US008898648B2
a2 United States Patent (10) Patent No.: US 8.898.648 B2
Chung et al. 45) Date of Patent: Nov. 25, 2014
(54) METHODOLOGY FOR FAST DETECTION OF (56) References Cited
FALSE SHARING IN THREADED
SCIENTIFIC CODES U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines ggg%%g? gl . g; éggi icales . 17158
: 757, zagury etal.
Corporation, Armonk, NY (US) 7,114,036 B2 9/2006 DeWitt et al.
(72) Inventors: I-Hsin Chung, Chappaqua, NY (US); (Continued)
Guojing Cong, Ossining, NY (US); OTHER PUBI ICATIONS

Hiroki Murata, Tokyo (JP); Yasushi
Negishi, Tokyo (JP); Hui-Fang Wen,
Chappaqua, NY (US)

Tor E. Jeremiassen et al., Reducing false sharing on shared memory
multiprocessors through compile time data transformations, Aug.

(73) Assignee: International Business Machines 1995, [Retrieved on Jan. 14, 2014]. Retrieved from the internet:
Corporation, Armonk, NY (US) <URL: http://dl.acm.org/citation.ctm?1d=209955> 10 Pages (179-

188).*
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 159 days.

(Continued)

Primary Ikxaminer — Don Wong

(21) Appl. No.: 13/689,927 Assistant Examiner — Anibal Rivera
| (74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
(22) Filed: Nov. 30, 2012 Presser, P.C.; Daniel P. Morris, Esq.
(65) Prior Publication Data (57) ABSTRACT
US 2014/0156939 Al Jun. 5, 2014 A profiling tool 1dentifies a code region with a false sharing

potential. A static analysis tool classifies variables and arrays

(51) Int. CL in the i1dentified code region. A mapping detection library

GoO6l" 15/00 (2006-O;~) correlates memory access instructions in the identified code

GOor 15/76 (2006-O:~) region with variables and arrays in the 1dentified code region

GO6E 11/00 (2006-0:~) while a processor 1s running the identified code region. The

Goot 9/44 (2006-0:) mapping detection library 1dentifies one or more instructions

Goor 9/45 (2006.01) at risk, 1n the 1dentified code region, which are subject to an

(52) US. CL analysis by a false sharing detection library. A false sharing
USPC 717/131; 712/12;°714/45; 717/128; detection library performs a run-time analysis of the one or
717/148;717/149; 717/158; 717/159; 717/161 more mstructions at risk while the processor 1s re-running the

(38) Field of Classification Search identified code region. The false sharing detection library
CPC ... GO6F 8/314; GO6F 8/445; GOOGF 8/456; determines, based on the performed run-time analysis,

GOGF 11/30; GO6F 11/3447; GO6F 11/3466; whether two different portions of the cache memory line are
GO6F 11/3644; GO6F 12/0802; GO6F 12/0837; accessed by the generated binary code.

GO6F 9/3836; GO6F 9/30145; GO6F 9/45516
See application file for complete search history. 9 Claims, 3 Drawing Sheets

100
\

SOURCE
MAPPING
DETECTION| ., 5

LIBRARY

0 _- EXECUTABLE

/
13 w CLASSFY THE VARIABLES/ARRAYS

- READ ONLY

- WRITE BUT NO FALSE SHARING RISK
140" BUILD THE MAPPING -WRITE WITH RISK
BETWEEN ID/ST

AND ARRAYS__ ——T"’
145
- FALSESHIRNG [
. DETECTION LIBRARY

EXECUTABLE |1

REPORT THE 168
~ FALSE-SHARING
160 —

17

US 8,898,648 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,181,168 B1* 5/2012 Leeetal.ccoooeeeei, 717/149
8,250,555 B1* 8/2012 Leeetal.ccooeeeernn, 717/159
8,250,556 B1* 8/2012 Leeetal.ccocooeeeenn, 717/159
8,291,400 B1* 10/2012 Leeetal.cccoeeeee, 717/161
2007/0226723 Al 9/2007 Eichenberger et al.
2008/0244533 Al* 10/2008 Bergetal.cccoc..o.oe 717/128
2009/0150875 Al* 6/2009 Maieretal. 717/158
2011/0202907 Al* 8/2011 Diceetal.c..ocoeeo 717/148
2011/0219208 Al* 9/2011 Asaadetal. 712/12
2011/0283152 Al* 11/2011 Citronetal. 714/45
2011/0302561 Al 12/2011 Dayan et al.
2012/0278793 Al* 11/2012 Jalanetal. 717/158
OTHER PUBLICATIONS

Tongping Liu et al., Sheriff: Precise Detection and Automatic Miti-

gation of False Sharing, Oct. 2011, [Retrieved on Jan. 14, 2014].
Retrieved from the internet: <URL: http://dl.acm.org/citation.
cim?1d=2048070> 15 Pages (3-18).*

Matthew J. Zekauskas et al., Software write detection for distributed
shared memory, 1994, [Retrieved on Jan. 14, 2014]. Retrieved from
the internet: <URL: http://dl.acm.org/citation.cim?1d=1267646> 14
Pages (1-14).*

IBM; “A Method and System for Runtime Program Error Detection
by Using Disposable Instrumentation”; http://www.1ip.com/pubview/
[PCOMO000180274D; Mar. 6, 2009.

IBM; “Identifying potentially expensive paths not taken in a runtime
analysis call graph”; http://www.1p.com/pubview/
[PCOMO00180338D; Mar. 6, 2009.

Zekauskas, MJ.-et al.; “Software write detection for a distributed
shared memory”; Proceedings of the First USENIX Symposium on
Operating Systems Design and Implementation(OSDI); pp. 87-100;
USENIX Assoc, Berkeley, CA.; 1994,

Bernat, A. R., et al., “Anywhere, Any-Time Binary Instrumentation™,
PASTE ’11 Proceedings of the 10th ACM SIGLAN-SIGSOFT work-
shop on Program analysis for software tools, Sep. 2011, pp. 9-16.
Graham, S. L., et al., “gprof: a Call Graph Execution Profiler”,
Proceeding of SIGPLAN’82 Symposium on Compiler Construction,
Jun. 1982.

* cited by examiner

U.S. Patent Nov. 25, 2014 Sheet 1 of 3 US 8.898.648 B2

100

105
SOURCE @
hotspor 10

MAPPING
DETECTION 15
LIBRARY

1
EXECUTABLE STATIC ANALY SIS
117 130

20
125

139 CLASSIFY THE VARIABLES/ARRAYS:
- READ ONLY
- WRITE BUT NO FALSE SHARING RISK
(40 BUILD THE MAPPING -WRITE WITH RISK
BETWEEN ID/ST
AND ARRAYS

' 145
' FALSE-SHARING
DETECTION LIBRARY

150
165
REPORT THE
w
160
FIG. 1

U.S. Patent

PARALLEL

COMPUT

SYSTEM

NG

MAINFRAME

COMPUTER

Nov. 25, 2014

TABLET
COMPUTER

Sheet 2 of 3

NETBOOK
COMPUTER

US 8,898,648 B2

CLOUD
COMPUTING

>

U.S. Patent Nov. 25, 2014 Sheet 3 of 3 US 8.898.648 B2

DETERMINE ADDRESS RANGES OF VARIABLES AND ARRAYS 300

INTERCEPT LOAD AND STORE INSTRUCTIONS 310

DETERMINE ADDRESS RANGE THAT LOAD AND STORE 290
INSTRUCTIONS TOUCH

DETERMINE WHETHER EACH LOAD/STORE INSTRUCTION 20
S AN INSTRUCTION AT RISK

FIG. 3

US 8,898,048 B2

1

METHODOLOGY FOR FAST DETECTION OF
FALSE SHARING IN THREADED
SCIENTIFIC CODES

GOVERNMENT CONTRACT

This mvention was Government support under Contract
No. B354331 awarded by Department of Energy. The Gov-

ernment has certain rights 1n this invention.

BACKGROUND

This disclosure relates generally to a false sharing occur-
ring in parallel computing systems, and particularly to a
method for detecting the false sharing through a run-time
analysis of a source code.

BACKGROUND OF THE INVENTION

A multi-threaded computing system utilizes cache
memory devices by rewarding temporal and spatial locality
within cache lines. However, an occurrence of false sharing
degrades performance of the parallel computing system, e.g.,
by mvoking a known cache memory coherence mechanism.
False sharing occurs among threads when data that those
threads access happen to be placed 1n the same cache line.
False sharing causes “ping-pong” of invalidation to a same
cache line from one thread writing to part of that cache line
while the other thread accesses other parts of that cache line.

A known false sharing method relies on a compiler analysis
and special hardware counters that track cache coherence
traffic on processors. The drawback of this method i1s that
special hardware counters are needed, and this method cannot
distinguish between true sharing (i.e., two different threads
modily a same portion of a same cache line) and false sharing,
(1.e., two different threads modily two different portions of a
same cache line). Another known false sharing detection
approach involves OS (Operating System) kernel program-
ming. This method intercepts system calls, replaces each
thread as a process, and maintains a transaction when these
processes update a shared memory. The drawback of this
approach includes that an application cannot afford to create
many processes, €.g., more than 1 million processes, and

system soitware on compute nodes may not allow an 1mple-
mentation of a transaction.

SUMMARY

There 1s provided a method for detecting a false sharing of
a cache memory line 1n a multi-threaded computing environ-
ment. A compiler recerves source code of a program written in
a high-level programming language. The compiler compiles
the recerved source code of the program 1n order to generate
binary code of the program. A profiling tool identifies a code
region, in the generated binary code, with a false sharing
potential. A static analysis tool classifies variables and arrays
in the 1dentified code region. A mapping detection library 1s
injected into the generated binary code 1n order to monitor
every memory access instructions in the identified code
region while a processor 1s runming the identified code region.
The mapping detection library identifies memory addresses
accessed by the memory access mstructions at runtime. Based
on these 1dentified memory addresses and the classification
performed 1n the static analysis tool, one or more 1nstructions
at risk associated with one class of the classified variable and
arrays are i1dentified. Only these instructions at risk are ana-
lyzed by a false sharing detection library while the processor

10

15

20

25

30

35

40

45

50

55

60

65

2

1s re-running the identified code region. The false sharing
detection library determines, based on the analysis of the one
or more 1structions at risk, whether two different portions of
the cache memory line are accessed by the generated binary
code. The false sharing detection library detects a false shar-
ing of the cache memory line 1f the two different portions of
the cache memory line are accessed by the generated binary
code.

In order to classily the variables and arrays 1n the identified
code region, the static analysis tool performs a static analysis
on the received source code of the program. The static analy-
s1s tool defines a condition that the false sharing does not
occur, based on an array size and index of an array in the
received source code of the program.

The static analysis performed by the static analysis tool
includes: classitying variables and arrays in the recerved
source code 1nto a first class representing read only variables
and arrays, into a second class of variables and arrays belong-
ing to a write operation with no false sharing risk, and into a
third class of variables and arrays belonging to a write opera-
tion with a false sharing risk.

The mapping detection library 1s configured to generate a
mapping between variables and the memory access nstruc-
tions 1n the identified code region. Based on the generated
mapping, only the one or more structions at risk are being
monitored by the false sharing detection library. The false
sharing detection library reports at least one false sharing
associated with the one or more 1nstructions at risk.

The present disclosure presents a software method that
uses mstrumentation, a static analysis, and a run-time analy-
s1s for expediting of false sharing detection. This method
includes, but 1s not limited to: mstrumenting of binary code
according to a result of source code static analysis, and feed-
ing back run-time analysis information to a false sharing
detection methodology. A mapping detection library 1s con-
figured to capture relationships between load/store mstruc-
tions and arrays, and feed those relationships to a run-time
analysis tool which detects a false sharing occurrence. This
method does not rely on special hardware, nor does it require
support from OS. This method 1s oblivious to generating deep
functional call chains and generating unorganized code.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features and advantages of the
present mvention will become apparent from the following
detailed description of illustrative embodiments thereof,
which 1s to be read in connection with the accompanying
drawings, 1n which:

FIG. 1 illustrates a flow chart describing method steps for
detecting a false sharing of a cache memory line 1n a multi-
threaded computing environment; and

FIG. 2 illustrates an exemplary hardware configuration for
running the method steps 1 FIG. 1.

FIG. 3 illustrates a flow chart describing method steps run
by a mapping detection library.

DETAILED DESCRIPTION

FIG. 1 1llustrates a flow chart describing method steps for
detecting a false sharing of a cache memory line 1n a multi-
threaded computing environment. A multi-threaded comput-
ing environment includes, but 1s not limited to: IBM® Blue-
Gene®. A processor in the multi-threaded computing
environment recerves source code 100 of a program written 1n
a high-level programming language, e.g., Java®, .Net,
C/C++. The processor runs a compiler in order to compile the

US 8,898,048 B2

3

received source code. By compiling the received source code,
the compiler generates original binary code of the program.
While the compiler 1s compiling the received source code,
at step 105, a profiling tool (e.g., gprof, etc.) 1dentifies at least
one “hotspot” 110, which 1s at least one code region (e.g.,
functions, loops, etc.) in the received source code having

false-sharing potentials. gprof 1s a profiler provided from
GNU and i1s described 1n detail Susan L.. Graham, et al.

“oprof: a Call Graph Execution Profiler,” Proceeding of the
SIGPLAN ’82 Symposium on Compiler Construction, June,
1982, whose contents are incorporated by reference as 1f set
torth herein. The identification of the hopspot 1s done through
cither profiling (e.g., gprof, etc.) or collecting hardware
events for “hints” of a false sharing of a cache memory line.
Alternatively, a user may specily the hotspot. A code region
with false-sharing potentials (1.¢., hotspot) can also be 1den-
tified, e.g., by collecting hardware events, for example, the
number of cache coherent events. If this information, 1.e., the
collected hardware events, 1s not provided to the profiling
tool, all processors in the multi-threaded computing environ-
ment may be configured to report the number of cache misses,
which can be used as a hint. Alternatively, a code region
taking more time than expected 1n the multi-threading com-
puting environment may raise a flag indicating a potential
false sharing. This 1dentified code region (1.e., “hotspot”) 1s
provided as inputs to method steps 115-120 and 150.

At step 120, a statistic analysis tool recerves source code of
the identified code region and performs parsing and/or known
static analysis on the source code of the idenftified code
region. Based on this performed parsing and/or known static
analysis, the static analysis tool classifies 125 varnables and
arrays 1n the 1identified code region 1nto a first class represent-
ing read only variables and arrays, into a second class of
variables and arrays belonging to a write operation with no
false sharing risk, and into a third class of variables and arrays
belonging to a write operation with a false sharing risk. The
read only variables and arrays possess no possibility of false
sharing unless a read only variable or array 1s located 1n a
same cache line being written.

The static analysis tool defines a condition, 1n a form of an
expression that the false sharing does not occur, based on an
array size and an mdex of an array in the identified code
region. The compiler invokes the static analysis tool on the
identified code region targeting arrays that are written to. The
compiler 1ssues compiler directives, e.g., labels, to infer how
a loop 1s partitioned, and accordingly, defines the condition 1n
the form of an expression that a certain write to an array will
not incur the false sharing. These arrays are classified as the
second class of the variables and arrays. In one embodiment,
this second class of the variables and arrays are not monitored
during a final run at step 160, which 1s described in detail
below.

Arrays and/or variables written to may be a source of
false-sharing, but not always. Whether the false-sharing may
occur depends on how many threads participate 1n running a
loop, and how the loop 1s partitioned to run 1n parallel. For
example, whether the following exemplary source code
incurs a false-sharing depends on values of loop bounds.

parallel do 1=0, sl
do j=0, s2
do k=0, s3
AlL]IK] =. ..

In this exemplary source code, 1f s2 and s3 are small, e.g.,
number 1, an access to a[1][7][k] from different threads may be

10

15

20

25

30

35

40

45

50

55

60

65

4

accessing to a same cache line. The static analysis tool ana-
lyzes an array access pattern, a loop partition strategy, and
loop bounds, and comes up with an expression that the false
sharing will not occur. In this example, the expression could
be s2xs3xarray element size>Cache line size. Thereby, the
static analysis tool 1dentifies which variables and arrays (and
under what conditions) do not need to be watched during a
run-time analysis and classifies 125 these variables and arrays
as described above.

In one embodiment, at step 115, a mapping detection
library 117 1s mjected into the binary code of the identified
code region, e.g., by using an mstrumenting framework. An
istrumenting framework 1s a tool used to modily original
binary code, e.g., by adding another binary code into the
original binary code. Examples of the instrumenting frame-
work includes, but 1s not limited to: pSigma, DYNAMO, PIN,
ctc. A PIN—a dynamic binary mstrumentation framework—
1s described 1n detail in http://www.pintool.org/, whose entire
contents are incorporated by reference as set forth herein. The
istrumenting framework recerves the mapping detection
library 117 and binary code of the identified code region (i.e.,
“hotspot™), injects the mapping detection library 117 1nto the
binary code of the identified code region, and generates a first
binary code 130 that combines the mapping detection library
117 and the binary code of the 1dentified code region.

In another embodiment, a user may create the mapping
detection library, e.g., by using one or more programming
languages, e.g., C, C++, Java ®, .Net, based on the flow chart
depicted 1n FIG. 3. Then, the user may compile the mapping
detection library in order to generate corresponding binary
code of this mapping detection library.

At step 135, by running the first binary code 130 which
combines the mapping detection library 117 and the binary
code of the identified code region, the processor 1s configured
to monitor every memory access instruction (e.g., load
instructions, store instructions, etc.) i the i1dentified code
region, €.g., by using the mapping detection library 117.
Specifically, while the processor 1s running the first binary
code 130, the mapping detection library 117 1s configured to
identify the memory addresses accessed by all load and store
instructions 1n the identified code region, and 1s further con-
figured to associate these load and store instructions 1denti-
fied code region with variables and arrays in the identified
code region, €.g., by comparing memory address fields of the
load and store mstructions against memory addresses ol these
variables and arrays. The mapping detection library outputs
that association (i.e., mapping 140 in FIG. 1).

FIG. 3 illustrates a flow chart that describes method steps
run by the mapping detection library 117 1n conjunction with
the static analysis tool. At step 300, the static analysis tool
determines memory address ranges of variables and arrays 1n
the 1dentified code region, e.g., based on debugging informa-
tion. As described above, the static analysis tool classifies
these variables and arrays, e.g., based on the characteristic of
cach variable and array.

At step 310, the mapping detection library 117 1s config-
ured to mtercept all memory access instructions in the 1den-
tified code region, e.g., load and store instructions, while the
processor 1s running the first binary code 130. At step 320, the
mapping detection library 1s configured to determine a
memory address range that each intercepted memory access
instruction touches, e.g., based on a memory address field 1n
cach memory access instruction. At step 330, the mapping
detection library 117 1s configured to compare the determined
memory address range of each memory access instruction
against memory address ranges of the third class of variables
and arrays that has a false sharing risk. Binary code of the

US 8,898,048 B2

S

identified code region may show memory addresses of the
third class of variables and arrays. If the comparison finds a
match, the mapping detection library 117 1s configured to
classity the corresponding memory access mstruction as an
instruction at risk. Otherwise, 1.¢., 1f the comparison results 1n
no match, the mapping detection library 117 1s configured to
filter out the corresponding memory access instruction. A
filtered-out memory access mnstruction 1s no longer monitored
at the final run-time analysis at 160 which 1s described 1n
detail below. Thereby, the mapping detection library 1s con-
figured to detect and flag a presence of the one or more
instructions at risk while the processor 1s runming the first
binary code 130. The number of instructions needed to be
monitored during the final run at 160 are also significantly
reduced.

Returning to FIG. 1, at step 135, the mapping detection
library 117 1s configured to perform an 1nitial run-time analy-
s1s: monitoring a memory access pattern of every load and
store mstruction in the identified code region while the pro-
cessor 1s running the first binary code 135. During this mitial
run-time analysis, the mapping detection library 117 1s con-
figured to record which array or variable each load and store
instruction in the identified code region touches. The mitial
run-time analysis may also include a run-time evaluation of
arrays and variables involved in the defined false sharing
condition captured in step 120. Once memory access patterns
of all load and store instructions to all arrays and variables are
detected and values of the variables 1n the defined false shar-
ing condition are identified, the 1mitial run-time analysis 1s
aborted. In one embodiment, a user may eliminate a need of
the mitial run-time analysis, e.g., by moditying the compiler.

At step 150, the instrumenting tool receives the binary code
of the 1dentified code region 110, the mapping 140, the clas-
sifications of the variables and arrays 1235, and a false sharing
detection library 145. The instrumenting tool generates a
second binary code 1355 that combines the binary code of the
identified code region 110, the mapping 140, the classifica-
tions of the variables and arrays 125, and the false sharing
detection library 145. Note that during the imitial run 1335, the
mapping detection library 117 was configured to 1dentify the
instructions at risk. The false sharing detection library 1is
injected to the second binary code 155 1n order to spect
and/or analyze only the instructions at risk determined by the
mapping detection library 117 while the processor 1s running
the second binary code 155. Tongping Lu, et al., “Precise
Detection and Automatic Mitigation of False Sharing, ” April,
2011, describes a false sharing detection library in detail,
whose entire contents are incorporated by reference as 11 set
torth herein.

At step 160, while the processor running the second binary
code 155, the false sharing detection library 1s configured to
monitor only the istructions at risk, and 1s further configured
to capture a stream of addresses accessed by the instructions
at risk, time stamps at the moment that the mstructions at risk
are run, and identification numbers of threads that run the
instructions at risk. Furthermore, while the processor 1s run-
ning the second binary code 1353, the false sharing detection
library 145 processes the memory address stream and detects
that multiple threads may access different portion of the same
cache line. While the processor 1s running the second binary
code 155, the false sharing detection library evaluates, based
on the monitored memory access patterns of the mstructions
at risk, whether a thread writes on a portion of a certain cache
memory line and whether a different thread also writes on a
different portion of that certain cache memory line. In other
words, the false sharing detection library determines, based
on the monitored memory access patterns, whether two dii-

10

15

20

25

30

35

40

45

50

55

60

65

6

ferent portions of a cache memory line are accessed while the
processor 1s running the second binary code 155.

At step 160, the false sharing detection library detects,
based on the monitored memory access patterns, a false shar-
ing ol a cache memory line 11 two different portions of that
cache memory line are accessed while the processor 1s run-
ning the second binary code 1355. In one embodiment, this
detection may be performed by a simulation of runming of
method steps 1n FIG. 1. The false sharing detection library
reports 165 a specific source code line(s) that causes a false
sharing of a cache memory line. In one embodiment, there-
fore, based on one or two mnstrumenting of the 1identified code
region, the false sharing detection library can 1dentify a spe-
cific source code line(s) that causes a false sharing of a cache
memory line. Upon recerving the report 165 of the false
sharing, a user may update or rewrite the 1dentified specific
source code lines 1n order to prevent the occurrence of the
false sharing. Then, the user may re-run method steps in FIG.
1 with the updated or re-written source code.

Running of method steps 1n FIG. 1 does not require addi-
tional hardware. In other words, by performing method steps
in FI1G. 1 during running the generate original binary code, the
false sharing detection library can detect a false sharing with-
out a need for additional hardware for detecting of the false
sharing. Since the mapping detection library can successtully
prune out the instructions that are not at risk, the number of
variables to be monitored 1s reduced when compared to
known false sharing systems. The number of instructions to
be monitored 1s also reduced when compared to known false
sharing systems. By reducing the number of instructions and
variables to be monitored, the processor can detect a false
sharing of a cache memory line faster than known false shar-
ing detection systems. Method steps in FIG. 1 can be run with
any commercially available processor and thus independent
on processor designs or architectures.

In one embodiment, as shown in FIG. 2, method steps
described in FIG. 1 can be implemented by a computing
system, e.g., a parallel computing system 200 including at
least one processor 235 and at least one memory device 270,
a mainirame computer 205 including at least one processor
256 and at least one memory device 271, a desktop computer
210 1ncluding at least one processor 257 and at least one
memory device 272, a workstation 215 including at least one
processor 238 and at least one memory device 273, a tablet
computer 220 including at least one processor 256 and at least
one memory device 974, a netbook computer 225 including at
least one processor 260 and at least one memory device 275,
a smartphone 230 including at least one processor 261 and at
least one memory device 276, a laptop computer 235 includ-
ing at least one processor 262 and at least one memory device
277, or cloud computing system 240 including at least one
storage device 245 and at least one server device 250.

While the mvention has been particularly shown and
described with respect to illustrative and preformed embodi-
ments thereot, it will be understood by those skilled 1n the art
that the foregoing and other changes 1n form and details may
be made therein without departing from the spirit and scope of
the invention which should be limited only by the scope of the
appended claims.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, inirared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)

US 8,898,048 B2

7

of the computer readable storage medium would include the
tollowing: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or 1n connection with a system,
apparatus, or device running an instruction.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with a system, apparatus, or device
running an instruction.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including,
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
run entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type ol network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

Aspects of the present mnvention are described below with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart i1llustrations and/
or block diagrams, and combinations of blocks in the tlow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which run via the proces-
sor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts
specified 1n the flowchart and/or block diagram block or
blocks. These computer program instructions may also be
stored 1n a computer readable medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including mnstructions which imple-
ment the function/act specified 1n the flowchart and/or block
diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

8

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which run on the computer
or other programmable apparatus provide processes for
implementing the functions/acts specified 1n the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block 1n the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more operable instructions for
implementing the specified logical function(s). It should also
be noted that, in some alternative implementations, the func-
tions noted in the block may occur out of the order noted 1n the
figures. For example, two blocks shown in succession may, 1n
fact, be run substantially concurrently, or the blocks may
sometimes be run 1n the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or tflowchart illustration, and combi-
nations of blocks 1n the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com-
puter instructions.

What 1s claimed 1s:

1. A method for detecting a false sharing of a cache
memory line 1n a multi-threaded computing environment, the
method comprising:

receving, at a compiler, source code of a program written

in a high-level programming language;

generating, by the compiler, binary code of the received

source code:

identifying a code region, in the generated binary code,

with a false sharing potential;

classifying variables and arrays in the identified code

region;

monitoring all memory access instructions in the identified

code region while a processor 1s running the 1dentified
code region;
identifying memory addresses accessed by the memory
access 1nstructions 1n the 1dentified code region while
the processor 1s runming the 1dentified code region;

identifying, based on the 1dentified memory addresses and
the classifying, one or more instructions at risk in the
identified code region, the one or more instructions at
risk associated with one class of the classified variables
and arrays;

aborting the running of the 1dentified code region upon the

one or more 1nstructions at risk are identified;
configuring the processor to re-run the identified code
region;

analyzing only the one or more 1nstructions at risk in the

identified code region while the processor 1s re-running
the 1dentified code region;

determining, based on the analysis of the one or more

instructions at risk, whether two different portions of the
cache memory line are accessed by the generated binary
code:; and

indicating a false sharing of the cache memory line 11 the

two different portions of the cache memory line are
accessed by the generated binary code.

US 8,898,048 B2

9

2. The method according to claim 1, wherein the classify-
ing include steps of:

invoking a static analysis on the received source code of the
program; and

defining a condition that the false sharing does not occur,
based on an array size and index of an array in the
received source code of the program.

3. The method according to claim 2, wherein the step of

invoking the static analysis includes a step of:
classitying variables and arrays 1n the recerved source code
into a first class representing read only variables and
arrays, mnto a second class of variables and arrays
belonging to a write operation with no false sharing risk,
and 1nto a third class of vaniables and arrays belonging to
a write operation with a false sharing risk.
4. The method according to claim 3, wherein the step of
analyzing includes steps of:
generating a mapping between variables and the memory
access 1structions 1n the 1dentified code region;
detecting and flagging a presence of the one or more
instructions at risk; and
reporting at least one false sharing associated with the at
least one instruction at risk.

10

15

20

10

5. The method according to claim 1, wherein the determin-
ing whether the two different portions of the cache memory
line are accessed by the generated binary code:

detecting that multiple threads run the one or more 1nstruc-

tions at risk;

detecting a thread modifying a portion of the cache

memory line;

detecting another thread modifying a di

the same cache memory line.

6. The method according to claim 1, whereby a number of
variables to be monitored 1s reduced, and a number of 1nstruc-
tions to be monitored are reduced.

7. The method according to claim 1, whereby a need for
additional hardware to detect the false sharing 1s obviated.

8. The method according to claim 1, wherein the 1dentify-
ing the code region with the false sharing potential includes
running one or more steps of:

performing a profiling on the received source code; and

collecting hardware events occurred during running the

received source code.

9. The method according to claim 8, wherein the hardware
events are cache coherent events.

.

‘erent portion of

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

