US008898236B2
a2y United States Patent (10) Patent No.: US 8.898.236 B2
Kanakadandi et al. 45) Date of Patent: Nov. 25, 2014
(54) AUTOMATED CONVERSION OF VERSIONED 2006/0218538 Al* 9/2006 vanKesteren 717/137
2007/0180149 Al* 8/2007 Vernaletal. 709/246
DATA COLLECTIONS 2008/0127164 Al* 5/2008 Dufhieldetal. 717/173
(75) Inventors: Kiran Kanakadandi, Morrsville, NC OTHER PUBLICATIONS

(US); David Brittain Bolen, Durham,
NC (US)

(73) Assignee: NetApp, Inc., Sunnyvale, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 784 days.

(21) Appl. No.: 12/262,506

(22) Filed: Oct. 31, 2008

(65) Prior Publication Data
US 2010/0115126 Al May 6, 2010

(51) Int.Cl.
GOGF 9/44
GOGF 15/16
GOGF 17/30

(52) U.S.CL
CPC ... GO6F 17/30569 (2013.01); GOG6F 17/30309

(2006.01)
(2006.01)
(2006.01)

(2013.01)
USPC ..., 709/205; 709/237; 717/170

(58) Field of Classification Search
CPC ... GO6F 8/65; GOG6F 8/70; GO6F 8/71
USPC .. 709/230, 205;717/170

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

Auerbach, I., “TACT: a protocol conversion toolkit,” Selected Areas

in Communications, IEEE Journal on, vol. 8, No. 1, pp. 143-159, Jan.

1990 .*

Zhao, J., Chen, J., and Zheng, G. 1997. Message conversion and a
new type system for OO model. SIGPLAN Not. 32, 9 (Sep. 1997),
61-67.%

Bruce Spencer, Sandy Liu, The Semantic Web—ISWC 2004, Infer-
ring Data Transformation Rules to Integrate Semantic Web Services,

Oct. 19, 2004 .*
Definiton of “instance™ and “structure”, Microsoit Dictionary, 1999,
Micrrosoft Press.™

(Continued)

Primary Examiner — Taylor Elfervig
(74) Attorney, Agent, or Firm — Cooper Legal Group, LLC

(57) ABSTRACT

Various computing components (such as devices, operating
environments, and processes) may communicate by exchang-
ing instances ol a data collection, such as a class or data
structure. However, the definition of the data collection may
evolve to specily different numbers, types, properties, and
orderings of the items 1n the data collection, and it may be
difficult to verniiy the structure and contents of an instance
received from another component and possibly of a different
version. This difficulty may be mitigated by exchanging ver-
sioning 1information about the mnstance (e.g., as part of the
communications wire protocol) and by allocating the convert-
ing such that the sender may downconvert to earlier versions
requested by a recipient, while the recipient may upconvert to
later versions than a version provided by a sender. These
techniques may promote the accuracy and consistency of

0,125,400 A * 972000 Cohenetal. 709/247 information exchange among many components that operate
6,609,159 Bl1* 82003 Dukachetal. 719/331 , g o Hdhy COMp P
7,574,710 B1* 82009 Jeyaramanetal. ... 709/217 on different versions of the data collection.
2002/0188743 Al* 12/2002 Schaffrath 709/230
2003/0145315 Al1* 7/2003 Aroetal.c...ooooil 717/170 20 Claims, 6 Drawing Sheets
10
\ S 16
18 ~ — 22
‘ Version 1.1 Version 1.0
‘ null-terminated string ‘ strfiName = "Mark Smith” ‘ 10-character string strName = "Mark Smith”
‘ two-byte unsigned integer ‘ IPulse = 122 ‘ two-byte unsigned integer iIPulse =0
‘ one-pyte unsigned integer ‘ Age = 79 ‘ two-byte unsighed integer IAge = 31,306
A
20 — — — — 24
Serialized Data (v1.1) Serialized Data (v1.0)
14
v 12 | 4D61726B20536D69746800 4D61726B20536D697468 | A
—> | 007A —> 0000 |
©:) ‘ AA 7A4A ‘ S v

US 8,898,236 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Becker, K.; Lopes, A; Milojicic, D.; Pruyne, J.; Singhal, S., “Auto-
matically Determining Compatibility of Evolving Services,” Web

Services, 2008. ICWS ’08. IEEE International Conference on , vol.,
No., pp. 161,168, Sep. 23-26, 2008.*

Jlanhua Liu; Jian L1, “A space-time block coding system with back-
ward compatibility for OFDM-based WL ANs,” SoutheastCon, 2007.
Proceedings. IEEE , vol., No., pp. 105,110, Mar. 22-25, 2007.*

JoongMan Kim; Seokung Yoon; Yoolae Won; Jaeil Lee, “VoIP
Secure Communication Protocol satistying Backward Compatibil-
ity,” Systems and Networks Communications, 2007. ICSNC 2007.

Second International Conference on , vol., No., pp. 43,43, Aug.
25-31, 2007 .*

* cited by examiner

U.S. Patent Nov. 25, 2014 Sheet 1 of 6 US 8.898.236 B2

10
T\ 16

18 22
Version 1.1 | Version 1.0
null-terminated string strName = "Mark smith” 10-character string strName = "Mark Smith”
two-byte unsigned integer IPulse = 122 two-byte unsighed integer IPulse = 0
ohe-byte unsigned integer IAge = 79 two-byte unsigned integer 1IAge = 31,306
A
N T T 24
Serialized Data (v1.1) Serialized Data (v1.0)
~ 12 14~
. 4D61726B20536D69746800 4D61726B20536D697468
| — | =1
I | —1
—> 007A —» 0000 —>
o © :
S 4 4A TA4A 4
30 \
18 22
Version 1.1 | Version 1.0
null-terminated string strName = "Mark smith” 10-character string strName = "Mark omith”
two-byte unsigned integer IPulse = 122 two-byte unsighed integer IPulse = 122
one-byte unsigned integer IAge = 79 two-byte unsigned integer IAge = 79
~ 12 32 . 14~
< Preferred Version: 1.0
' —)
| — —=]
Serialized Data (v1.0) 34 _
o » cHl
4D61726B20536D697463
007A
004A

FIG. 2

U.S. Patent Nov. 25, 2014

40——m\‘

Sheet 2 of 6 US 8.898.236 B2

42
(START Y

N, B—————

PR

—FERRED V

IDENTIFY RECIPIENT VERSION INDICATOR REPRESENTING / 44
—RSION FORMAT THAT |S PREFERRED BY
RECIPIENT

I

COMPARE RECIPIENT VERSION INDICATOR TO SENDER |~ 46
VERSION INDICATOR

48

DOES RECIPIENT VERSION
NO INDICATOR PRECEDE YES
SENDER VERSION

INDICATOR?
GENERATE DOWNCONVERTED INSTANCE
COMPRISING INSTANCE FORMATTED
90 — v ACCORDING TO PREFERRED VERSION
FORMAT
SEND INSTANCE TO RECIPIENT i — 54
SEND DOWNCONVERTED INSTANCE TO
REGIPIENT

(" END)/_56

FIG. 3

U.S. Patent

60———--\N

NO

Nov. 25, 2014

Sheet 3 of 6

START

SPECIFY TO SENDER A RECI
REPRESENTING PREFERRED VERSION

62

l

RECEIVE INSTANCE FROM S
VERSION INDICATOR

——

COMPARE SENDER V

IDENTIFY SENDER VERSION INDICATOR REPRESENTING
VERSION FORMAT OF INSTANCE

DO

=S SEND

ER VERSION
INDICATOR PRECEDE
RECIPIENT VERSION
INDICATOR?

GEN

US 8,898,236 B2

PIENT VERSION INDICATOR |/~ o4

=NDER HAVING SENDE / 66

//F—GB

“RSION INDICATOR TO RECIPIENT |/ 70
VERSION INDICATOR

YES

—RATE UPCONVER

COMPRISING INSTANCE FORMATTED
ACCORDING TO PREFERRED VERSION

=D INSTANCE

END

FIG. 4

76

U.S. Patent Nov. 25, 2014 Sheet 4 of 6 US 8.898.236 B2

80
Y
92
A A
90 90
DISK DISK
DISK ARRAY
94
NODE
82
84
N-MODULE D-MODULE
88
86
CLIENT CHING FABRIC
88
84
N-MODULE D-MODULE
82
NODE
94 92
DISK DISK
DISK ARRAY

FIG. 5

U.S. Patent Nov. 25, 2014 Sheet 5 of 6 US 8.898.236 B2

/ A
100 ~ / /

\
\ 01011010001010
104~ 10101011010101

\ 101101011100... \
\ \
x R x

COMPUTER
106 ~ INSTRUCTIONS

T T

A

— Y

-

0
Y

U.S. Patent Nov. 25, 2014 Sheet 6 of 6 US 8.898.236 B2

110“{

112

\ 120
STORAGE

122

OUTPUT DEVICE(S)

_—124

(INPUT DEVICE(S))

_—126

COMMUNICATION
CONNECTION(S)

PROCESSING
UNIT

MEMORY

118

IHI-——-—----—-——-———--__"

I 4
N\

f
\

128
- !
COMPUTING 130
DEVIGE

N

US 8,898,236 B2

1

AUTOMATED CONVERSION OF VERSIONED
DATA COLLECTIONS

BACKGROUND

In many computing scenarios, various components may
use an instance of a data collection, such as a class, a data
structure, or a database record. These data collections are
often stored and utilized according to a well-defined format
identifying the number, types, and properties of the elements
of the data collection (e.g., instances of a data structure may
be structured as a four-byte signed integer, e1ght one-bit Bool-
can values, and a ten-character string.) Such data collections
may also be shared among various components, such as
devices communicating over a network or processes comimu-
nicating through interprocess communication. The sharing
may oiten involve serializing the elements of the data collec-
tion in a manner that omits mnformation about the structure of
the elements represented therein, and simply comprises a
block of binary data. However, if the communicating compo-
nents have a mutual understanding of the structure of the data
collection, such instances may be exchanged and properly
handled even in the absence of structural metadata.

SUMMARY

This Summary 1s provided to introduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This Summary 1s not mtended to
identify key factors or essential features of the claimed sub-
ject matter, nor 1s 1t mntended to be used to limit the scope of
the claimed subject matter.

Although many computing scenarios involve a defined
structure of a particular data collection, the defined structure
may change over time. For example, a first version of an
application may define a structure of a data collection, but a
second version of the application may alter the definition, and
computers running different versions of the application may
then be unable to exchange instances of the data collection.
Some techniques for reducing such problems involve 1denti-
tying the structure of the elements as part of the data collec-
tion (e.g., the XML-based Simple Object Access Protocol
(SOAP)), but these techniques may undesirably increase the
s1ze of such instances and may cause inetficiency and reduced
computing performance.

An alternative technique for mediating the communication
ol instances of a variable data collection involves a versioning
of the data collection. A version 1dentifier (such as a version
number) may be associated with respective versions of the
data collection, such that instances of the data collection that
share a version 1dentifier may be expected to conform to the
structure of the data structure version. Two components shar-
ing an mstance of the data collection may then communicate
the versioning information of an instance, and the instance
may be converted to meet the structural definition of a pre-
terred version of the data collection. As a first example, if a
receiving component requests an instance of a versioned data
item but specifies a preference for an earlier structural ver-
s10n, the sending component may downconvert the data item
to the earlier structural version before sending it to the recerv-
ing component. As a second example, 1f a sending component
delivers an instance of a particular version that precedes a
version preferred by the recerving component, the recerving,
process may receive and upconvert the data item to the pre-
terred version. In this manner, the communicating compo-
nents may share structural version information about an
instance of a data collection as part of the communications

10

15

20

25

30

35

40

45

50

55

60

65

2

protocol, and the components may convert a particular rep-
resentation of the instance to meet the versioning preferences
of the components.

To the accomplishment of the foregoing and related ends,
the following description and annexed drawings set forth
certain 1illustrative aspects and implementations. These are
indicative of but a few of the various ways in which one or
more aspects may be employed. Other aspects, advantages,
and novel features of the disclosure will become apparent
from the following detailed description when considered 1n
conjunction with the annexed drawings.

DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an1llustration of an exemplary scenario involving
an exchange of a data collection among two machines.

FIG. 2 1s an 1illustration of another exemplary scenario
involving an exchange of a data collection among two
machines.

FIG. 3 1s a flow chart 1llustrating an exemplary method of
versioning an instance of a data collection comprising a
sender version indicator in response to a request by a recipi-
ent.

FIG. 4 1s a flow chart 1llustrating an exemplary method of
receiving from a sender an mstance of a data collection com-
prising a sender version indicator and formatted according to
a preferred version.

FIG. 5 1s an 1llustration of an exemplary cluster environ-
ment 1n which the techmques discussed herein may be uti-
lized.

FIG. 6 1s anillustration of an exemplary computer-readable
medium comprising processor-executable instructions con-
figured to embody one or more of the provisions set forth
herein.

FIG. 7 illustrates an exemplary computing environment
wherein one or more of the provisions set forth herein may be
implemented.

DETAILED DESCRIPTION

The claimed subject matter 1s now described with reference
to the drawings, wherein like reference numerals are used to
refer to like elements throughout. In the following descrip-
tion, for purposes of explanation, numerous specific details
are set forth 1n order to provide a thorough understanding of
the claimed subject matter. It may be evident, however, that
the claimed subject matter may be practiced without these
specific details. In other instances, structures and devices are
shown 1n block diagram form 1n order to facilitate describing
the claimed subject matter.

Many computing scenarios involve an exchange of data
among two or more components, such as machines or devices
that communicate across a network and processes 1n an oper-
ating environment that communicate through interprocess
communication. This communication oiten involves an
exchange of a data collection comprising a set of well-for-
matted data items, such as a database comprising records
having particular attributes; a structure comprising primitive
data types (e.g., an integer, a Boolean value, and a string); and
a class encapsulating various member fields, methods, inter-
faces, etc.

The communicating components may share an under-
standing of the structure of the data collection. For example,
an application or program defining a particular structure may
operate on two machines that exchange instances of the struc-
ture. It will be appreciated that the “structure” of the data
collection may be viewed as a blueprint, layout, arrangement,

US 8,898,236 B2

3

etc. foraparticular type of data item, whereas an “instance” of
the structure may be viewed as a specific data item or occur-
rence of the data collection that 1s organized 1n a particular
manner, generally coincident with the layout of the structure.
Many instances of the structure may concurrently or consecu-
tively exist, and while two or more 1nstances may contain
different data, the data within the instances may be similarly
organized according to the structure. The shared understand-
ing of the structure of the data collection may be significant to
the capacity of the components to communicate, because the
structure may not be apparent from the contents of the data
collection. As one example, an 1instance of a structure totaling
32 bytes of data might comprise four 64-bit long integers, or
cight 32-bit integers, or 256 Boolean values. Moreover, a
one-byte number might represent a signed value between
—1277 and 128 or an unsigned value between 0 and 256, efc.
Because the data comprising a data collection may be con-
strued as representing many sets of data items, accurate com-
munication among various components may significantly
depend on the shared understanding of the structural seman-
tics of exchanged data collections.

However, as the information systems comprising such data
collections evolve, the structure of a data collection may
change. For example, the structure of records 1n a database
may change as a database administrator alters the structure of
database, and the structure of instances of a class may change
as a programmer creates new versions of an application.
Thus, a data collection (such as a data structure) may be
structured in several versions that differ 1n various ways, such
as by adding or removing data items, reordering the represen-
tation of the data 1tems in the data collection, and/or modify-
ing the format of particular data 1tems. Moreover, 1t may not
be possible or even desirable to unily all instances and rep-
resentations according the most recent structural version;
¢.g., infercommunicating components may be executing dii-
terent versions of an application that store instances of a data
collection 1n different formats, and/or may operate on stored
instances of the data collection that are variably formatted
according to different versions of the data collection.

This vanation may cause difficulties among components
that exchange an instance of the data item, because a receiv-
ing component may not recognize a particular structural ver-
s10n of the data collection that the sending component chose
for structuring the instance. In some cases, the receiving
component may simply not understand the data collection
(c.g., where a 32-byte data collection 1s expected but a
36-byte data collection 1s recerved.) In other cases, the receiv-
ing component may misinterpret the data structure (e.g.,
where the sending component has structured an 1nstance as
eight unsigned integers, but the receiving component handles
the instances as eight signed integers), and may even be
unable to detect that 1ts understanding of the data collection 1s
incorrect. In still other cases, the variation may cause signifi-
cant operating problems for one or more components (e.g.,
where a larger-than-expected 1nstance of the data collection
causes a bulfer overrun in the recerving component, or where
a misread pointer value in the data collection causes a
memory access fault.)

FI1G. 1 1llustrates a first exemplary scenario 10 in which the
variable versioning of an instance of a data structure may
create an operating difficulty. In this exemplary scenario 10,
two computers acting as a sender 12 and a recipient 14
exchange an instance 16 of a data collection representing a
medical record of an individual named Joe Smith with an age
ol 79 years and a pulse of 122 beats per minute. The sender 12
stores a representation of the mstance 16 according to a first
version 18 (“version 1.17"), wherein the name of the individual

10

15

20

25

30

35

40

45

50

55

60

65

4

1s represented as a variable-length, null-terminated string; the
pulse of the individual 1s represented as a two-byte unsigned
integer; and the age of the individual 1s represented as a
one-byte unsigned integer. The sender 12 receives a request
from the recipient 14 for the mnstance 16 of the data collection,
and responds by generating a first serialization 20 of the
instance 16 based on the formatting of the data items specified
by the first version of the instance 16. (For example, 1f the
network connection between the sender 12 and the recipient
14 may permit data to be transmitted only one item at a time,
the formatting specified by the version of the instance 16 may
indicate the order and arrangement in which elements of the
instance 16 are to be sent. Accordingly, when the recipient 14
requests an instance 16 according to a version that specifies
the manner of serializing the instance 16, the sender 12 may
generate an appropriately arranged representation of the
istance 16 for delivery to the recipient 14.) The first serial-
ization 20 1s then transmitted (e.g., over a network) to the
recipient 14, which deserializes the instance 16 for use. How-
ever, the recipient 14 1s programmed to accept such instances
16 according to a second version 22 of the data collection
(““version 1.0,” representing an earlier version), wherein the
name 1s represented only as a ten-character fixed-size butfer,
and wherein both the pulse and the age of the individual are
represented as two-byte unsigned integers. The recipient 14
therefore handles the instance 16 according to a second seri-
alization 24 formatted according to the second version 22 of
the data collection. However, because the data 1s not correctly
represented 1n this second version 22, the resulting data for
the mstance 16 1s mncorrect—the age of the individual 1s now
indicated as 31,306 years, and the pulse of the individual 1s
listed as zero.

Many techniques may be available to anticipate variable
versioning of an exchanged data collection, and to adjust the
formatting of an instance in order to maintain an accurate
representation ol the data. The XML-based Simple Object
Access Protocol (SOAP) 1s one such technique, wherein the
representation of the data collection includes a large amount
of metadata that 1dentifies the number, sizes, types, proper-
ties, and ordering of the elements of the data collection.
However, the inclusion of metadata with an instance of the
item may result 1n a significant increase 1n the size of the
object. The increased size consequently consumes greater
network resources 1n transmitting the instance and greater
space 1n storing the instance, which may represent several
significant sources of melificiency (particularly where a large
number of instances exist 1n only a few structural versions of
the data collection.)

An alternative technique for exchanging versioned data
collections 1involves a communication of versioning informa-
tion among two or more communicating components while
sharing a data collection. In this technique, an mstance of a
data collection may be represented according to a native
version of the instance (1.e., the version of the data collection
in which the instance 1s currently represented and stored by
the sender 12.) When the sender and recipient exchange the
instance, the recipient may specily a preferred version of the
instance. If the preferred version 1s earlier than the native
version of the data collection, the sender may downconvert
the data collection to the earlier version before sending 1t to
the recipient. Conversely, 11 the preferred version is later than
the native version of the data collection, the sender may send
the data collection in the native version, and the recipient may
upconvert the instance to the preferred version upon recerving
the instance. In this manner, the sender and recipient may
cooperate to establish a conveyance of the instance to the
recipient according to the preferred version.

US 8,898,236 B2

S

FIG. 2 illustrates an exemplary scenario 30 involving this
alternative technique for exchanging instances 16 of the data
collection between the sender 12 and the recipient 14. The
sender 12 again stores the instance 16 according to a first
version 18 (the native version), and the recipient 14 prefers a
representation of the mstance 16 according to a second ver-
sion 22 of the data collection. If the sender 12 intends to
deliver the instance 16 to the recipient 14 over a communica-
tions channel (e.g., via fiber-optic, co-axial, wireless, eftc.
network connection), the sender 12 *“serializes” the instance
16 into a serialized representation that 1s suitable for trans-
mission over the communications channel. For example, 1
the instance 16 contains a set of members, the serialized
version may place the members 1n a particular order, and may
specily the name and type of each member so that they can be
transmitted 1n this serialized order. If the mnstance 16 contains
references to local resources (such as other objects) that are
locally available to the sender 12, the serialized version may
specily these references with additional information that the
recipient 14 may use to access the resources on the sender 12.
The serialized representation of the instance 16 may be pre-
pared and delivered over the communications channel to the
recipient 14, which may then “deserialize™ the istance 16
into a version that 1s usable on the recipient 14.

Before the instance 16 1s serialized and delivered, the
recipient 14 specifies to the sender 12 a recipient version
indicator 32 that indicates the second version 22 as a preferred
version of the instance 16 that 1s preferred by the recipient 14.
The sender 12 compares the recipient version indicator 32
with the native version of instance 16 and determines that the
preferred version 1s earlier than the native version. The sender
12 therefore generates a converted data collection formatted
according to the second version 22, and sends a preferred
serialization 34 to the recipient 14. The recipient 14 may then
handle the 1nstance 16 according to the formatting specified
by the second version 22, which 1s consistent with the infor-
mation represented in the first version 18 1 which the
instance 16 1s natively represented. Conversely (though not
illustrated 1n F1G. 2), 11 the comparison had indicated that the
preferred version were later than the native version of the
instance 16, the sender 12 may have sent the first serialization
20 formatted according to the first version 18 1n which the
instance 16 1s natively formatted, and the recipient 14 may
have upconverted the instance 16 to the preferred format upon
receipt. Thus, by communicating versioning information for
the 1mstance 16 as part of the wire protocol 1n sending and
receiving such data collections, the sender 12 and recipient 14
cooperate to improve the accurate representation and use of
the data represented therein.

FI1G. 3 1llustrates a first embodiment embodying the tech-
niques illustrated in FIG. 2, comprising an exemplary method
40 of versioning an mstance 16 of a data collection compris-
ing a sender version indicator in response to a request by a
recipient 14. A sender 12 may utilize this exemplary method
40 to promote delivery of a preferred version of the instance
16 of the data collection, such as where the recipient prefers
(e.g., 1s merely equipped to handle) an earlier version of the
instance 16 of the data collection. The exemplary method 40
begins at 42 and involves 1dentifying 44 a recipient version
indicator representing a preferred version that is preferred by
the recipient. The recipient version indicator may, for
example, indicate that the recipient 1s merely equipped to
handle versions 2.0 or lower/earlier. The exemplary method
40 also involves comparing 46 the recipient version indicator
to the sender version idicator. I the recipient version indi-
cator does not precede the sender version indicator, the exem-
plary method 40 branches at 48 and mvolves sending 50 the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

instance 16 to the recipient 14. However, i the recipient
version indicator precedes the sender version indicator, the
exemplary method 40 branches at 48 and involves generating
52 a downconverted instance comprising the instance 16 that
1s formatted according to the preferred version, and sending
54 the downconverted instance to the recipient 14. After
either sending 50 the instance 16 to the recipient 14 or sending
54 the downconverted 1instance to the recipient 14, the exem-
plary method 40 promotes the representation of the instance
16 to the recipient 14 according to a preferred version, and so
ends at 56.

FIG. 4 1llustrates a second embodiment of the techniques
illustrated 1n FIG. 2, comprising an exemplary method 60 of
receiving from a sender 12 an instance 16 of a data collection
comprising a sender version indicator and formatted accord-
ing to a preferred version. This exemplary method 60 may be
utilized by a recipient 14 1 promoting a receiving of the
instance 16 1n a preferred format. The exemplary method 60
begins at 62 and involves specitying 64 to the sender 14 a
recipient version indicator representing the preferred version.
The exemplary method 60 also mvolves receiving 66 the
instance 16 from the sender 14 having a sender version 1ndi-
cator. The exemplary method 60 also involves 1dentifying 68
a sender version indicator representing a version of the
instance 16, and comparing 70 the sender version indicator to
a recipient version indicator. I the sender version indicator
precedes the recipient version indicator, the exemplary
method 60 branches at 72 and involves generating 74 an
upconverted nstance comprising the instance 16 formatted
according to the preferred version, after which the exemplary
method 60 ends at 76. However, 1t the sender version indica-
tor does not precede the recipient version indicator, the exem-
plary method 60 branches at 72 and then ends at 76. In this
manner, the exemplary method 60 may be utilized to promote
a recerving of the mnstance 16 by the recipient 14 1n a repre-
sentation formatted according to the preferred version.

The techniques discussed herein may be devised with
variations in many aspects, and some variations may present
additional advantages and/or reduce disadvantages with
respect to other variations of these and other techniques.
Moreover, some variations may be implemented 1n combina-
tion, and some combinations may feature additional advan-
tages and/or reduced disadvantages through synergistic coop-
cration. The variations may be incorporated in various
embodiments (e.g., the exemplary method 40 of FIG. 3 and
the exemplary method 60 of FIG. 4) to confer individual
and/or synergistic advantages upon such embodiments.

A first aspect that may vary among embodiments of these
techniques relates to the scenarios 1n which the techniques
may be utilized. As a first example, the components that
cooperate 1n communicating the format may comprise many
types of components, such as (e.g.) two devices or computers
communicating over a network or direct connection 1n a
server/client and/or a peer-to-peer arrangement; two hard-
ware devices communicating within a machine over a bus;
two processes executing two different versions of an applica-
tion (each application version defining a different structure
for a data collection); etc. As a second example, the sending
and receiving of the instance may be performed in many
ways, such as a serialization, serial transmission, and deseri-
alization of the mstance (discussed above); a parallel delivery
involving a parallel transmission of various items of the
instance; an on-demand delivery of various members upon
request of the recipient; etc. As a third example, the commu-
nication between the sender and the recipient may ivolve
many elements (such as a physical layer, wherein the sender
and recipient cooperate to exchange bitwise data 1n a reliable

US 8,898,236 B2

7

manner; a transport layer, wherein the sender and recipient
cooperatively arrange to assemble exchanged data 1n a reli-
able manner with error correction; and an application layer,
wherein the sender and recipient agree to use exchanged data
in a particular manner that suits a particular application.) The
techniques discussed herein may be implemented in many
such layers, such as 1n a physical device (e.g., a network
adapter configured to exchange versioned 1nstances), a com-
munication protocol (e.g., a network layer implemented 1n a
computer to permit applications to establish communications
sessions of a particular type), and/or an application that
involves exchanging instances of versioned data collections.
As a fourth example, the sender and/or recipient may store
data relating to these techniques (such as a representation of
an 1nstance of the data collection, or version indicators that
are preferred or supported by each other) in many ways, such
as (e.g.) m volatile system memory, on a hard disk drive, or on
an optical disc. While various storage devices and techniques
may have relative advantages or disadvantages 1n comparison
with other storage devices and techniques, the sender and
recipient may utilize any suitable manner of storing such data
while implementing the techniques discussed herein.

As a fifth example of this first aspect, the exchange of the
instance may arise 1l many scenarios, such as a recerver
requesting the specific mstance from the sender; the receiver
requesting all mstances of a particular data collection from
the sender; the client accepting any type of data from the
sender, which happens to include the instance of the data
collection; etc. As a sixth example, many types of data col-
lections may also be mvolved 1n the application of these
techniques, such as instances of data structures comprising
primitive element types; mnstances of a class comprising vari-
ous member fields, methods, interfaces, etc.; and records of a
database table that has been altered to embody a varying
structure among different versions of the database table. As a
seventh example, the preference specified by the recerver may
be based on many types of criteria; e.g., the preference may
represent the latest version of the data collection known to the
recipient, a version that the recipient 1s better able to handle
than other versions, etc. Those of ordinary skill in the art may
devise many variations among these and many other aspects
of the scenarios 1n which the techniques described herein may
be utilized.

A second aspect that may vary among implementations of
these techniques relates to the manner of specifying the ver-
s10n 1ndicators for respective instances of the data collection.
As a first example, the version indicators may be specified,
ordered, and compared in many manners, such as an integer
representation (“version 1”7 as earlier than “version 27), a
floating-point number representation (“version 1.1.1” as ear-
lier than “version 1.1.27), a date representation (“version
2008.12.31” as earlier than *“version 2008.11.307), etc. As a
second example, the version indicators may be associated
with an mstance of the data collection 1n many ways. In one
such embodiment, the version indicator may be stored as an
item of the data collection. For example, an instance of a
Medical Record class may include a version indicator mem-
ber indicating the version of the instance 16 (e.g., as the first
member of the instance, or as part of a wrapper of the
instance.) The sender 12 and receiver 14 may reference the
particular structural version of the Medical Record class indi-
cated by the version indicator member 1n order to convert,
transmit, and receive the mstance (e.g., in order to determine
how to serialize and/or deserialize the instance.) Alternatively
or additionally, the version indicators may also be specified
for the mstances of a data collection that are exchanged or
preferred by a particular component; e.g., the version indica-

10

15

20

25

30

35

40

45

50

55

60

65

8

tor may be associated with a process to 1dentity the version of
an application executing therein and the versions of the data
collection that the process 1s capable of exchanging. For
example, the instance 16 may be represented during a com-
munication session with a recipient, such as when a web
browser connects to a webserver to request some 1tems com-
prising a web page, and the server and client may communi-
cate information about versions of such items during the
period of web service. In such scenarios, the recipient 14 may
send the recipient version indicator while establishing the
communication session (e.g., during a communication ses-
s1on handshake.) Upon receiving the recipient version indi-
cator from the recipient 14, the sender 12 may store the
recipient version indicator; and while sending an instance 16
of the data collection to the recipient 14, the sender 12 may
identifving the recipient version indicator by retrieving the
stored recipient version indicator. Alternatively or addition-
ally, the recipient version indicator may by specified with a
request for the mstance 16 1ssued by the recipient 14, and the
sender 12 may 1dentity the recipient version indicator before
sending the nstance 16 by referencing the recipient version
indicator specified 1n the request. Conversely, the sender 12
may also specity the sender version indicator in a similar
manner, €.g., upon recerving a request for an instance 16
accessible to the sender 12, or during the establishing of the
communication session. Those of ordinary skill in the art may
devise many ways of specilying and communicating version
indicators of various instances 16 of data collections while
implementing the techniques discussed herein.

A third aspect that may vary among implementations of
these techniques relates to the organization of the process for
converting an mstance 16 of a data collection during either a
downconversion to an earlier version of the data collection or
an upconversion to a later version of the data collection. As a
first example, the converting may be achieved through many
conversion mechanisms. In one such embodiment, the con-
verting may be implemented 1n a method that generally con-
verts 1nstances of an arbitrary version (x) directly to an arbi-
trary version (y). In a second embodiment, the converting
may be achieved through a set of methods that convert form a
specific version (X) to a specific version (y), and may be
chained together for other conversions (e.g., converting from
version 1 to version 3 by utilizing 1n series a Convertl To2()
method and a Conver2To3() method.) This embodiment
might be devised, e.g., as a set of methods that convert from
any version to a common version, and then convert from the
common version to any other version. In a fourth embodi-
ment, the converting may be included as part of a method of
serializing and/or desernalizing instances 16 of the data col-
lection according to a version indicator specified by a sender
12 and/or arecipient 14. In a fifth embodiment, the converting
may be achieved through the application of a transformation
descriptor, which may declaratively specily the types, prop-
erties, and organization of the 1tems in an instance of the data
collection formatted according to a particular version.

A specific scenario 1n which the factoring of the converting
may be relevant involves a sequence of versions of the data
collection 1n an application, wherein a process that 1s execut-
ing a particular version of the application may be able to
exchange data structures defined 1n that version of the appli-
cation and all prior versions, but not subsequent versions. The
application may therefore include a function for upconverting
carlier versions ol an mnstance to the current version of the
instance, and for downconverting the current version of an
instance to an earlier version of the instance, but cannot
convert instances to or from versions defined 1n later versions
of the application (1.e., the application 1s backwards-compat-

US 8,898,236 B2

9

ible but not forwards-compatible.) Two processes that are
executing different versions of the application may therefore
utilize the techniques discussed herein to establish exchanges
of such stances that both processes may utilize. For
example, 1T a sending process determines thatit 1s using a later
version of the application (and data collection) than a recipi-
ent process, 1t may utilize the exemplary method 40 of FIG. 3
to downconvert the instance to the current version used by the
recipient process prior to sending the instance. On the other
hand, 11 the sending process determines that it 1s using an
carlier version of the application (and data collection) than the
recipient process, 1t may send 1ts current (native) version of
the mstances, and the recipient process may upconvert the
instances to the current (later) version used by the recipient
process upon receiving the instances. In this manner, a com-
patible exchange of the versioned instances may be promoted
as part of the wire protocol whereby the processes commu-
nicate. This example illustrates but one scenario wherein
these techniques may be factored and applied, but those of
ordinary skill 1n the art may choose among many factorings
for achieving the converting while implementing the tech-
niques discussed herein.

A fourth aspect that may vary among implementations of
these techniques relates to the particular manner in which an
instance 16 may be converted. As one such example, the
converting may reorder and reorganize the data in a binary
representation of the instance 16, e.g., by operating on a
bytewise view of the mnstance 16. Alternatively or addition-
ally, where the istance comprises at least one member and
where the preferred version specifies a representation format
of the at least one member, the converting may involve trans-
lating respective members of the instance to the representa-
tion format of the member 1n the preferred version. This
variation may apply a memberwise conversion that translates
cach member of the mstance to the format of the member 1n
the preferred version. For example, in FIG. 2, the converting,
may involve converting the strName element from the vari-
able-length, null-terminated string specified in the first ver-
s1on 18 to the fixed-length, 10-character string specified in the
second version 22 and converting the 1Age element from the
one-byte unsigned integer format specified 1n the first version
18 to the two-byte unsigned integer format specified in the
second version 22 (while leaving intact the representation of
the 1Pulse element that 1s similarly represented in the first
version 18 and the second version 22.) This memberwise
converting may involve reordering elements, e.g., where the
order in which various members are serialized differs among
versions of the data collection. This memberwise converting,
may also involve resizing blocks of memory. For example,
where a member of an 1instance 16 comprising an array of an
array size, and where the preferred version of the instance 16
specifies a preferred version array size that differs from the
array size, the converting may involve resizing the array to a
preferred version array sized according to the preferred ver-
s10n array size. The converting may also mvolve omitting a
member from the converted instance that 1s not included in the
format specified by the preterred version, and/or 1nserting a
member that 1s included 1n the format specified by the pre-
terred version but that 1s not included 1n the native format of
the 1nstance. A newly mserted member may also be inserted,
¢.g., with a default value, and/or by 1mvoking a default con-
structor for the new member. Those of ordinary skill 1n the art
may devise many ways ol converting instances ol a data
collection while implementing the techniques discussed
herein.

FIG. § illustrates a scenario wherein the techniques dis-
cussed herein may be embodied, comprising an exemplary

10

15

20

25

30

35

40

45

50

55

60

65

10

cluster environment 80 of interconnected nodes 94 config-
ured to provide data storage services, wherein a virtual user
interface failover scheme as provided herein can be imple-
mented. The respective nodes 94 generally comprise, e.g., a
network element 82 (N-Module) and a disk element 84
(D-Module), where at least some of these elements 82, 84
may be comprised within memory of a node. The disk ele-
ments 84 1n the 1llustrated example are coupled to one or more
storage devices, such as disks 90 of adisk array 92. Such disks
90 may implement data storage on any suitable type of stor-
age media, such as optical, magnetic, electronic and/or elec-
tromechanical storage devices, for example. It may be appre-
ciated that while there are an equal number of network 82 and
disk 84 modules depicted in the illustrated example, there
may be differing numbers of these elements. For example,
there may not be a one-to-one correspondence between the
network 82 and disk 84 modules i the different nodes 94.
Similarly, while merely two nodes 94 are 1llustrated in the
example depicted 1n FIG. S, such a cluster 80 can comprise
any suitable number of nodes to provide desired storage ser-
vices (e.g., n nodes, where n 1s a positive integer). The disk
clements 84 may be configured to facilitate accessing data on
the disks 90 of the arrays 92, while the network elements 82
are configured to facilitate connection to one or more client
devices 86 (e.g., one or more general purpose computers) as
well as interconnection between different nodes. Connection
to one or more clients 86 may occur via an Ethernet and/or
Fibre Channel (FC) computer network 88, for example, while
interconnection between different nodes may occur via a
cluster switching fabric 114 (e.g., a Gigabit Ethernet switch).

The exemplary cluster 80 illustrated i FIG. 5§ 1s an
example of an embodiment where the techniques and sys-
tems, described herein, may be implemented. For example,
the modules 82 and 84 may communicate with a distributed
transactional database (DTDB), for example, stored in the
disk array 92 of respective nodes 94 in the cluster 80. In this
example, the modules 82 and 84 may be used to coordinate
communication with instances of the DTDB on respective
nodes 94 1n the cluster 80. The modules 82 and 84 may be
configured to store, exchange, and use representations of a
DTDB 1n different versions, and to exchange representations
or portions thereof 1n different formats. Thus, one or both of
the modules 82, 84 may be configured to upconvert or down-
convert representations of the DTDB or portions thereof 1n
order to provide a version that the other module 1s capable of
processing, and may utilize the techniques discussed herein to
achieve such conversion. It may be appreciated that compo-
nents, features, elements, etc. described herein that have func-
tionalities and/or aspects related to accessing data may be
comprised within and/or comprise one or more disk elements
84. Similarly, components, features, elements, etc. described
herein that have functionalities and/or aspects related to net-
working and/or communications may be comprised within
and/or comprise one or more network elements 82. It will also
be appreciated that such N and D modules are commercially
available from NetApp, Inc. of Sunnyvale, Calif.

Still another embodiment involves a computer-readable
medium comprising processor-executable instructions con-
figured to apply the techniques presented herein. An exem-
plary computer-readable medium that may be devised in
these ways 1s 1llustrated 1n FIG. 6, wherein the implementa-
tion 100 comprises a computer-readable medium 102 (e.g., a
CD-R, DVD-R, or a platter of a hard disk drive), on which 1s
encoded computer-readable data 104. This computer-read-
able data 104 1n turn comprises a set of computer instructions
106 configured to operate according to the principles set forth
herein. In one such embodiment, the processor-executable

US 8,898,236 B2

11

instructions 106 may be configured to perform a method of
versioning an instance of a data collection comprising a
sender version indicator, such as the exemplary method 40 of
FIG. 3, and/or a method of receiving from a sender an
instance of a data collection comprising a sender version
indicator and formatted according to a preferred version, such
as the exemplary method 60 of FIG. 4. Many such computer-
readable media may be devised by those of ordinary skill in
the art that are configured to operate 1n accordance with the

techniques presented herein.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

As used 1n this application, the terms “component,” “mod-
ule,” “system™, “interface”, and the like are generally
intended to refer to a computer-related entity, either hard-
ware, a combination of hardware and software, software, or
software 1n execution. For example, a component may be, but
1s not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a controller and the controller can be
a component. One or more components may reside within a
process and/or thread of execution and a component may be
localized on one computer and/or distributed between two or
more computers.

Furthermore, the claimed subject matter may be imple-
mented as a method, apparatus, or article of manufacture
using standard programming and/or engineering techniques
to produce solftware, firmware, hardware, or any combination
thereol to control a computer to implement the disclosed
subject matter. The term “article of manufacture” as used
herein 1s intended to encompass a computer program acces-
sible from any computer-readable device, carrier, or media.
Of course, those skilled 1n the art will recognize many modi-
fications may be made to this configuration without departing
from the scope or spirit of the claimed subject matter.

FI1G. 7 and the following discussion provide a brief, general
description of a suitable computing environment to 1imple-
ment embodiments of one or more of the provisions set forth
herein. The operating environment of FIG. 7 1s only one
example ol a suitable operating environment and i1s not
intended to suggest any limitation as to the scope of use or
functionality of the operating environment. Example comput-
ing devices include, but are not limited to, personal comput-
ers, server computers, hand-held or laptop devices, mobile
devices (such as mobile phones, Personal Digital Assistants
(PDAs), mediaplayers, and the like), multiprocessor systems,
consumer electronics, mini computers, mainframe comput-
ers, distributed computing environments that include any of
the above systems or devices, and the like.

Although not required, embodiments are described 1n the
general context of “computer readable instructions™ being
executed by one or more computing devices. Computer read-
able 1nstructions may be distributed via computer readable
media (discussed below). Computer readable instructions
may be implemented as program modules, such as functions,
objects, Application Programming Interfaces (APIs), data
structures, and the like, that perform particular tasks or imple-
ment particular abstract data types. Typically, the functional-
ity of the computer readable instructions may be combined or
distributed as desired in various environments.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 7 1llustrates an example of a system 110 comprising a
computing device 112 configured to implement one or more
embodiments provided herein. In one configuration, comput-
ing device 112 includes at least one processing unit 116 and
memory 118. Depending on the exact configuration and type
of computing device, memory 118 may be volatile (such as

RAM, for example), non-volatile (such as ROM, flash
memory, etc., for example) or some combination of the two.
This configuration 1s 1llustrated in FIG. 7 by dashed line 114.

In other embodiments, device 112 may include additional
features and/or functionality. For example, device 112 may
also include additional storage (e.g., removable and/or non-
removable) including, but not limited to, magnetic storage,
optical storage, and the like. Such additional storage 1s 1llus-
trated 1n FI1G. 7 by storage 120. In one embodiment, computer
readable instructions to implement one or more embodiments
provided herein may be in storage 120. Storage 120 may also
store other computer readable 1nstructions to implement an
operating system, an application program, and the like. Com-
puter readable 1nstructions may be loaded in memory 118 for
execution by processing unmt 116, for example.

The term “computer readable media” as used herein
includes computer storage media. Computer storage media
includes volatile and nonvolatile, removable and non-remov-
able media implemented 1n any method or technology for
storage of information such as computer readable instructions
or other data. Memory 118 and storage 120 are examples of
computer storage media. Computer storage media includes,
but is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, Digital Versatile Disks
(DVDs) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can be accessed by device
112. Any such computer storage media may be part of device
112.

Device 112 may also include communication
connection(s) 126 that allows device 112 to communicate
with other devices. Communication connection(s) 126 may
include, but 1s not limited to, a modem, a Network Interface
Card (NIC), an integrated network interface, a radio ire-
quency transmitter/recipient, an infrared port, a USB connec-
tion, or other interfaces for connecting computing device 112
to other computing devices. Communication connection(s)
126 may include a wired connection or a wireless connection.
Communication connection(s) 126 may transmit and/or
receive communication media.

The term “computer readable media” may include commu-
nication media. Communication media typically embodies
computer readable 1nstructions or other data 1n a “modulated
data signal” such as a carrier wave or other transport mecha-
nism and includes any information delivery media. The term
“modulated data signal” may include a signal that has one or
more of i1ts characteristics set or changed 1n such a manner as
to encode information 1n the signal.

Device 112 may include input device(s) 124 such as key-
board, mouse, pen, voice mput device, touch mput device,
inirared cameras, video mput devices, and/or any other input
device. Output device(s) 122 such as one or more displays,
speakers, printers, and/or any other output device may also be
included i1n device 112. Input device(s) 124 and output
device(s) 122 may be connected to device 112 via a wired
connection, wireless connection, or any combination thereof.
In one embodiment, an 1nput device or an output device from
another computing device may be used as input device(s) 124

or output device(s) 122 for computing device 112.

US 8,898,236 B2

13

Components of computing device 112 may be connected
by various interconnects, such as a bus. Such interconnects
may include a Peripheral Component Interconnect (PCI),
such as PCI Express, a Universal Serial Bus (USB), firewire
(IEEE 13114), an optical bus structure, and the like. In
another embodiment, components of computing device 112
may be mterconnected by a network. For example, memory
118 may be comprised of multiple physical memory units
located 1n different physical locations interconnected by a
network.

Those skilled 1n the art will realize that storage devices
utilized to store computer readable instructions may be dis-
tributed across a network. For example, a computing device
130 accessible via network 128 may store computer readable
instructions to implement one or more embodiments pro-
vided herein. Computing device 112 may access computing,
device 130 and download a part or all of the computer read-
able instructions for execution. Alternatively, computing
device 112 may download pieces of the computer readable
instructions, as needed, or some 1nstructions may be executed
at computing device 112 and some at computing device 130.

Various operations of embodiments are provided herein. In
one embodiment, one or more of the operations described
may constitute computer readable mnstructions stored on one
or more computer readable media, which 1f executed by a
computing device, will cause the computing device to per-
torm the operations described. The order 1n which some or all
ol the operations are described should not be construed as to
imply that these operations are necessarily order dependent.
Alternative ordering will be appreciated by one skilled in the
art having the benefit of this description. Further, 1t will be
understood that not all operations are necessarily present in
cach embodiment provided herein.

Moreover, the word “exemplary” 1s used herein to mean
serving as an example, instance, or 1llustration. Any aspect or
design described herein as “exemplary” 1s not necessarily to
be construed as advantageous over other aspects or designs.
Rather, use of the word exemplary i1s intended to present
concepts 1n a concrete fashion. As used 1n this application, the
term ““or” 1s intended to mean an 1inclusive “or” rather than an
exclusive “or”. That 1s, unless specified otherwise, or clear

from context, “X employs A or B” 1s intended to mean any of

the natural inclusive permutations. That 1s, 1f X employs A; X
employs B; or X employs both A and B, then “X employs A or
B” 1s satisfied under any of the foregoing instances. In addi-
tion, the articles “a” and “an” as used 1n this application and
the appended claims may generally be construed to mean
“one or more” unless specified otherwise or clear from con-
text to be directed to a singular form.

Also, although the disclosure has been shown and
described with respect to one or more implementations,
equivalent alterations and modifications will occur to others

skilled 1n the art based upon a reading and understanding of

this specification and the annexed drawings. The disclosure
includes all such modifications and alterations and 1s limited
only by the scope of the following claims. In particular regard
to the various functions performed by the above described
components (€.g., elements, resources, etc.), the terms used to
describe such components are intended to correspond, unless
otherwise indicated, to any component which performs the
specified function of the described component (e.g., that 1s
tfunctionally equivalent), even though not structurally equiva-
lent to the disclosed structure which performs the function 1in
the herein 1llustrated exemplary implementations of the dis-
closure. In addition, while a particular feature of the disclo-

sure may have been disclosed with respect to only one of

several implementations, such feature may be combined with

10

15

20

25

30

35

40

45

50

55

60

65

14

one or more other features of the other implementations as
may be desired and advantageous for any given or particular
application. Furthermore, to the extent that the terms
“includes™, “having”, “has”, “with”, or variants thereof are
used 1n erther the detailed description or the claims, such
terms are intended to be inclusive in a manner similar to the
term “comprising.”
What 1s claimed 1s:
1. A method of versioning an instance of a data collection,
comprising;
recerving a request from a recipient for an instance of a data
collection stored by a sender according to a sender ver-
sion 1ndicator, the instance represented during a com-
munication session with the recipient and the data col-
lection comprising a database record;
identifying, from the request, a recipient version indicator
representing a recipient preferred version of the data
collection, the 1dentifying comprising:
receiving the recipient version imndicator from the recipi-
ent while establishing the communication session
with the recipient;
storing the recipient version indicator; and
retrieving the stored recipient version indicator when the
request 1s subsequently received from the recipient;
comparing the sender version indicator with the recipient
version indicator;
responsive to the sender version indicator preceding the
recipient version indicator based upon the comparing,
sending the istance to the recipient for upconverting, by
the recipient, the instance to the recipient preferred ver-
sion; and
responsive to the recipient version indicator preceding the
sender version 1ndicator based upon the comparing and
the sender nothaving stored a second instance of the data
collection according to the recipient version indicator,
generating, by the sender, a downconverted 1nstance of
the data collection formatted according to the recipient
preferred version and sending the downconverted
instance to the recipient,
the generating a downconverted instance comprising:
changing an order of serialization of members of the
instance of the data collection; and
for respective members within at least one of the
instance of the data collection or the recipient pre-
terred version of the data collection:
responsive to a first member of the instance being
formatted according to a representation format of
the recipient preferred version,
providing the first member for sending as at least part of
the downconverted instance;
responsive to a second member of the instance being
formatted differently than the representation for-
mat of the recipient preferred version:
translating the second member to the representa-
tion format to generate a translated member, the
translating comprising at least one of:
reordering elements associated with the second
member; or
resizing blocks of memory associated with the
second member 11 an array size ol an array asso-
ciated with the second member differs from a
preferred version array size of the recipient pre-
terred version to resize the array to the preferred
version array S1ze;
serializing the translated member; and
providing the translated member for sending as at
least part of the downconverted 1nstance;

US 8,898,236 B2

15

responsive to a third member of the recipient pre-
terred version not being included 1n the instance:
generating a default member corresponding to the
third member, the default member having a
default value, and
providing the default member for sending as at least
part of the downconverted 1nstance; and
responsive to a fourth member of the instance not
being included 1n the recipient preferred version,
discarding the fourth member.

2. The method of claim 1, comprising;

serializing the first member.

3. The method of claim 1, comprising:

serializing the default member.

4. The method of claim 1, the generating a downconverted
instance comprising;

if the first member comprises an array of an array size that

1s different than a preferred version array size of the
recipient preferred version, resizing the array to the pre-
ferred version array size.

5. The method of claim 1, the recipient version indicator
specified with the request.

6. The method of claim 5, the retrieving comprising;:

retrieving the recipient version indicator specified in the

request.

7. The method of claim 1, the recipient version indicator
comprising an integer representation.

8. The method of claim 1, the recipient version indicator
comprising at least one of a floating-point number represen-
tation or a date representation.

9. A method of versionming an istance of a data collection,
comprising;

receiving a sender version imndicator from a sender while

establishing a communication session with the sender;
storing the sender version indicator;
receiving, at a recipient, an instance of a data collection
from the sender, the instance represented during the
communication session and formatted according to a
sender version represented by the sender version indica-
tor, the data collection comprising a database record;

retrieving the stored sender version indicator responsive to
the recelving an instance;

comparing the sender version indicator with a recipient

version 1indicator representing a recipient preferred ver-
sion of the data collection:

responsive to the sender version indicator preceding the

recipient version indicator, generating, by the recipient,
an upconverted instance of the data collection from the
instance,

the generating an upconverted instance comprising:

changing an order of serialization of members of the
instance of the data collection; and
for respective members within at least one of the
instance of the data collection received from the
sender or the recipient preferred version of the data
collection:
responsive to a first member of the instance being
formatted according to a representation format of
the recipient preferred version, including the first
member 1n the upconverted 1nstance;
responsive to a second member of the instance being
formatted differently than the representation for-
mat of the recipient preferred version:
translating the second member to the representa-
tion format to generate a translated member, the
translating comprising at least one of:

10

15

20

25

30

35

40

45

50

55

60

65

16

reordering elements associated with the second
member; or

resizing blocks of memory associated with the
second member 11 an array size of an array asso-
ciated with the second member differs from a
preferred version array size of the recipient pre-
ferred version to resize the array to the preferred
version array size; and

including the translated member 1n the upconverted
instance;

responsive to a third member of the recipient pre-
terred version not being mcluded 1n the mstance:
generating a default member corresponding to the
third member, the default member having a
default value, and
including the default member in the upconverted
instance; and
responsive to a fourth member of the instance not
being included 1n the recipient preferred version,
discarding the fourth member.

10. The method of claim 9, the generating an upconverted

instance comprising;

deserializing the first member.

11. The method of claim 9, the generating an upconverted

instance comprising:

11 the first member comprises an array of an array size that
1s different than a preferred version array size of the
recipient preferred version, resizing the array to the pre-
ferred version array size.

12. The method of claim 9, the generating an upconverted

istance comprising;

deserializing the second member.

13. The method of claim 9, the generating an upconverted

instance comprising;

deserializing the fourth member.

14. The method of claim 9, the receiving an 1nstance com-

prising:
recerving the mstance from the sender based upon a prior
request sent from the recipient to the sender.
15. A system, comprising:
one or more processing units; and
memory comprising instructions that when executed by at
least one of the one or more processing units perform a
method of versioning an instance of a data collection, the
method comprising:
receiving a sender version indicator from a sender while
establishing a communication session with the
sender:

storing the sender version indicator;

receiving, at a recipient, the mstance of the data collec-
tion from the sender, the mstance represented during
the commumnication session and formatted according
to a sender version represented by the sender version
indicator, the data collection comprising a database
record;

retrieving the stored sender version indicator responsive
to the recelving an instance;

comparing the sender version indicator with a recipient
version indicator representing a recipient preferred
version of the data collection;

responsive to the sender version indicator preceding the
recipient version indicator, generating an upconverted
instance of the data collection from the instance,

the generating an upconverted mstance comprising:
changing an order of serialization of members of the

instance of the data collection; and

US 8,898,236 B2
17

for respective members within at least one of the
instance of the data collection received from the
sender or the recipient preferred version of the data
collection:
responsive to a first member of the instance being

18

generating a default member corresponding to
the third member, the default member having a
default value, and

including the default member 1n the upconverted
instance; and

formatted according to a representation format
of the recipient preferred version, including the
first member 1n the upconverted instance;

responsive to a second member of the instance

responsive to a fourth member of the instance not
being included in the recipient preferred version,
discarding the fourth member.

16. The system of claim 13, the generating an upconverted
instance comprising:

being formatted differently than the representa- o deserializing the first member.

tion format of the recipient preferred version: 17. The system of claim 13, the generating an upconverted
translating the second member to the represen- instance comprising:

tation format to generate a translated member, 11 the first member comprises an array of an array size that
the translating comprising at least one of: s 1s different than a preferred version array size of the
reordering elements associated with the second recipient pljefer red version, resizing the array to the pre-
member: or ferred version array size.

resizing blocks of memory associated with the | 18. The system of claim 15, the generating an upconverted
second member 1f an array size ol an array asso- 1ns£anc§ clgmpr 1811111g: 1 N

ciated with the second member differs from a 20 eserializing the second member. .. ,
preferred version array size of the recipient pre- 19. The system of claim 15, the receiving an instance
terred version to resize the array to the preferred COIMPHSILg. , _
version array size; and recerving the instance from the sender based upon a prior
including the translated member in the upcon- request sent from t_he recipient 1o the_ sender.

verted instance s 20. The system of claim 15, the generating an upconverted

responsive to a third member of the recipient pre-

terred version not being included 1n the instance:

instance comprising: deserializing the fourth member.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

