US008898094B2

a2 United States Patent (10) Patent No.: US 8,898,094 B2
Ruehle 45) Date of Patent: Nov. 25, 2014
(54) NFA CHARACTER CLASS MATCHING 8,331,656 B2* 12/2012 Bakerccccooceeeiiin 382/159
8,331,657 B2* 12/2012 Bakercccceeeeiiinnn, 382/159
: : : T 8,347,384 B1* 1/2013 Prestonccoooeeeevriinnnnn, 726/23
(71) Appheant: LSI Corporation, Milpitas, CA (US) 8,386,530 B2* 22013 McMillen 707/802
: 8,392,174 B2* 3/2013 Cameron 704/9
(72) Inventor: Michael Ruehle, Albuquerque, NM (US) 8,396,295 B2* 3/2013 Gaoetal.ccoeeevvvrrenn, 382/187
8,448,249 B1* 5/2013 Prestoncccoooeveevriinnnnnn, 726/24
(73) Assignee: LSI Corporation, San Jose, CA (US) 8,688,436 B1* 4/2014 Budzinskicccooevrnnn.. 704/9
8,843,508 B2* 9/2014 Thorupetal. 707/769

(*) Notice: Subject. to any dlsclalmer,,. the term of this OTHER PURILICATIONS

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 283 days. High-Performance and Compact Architecture for Regular Expres-
sion Matching on FPGA, Yang, Y.-H.E. ; Prasanna, V.K. Computers,
(21) Appl. No.: 13/659,122 IEEE Transactions on vol. 61 , Issue: 7 DOI: 10.1109/TC.2011.129
Publication Year: 2012 , pp. 1013-1025.*
22) Filed: Oct. 24, 2012 NFA-Based Pattern Matching for Deep Packet Inspection, Yan Sun ;
) 2 & p
Valgent1, V.C. ; Min Sik Kim Computer Communications and Net-
(65) Prior Publication Data works (ICCCN), 2011 Proceedings of 20th International Conference
on DOI: 10.1109/ICCCN.2011.6006095 Publication Year: 2011 , pp.
US 2014/0114996 Al Apr. 24, 2014 1-6.7%

Min-Max: A Counter-Based Algorithm for Regular Expression
(51) Imt.CL Matching, Hao Wang ; Shi Pu ; Knezek, G. ; Jyh-Charn Liu Parallel
GOGF 15/18 (2006.01) and Distributed Systems, IEEE Transactions on vol. 24 , Issue: 1

(52) U.S.Cl DOI: 10.1109/TPDS.2012.116 Publication Year: 2013 , pp. 92-103.*

USPC e 706/12 * cited by examiner
(58) Field of Classification Search
None Primary Examiner — Michael B Holmes
See application file for complete search history.
(37) ABSTRACT
(56) References Cited Disclosed 1s method of matching a character class to a symbol
1S PATENT DOCUMENTS of an 1nput stream. A character class, or a plurality of char-
acter classes, 1s defined into an accessible format which when
7,024,511 B2* 4/2006 Ruehle 710/316 accessed 1s compared to a symbol 1n an mput stream. The
7,875,509 Bl: L/ 2011 Budzinski ... 704/9 format may be stored in an NFA array cell or 1t may be
5015208 B2 92011 MeMilen - 707791 Droadeastto the cell array with an input symbol for compar-
8,180,147 B2* 5/2012 Bakercccoeeiiinnnnn. 382/159 SO11.
8,190,738 B2* 5/2012 Ruehleiinl, 709/224
8,219,508 B2* 7/2012 McMillenetal. 706/12 16 Claims, 7 Drawing Sheets

Compiling the rules into an instruction
7| representation of an NFA with instructions ref-
S10 erencing the fixed, frequent and dictionary
CCLs

520
Yes Configuring instructions in cell array

o Making instructions available to the
540 cell array in a way to allow for configuring
cells on demand

~~—1 Populating, via the compiler, CCLs into a fre-
550 quent CCL table and/or a dictionary within the
NFA engine

ol
560 Feeding a stream of input symbols
into the cell array in sequence
—_— Using CCIL references from the
270 instructions to compare the symbols in the Returning o
input stream to corresponding information Comparison
from the CCL formats Stage to action
next symbol in
input s{eam
380 Reporting match information and 390
acting on the maich information

U.S. Patent Nov. 25, 2014 Sheet 1 of 7 US 8,898,094 B2

01234... 63

25510 \

100

Fig. 1

U.S. Patent

Nov. 25, 2014

220
230\ // 210

Hex BCL
[153:0]

BCF

NE CL
[19:18] 8]

' 10D-140 0

1 3 E} J_ F F

3 EI'J 3 F?

000-0FF
100
101
102
103
104

108
1059
1GA

10B
1GC

141 _LSA
200-2FF
300
01
302

341 351&

105-107° .0

[€]

Description

Sheet 2 of 7

US 8,898,094 B2

Motes

D T ﬂﬁta” |
Iﬁ"n’efSE tﬁble

literai byle
anything
EOL

- P

EQS

ik B0

WE-

WB+EOL
WB+EOP
WB +=Z QS

ﬁﬁﬁ??éETEEﬂWEd ,;ﬁﬁﬁﬁ&ﬁ&u
.1V caseless .
S ereserved R o

fable

inverse literal
empty class
dot

e [M‘ﬁ)]

(71

{ "\}t 00- Kx FF]

[fﬂaﬁa]

P - wes Tam AT ." B
-] - - . .. - - -
AR Tl tlara i -
1 'A.
B e L LA A T T
H .. . e oL,

T ""adr‘jress ; -

SA

matches one byte
always maltches
newline or EQS
end of packet
en::l of stream

GO wmwgfd bgundary T

EOL at word boundary
=0P at word boundary
EOS at word boundary

EOS? BE word bﬂunclaw

- LI R
St PIERY . I L Te e e
2 .":-a'll."..'.-."" Lo :.'..'"."'. ee s T e et e . R L L

P N T L L T I ST BT T

o m_mam m eaees e ewas ey e e .

-Il'h e 1" Illl - 1 T = AL -r P I N T -

Ca e T T LRI et S L

.~ L} -

A . o = 1

[B 0]

any byle excepi one
never matches

not newline

ﬂmﬁ’ D‘ﬂE TR

B I T T R A
Cah L T LR P . o ' Teomduta. ot otn oLt
. . . HE SR - I ' e
- T A te e = " P T R Rl I T MU L RCSRE B PR FE-T)
L 2 T ML T T
e e g i TS ST . P T [
TR '.|-'—- --IJ '.i'. -"m .'." .'.'..'. e e - . . N . . -
. - - =T e - .

80000
BFFFF

2-Char
caseless 2C
inverse 2G

iny. caseless 2C

[ab]
[aADbB]
[Aab]
[AaabB]

2C Matches Byte [7:01
or Alt [17:10], Byte > Alt

CQo00

FFFFF

WWWWRHRNNRNOCDODoOCCDOOELOOLOOIODOO OO

- OO S OO s L OO0 0 0O

range

caseless range
Inverse range
inv. caseless range

La-z]
[a-zA-Z]
[Aa-2z1
[Aa-zA-Z]

Range matches Byte [7:0]
to Alt {17:10], Byte < Alt

Fig. 2

U.S. Patent Nov. 25,2014 Sheet 3 of 7 US 8.898.094 B2

320

\Em
012345678... X

00010000 ...
11000000 ...

01000000 ...
11100001 ...

000000160 ...
10000100 ...
00001000 ...

10010000 ...
00100000 ...

O~ Oy B W O

20471 0 F\\\

300

Fig. 3

U.S. Patent Nov. 25, 2014 Sheet 4 of 7 US 8,898,094 B2

410
/

Hex Range DF Description EXample Notes
_GDGU Q3FF O OBt e Ef"*aA] Aw 10-bit h‘*ﬂe ClasS 0008 o

E}H-GKJ—-DFFF 1 Ful[Mask [a«-—z‘\xﬂ:] 25&-&:&[’: ma&k an}f reai class
1000-17FF 2 ASCH [0-9a-z] 128-bit mask for WO0-w/f and WB0-wif never malch
1800-1FFF 3 Neg. ASCH [A0-9a-z] 128kl mask for WO0D-uT, and b0t always match

Fig. 4

U.S. Patent Nov. 25, 2014 Sheet 5 of 7 US 8,898.094 B2

Compiling the rules into an instruction
~ representation of an NFA with instructions rei-
>10 erencing the fixed, frequent and dictionary |
CCLs

520 | —530
Arra
Statica}lfly Yes Configuring instructions 1n cell array <
Configured? L | |
No

Making instructions available to the

540 cell array in a way to allow for configuring
cells on demand ‘

| Fig. 5
/_,J Populating, via the compiler, CCLs into a fre-
550 | quent CCL table and/or a dictionary within the

NFA engine
~
560 Feeding a stream of input symbols
into the cell array 1n sequence
o Using CCL references from the
570 instructions to compare the symbols n the Returning 10
input stream to corresponding information Comparison
fl‘Dl‘Il the CCL fﬁrmats Stage to &Ction
next symbol in
- — R input stream
5 86/ Reporting match information and 590
acting on the match information

U.S. Patent Nov. 25,2014 Sheet 6 of 7 US 8.898.094 B2

650
\ 670
o e Y
630 sl prsditg \ T”tlle 642
\ \ — razek § rl:‘/ D /

620
660

Input

Strearm L ~ NE A Cedl ! *

S HE R T []
L Table NFA ,
_ NEM Col - ln:slﬂutt IR

- NI 2 Ol

WLt Syipl

665

sl canfga aben

640

G FLIPL , T el WL PP X TR bl

r Matehes

680

700

BCL 2 match o 3
"'LSJ:LE maoh T sew
allie
Celt /—' 730
Transition """Eﬁ‘g’ enip froquent
Lagic < A e
720 73 5\ | e o
b il melch ' Storage
BCL 1 maleh fixed SOL
fead oL N oo LAgIe ~
matih '
740 | 760 750
770 o e N oot el "
. _. L Mask
/’/ QLT Syl | R0k B
| 710 B!;Trf;tﬂ Selach | PP—
: ‘
1 | Dot
] T——
il
THREITRORIEYY IR VI
gk
pity MM

Fig. 7

U.S. Patent Nov. 25, 2014 Sheet 7 of 7 US 8,898.094 B2

Cell
Configuration

US 8,898,094 B2

1
NFA CHARACTER CLASS MATCHING

BACKGROUND OF THE INVENTION

With the maturation of computer and networking technol-
ogy, the volume and types of data transmitted on the various
networks have grown considerably. For example, symbols in
various formats may be used to represent data. These symbols
may be 1n textual forms, such as ASCII, EBCDIC, 8-bit
character sets or Unicode multi-byte characters, for example.
Data may also be stored and transmitted 1n specialized binary
formats representing executable code, sound, images, and
video, for example. Along with the growth 1n the volume and
types of data used 1n network communications, a need to
process, understand, and transform the data has also
increased. For example, the World Wide Web and the Internet
comprise thousands of gateways, routers, switches, bridges
and hubs that interconnect millions of computers. Informa-
tion 1s exchanged using numerous high level protocols like
SMTP, MIME, HT'TP and F'TP on top of low level protocols
like TCP, IP or MAP. Further, instructions in other languages
may be included with these standards, such as Java and Visual
Basic. As information is transported across a network, there
are numerous instances when information may be interpreted
to make routing decisions. Information may also be inter-
preted and acted on 1n other fashions. It 1s common for pro-
tocols to be organized in a manner resulting 1n protocol spe-
cific headers and unrestricted payloads. Subdivision of the
packet information ito packets and providing each packet
with a header may also occur. This enables the routing infor-
mation to be at a fixed location thus making it easy for routing,
hardware to find and interpret the information.

SUMMARY OF THE INVENTION

An embodiment of the invention may therefore comprise a
method of matching character classes (CCLs) from an NFA 1n
an NFA cell array, the method comprising encoding informa-
tion of at least one frequent CCL 1n a frequent CCL table,
accessing a location 1n the frequent CCL table indicated by an
input symbol, broadcasting the content of that location, which
1s a membership vector, to each cell in the NFA cell array,
broadcasting the input symbol to each cell in the NFA cell
array, and in an NFA cell, using the encoded frequent CCL to
select a bit in the membership vector, the bit indicating mem-
bership 1n the frequent CCL.

An embodiment of the invention may further comprise a
system of matching character classes (CCLs) from an NFA 1n
an NFA cell array, the system comprising a {frequent CCL
table, an mput stream comprising a plurality of mput sym-
bols, a loader enabled to receive NFA 1nstructions and con-
figure the NFA cells, and a plurality of NFA cells enabled to
receive information from the frequent CCL table, loader and
input stream, wherein the mput stream provides symbols to
the frequent CCL table and the NFA cells, the frequent CCL
table utilizes the mput symbol to access a membership vector,
the membership vector and symbols from the input stream are
broadcast to each cell in the NFA cell array, and a bit from the
membership vector 1s selected to determine membership 1n a

CCL.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a table representing a frequent CCL table.

FI1G. 2 15 a table of Byte Class (BCL) codes.

FIG. 3 1s a table representing a dictionary table for CCL
matching.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s a table for Dictionary Class (DCL) codes.

FIG. 5 1s a flow diagram of a method of character class
matching.

FIG. 6 1s a block diagram of a character class matching
system.

FIG. 7 1s a diagram of a cell for character class matching.

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

L1

With the increasing nature of the transmission of informa-
tion, there 1s an increasing need to be able to identify the
contents and nature of the information as it travels across
servers and networks. Once information arrives at a server,
having gone through all of the routing, processing and filter-
ing along the way, it 1s typically further processed. This
further processing necessarily needs to be high speed 1n
nature.

The first processing step that 1s typically required by pro-
tocols, filtering operations, and document type handlers 1s to
organize sequences of symbols into meamngiul, application
specific classifications. Different applications use different
terminology to describe this process. Text oriented applica-
tions typically call this type of processing lexical analysis.
Other applications that handle non-text or mixed data types
call the process pattern matching.

Performing lexical analysis or pattern matching 1s gener-
ally a computationally expensive step. This 1s because every
symbol of information needs to be examined and disposi-
tioned.

Regular expressions are well known 1n the prior art and are
used for pattern matching and lexical analysis. Regular
expressions provides a concise and flexible means for
“matching” string of text, such as particular characters,
words, or patterns ol characters. Abbreviations for “regular
expression’” mnclude “regex” and “regexp” and these abbre-
viations may be used throughout this specification inter-
changeably with each other and with the term “‘regular
expression”. A regular expression 1s written 1n a formal lan-
guage that can be iterpreted by a regular expression proces-
sor, which can be a program that examines text or other
characters in and 1dentifies parts that match the provided rules
of the regular expression. A regular expression 1n 1ts simplest
expression 1s a pattern. It 1s an expression that specifies a set
of strings

Examples of specifications that could be expressed 1n a
regular expression are as follows:

the sequence of characters “car’” appearing consecutively

1in any context, such as 1 “car”, “cartoon”, or “bicarbon-
ate”

the sequence of characters “car” occurring in that order

with other characters between them, such as in “Ice-
lander” or “chandler”

the word *“car” when 1t appears as an 1solated word

the word “‘car when preceded by the word “blue” or “red”

the word “‘car” when not preceded by the word “motor”

a dollar sign immediately followed by one or more digits,

and then optionally a period and exactly two more digits
(for example, “$100” or “$245.98”).
These sequences are simple and are mtended only for pur-
poses of example. Specifications of great complexity are con-
veyable by regular expressions, as well as by other types of
rule sets.

Regular expressions are used by many text editors, utilities,
and programming languages to search and manipulate text
based on patterns. Some of these languages, including Perl,
Ruby, AWK, and Tcl and may integrate regular expressions

US 8,898,094 B2

3

into the syntax of the core language 1itself. Other program-
ming languages like .NET languages, Java, and Python pro-
vide regular expressions through standard libraries.

Regular expressions, and other types of rulesets, typically
comprise terms and operators. A term may include a single
symbol or multiple symbols combined with operators. Terms
may also be recursive, so a single term may include multiple
terms combined by operators. In dealing with regular expres-
sions, three operations are defined, namely, juxtaposition,
disjunction, and closure. In more modern terms, these opera-
tions are referred to as concatenation, selection, and repeti-
tion, respectively. Concatenation 1s implicit; one term 1s fol-
lowed by another. Selection 1s represented by the logical OR
operator which may be signified by a symbol, such as ‘|’
When using the selection operator, either term to which the
operator applies will satisty the expression. Repetition 1s
represented by **’, which 1s often referred to as a Kleene star.
The Kleene star, or other repetition operator, specifies zero or
more occurrences of the term upon which it operates. Paren-
theses may also be used with regular expressions to group
terms. Description of certain other regular expression nomen-
clatures 1s provided below. It 1s understood that below pro-
vides a selection of nomenclatures and there may be more
such nomenclatures, depending on the ruleset utilized.

A “character class” or “symbol class™ 1s a set of characters
that will find a match 11 any one of the characters included in
the set matches. For example, the character class [A-ZO-
0#$%] matches any single character from A-7, 0-9, or the
characters ‘#°, ‘$’, and ‘%’. Similarly, the character class
[ac10u] matches any single character included in the specified
set of characters, 1.¢. any vowel 1n the English language. A
term of a regular expression may comprise character classes
in the same manner as symbols, 1.€. a single character class or
multiple character classes and/or symbols combined by
operators. Indeed, a symbol within a term may be considered
as a special case of a character class, e.g. the symbol ‘X’ 1s
equivalent to the character class [x].

A “‘umiversal character class” matches any characters in an
available character set. For example, a universal character
class may be represented using [\x00-\xFF] (assuming char-
acters are represented using 8 bits) or *..

A “negated character class” 1s a set of characters that will
find a match if any one of the characters not included 1n the set
matches. For example, the character class [aeiou] matches
any single character not 1n the character class [ae1ou].

To match regular expressions or similar pattern matching
rules, two main types of state machines may be constructed,
nondeterministic and determimstic finite automata (NFAs
and DFAs). NFAs for multiple rules are commonly executed
separately, either 1n a sequential manner as 1n software, or 1n
a parallel manner as 1n hardware.

Abstractly, an NFA 1s a directed graph of NFA states, 1n
which each graph edge 1s labeled with a class of input sym-
bols that 1t accepts, representing a transition from a source
state to a destination state on that symbol class. One or more
“start states”™ are understood to be “active” at the beginning of
a stream (or sequence) of mput symbols or characters. As
cach symbol 1n the stream 1s consumed, an active state may
transition to a destination state along a graph edge labeled
with a class containing that symbol, so that the destination
state becomes active after that symbol. The class of symbols
labeling an NFA transition may be called a character class, or
CCL, as discussed above. An NFA may be constructed to
match one or more regular expressions or similar rules, with
states and transitions corresponding to the rules such that
some state will be active 11 the input symbols so far consumed
form the beginning of a possible match to some rule. Each

10

15

20

25

30

35

40

45

50

55

60

65

4

rule corresponds to at least one special “accepting state,”
which becomes active when the rule has been completely
matched by the mnput symbols consumed. Typically, but not
umversally, CCLs labeling NFA transitions correspond to
CCLs and symbols appearing in the regular expressions
which the NFA was constructed to match.

Various distinct NFAs may generally be constructed to
match the same rule or set of rules. Such NFAs may have
different graphs, but still be functionally equivalent 1n the
sense that appropriate accepting states become active in each
equivalent NFA after consuming symbols matching any of the
rules. Also, NFA graphs may have “epsilon transitions™ or
“epsilons”, often drawn as graph edges labeled with a Greek
letter Epsilon (€) instead of a symbol class. Unlike ordinary
transitions, epsilon transitions are followed without consum-
ing any input symbol. Epsilons are useful for many algo-
rithms, but well known algorithms can transform any NFA
into an equivalent epsilon-free NFA.

Unlike 1n a DFA, a single NFA state may have multiple
out-transitions labeled with classes contaiming the same sym-
bol. When such a state 1s active, and such a common symbol
1s consumed, there are multiple out-transitions that could be
taken, and there 1s no fixed way to determine which transition
to take. This 1s the “non-determimistic” aspect of an NFA.
Depending on input symbols not yet consumed, one of these
possible transitions may lead to an accepting state while
another does not, so to detect all matches 1t 1s important to
take the right transition.

According to the “Thompson” method of executing NFAs,
as each mput symbol 1s consumed, all transitions from each
active sate, which are labeled with CCLs containing (or
“matching”) the symbol are taken together, potentially acti-
vating multiple destination states at once. A hardware NFA
engine may be constructed to execute NFAs avoiding to the
Thompson method. In such an engine, multiple NFA cells
exist as physical logic within a cell array, where each cell 1s
configured to track one or more NFA states derived from the
rules. The states tracked by a cell may be active or 1nactive,
and cells are able to signal to other cells and activate them,
such signals representing state transitions. The cell array 1s
initialized with start states active, and input symbols or infor-
mation corresponding to those symbols are broadcast to the
cells. Logic associated with each transition 1s configured to
detect the proper symbol class, and examines each input
symbol to determine 1f it belongs to the transition class.
Whenever a state 1s active and the next symbol matches a
transition class, a signal 1s sent to the destination cell. When-
ever an accepting state becomes active, a match is reported for
a corresponding rule.

The cell array may be statically configured with an entire
NFA before scanning an 1nput stream, such that every NFA
state 1s represented by some cell. Alternatively, according to
the methods of U.S. Pat. No. 7,899,904 to Ruehle, which 1s
hereby incorporated by reference 1n its entirety, cells may be
dynamically reconfigured on demand during a scan, so that
the cell array does not need to be large enough for the entire
NFA. The cell array only needs to be large enough for active
state subsets achieved during a scan. As taught 1n the 904
patent, 1t 1s advantageous for a single cell to represent more
complex sub-graphs of multiple NFA states. When a cell 1s
dynamically configured, signal connections are also config-
ured between the cell and 1ts destination and source states in
the cell array.

For any such hardware NFA engine comprising such a cell
array, whether statically or dynamically configured, it is
desirable to have low-cost comparison logic within each cell
to match whatever CCL 1s required for each state transition.

US 8,898,094 B2

S

As 1s understood 1n the art, a very large number of CCLs are
possible, such as 2°256 possible CCLs when the symbol
alphabet 1s the set of 8-bit byte values 0x00 to OxFF, and the
syntax of regular expression languages and other rule lan-
guages permit arbitrary CCLs to be used. The complexity of 5
utilized CCLs may not be known at the time the cell array 1s
designed. In some cell array architectures, each cell may
represent a sub-graph of multiple NFA states, so that multiple
transition CCLs must be tested by each cell. A system for
CCL matching by NFA cells may support independent arbi- 10
trary CCLs for each cell, support a large number of CCLs for

a Tull NFA, support many transition CCLs 1n each cell, have
low logic cost for each cell, and be able to be compactly
encoded 1n mstructions to configure each cell, and be autono-
mous such that each cell may match its CCLs quickly without 15
competing for any external resource.

In some methods, standard, commonly used CCLs may be
identified and hard-wired into the implementation of the cell
array. Instructions to configure each cell may contain refer-
ences to these standard CCLs. This can be inexpensive to 20
implement, but may not support rules that happen to use
different CCLs.

In some methods, each cell can be constructed to store a
limited quantity of symbols which 1ts transition(s) can match.
Transition logic can compare the next symbol with these 25
stored symbols. Cell transitions can match relatively simple
classes containing one symbol or a small number of symbols.

In some methods, the instructions to configure each cell
may contain full membership masks for each transition CCL,
such as a 256-bit mask for byte characters, which may be 30
stored 1n each cell. Although this may provide full coverage
for all CCLs used 1n a ruleset, 1t inefficiently utilizes system
resources at high cost.

Representing transition CCLs for NFA cells 1s disclosed
herein. In an embodiment of the invention, this may be done 35
by encoding a CCL 1n instructions to configure NFA cells,
storing CCL information in the cells and using the stored
information to compare the CCL with mput symbols 1s dis-
closed. A combination of the encoding, storing and using the
stored information provides strong functional coverage with 40
cost benefits.

In an embodiment of the invention, a limited number of
fixed CCLs may be defined. In an embodiment of the mven-
tion, a frequent CCL table may be used and information from
the table may be provided to the cell array. In an embodiment 45
of the ivention, a dictionary table may be used and informa-
tion from the table provided to the cell array. It 1s understood

that these embodiments may be used individually or 1n com-
bination—two or three.

The defining of the fixed CCLs may be at the time when the 50
NFA cell array 1s implemented. Implementing an NFA cell
array 1s understood in the art and may be either static or
dynamic as discussed above. These fixed CCLs may be later
referenced by corresponding fixed CCL codes. The fixed
CCLs are chosen to include common CCLs or types of CCLs 55
used in regular expressions or other rules in practice. The
encodings are chosen to be compact and comparable with
input symbols by low-cost cell logic.

Specific fixed CCLs may include one or more types. Fixed
CCLs may comprise a single character. These single charac- 60
ters may be encoded using a binary representation of a single
character, along with a short format code 1identitying the type.
Fixed CCLs may also comprise any two characters. Further,
fixed CCLs may comprise any range of characters from a
mimmum to a maximum position in a standard ordering of the 65
symbol alphabet. In an embodiment of the invention, these
may be encoded using binary representations of the two char-

6

acters, or the mimnimum and maximum characters along with
short format codes 1dentifying the type. Also, in an embodi-
ment of the mnvention, CCLs containing any single character
may be encoded with shorter codes than CCLs containing any
two characters or containing any range of characters. This
provides an eificiency 1n resource utilization.

Further, fixed CCL types discussed above may be modi-
fied, 1n an embodiment of the mvention, by single-bit code
flags made part of the fixed CCL encoding. One modilying
flag 1s Caseless (CL) and can have the effect that uppercase
and lowercase variants of the character(s) are included for any
character(s) in the base class where such variants may exist,
¢.g. alphabetic symbols. For example, the fixed single char-
acter CCL for [a] may be modified by CL to obtain [aA]. The
variant here being the capital letter. It 1s understood that this
also works 1n reverse, 1.e. for CCLJ[A], the CL would also
obtain [aA]. In similar fashion, for a multiple character fixed
CCL, the fixed two-character CCL for [aB] may be modified
by CL to obtain [abAB]. The fixed two-character CCL for
[AS5], as an example of a fixed CCL of a symbol with a variant
and a symbol without a variant may be modified by CL to
obtain [aAS5]. The fixed range CCL for [a-z] may be modified
by CL to obtain [a-zA-Z].

Another modifying flag 1s Negated (NE). This can have the
elfect of producing a symbol class which 1s the complement
of the modified base CCL, 1.e. 1t contains precisely the char-
acters not contained by the base CCL. For example, the two
character CCL for [aB] may be modified by NE to obtain
[aB]—the class containing every character except ‘a’ or ‘B”.

CL and NE flags may be used together. For example, the
two-character CCL for [aB] may be modified by NE and CL
to obtain ["abAB]—the class containing every character
except ‘a’, ‘b’, ‘A’, or ‘B’.

Further, in an embodiment of the invention, fixed CCL
codes may be advantageously defined to represent other com-
mon or generally usetul CCLs. Also, other test codes which
are not strictly symbol classes, such as position or anchor
tests, or tests matching meta-symbols such as End of Packet
(EOP) or End of Stream (EOS) markers which are not sym-
bols 1n the base symbol alphabet are possible. Such special-
1zed fixed CCLs (and other tests) may be encoded in the same
space as single-symbol CCLs by using a different sort format
code to indicate a special class, and encoding a unique 1index
for each special CCL 1n place of the encoded symbol.

In an embodiment of the invention, in conjunction with
fixed CCLs, or independently, a CCL method utilizes a con-
figurable table of arbitrary CCLs. This table may be pro-
grammed with CCLs used frequently 1n a given set of regular
expressions or other rules. This “frequent CCL” table may be
of only moderate size, for example N=32 or 64 CCLs.
Although N=32 or N=64 CCLs for a table size offers effi-
ciency and cost balance, 1t 1s understood that N=128 or larger
1s possible depending on cost and system usage requirements.
Reducing the number of supported CCLs may reduce cost,
but limit utility, whereas increasing the number of CCLs may
increase cost. The term “frequent” will be used throughout
this description to modify CCL and CCL table. It 1s under-
stood that “frequent”, as used, does not necessarily imply
frequency of use of the CCLs, or CCL tables, described.
Accordingly, a frequent CCL does not have more or less
frequency than a fixed or dictionary type CCL 1n a ruleset, or
in the NFA cell array. Rather, the term “frequent CCL” 1s used
to describe CCLs that are found 1n a CCL table, said table
being used to provide membership vectors to NFA cells for
match determinations with input symbols.

The frequent CCL table may be constructed such that each
possible mput symbol may be used to access a distinct loca-

US 8,898,094 B2

7

tion 1n the table, and each location contains an N-bit mem-
bership vector. The N-bit membership vector comprises one
bit for each supported CCL—where the bit1s 17 11 said input
symbol 1s a member of the corresponding class or ‘0’ other-
wise. The cell array may be constructed so that each input
symbol 1s used to access the frequent CCL table to obtain a
corresponding membership vector, and this vector 1s broad-
cast to all NFA cells along with the mput symbol. Then, any
cell configured to match one of the N Frequent CCLs for one
ol 1ts transition classes may test that CCL by simply accessing
the corresponding bit from the membership vector.

FIG. 1 1s a table representing a frequent CCL table. The
frequent CCL table 100 has N=64 columns 110 and 256 rows
120. As noted above, 1t 1s understood that the column 110
dimensions could vary depending on table size and type of
character representation. Accordingly, a plurality of CCLs
may populate the table 100 with one CCL 1n each column. For
instance, a {irst CCL will populate the table 100 at the column
0 location 1n each row. Each of bits 0 through 255 within this
column will constitute one bit of the CCL. CCLs 1 through 63
will complete the table population in like fashion. Each row of
the table 100 1s a 64 bit membership vector corresponding to
a particular symbol 1n the alphabet being used. For example,
using an ASCII alphabet, row 97 may be a membership vector
tor [a]. CCL table 100 1s accessed 1 row at a time. In opera-
tion, an mput symbol 1s used to access a corresponding row
120 1n the table 100. The corresponding membership vector1s
retrieved. The vector 1s broadcast to all of the cells with the
symbol.

Each row 1s 1 bit from each class. For example, the CCL
[a-z] lends 1tself to a suitable 1llustration. Of 256 byte values,
0 to 235, the [a-z] class contains the 26 bytes from 97 to
122—using ASCII encoding. Accordingly, this class can be
represented as a 256-bit mask. That mask will be represented
by one column 110 1n table 100. Bits will be indexed from O
to 255 where bits 97 through 122 are set to ‘1” and all other
bits are set to ‘0’. Each bit in this membership vector indicates
whether that particular symbol 1s a member of the corre-
sponding CCL. For example, and as mentioned 1n the para-
graph above, any particular tow, such as row 97 (which cor-
responds to [a] in ASCII) would indicate which CCLs that
symbol belonged to. It 1s understood that the symbol alphabet
could be the 128 ASCII characters, which are technically
7-bit symbols or it could be an extension of the set of byte
values, augmented with meta-characters such as markers for
the beginning or end of a file, stream, or packet.

The compiler will populate one column of the table for the
example CCL and each addition column for additional CCLs.
For the example used here, the vector will have a length of 64
bits. As 1s understood, this vector length may be modified by
having a frequent CCL table of a different size, N=32 or
N=128 for example. As each symbol of an input stream 1s
consumed, the input symbol indicates which row 1n the table
100 to use for CCL membership determinations. This corre-
sponding row will provide a 64 bit membership vector which
1s then broadcast to each cell in the NFA cell array. As noted
above, each input symbol will also be broadcastto each cell in
the array. Upon receiving the broadcasts, a test 1s made to
determine 11 the mput symbol 1s a member of a relevant CCL
by looking at appropriate bit locations 1n the membership
vector.

In an embodiment of the mvention, frequent CCL refer-
ences may be encoded 1n the same space as single-symbol
CCLs, by using a different short format code to indicate a
frequent CCL and encoding a unique index for each frequent
CCL 1n place of the encoded symbol, e.g. a number from 0 to
N-1. Frequent CCL references may utilize the NE flag

10

15

20

25

30

35

40

45

50

55

60

65

8

described above, so the complement of any CCL 1n the fre-
quent CCL table 1s also available.

Fixed CCLs and frequent CCLs, mn an embodiment,
described above can be encoded in short binary values. FIG.
2 15 a table of Byte Class (BCL) codes. The table 200 shows
available BCL types. As discussed elsewhere, each BCL code
1s tested directly against a data byte, 1ts position flags and 1ts
vector of class flags from the programmable table 100. Also
as noted, BCLs may be inexpensive and limited to simple
classes including a number (for example 64) programmable
classes. For the alphabet of characters comprising 8-bit byte
values 0x00 to OxFF, it 1s possible to represent single-charac-
ter fixed CCLs, special fixed CCLs and frequent CCL refer-
ences by 10-bit “BCL” (byte class) codes comprising an 8-bit
byte field, and a 1-bit CL 210 and NE 220 flags. Because only
a subset of the character values have uppercase and lowercase
variants (26 uppercase and 26 lowercase letters out of 256
byte values), the CL flag 210 can be overloaded to distinguish
single-character CCLs from special fixed CCLs and frequent
CCL references, which 1n turn may be distinguished by bit(s)
within the Byte field. Also, two-character and range fixed
CCLs for the 8-bit byte alphabet may be encoded in 20-bit
BCL codes comprising two 8-bit character fields (Byte and
Alt) plus CL and NE flags, plus an optional 2-bit format code
(BCF) 230, which distinguishes two-character codes
(BCF=2), range codes (BCF=3), and the shorter 1-bit codes
extended to 20 bits (BCF=0).

Throughout this description, the term “Byte Class Codes”™
1s used. It 1s understood that this term 1s not necessarily
limited to “bytes”. A “Byte Class” 1s understood to be a 20-bat
code, or other length, representing a common, or otherwise,
CCL. Codes may represent both fixed and programmable
classes. Byte Class Codes may be used 1n various instructions
for matching such NFA elements at spin, lookahead, and
sequence classes. Fach BCL may be split into Byte, Class
Flag, Negated Flag, Alt and BCF representations. Core BCLs
may be a 10-bit subset and may support literal bytes, caseless
bytes, end anchors, a small table of programmable classes,
and negations of these. Full BCLs may be 20-bit codes.

In an embodiment of the invention, these 20-bit BCLs may
also be represented 1n only 18 bits, with the BCF field omaitted
and using an extra technique ivolving the comparative 8-bit
Byte and Alt fields. Byte=Alt implies BCF=0, noting that
2-character and range CCLs never require identical Byte and
Alt. Otherwise, Byte <Alt implies BCF=3, a range CCL from
minimum=Byte to Maximum=Alt. Otherwise, Byte >Alt
implies BCF=2, a two-character CCL matching Byte or Alt.

10-bit and 18/20-bit BCL codes are sulliciently compact
CCL representations that several BCLs may be encoded 1n
instructions to configure NFA cells, and several BCLs may be
stored 1n NFA cells for transitions classes. For example, a
single 128-bit mstruction may contain 12 10-bit BCLs, or 6
20-bit BCLs, or may contain 2 to 4 BCLs along with other
configuration data. Each NFA cell may store multiple BCLs
in registers or memories. In an embodiment of the ivention,
the logic cost to store a 20-bit BCL 1n registers 1s approxi-
mately 200 gates, and the logic cost to compare a 20-bit BCL
cach cycle with an input symbol (along with an associated
membership vector) 1s approximately 600 gates. Depending
on the cell array architecture, and the suitable size and com-
plexity of each cell, it 1s acceptable to store up to 16 20-bit
BCLs 1n each cell, and compare 6 selected BCLs with 1mnput
symbols each cycle, at a logic cost of approximately 68300
gates per cell. Although 20-bit BCLs may be encoded in 18 bat
formats 1n configuration instructions, 1t may be advantageous
to store the BCLs 1n NFA cells as full 20-bit BCLs so that the

logic to compare with an mput symbol does not need to

US 8,898,094 B2

9

compare the Byte and Alt fields. BCL storage in cells may
allow mixed 10-bit and 20-bit BCLs, such that each 20-bait
storage element may contain one 20-bit BCL or two 10-bit
BCLs, as configured by instructions.

The use of BCLs as described above to represent fixed
CCLs and frequent CCLs allows for supporting many transi-
tion CCLs 1n each cell, yet having low logic cost for each cell,
being able to compactly encode CCLs 1n instructions to con-
figure each cell and having autonomous CCL matching
within each cell without competing for any external resource
(the broadcast of 1nput symbols and associated membership
vectors 1s done easily without competition among cells.). But
BCLs alone to not fulfill the goals of supporting independent
arbitrary CCLs for each cell, or supporting a large number of
CCLs for a full NFA, because BCLs are limited to the fixed
CCLs and only a moderate number, ¢.g. N=32 or 64, of
configurable CCLs 1n the frequent CCL table. The primary
reason for this limitation 1s that supporting a very large ire-
quent CCL table, e.g. 1024 entries, would impose very large
logic costs to transmit 1024-bit membership vectors to each
cell, and to select one bit from the 1024 to compare a BCL
with an mnput symbol.

In an embodiment of the invention, a CCL matching meth-
odology may comprise use of a second configurable table of
arbitrary CCLs. However, this second table 1s a CCL dictio-
nary. The CCL Dictionary usage may differ from the config-
urable table of CCLs described above. The dictionary may be
enabled to hold a large number of CCLs, such as 512, 1024,
2048 or more. Sets of regular expressions or other rules for
many common applications typically do not use more than
several hundred distinct CCLs. Accordingly, the dictionary
s1zes mentioned above as examples may be adequate 1n most
ruleset situations. A reference to any CCL 1n the Dictionary
may be encoded in a short binary value known as a DCL
(dictionary class), e.g. 11 bits long to reference up to 2048
classes. Such a DCL value may be encoded in NFA 1nstruc-
tions with BCLs.

As noted above, the Dictionary stores classes 1n a “rotated”
orientation compared to the frequent CCL table. This 1s such
that any DCL value may be used to address the dictionary and
access an entry for a single CCL 1n the dictionary. The dic-
tionary entry may be formatted as a bit-mask, with one bit for
cach possible symbol value in the alphabet, e.g. a 256-bit
mask for 8-bit characters. Each bit in a dictionary mask 1s ‘1°
if the corresponding symbol 1s a member of the CCL, or ‘0”11
not. When an NFA 1nstruction 1s decoded 1n preparation to
configure an NFA cell, each DCL value 1s used to retrieve an
associated mask from the dictionary, and this mask 1s stored
directly 1nto the NFA cell being configured. The cell may
compare the Dictionary CCL with an mnput symbol by using
the symbol value as an index to select one corresponding bit
from the mask. The logic cost of this DCL comparison 1s
similar to BCL comparison—approximately 600 gates may
be required to compare one mask with an mput symbol each
cycle.

FIG. 3 1s a table representing a dictionary table for CCL
matching. A table 300 1s oriented so that each row 310 con-
tains a CCL representation. The columns 320 of the table
contain the associated bit mask for each CCL. The rows 310
and columns 320 are organmized and oriented in a rotated
manner relative to the frequent CCL table discussed above
and 1n connection with FIG. 1. Accordingly, as noted, each bit
in a row may represent a possible symbol value 1n the alpha-
bet. Also, as noted, a symbol 1n the mput stream, which may
be an 8-bit byte, may be used as an 1index to select one bit of
the 256 bit mask. If that corresponding bit of the mask 1s set,
then the symbol 1s a member of the CCL.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Referring again to FIG. 3, 1t 1s understood that cell storage
requirements may be greater for Dictionary Classes (DCLs)
representations compared to BCLs representations. For
example, 1t may require 256 register bits to store a dictionary
mask compared to 20 register bits to store a BCL. ITeach NFA
cell 1s capable of storing and comparing CCLs for several
NFA state transitions, the ratio of DCLs to BCLs can be
mampulated to most efliciently utilize system resources.
When mstructions are encoded to configure an NFA cell
comprising multiple NFA states and transitions, the mstruc-
tions may include only one DCL and also an indication of
which transition the DCL applies to. In this manner, using just
a single DCL per cell, each cell gains the ability to match any
transition CCL from the whole rule set. This 1s assuming the
dictionary 1s of sufficient size to store all CCLs used by the
rule set. By using a mix of several BCLs and one or a few
DCLs, with frequent CCL table programmed 1n an efficient
manner, NFA cells can typically be configured to represent
almost all states or multi-state sub-graphs. If certain states or
sub-graphs cannot configure mto a single cell because they
would need more than the available number of DCLs, these
states or sub-graphs may be configured mnto multiple NFA
cells to utilize additional DCL resources. Thus, the combina-
tion of BCLs and DCLs acceptably achieves the stated goals
of CCL representation in NFA cell arrays.

Further, DCL codes may be extended to comprise not only
references to the Dictionary table 200, but also some or all
BCL codes. This allows an instruction to use another BCL 1n
place of a DCL field. An advantage of this flexibility 1s that the
Dictionary does not need to be programmed with CCLs
accessible via supported BCL codes, saving space by using
the Dictionary.

Still further, DCL codes may encode not only references to
tull CCL masks 1n the Dictionary, but also partial masks. For
example, using 8-bit character bytes, many CCLs may con-
tain only symbols from the first 128-character half of the
alphabet. For example, this may include just the text charac-
ters 1n ASCII encoding. This CCL may be represented in the
dictionary using only a 128-bit mask rather than the 256—bat
tull mask. This provides even more space savings. When the
DCL references a half mask, the half mask may be retrieved
from the Dictionary and configured into the indicated halt of
a cell’s DCL mask storage. The remaining half of the 256 bits
can be either all 1’s or all 0’s. This will depend on the DCL
encoding and it 1s understood that either method 1s usetul. For
example, the ASCII class [%3C] can be encoded using a
128-bit half mask with bits 37 (°%”), 51 (*3°), and 67 (*C’) set
to 1 and other bits set to 0, loading this into cell mask storage
bits 0 to 127, where the remaining half 128 to 255 are loaded
as all 0’s. Or, the negated ASCII class [%3C] can be encoded
using a 128-bit halif mask with bits 37, 51, and 67 set to 0 and
other bits set to 1, loading this into cell mask storage bits 0 to
127, where the remaining half 128 to 255 are loaded as all 1°s.

FIG. 4 1s a table for Dictionary Class (DCL) codes. In an
embodiment of the invention, as shown 1n the table 400, each
DCL code may be 13 bits long. This will comprise a 2-bit
Dictionary Format (DF) 410 field and an 11-bit Index Field.
For example; if DF=0, this will mean that the Index Field
contains a 10-bit BCL; 1if DF=1, this will mean the Index Field
references one of up to 2048 full masks in the Dictionary
table; 1f DF=2 or 3, this means the Index Field references one
of up to 2048 half masks 1n the Dictionary table—these may
occupy the same addressable space as the first 1024 full
masks. As noted above, the half mask 1s to be stored 1n bits 0

to 127 of a cell’s DCL mask storage, and the remaining bits of
a haltf mask can be filled with either 1°s or 0’s. If DF

(“ASCII”) the remaining bits are filled with zeros. If DF=3

US 8,898,094 B2

11

(“Negated ASCII”), the remaiming bits are filled with ones. If
DF=0, the 10-bit BCL code from the Index Field 1s stored
directly 1n a cell, rather than any DCL mask, and matching
against input bytes 1s as described for BCLs above. If DF>0,
a 256-bit DCL mask 1s stored 1n the cell, with all or half the
bits coming from the Dictionary Table, and within the cell, an
input byte selects one bit from the mask and matches if that bit
1sa‘l’.

In an embodiment of the mvention, a configurable hard-
ware NFA cell array 1s implemented to execute a Thompson
type matching algorithm. Such an implementation may com-
prise storage for CCL representations in a frequent CCL table
and a CCL Diactionary. The implementation may further com-
prise enablement for accessing the frequent CCL table using,
cach mput symbol and broadcasting the accessed member-
ship vector to the NFA cells along with the input symbols. The
implementation may further comprise enablement for access-
ing the Dictionary using references in NFA instructions and
configuring the accessed CCL masks mto NFA cells. The
implementation may further comprise enablement for com-
paring CCL representations within NFA cells with input sym-
bols and membership vectors as described. The implementa-
tion may Ifurther comprise developing or modifying a
compiler to translate a set of regular expressions or other rules
into an NFA using well known algorithms understood 1n the
art. The implementation may further comprise modifying the
compiler to collect CCLs from the regular expressions or
other rules or from the NFA, determine which of the collected
CCLs {1t available fixed CCL codes, select other frequently
used CCLs to populate into a configuration for the frequent
CCL table, and populate remaining CCLs 1nto a configuration
for the Dictionary. The implementation may further comprise
moditying the compiler to generate mstructions suitable for
configuring the cell array to include CCL references of the
fixed, frequent or dictionary types as described above.

In an embodiment of the invention, a cell array may utilize
CCL references to the fixed, frequent and dictionary types as
described above. A cell array may also utilize CCL references
to a subset of all three types. It 1s understood that the com-
plexity of an NFA cell array may dictate, or suggest, differing,
combinations of the three types of CCL references. For
example, a simple NFA may use only a dictionary CCL.
Another, more moderately complex NFA may use a combi-
nation of all three types of CCL references.

Having a modified NFA cell array implementation as dis-
cussed above 1n conjunction with a modified NFA compiler
appropriate to that implementation, a set of regular expres-
s10oms or other rules to be matched and one or more streams of
input symbols, matches to the rules can be determined. First,
the NFA compiler would be used to compile the rules into an
instruction representation of an NFA appropriate for config-
uring the cell array. Then, the cell array may be statically
configured with these instructions or, 1f the array 1s dynami-
cally configurable, the instructions may be made available to
the cell array 1n a form, such as 1n a memory readable by the
array, that it can use to configure cells on demand. Further, the
frequent CCL table and Dictionary may be configured with
the CCL information determined by the compiler. For each
stream ol symbols to be scanned, the symbols can then be fed
into the array 1n sequence. The array will use CCL references
from the instructions, configured 1nto the NFA cells, to com-
pare CCLs for transitions from active states with input sym-
bols and corresponding membership vectors, on order to
detect rule matches when accepting states become active. The
cell array will then report match information in some format,

10

15

20

25

30

35

40

45

50

55

60

65

12

such as an 1dentifier of the matched rule and the location of the
match in the input stream, which the user or application must
then receive.

FIG. 5 1s a flow diagram of a method of character class
matching. A method of character class matching, as noted
above, begins by imtiating several steps that provide for effec-
tive matching. The diagram 1n FIG. 5 describes an embodi-
ment of the invention from initial compiler steps through the
life of an NFA rule being matched, or not. Accordingly, a first
step 1n any NFA 1s taking a set of rules, whether regular
expressions or otherwise, and compiling those rules into an
instruction set to be used for the NFA 510. If a corresponding
NFA cell array to be used with the NFA 1s statically imple-
mented with the states of the NFA 520 then the cell array will
be configured with the instructions 530. However, 11 the cell
array 1s dynamically configurable, as described in the *904
patent, the instructions will be made available to the cell array
on demand 540. The steps shown as 1tems 520-540 can be
logically thought of as the steps of configuring the cell array.
After the configuration of the cell array, character classes will
be configured into a format as described above 350. The
compiler, which will be a compiler capable of configuring the
CCLs, will be responsible for this step 1n the process. It 1s
understood, that while the flow in FIG. 3 shows the CCL
configuring step 350 subsequent to that of the implementation
steps 520-540, the configuring step may logically occur con-
current with the compilation of instructions from the rules
510. A stream of mput symbols will be fed into an NFA
scanner, elfectively 1n to the cell array 560. This will occur 1n
the sequence that the mput symbols are encountered 1n the
input stream. The CCL encoded by the compiler 350 will be
compared to the symbol in the input stream to determine 1f the
symbol 1s a match for a relevant CCL 570. Match information
will be acted on accordingly 580. A match will allow further
matching of symbols 590 whereas a failure to match will also
continue with mputs from the mmput stream to begin new
matches to the ruleset 590.

FIG. 6 1s a block diagram of a character class matching
system. The matching system 600 comprises a plurality of
NFA cells 610. The NFA cells 610 recetve inputs from an
input stream 620, a frequent CCL table 630 and a loader 640.
The frequent CCL table 630 will also recerve input from the
input stream 620. The loader 640 provides index information
642 to a dictionary table 650 and receives a mask 644 from the
dictionary table 650. The loader also 1s provided an NFA
instruction set 665 from a compiler 660. In turn the compiler
660 creates the NFA 1nstruction set 665 based on a set of rules
670, the types of rules being discussed beforehand in this
description. As noted in this description, encodings used to
tacilitate fixed CCLs may be comparable with input symbols
using low-cost cell logic. The fixed CCL mechanisms are not
shown in the FIG. 6 representation but 1t 1s understood that all
three of the CCL methods and mechanisms are present.

As shown, the input stream 620 will provide inputs to both
the frequent CCL table 630 and the NFA cells 610. The
frequent CCL table 630 uses the input symbol 620 to access a
particular row 120 indicated by the value of the input symbol
620. A corresponding membership vector 1s retrieved corre-
spondingly. The membership vector 1s then broadcast, along
with the mnput symbol 620, to all of the NFA cells 610 1n the
array. A test 1s made to determine 11 the mnput symbol 620 1s a
member of a relevant CCL by looking at the appropriate bit,
indicated by the CCL under consideration, of the membership
vector.

As shown, the loader 640 receives masks from a dictionary
table 650. An NFA struction 1s decoded when an NFA cell

610 1s configured. A dictionary class (DCL) 1s used to obtain

US 8,898,094 B2

13

a mask from the dictionary table 650 that corresponds. The
obtained mask from the dictionary table 650 will be stored
directly in the NFA cell 610 by the loader 640. The NFA cell
610 compares the dictionary class with an mput symbol from
the mnput stream 620 as an index to select one corresponding
bit from the mask. Whether the bit selected na ‘1’ or a ‘0’
determines if the input symbol 1s a member of the class.
Positive CCL comparison results, from the frequent CCL
tests, from the dictionary mask comparisons, and from the
fixed CCL tests, trigger state transition signals among the
NFA Cells 610 when arule is partially satisfied, or when arule
1s fully satisfied are reported out of the NFA cells as rule
matches 680.

FIG. 7 1s a diagram of a cell for character class matching.
As noted elsewhere, each cell may be enabled to perform
fixed CCL tests, frequent CCL tests and dictionary table CCL
tests. They may also be enabled to perform some subset of
those three. Inthe FIG. 7, a 256-bit DCL mask may get stored
in the cell. As noted, this may be at the time of cell configu-
ration. Small BCL codes may be stored in the cell, likewise.
There may be room for multiple BCL codes. Input symbols
710 are used 1n the cell 700 to select a bit from the DCL mask
to determine 1f the input symbol 710 matches the DCL. A
frequent CCL 1ndex 730 1s extractable from the BCL code.
The CCL index 730 1s used to select a bit from the member-
ship vector 720 to determine a match of the frequent CCL. A
fixed CCL code 735 1s extractable from the BCL code. The
fixed CCL code 735 1s compared with an input symbol 710 by
fixed logic 750 to determine a fixed CCL match 760. A format
code 740 1s extractable from the BCL code. The format code
1s used to 1ndicate whether the cell should use fixed CCL or
frequent CCL matching. This format code 740, as well as
another code, may be used to select between BCL and DCL
matching. The results of DCL and BCL (fixed and frequent)
are used by the cell transition logic 770 to determine state
transitions in the NFA cell array. These state transitions may
be 1ntra- or iter-cell transitions depending on the configura-
tion of the array. Although the FI1G. 7 does not indicate the use
ol negate and caseless tlags, 1t 1s understood that the operation
ol those tlags are as described elsewhere 1n this description.

The foregoing description of the invention has been pre-
sented for purposes of 1llustration and description. It 1s not
intended to be exhaustive or to limit the invention to the
precise form disclosed, and other modifications and varia-
tions may be possible 1 light of the above teachings. The
embodiment was chosen and described in order to best
explain the principles of the mvention and 1ts practical appli-
cation to thereby enable others skilled 1n the art to best utilize
the invention 1n various embodiments and various modifica-
tions as are suited to the particular use contemplated. It 1s
intended that the appended claims be construed to include
other alternative embodiments of the invention except insofar
as limited by the prior art.

What 1s claimed 1s:

1. A method of matching character classes (CCLs) from an
NFA 1n an NFA cell array, said method comprising:

encoding information of at least one frequent CCL 1n a

frequent CCL table;

accessing a location in the frequent CCL table indicated by

an mput symbol;

broadcasting the content of that location, which 1s a mem-

bership vector, to each cell 1n the NFA cell array;
broadcasting the input symbol to each cell 1n the NFA cell
array; and

in an NFA cell, using the encoded frequent CCL to select a

bit in the membership vector, said bit indicating mem-
bership in the frequent CCL.

10

15

20

25

30

35

40

45

50

55

60

65

14

2. The method of claim 1, said method further comprising:

encoding a plurality of fixed CCLs; and

in an NFA cell, using the encoded fixed CCL to test
whether an input symbol 1s a member of a corresponding

fixed CCL.

3. The method of claim 2, wherein the encoding of the fixed
CCLs comprises encoding at least one code flag.

4. The method of claim 3, wherein said at least one code
flag comprises a negate flag and a caseless flag.

5. The method of claim 2, wherein the encoding of the
frequent CCLs and encoding of fixed CCLs comprises:

using byte class codes (BCLs) comprising a byte field and

at least one modification flag; and

storing said BCLs 1n an NFA cell during cell configuration.

6. The method of claim 1, further comprising encoding a
dictionary table.

7. The method of claim 6, wherein said dictionary table 1s
formatted as a plurality of bit masks, said bits being stored 1n
an NFA cell during cell configuration.

8. The method of claim 7, wherein the cell compares the
stored bit mask with an input symbol by using the symbol
value as an index to select one corresponding bit from the
mask.

9. The method of claim 8, said method turther comprising:

encoding a plurality of fixed CCLs; and

in an NFA cell, using the encoded fixed CCL to test

whether an input symbol 1s a member of a corresponding
fixed CCL.

10. The method of claam 9, wherein the encoding of the
fixed CCLs comprises encoding at least one code tlag.

11. The method of claim 10, wherein said at least one code
flag comprises a negate flag and a caseless flag.

12. The method of claam 9, wherein the encoding of the
frequent CCLs and encoding of fixed CCLs comprises:

using byte class codes (BCLs) comprising a byte field and

at least one modification flag; and

storing said BCLs 1in an NFA cell during cell configuration.

13. A system of matching character classes (CCLs) from an
NFA 1n an NFA cell array, said system comprising:

a frequent CCL table;

an input stream comprising a plurality of input symbols;

a loader enabled to recerve NFA instructions and configure

the NFA cells; and
a plurality of NFA cells enabled to receive information
from the frequent CCL table, loader and input stream;

wherein the input stream provides symbols to the frequent
CCL table and the NFA cells, the frequent CCL table
utilizes the input symbol to access a membership vector,
the membership vector and symbols from the input
stream are broadcast to each cell in the NFA cell array,
and a bit from the membership vector 1s selected to
determine membership 1 a CCL.

14. The system of claim 13, said system further comprising
a dictionary table enabled to provide a bit mask to the loader,
cach bit mask corresponding to a specific character class;

wherein the loader stores a mask obtained from the dictio-

nary table directly in an NFA cell at configuration of the
cell and the NFA cell compares the dictionary class with
an mput symbol, said mput acting as an index to select
one corresponding bit from the mask.

15. The system of claim 14, said system further comprising
a plurality of fixed character classes wherein cell logic 1s
utilized to compare fixed CCLs with input symbols.

16. The system of claim 15, wherein said fixed character
classes are modifiable by at least a negate code flag and a
caseless code flag.

	Front Page
	Drawings
	Specification
	Claims

