 1300 to commu-
nicate with other similar devices.

I/0 devices may also be connected to computer system
1300 via a user 1interface adapter 1310 and a display adapter
1311. Keyboard 1312, mouse 1313 and speaker 1314 may all
be interconnected to bus 1302 through user interface adapter
1310. A display monitor 1315 may be connected to system
bus 1302 by display adapter 1311. In this manner, a user 1s
capable of mputting to computer system 1300 through key-
board 1312 or mouse 1313 and receiving output from com-
puter system 1300 via display 1315 or speaker 1314.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, inirared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
or any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or 1in connection with an 1nstruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable



US 8,909,584 B2

21

medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an instruction execution system,
apparatus or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including,
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including,
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the C programming language or
similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soiftware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the present invention. It
will be understood that each block of the tlowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the tlowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tion/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function 1n a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified 1n the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the function/acts specified 1n the flowchart
and/or block diagram block or blocks.

The descriptions of the various embodiments of the present
invention have been presented for purposes of 1llustration, but
are not mntended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-

5

10

15

20

25

30

35

40

45

50

55

60

65

22

place, or to enable others of ordinary skill i the art to
understand the embodiments disclosed herein.

The invention claimed 1s:

1. A method for minimizing a rule set, the method com-
prising:

building a rule set application graph that describes a set of

rules including actions and cases, whereby each rule
defines an action for one or more cases;

building a rule violation graph for each rule describing the

actions and cases not defined for that rule; and

determining, by a processor, a subset of rules having a

reduced number of rules with a same set of actions and
cases as the rule set application graph by exploring can-
didate subsets of the set of rules that are sufficient for
reproducing a behavior of an original rule set.

2. The method as recited 1n claim 1, wherein said deter-
mining step comprises:

building rule violation graph candidate subsets from the

rule violation graphs comprising the actions and cases
not defined for that subset of rules and further determin-
ing 1f those actions and cases not defined by each rule
violation graph candidate subset are distinct from the
actions and cases defined by the rule set application
graph.

3. The method as recited in claim 2 further comprising:

determiming more than one valid reduced subset of rules

and using preferences between rules to choose a pre-
ferred valid reduced subset of rules.

4. The method as recited 1n claim 2, wherein said deter-
mining if those actions and cases not defined by each rule
violation graph candidate subset are distinct from the actions
and cases defined by the rule set application graph comprises:

building respective damaged rule set graphs by joining the

rule set application graph and the respective rule set
violation graph candidate subsets; and

testing each damaged rule set graph for logical consistency.

5. The method as recited in claim 4, whereby a set of rules
can define more than one object, wherein said building a
damaged rule set graph comprises building damaged rule set
graph 1nstances for each object defined by the set of rules.

6. The method as recited 1n claim 1 further comprising:

identifying rules whereby the action of the rule 1s indepen-

dent of the case of the rule; and

1gnoring the identified actions 1n the rule application graph

and the rule violation graph.

7. A computer program product embodied 1n a non-transi-
tory computer readable storage medium for minimizing a rule
set, the computer program product comprising the program-
ming instructions for: building a rule set application graph
that describes a set of rules including actions and cases,
whereby each rule defines an action for one or more cases;
building a rule violation graph for each rule describing the
actions and cases not defined for that rule; and determining a
subset of rules having a reduced number of rules with a same
set of actions and cases as the rule set application graph by
exploring candidate subsets of the set of rules that are sufli-
cient for reproducing a behavior of an original rule set.

8. The computer program product as recited in claim 7,
wherein the programming mstructions for determining com-
prises the programming instructions for:

building rule violation graph candidate subsets from the

rule violation graphs comprising the actions and cases
not defined for that subset of rules and further determin-
ing 1f those actions and cases not defined by each rule
violation graph candidate subset are distinct from the
actions and cases defined by the rule set application

graph.




US 8,909,584 B2

23

9. The computer program product as recited in claim 8
turther comprising the programming instructions for:

determining more than one valid reduced subset of rules

and using preferences between rules to choose a pre-
ferred valid reduced subset of rules.

10. The computer program product as recited in claim 8,
wherein the programming instructions for determining if
those actions and cases not defined by each rule violation
graph candidate subset are distinct from the actions and cases
defined by the rule set application graph comprises the pro-
gramming instructions for:

building respective damaged rule set graphs by joining the

rule set application graph and the respective rule set
violation graph candidate subsets; and

testing each damaged rule set graph for logical consistency.

11. The computer program product as recited in claim 10,
whereby a set of rules can define more than one object,
wherein said building a damaged rule set graph comprises
building damaged rule set graph instances for each object
defined by the set of rules.

12. The computer program product as recited in claim 7
turther comprising the programming instructions for:

identifying rules whereby the action of the rule 1s indepen-

dent of the case of the rule; and

ignoring the identified actions 1n the rule application graph

and the rule violation graph.

13. A system, comprising:

a memory unit for storing a computer program for mini-

mizing a rule set; and

a processor coupled to the memory unit, wherein the pro-

cessor, responsive to the computer program, comprises:

circuitry for building a rule set application graph that
describes a set of rules including actions and cases,
whereby each rule defines an action for one or more
cases;

circuitry for building a rule violation graph for each rule
describing the actions and cases not defined for that
rule; and

circuitry for determiming a subset of rules having a
reduced number of rules with a same set of actions and

5

10

15

20

25

30

35

24

cases as the rule set application graph by exploring
candidate subsets of the set of rules that are sufficient
for reproducing a behavior of an original rule set.

14. The system as recited 1n claim 13, wherein the circuitry
for determining comprises:

circuitry for building rule violation graph candidate sub-

sets from the rule violation graphs comprising the
actions and cases not defined for that subset of rules and
further determining 11 those actions and cases not
defined by each rule violation graph candidate subset are
distinct from the actions and cases defined by the rule set
application graph.

15. The system as recited 1n claim 14, wherein the proces-
sor further comprises:

circuitry for determining more than one valid reduced sub-

set of rules and using preferences between rules to
choose a preferred valid reduced subset of rules.
16. The system as recited 1n claim 14, wherein the circuitry
for determining 11 those actions and cases not defined by each
rule violation graph candidate subset are distinct from the
actions and cases defined by the rule set application graph
COmMprises:
circuitry for building respective damaged rule set graphs
by joining the rule set application graph and the respec-
tive rule set violation graph candidate subsets; and

circuitry fortesting each damaged rule set graph for logical
consistency.

17. The system as recited in claim 16, whereby a set of rules
can define more than one object, wherein said building a
damaged rule set graph comprises building damaged rule set
graph 1nstances for each object defined by the set of rules.

18. The system as recited 1n claim 13, wherein the proces-
sor further comprises:

circuitry foridentitying rules whereby the action of therule

1s independent of the case of the rule; and

circuitry for i1gnoring the identified actions in the rule

application graph and the rule violation graph.

19. The system as recited 1n claim 13, wherein the system
1s a business rules management system.

% o *H % x



	Front Page
	Drawings
	Specification
	Claims

