US008893300B2

12 United States Patent

Ramachandran et al.

US 8,893,300 B2
Nov. 18, 2014

(10) Patent No.:
45) Date of Patent:

(54) SECURITY SYSTEMS AND METHODS TO (56) References Cited
REDUCE DATA LEAKS IN ENTERPRISE
NETWORKS U.S. PATENT DOCUMENTS
(75) Inventors: Anirudh V. Ramachandran, Atlanta. JS52467 B2* 62009 Tindsay moeer 72615
gi gg; ;?fgﬁsh H. z[lhl/llldli:da: AﬂaBI{ta: 7,680,940 B2* 3/2010 MOITIS weovvovvvrrerreerernen. 709/226
; Muhammad Mukarram Bin .
Tariq, Atlanta, GA (US); Nicholas G. (Continued)
Feamster, Atlanta, GA (US) OTHER PUBLICATIONS
(73) Assignee: Georgia Tech Research Corporation, Lewisf Colleel}, and Cynthia .Sturton, “SHIFT+ M: Software-hard-
Atlanta, GA (US) ware mform.atlon ﬂow Ugcklgg on multi-core.” Dept. Elec. Eng.
Comput. Sci.,, Univ. California Berkeley, Berkeley, Res. Project
(*) Notice: Subject to any disclaimer, the term of this [Online]..Availz.ible: www. eecs. berkeley. edu/~ csturton/classes/
patent 1s extended or adjusted under 35 cs258/ShiftM Final. pdf (2008).%
(21) Appl. No.: 13/237,618 Primary Examiner — Luu Pham
_ Assistant Examiner — Kar1 Schmadt
(22) Filed: Sep. 20, 2011 (74) Attorney, Agent, or Firm — Troutman Sanders LLP;
_ o Ryan A. Schneider; Christopher Close, Ir.
(65) Prior Publication Data
US 2012/0137375 A1 May 31, 2012 (57) ABSTRACT
Disclosed are embodiments of a security system for reducing
data leaks by checking information flows between resources
Related U.S. Application Data ol a network. When an information flow 1s attempted between
. L a sending resource, which can be anywhere 1n the network,
(60) [Provisional application No. 61/384,475, filed on Sep. and a recgeiving resource residing at a}ggeciﬁc host within the
20, 2010. network, a host labeler can determine whether information 1s
allowed to flow from the sending resource to the receiving
(51) Int. CI. resource. The sending resource and the receiving resource
HO4L 29/06 (2006.01) can each have an applicable label, and each label can com-
(52) US. CL prise zero, one, or more taints. For each taint having an active
USPC 726/28; 726/19; 726/22; 7T26/23; secrecy characteristic 1n a label of the sending resource, the
726/24;°726/25; 726/27; 707/687 host labeler can require that there be a matching taint with
(58) Field of Classification Search active secrecy characteristic in the receiving resource. If this

CPC ... GO6F 21/577, GO6F 21/554; GO6F 21/56;
HO4L 63/1408; HO4L 63/1433; HO4L 63/20
USPC ... 726/19, 22-25, 27, 28; 707/687

See application file for complete search history.

condition 1s not met, the security system can block the infor-
mation tlow between the sending and recetving resources.

16 Claims, 7 Drawing Sheets

420 o | P 445
~, Taint Management Authentication Service &
Application Taint Management Console
Userspace
Kerneispace
430
Labeler /

430

~4 Host Enforcer -

Capability Database

US 8,893,300 B2
Page 2

(56)

7,788,235
8,190,636
8,521,840
8,350,357

2004/0122792
2009/0300751

20
20
20
20
20

10/0058475
10/0131721
| 1/0173693
| 1/0197180
| 1/0307951

References Cited

U.S. PATENT DOCUMENTS

Bl *
B2 *
B2

1 *

w % % % ¥ ¥ *

A A AR

8/201
5/201
11/201
1/201
6/200
12/200
3/201

5/201

7/2011
8/2011
12/2011

w Mo o O

4
9
0

0

YO (i, 707/687
Ekberg etal. 707/783
Nagarajan etal. 717/126
Barileetal. 726/26
Salazarooeeeeenn 707/1
Krishnamurthy et al. 726/13
Thummalapenta et al. 726/25
Titleetal. 711/154
Wysopal etal. 726/19
Huang etal. 717/126
Yermakov et al. 726/12

OTHER PUBLICATIONS

Kolbitsch et al, “Effective and Efficient Malware Detection at the End
Host.” USENIX Assoclation. http://dl.acm.org/citation.
cim?1d=1855790 (2009).*

Efstathopoulos, Petros, et al. “Labels and event processes in the
Asbestos operating system.” ACM SIGOPS Operating Systems
Review. vol. 39. No. 5. ACM, 2005.*

X1ao-song Zhang; Liu Zhi;, Da-peng Chen, “A Practical Taint-Based

Malware Detection,” Apperceiving Computing and Intelligence
Analysis, 2008. ICACIA 2008. International Conference on , vol.,
no., pp. 73,77, 13-15 Dec. 2008.*

* cited by examiner

US 8,893,300 B2

Sheet 1 of 7

Nov. 18, 2014

U.S. Patent

d304d04NS3
HHOMLEN

AHOLISOddd

I
=

139V

0Cl

E .

8l

8¢l

GLl
d3040OANT LSOH |

cCl—4 3y01s 13avT

c7l SERELLA

d304d0O4Nd LSOH

ez 34OLS 138V |

l<EREIS\

wm

|

c1 L —H ¥3OH04NT LSOH

A440.LS 1349V
d3139V

Ol

ecl

GCl

|, "bi4

GLi

GCl

001

U.S. Patent Nov. 18, 2014 Sheet 2 of 7 US 8.893.300 B2

210
210
210
210

200
v

IDENTIFICATION
IDENTIFICATION
IDENTIFICATION
IDENTIFICATION
Fig. 2

250
230

240
40

230
230

220
220

@\
=
= -6
% ¢ "0l
>
L
9
-
X X X / (P40IP[IM) 4 —
/ X X /S qogd
" sl 2 N, / / |y
Z -0 | +O -] + -S +S WDUIAS()
m LEE 0Ott GEE PEt et cte 1€t
s SIUOWBU|A 1ule]
rd
UOIIIIIUBP] JUlR)

0lc

U.S. Patent

0S¢

0t¢

or¢

0EE

ras

US 8,893,300 B2

Sheet 4 of 7

Nov. 18, 2014

U.S. Patent

Ott

St

asegeleq Alljigede)

9|0SuU0) 1uswadeuely el
19 IJIAIDS UOIILIIIUYINY

 "bI4

5

¢

1%

192J0juU7 1SOH

19jage

4 9[l4

220dS[auld3)

200dsiasn

uonedljddy
juswageue|p juie]

OT¥

Ot

Oct

US 8,893,300 B2

Sheet S of 7

Nov. 18, 2014

U.S. Patent

o BN R BN A R G B

ol o

A B S Y YN R A e B

- -

Y R G O AN - B :'1‘

i

R

B

E

Gcl

5,

ﬁ T ~ T - - _— I A ~E— - - L] I ~J— - S L4

e v epE

A

T L

Al

AT

-

"

chde R s B

I - - - A

i, E: B A CEEd R B GEE- e

R

R

M.

=.

e
B EEEE TOE

. - BT O B BN IO

b - (IS LI - EDE N F - b

JEN! EHO EK- A O CEE O -EY I

“EE: E

.-

‘O - AT A A

v owme ol s cde

<N I A EDL EE - W R

L bt

-

-
=
Z

-
-
;

-
b

-

IRT

e

k

A

0

-':iﬁc

~ « I I

- L

PR

iR N E

W RRE R MR W

T EES

- N O -EE X - JE

" RS- I . >)
. ‘H:

. : N - 5

Rt .)

fgeld

R

G R G R MR s e R R

-

~-

Pl

e

Rt r N R

ExE - B - - X IEnS

e toRE s R R R

A

e M - G L I8

TOHEE -

sere shew by e T
WEOWE g gy OBn oBm

B

-~

ora

GC

SRR s DAl

- L

[- -} JEEE

R

"'\."5.:'__;_.

>

-

US 8,893,300 B2

Sheet 6 of 7

Nov. 18, 2014

U.S. Patent

s

-

o

e e Lt e T

S e

TR

e

.

Lo,

5

L

LR B T Cy T D PR L o B el

R e

B o e T e g el

e

-,

.

e

-,

.

PRy T

o~

98Lenvaooud / @_ —

US 8,893,300 B2

NOILYOINddY _ _ _
31LOW3Y i7 o/ 2 2z
s - 29/, {HvOgAI vivQd S3ITNAON SNVYHO O™ NILSAS
T s [YA NYHOO0Hd ¥3HLO | NOILVDITddY | ONILYHIdO
= e =N | VEOORe
= \\\ (I FSN NN OS SouR vy Y S .
E AT) : Il_ﬁ e g - -
08. — 9GL_ .
J ISNOW 7C) N
h 4 ~— 194 . LT
F N ,,
\\ W3IAOW fi\\ ,,
KMI‘ID&EOU ' — — — — A - ¢_..._...
NYAA IEEEEE L
31 ONIY y e s Obz
T A Y e T
™~ > | i !
= _ m “
M m \ Wy (e VAVD H
- _ m NYHOOHd W
S NVT » N
7 m [982 s3TINAOW H
SYIMVYILS | | WWHOO0Hd ¥3HLO |
N " \ 4 A 4 \ 4 AN S
S N N N " H
_ JOVAHILNI 3OVAHILNI (owvyoong)
-+ m JOVSHI LN JOV4HILNI AHOW3IN AHJOWIN | SELy011 vy H
= m MHOMLIN 1NdNI ¥3sn IOA-NON TOA-NON N)
N m 3F1GVACNTA 3T9YAOWIH-NON | ; I W
= | g . =S - | PELoNILYY3dO H
. 042 092 05/ 1}7 " — ”
w __ m " 7C] AE,QW.: H
N o6/ m H SNH WILSAS - — .W
m G6. 06. 4 0eL m @mm S0Ig u M
| - j/ /v \ PNNK P \ m M
| FOVAHF LN m 15/ (NON) W
m WVHIHC N3 FOV4HILNI OIAIA LINN ONISSTO0ONd | 0¢4
m _ 1Nd1No y X . AMOW3N WALSAS
L S
=
- 00/
&
)
-

HH =HH W HH HE s W B W W O HH cHH HH W e B W B W W HH cHH sHH HH e B B B W sHH O HH sHH sHH W e B W B cHH sHH HH HH sHH W s i W B W W HH sHH sHH B e B W B W W B sHH HH

US 8,893,300 B2

1

SECURITY SYSTEMS AND METHODS TO
REDUCE DATA LEAKS IN ENTERPRISE
NETWORKS

CROSS-REFERENCE TO RELAT
APPLICATIONS

s
w

This application claims priority to and the benefit under 35

U.S.C. §119(e) of U.S. Provisional Patent Application No.
61/384,475, filed 20 Sep. 2010, which 1s incorporated herein
by reference 1n 1ts entirety as if fully set forth below.

GOVERNMENT LICENSE RIGHTS

This invention was made with Government support under
Agreement No. CNS-0916732, awarded by the National Sci-
ence Foundation. The Government has certain rights 1n this
invention.

TECHNICAL FIELD

Various embodiments of the present invention relate to
network security and, particularly, to security systems and
methods that reduce or prevent data leaks in enterprise net-
works.

BACKGROUND

Organizations must control where private information
spreads and to whom 1t 1s accessible; this problem 1s referred
to 1n the security industry as data loss/leak prevention (DLP).
Commercial solutions for DLP are based on scanning con-
tent, where the content of tratfic flowing outside an organiza-
tion 1s compared with patterns of sensitive data (e.g., nine-
digit social security numbers) to identily potentially private
information. These solutions impose high overhead and are
casily evaded, such as by simply encrypting data so that
private information 1s unrecognizable.

Research solutions to the DLP problem require rewriting,
applications or runming custom operating systems, which
cause difliculties 1n deployment for most enterprise environ-
ments. These solutions also typically attempt to prevent data
loss from a single host, and not across a network, making 1t
challenging to implement a data loss prevention policy for a
network of devices.

SUMMARY

There 1s a pressing need for security systems and methods
to reduce or comprehensively prevent the loss of sensitive or
confidential data and assets from organizations, even 1n the
face of determined and well-equipped adversaries. Prefer-
ably, such security systems and methods must not be easily
evaded, for example, by transforming or encrypting sensitive
data prior to an attempted leak event. Existing data loss/leak
prevention (DLP) systems are overwhelmingly content-
based, implying that they can be easily deteated or circum-
vented through relatively simple and accessible tools. Con-
sequently, various embodiments of this invention are directed
towards content-agnostic data loss prevention systems and
methods, which are significantly harder to evade, and 1n addi-
tion 1impose far less overhead than content-based systems.

An exemplary embodiment of such a content-agnostic
security system can comprise a labeling system and an
enforcement system. Generally, the labeling system can man-
age security labels for the various sensitive resources or assets
within an orgamization, such as files, processes, memory

10

15

20

25

30

35

40

45

50

55

60

65

2

pages, or database records. Labels have policies (known as
capabilities) associated with them that restrict the flow of
information from labeled resources. The enforcement system
can then control information flows between resources based
on the labels and their associated policies.

An exemplary label can comprise a set of taints, where each
taint can comprise an identification number, a secrecy bit, and
an integrity bit. Each taints can have a capability associated
with 1t that specifies the subset of enterprise users who have
permissions to imnteract with a resource that carries the taint in
its label. When the secrecy bit of a taint 1s set, the associated
resource can be deemed secret with respect to that taint, and
the security system can control flows of information from the
resource to maintain the secrecy of the associated resource
conformant to the taint’s policy. Similarly, when the integrity
bit of a taint 1s set, the security system can maintain the
integrity of the associated resource by limiting information
flows 1nto that resource. Each resource can possess one or
more of taints 1n 1ts label, allowing for sophisticated policies
to protect sensitive information from leakage as well as tam-
pering.

The enforcement system can require that, for an informa-
tion flow to occur from a sending resource to a recerving
resource, the enterprise user that owns the recerving resource
must possess the capability to set the secrecy bit for every
taint for which the sending resource has a set secrecy bit.
Accordingly, secret data 1s not shared with a resource for
which the owner does not have the capability to read secret
data. Additionally, the creator of a secret resource can design
a policy that allows a user U the capability to set the secrecy
bit for a certain taint while denying the user the ability to unset
the bit. This ensures that once U’s receiving resource reads a
secret resource, 1t may not be allowed to leak this sensitive
information by writing to an external output device (e.g., a
USB drive) that has all secrecy bits unset. Similarly, to pre-
serve mntegrity, the enforcement system can require that the
owner of a resource sending data must have the capability to
set the mtegrity bit for every taint 1n the sending resource for
which the receiving resource has a set mtegrity bit. If these
conditions are not met for an attempted information flow, the
security system can block the information tlow.

This method of preventing data leaks by strictly controlling,
where sensitive information can flow using resource labels 1s
referred to 1n prior art as information tlow control. Embodi-
ments of the present invention have improvements and ben-
efits over prior art 1n this area, some of which are as follows:
First, the security system can associate capabilities not with
resources themselves, but instead with the users who own the
resources. This feature allows for unmodified legacy applica-
tions to be secured using labels, by making the users that run
these applications responsible for policy and capability man-
agement. Second, unlike prior information flow control sys-
tems, this security system can propagate taints between
resources not just on a single computer, but between
resources on a network of computers. Third, labels can be
applied not just to processes and files, but also to other
resources such as database records, memory pages, network
sockets, peripheral devices, or the like, allowing arbitrarily
fine granularity 1n controlling the flow of sensitive informa-
tion. Fourth, the security system can integrate tightly with an
enterprise’s existing user directories (e.g., Microsoit Active
Directory), allowing enterprise users to easily set and change
policies on the resources that they own. Fourth, to ensure that
a sensitive resource can be taken out of the enterprise only by
an authorized user, the security system can require that the
user {irst unset the secrecy bits from all taints 1n the resource
and, 1n some embodiments, additionally complete a “proot-

US 8,893,300 B2

3

of-human™ challenge, such as a CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans
Apart), thereby preventing malicious programs masquerad-
ing as an authorized user from leaking sensitive information.

These and other objects, features, and advantages of the
security system will become more apparent upon reading the

tollowing specification in conjunction with the accompany-
ing drawing figures.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a security system operating within an
enterprise network, according to an exemplary embodiment
of the present invention.

FI1G. 2 1llustrates a diagram of a typical label of the security
system, according to an exemplary embodiment of the
present invention.

FI1G. 3 illustrates a typical capability setting for an exem-
plary taint, according to an exemplary embodiment of the
present invention.

FI1G. 4 1llustrates a worktlow mmvolved 1n creating a new
taint and securely applying the taint to a resource in the
enterprise network, according to an exemplary embodiment
ol the present 1nvention.

FIG. 5 1llustrates information flow between hosts, accord-
ing to an exemplary embodiment of the present invention.

FIG. 6 1llustrates the security system being designed to
protect a set of sensitive database records accessible through
a web-based application, according to an exemplary embodi-
ment of the present invention.

FI1G. 7 1llustrates an architecture of an exemplary host in
the network to which the security system applies, according,
to an exemplary embodiment of the present invention.

DETAILED DESCRIPTION

To facilitate an understanding of the principles and features
of the 1invention, various illustrative embodiments are
explained below. In particular, the invention 1s described 1n
the context of being a security system for reducing data leaks
in an enterprise networks. Embodiments of the invention,
however, need not be limited to protecting an organization
against data leaks. Rather, various embodiments of the inven-
tion can be used to manage data permissions within an orga-
nizational network, to enable comprehensive tracking and
auditing of sensitive data access and use, to protect sensitive
data accessed from outside an enterprise network through a
potentially untrusted web-based application, and can be used
in networks other than enterprise networks.

The components described heremafter as making up vari-
ous elements of the invention are intended to be illustrative
and not restrictive. Many suitable components that can per-
form the same or similar functions as components described
herein are intended to be embraced within the scope of the
invention. Such other components not described herein can
include, but are not limited to, similar or analogous compo-
nents developed after development of the invention.

Various embodiments of the present invention are security
systems to reduce data leaks 1n enterprise networks. An exem-
plary embodiment of the security system can enforce infor-
mation flow control across a network for legacy applications.
The security system can enable users, such as regular users or
administrators of an enterprise, to associate labels with vari-
ous resources of an enterprise network. Such resources can
comprise, for example, files, processes, or database records.
Labels can be associated with policies, which can place
restrictions on communication to or from resources with a

10

15

20

25

30

35

40

45

50

55

60

65

4

particular label. A labeler module on each host within the
network can use the label to determine what communication
can take place between labeled resources on the host. When a
firstresource (e.g., a process) attempts to communicate across
the network with a second resource on a different host, the
security system can track the flow of information over the
network using labels associated with network traffic. The
labels can be used to enforce information flow policies, such
as on an intermediate network device (e.g., a network
enforcer) or on the host that 1s the intended recipient of the
traffic. By enabling mformation flow control between net-
worked hosts, the security system can also operate 1n net-
works with heterogeneous devices and operating systems.

An exemplary embodiment of the security system sepa-
rates control operations (e.g., determining whether data may
be forwarded) from data operations (e.g., forwarding data and
associated labels). As a result, embodiments of the present
invention provide various benefits over other information
flow control systems. For example, the security system can be
unmiquely able to perform information flow control for
unmodified legacy applications 1n heterogeneous environ-
ments due to 1ts novel capability system, which can allow
enterprise users to control secrecy and integrity capabilities
for their own data. The security system can perform informa-
tion flow control across a network of hosts running commod-
ity operating systems and unmodified applications, where
prior research required all hosts to run a specialized operating
system. The security system can also be simple and easily
manageable, 1n that users can specily information tlow poli-
cies for their own data, which policies can be centrally man-
aged.

A particular exemplary embodiment of the security system
operates 1n the context of web-based applications that are
used to access sensitive database records by users external to
the enterprise network. In this embodiment, when a user
external to the enterprise network requests his or her sensitive
database records, the security system can use information
flow control to propagate the label on the user’s database
records across processing or transformation applied on the
data by a potentially untrusted or vulnerable web application.
The capability on the label can specily that the information
flow outside the enterprise 1s permitted only to the user who
owns the label, 1dentified using his or her enterprise authen-
tication credentials. Thus, to retrieve this data from a location
external to the enterprise network, the user merely authent-
cates himself to the enterprise authentication service, which,
in coordination with the network enforcer, can entforce infor-
mation flow between the web application and the public Inter-
net. This embodiment can prevents hacker or malicious web
application components from reading a user’s sensitive data
and sending it out to an unauthorized Internet location.

Referring now to the figures, in which like reference
numerals represent like parts throughout the views, various
embodiment of the security system will be described 1n detail.
Overview of the Security System

FIG. 1 illustrates the security system 100 operating within
an enterprise network 10, according to an exemplary embodi-
ment of the present invention. As shown in FI1G. 1, the security
system can operate 1n an enterprise network comprising a
plurality of hosts 50. An exemplary embodiment of the secu-
rity system 100 can comprise an enforcement system 110 and
a labeling system 120. The labeling system 120 can manage
labels of various resources of the hosts 530. A capability data-
base 430 (FIG. 4) can manage the capabilities of various
enterprise users with respect to the labels on their resources.
The enforcement system 110 can be 1n communication with

US 8,893,300 B2

S

the hosts 50 and can control how data transactions are handled
at each host 50 and between the hosts 50, so as to enforce the
data labels.

The labeling system 120 can comprise a label repository
128, one or more labelers 125, and one or more local label
stores 123. The labeling system 120 can be distributed across
the plurality of hosts, such that a labeler 125 of the labeling
system 120 operates on each host 50, and a local label store
123 resides on each host. Each labeler 125 can run indepen-
dently on 1ts associated host 50 in communication with the
local label store 123, and the labeler 125 can label data on that
host 1n accordance with security policies and user mnstruc-
tions. In an exemplary embodiment, the local label store 123
1s an 1n-memory structure that 1s buffered on disk and main-
tains the labels of some or all active and persistent resources
on the host 50, such as running processes and files. The local
label store 123 can exist to speed up label-related operations
on hosts 50 by caching labels of active or persistent resources.

The label repository 128 can be located at a central location
and can be in communication with the various labelers 125.
For example, the label repository 128 can be a computing
device distinct from the various hosts 50. The labelers 125 can
periodically, or on demand, push updated labels from the
local label stores 123 to the label repository 128. As a resullt,
the label repository 128 can maintain a list of labels for
resources throughout the network 10.

In addition to storing labels of resources on various hosts
50 1n the enterprise network 10, the labeling system 120 can
also be responsible for storing capabilities associated with
labels through the capability database 430, including, but not
limited to, the various types of permissions enterprise users
may have with respect to the taints carried by each label. The
capability database 430 of the labeling system 120 will be
explained 1n more detail 1n a later section.

Through the labeling system 120, the security system 100
can track and control the propagation of labels. Users of the
security system 100 can apply labels to one or a plurality of
resources in the enterprise network 10. Each resource to
which a label 1s applied can be, for example, a file or a process
within the network 10. As the resources interact with each
other within a single host 50, the labeler 125 on host 50 can
directly mediate this interaction and enforce information flow
checks using a host enforcer 115. If, however, resources on
two networked hosts 1nteract, the labeler 125 can use the help
of the label repository 128 1n order to transier the label of the
sending resource to the recerving resource, so as to enable
enforcement to happen at a network location (e.g., at the
switch) or at the recerving host enforcer 115.

The flow of information generally occurs from a first
resource to a second, receiving resource. “Information tlow™
refers to how data 1s transmitted from between resources. For
example, when a process writes to a file, then data flows from
the process to the file. However, when a process reads from a
file, then data flows from the file to the process. One of skill 1n
the art will recognize that data may be transmitted, and there-
fore “flow,” between resources 1n various manners, and that
the above examples are provided for illustrative purposes
only.

In an exemplary embodiment of the security system 100,
the host 50 of the receiving resource can 1nitiate an informa-
tion flow check to ensure that the flow of information 1s
permissible. For example, 1f information in a data transaction
flows from a resource P to a resource (Q on a single host 50
(e.g., aprocess writes to a file), the labeler 125 on that host can
retrieve the labels for both P and Q before initiating informa-
tion tflow control checks. If P and Q are on different hosts in
the network 10 (e.g., a process sends data to a remote server),

10

15

20

25

30

35

40

45

50

55

60

65

6

P’s host can automatically push P’s label to the label reposi-
tory 128. (Q’s host 50 can automatically retrieve P’s label from
the label repository 128 and then perform any necessary
information tflow control checks. If the security system 100
determines that the flow 1s impermissible, then the interac-
tions between the sending resource and the recerving resource
can be blocked by the security system 100.

In some embodiments, P’s host 50 can avoid pushing P’s
label to the label repository 128, and instead can directly
attach the P’s label to the network packets that are sent from
P’s host 50 to Q’s host 50, usually as an optional field 1n the
Internet Protocol “IP OPTIONS” header.

The enforcement system 110 can perform information tlow
checks. The enforcement system 110 can comprise a network
enforcer 118 and, 1n some embodiments, a plurality of host
enforcers 115. Each host enforcer 115 can reside on a host 50.
In some embodiments, the host enforcer 115 can be integrated
into an operating system, such as in the kernel, of the host 50
on which 1t resides. The host enforcer 115 reduces informa-
tion leaks that may occur at the host 50. For example, and not
limitation, the host enforcer 115 may block an attempt by a
process to write the contents of a confidential file to a remov-
able drive. For each transaction within a single host where the
labels of the sender resource P and the recerver resource (O
differ, the labeler 125 of the host 50 can query the host
enforcer 113 to decide whether an information flow 1s per-
mitted.

The network enforcer 118 can control the propagation of
information from inside the network 10 to outside the net-
work 10. In this case, the permissibility of information flow
can be based on the sender’s label and on network flow
attributes. For example, the network enforcer 118 can prevent
traffic flows that may contain secret information, as indicated
the by the traffic’s label, from reaching insecure networks
(e.g., an open wireless network, or the outside Internet).
Structure of Taints and Labels

FIG. 2 1illustrates a diagram of a typical label 200 of the
security system 100, according to an exemplary embodiment
of the present invention. As shown 1n FIG. 2, each label can
comprise one or more taints 210, where each taint relates to a
quality of a resource to which the associated label 200 1s
applied.

In some exemplary embodiments, a taint 210 can be rep-
resented as an integer, such as a 64-bit integer. A taint can
comprise an identification 250 and a value for each of one or
more characteristics. Each characteristic can have at least two
possible states, where one of such states 1s applicable at a
given time. For example, and not limitation, a characteristic
can be active or 1nactive, true or false, on or off, set or unset,
or 1 or 0. Because a characteristic belongs to the taint 210 of
which 1t 1s a part, 1t will be understood that references to a taint
210 being 1n a particular state (e.g., “‘a secret taint,” “an active
taint™) throughout this disclosure indicate that a characteristic
of the taint 210 1s 1n such particular state.

The characteristics of a taint can include, for example, a
secrecy characteristic 220 and an itegrity characteristic 230.
Each characteristic can be represented in the taint 210 by a
Boolean variable, which can be set (1.e., set to “true”) or not
set (1.e., set to “false™), to indicate whether the characteristic
applies to the associated taint 210. For example, and not
limitation, a first bit of the taint 210 can represent a secrecy
characteristic 220, a second bit can represent an integrity
characteristic 230, and the remaining portion of the taint 210
can be an identification 250 of the quality indicated by the
taint 210.

In some exemplary embodiments of the security system
100, a particular taint 210 with no characteristics 1n the set

US 8,893,300 B2

7

state serves no operational purpose within a label 200. In
these exemplary embodiments, 1f such a taint 210 were
removed from the label 200, the effect of the label 200 on its
associated resource would be unchanged. Accordingly,
throughout this disclosure, references to a label 200 having a
particular taint 210 that 1s unset with respect to some charac-
teristic may include labels 200 lacking the particular taint 210
in question. When a taint 210 1s not present, such taint 210 can
be deemed to be unset with respect to all characteristics.

If a characteristic of a taint 210 1s set, then the resource to
which the label 200 applies can require an information flow
check when communicating with other resources, so as to
insure that the data of that resource 1s not shared with
resources without adequate capabilities. Generally, in an
exemplary embodiment, the security system 100 can prevent
information flows from resource P to resource Q, 1f resource
P 1s labeled with a taint 210 having a set secrecy characteristic
220, where resource Q does not have the same taint with a set
secrecy characteristic 220. This protects any secret confiden-
tial data in resource P from being transierred into resource Q,
when Q lacks the same secrecy status. The opposite can be
true for the integrity characteristic 230. An information flow
can be blocked when the sending resource lacks a set integrity
characteristic 230 1n a taint for which the receiving resource
has a set integrity characteristic 230, thus protecting the integ-
rity of the receiving resource. In some instances where the
taint’s capability permits, which will be explained in more
detail below, the security system 100 can automatically raise
the secrecy (1.e., by setting the secrecy characteristic for the
applicable taint) or raise the integrity (1.e., by setting the
integrity for the applicable taint 210) of the receiving
resource, so as to enable the information tlow to proceed.

For 1llustrative purposes, suppose S, denotes the set of
taints 1n the label 200 of a resource P for which the secrecy
characteristic 220 1s set, and suppose 1, denotes the set of
taints of the same label 200 that have the integrity bit set. IT
any secrecy or mtegrity characteristic 220 or 230 of a label
200 1s set, the labeled resource can require an iformation
flow check before each attempted communication with
another resource 1s allowed. In some exemplary embodi-
ments, the security system 100 can allow information to flow
from P to QQ only 1f:

SpE S, (1.€., Sp1s asubset of S,); and

[,=1p(1e., 1,15 asubset ot I).

The rule requiring that S, be a subset of S, 1s reterred to
herein as the secrecy rule. The rule requiring that I, be a
subset of 1, 1s referred to herein as the integrity rule. It will be
understood that, although some exemplary embodiment of
the security system 100 require these rules to be met to permit
an 1nformation flow, other exemplary embodiments can
enforce a different set of rules.

Taints, which can make up the labels, can be imitially set up
by users of the security system 100. Whether the security
system 100 allows a user to create a new taint or modily an
existing label 200 with a specific taint can depend on the
assigned capabilities of the user with respect to the taint 210
in question.

Taint Capabilities

FIG. 3 illustrates a typical capability setting 310 for an
exemplary taint, according to an exemplary embodiment of
the present invention. The taint capability 310 can be main-
tained for centrally by the capability database 430. The host
enforcer 115 and network enforcer 118 can query the capa-
bility database 430 when they encounter an information tflow
between two resources where at least one resource’s label
possesses the taint 210 1n question. The taint capability 310
can comprise the taint identification 250, a taint mnemonic

10

15

20

25

30

35

40

45

50

55

60

65

8

320 that 1s used by lay enterprise users to denote taint 1den-
tification 230, and a capability table 330 that denotes the
capabilities of enterprise users with respect to the taint 210.

The taint mnemonic 320 can be a string or phrase that 1s
assigned to the taint 210 by the user that originally creates the
taint, preferably chosen so that it 1s easy to memorize. For
example, and not limitation, 11 the taint 210 1s used to protect
sensitive data pertaining to employee salary reports, the user
that creates the taint can assign the taint mnemonic 320 as
“Salary Reports.”

The capability table 330 can be a dynamic table that
denotes the capability of each enterprise user in two cases: (1)
when a resource owned by the user possesses the taint 210 1n
its own label and attempts to interact with other resources, or
(2) when a resource owned by the user interacts with another
resource that possesses the taint 210 1n 1ts label. The capabil-
ity table 330 can include, but 1s not limited to, a list of
usernames 331 and their capabilities 332-337 with respect to
the taint 1dentification 210.

Each user of the network can have, but 1s not limited to,
Zero, one, or more of various capabilities with respect to each
taint 210. For each taint, available capabailities can include the
following:

1. Capability to set the secrecy characteristic (s+ 332);

2. Capability to unset the secrecy characteristic (s— 333);

3. Capability to set the integrity characteristic (1+ 334);

4. Capability to unset the integrity characteristic (1i— 335);

5. Capability to add users who can make modifications to
the taint capability 310 (o+ 336); and

6. Capability to remove users who can make modifications
to the taint capability 310 (o- 337).

The user who creates a particular taint 210 can automati-
cally have all six capabilities with respect to the taint 210.
When a new user 1s added to those who can manage the taint
210, the new user can automatically be granted a subset of the
capabilities. For example, and not limitation, let enterprise
user Alice be a user who creates a particular taint 210; con-
sequently, she canreceive all capabailities 332-337 for the taint
210, denoted by check marks (v) in the capability table 330
corresponding to Alice’s row. Because Alice possesses the o+
capability, she may add a user, Bob, to the capability table,
allowing him only the capability for s+ and 1—, denying him
s—, 14+, 0+, and o—, as denoted by cross marks (x) in the
capability table 330 corresponding to Bob’s row.

In addition, the capability table 330 can also have a wild-
card user entry 340 that can be used to denote permissions
toward users not explicitly named 1n the capability table 330.
The wildcard capability setting can be used by the owner(s) of
the taint 210 to automatically set permissions for other enter-
prise users. For example, Alice could set the s+ capability
alone for the wildcard user to allow other enterprise users to
access and read data from a resource that possesses the taint
210, but deny these users from leaking any sensitive informa-
tion from the resource after they have read 1it. The utility of
various fields in the capability table 330 will become apparent
in the following sections, which discuss host enforcers 115
and network enforcer 118.

One of skill in the art will recognize that the representations
of the capability table 330 1s exemplary, and actual 1mple-
mentations may involve analogous or extended representa-
tions for storing capabilities of users with respect to taint
identification 2350.

Creating and Applying Taints to Resources

FIG. 4 illustrates a workiflow 1nvolved 1n creating a new
taint and securely applying the taint to a resource in the
enterprise network, according to an exemplary embodiment
of the present invention. An enterprise user 410 may use an

US 8,893,300 B2

9

enterprise host 50 to create and apply a taint 210 to a file F
435, i thus workflow. The host 50 may run an operating
system that can typically be partitioned 1nto programs run-
ning 1n userspace 420 and kernel space 430. Within the con-
text of the security system 100, accesses to the file F 435 can
be mediated by the labeler 125, 1n coordination with the host
enforcer 123 and the capability database 430.

In an exemplary embodiment of the security system 100, a
user 410 does not have direct access to labels associated with
the various resources of the host 50. To protect a file F 435,
using the security system, the user 410 may be required to use
a centralized authentication service and taint management
console 445. Step 1 1n protecting file F 435 can be to use a
taint management application 423 running in userspace 420
on host 50 to choose a file F 435 to which a taint 210 1s to be
created and applied. The taint management application 4235
can be various programs that can communicate with the
authentication service and taint management console 445.
For example, and not limitation, the user 410 can use a web
browser for this purpose. Alternatively, the user 410 can use a
desktop service to communicate with authentication service
and taint management console 443, which can be invoked by
accessing familiar permissions menus, €.g., by “right-click-
ing”” a file and choosing “File Properties.”

The taint management application 4235 can communicate
the user’s taint management request on behalt of the user to
the authentication service and taint management console 445,
as 1llustrated 1n Step 2. The request can comprise, without
limitation, the following iformation: (1) the credentials
(c.g., a login username, password, and optionally a
CAPTCHA test to distinguish automated requests); (2) the
identification of the file F 435 or any other resource for which
the user wishes to manage labels 200 or taints 210; (3) the

type of request, which can be, but 1s not limited to, one of
TAINT_CREATE, TAINT_MODIFY, or TAINT_MAN-

AGE.

The authentication service and taint management console
445 can be a centralized service that can be in communication
with a plurality of hosts 50 1n the enterprise, the capability
database 430 (in order to create and manage capabilities on
taints), and an enterprise-wide user directory service, for
example, Microsoit Active Directory, OpenLDAP (Light-
weight Directory Access Protocol), or Network Information
Services (NIS). The authentication service and taint manage-
ment console 445 can also provide a detailed visual display
for each authenticated user 410 that allows him or her to view,
create, manage, and modily one or more of the taints owned
by the user 410. After the authentication service and taint
management console 445 authenticates the user 410, 1t can
accept the remainder of the user’s request, which may include
an 1dentifier to aresource 1n the enterprise and a request type.
The 1dentifier to the resource can include the host 1dentifier
where the resource 1s located, the access path for the resource,
and the type of resource (e.g., file, process, memory page,
database record, etc.). For illustration, FIG. 4 illustrates an
example 1n which the resource chosen by the user 410 1s a
regular file, F 435, located on the user’s own host 50.

The user 410 can 1ssue various types of requests. The
TAINT_CREATE request may be used by the user 410 to
create a new taint 210 with default capabilities, which
defaults can place the user 410 as owner of the newly created
taint 210 with full capabilities, and no capabilities for other
users. This request can carry additional parameters including,
but not limited to, the taint mnemonic 320 and a capability
table 330. The TAINT_MODIFY request can be used to
modity the capabilities of an existing taint that has user 410
listed as an owner (1.e., the o+ and o- capabilities). This

10

15

20

25

30

35

40

45

50

55

60

65

10

request can carry additional parameters that specily the type
of modification requested, which may include changing the
taint mnemonic 320, adding or removing users to the capa-
bility table 330, or changing specific capabilities for one or
more users 1n the capability table 330. The TAINT_MAN-
AGE request can be used for additional commands pertaining
to taints, including, but not limited to:

1. Adding the taint to a resource’s label: This type of
request can add the requested taint to a specified
resource’s label, provided the user 410 has the required
capabilities to perform this action.

2. Adjusting capabilities of taints 1n a label: If the taint 1s
already present to the specified resource’s label, this
type of request can set or unset the secrecy or integrity
characteristic for that taint, provided the user 410 has the
required capabilities as per the capability database 430.

3. Removing a taint from a resource’s label: This type of
request can remove a taint 210 from a specified
resource’s label 200, which may imply adjusting capa-
bilities of the selected taint 210 by unsetting both the
secrecy and integrity characteristics 220 and 230 from
the taint 210 1n the specified resource’s label 200.

In Step 3 of FIG. 4, the authentication service and taint
management console 445 can verily that the specific request
1ssued by the user 410 satisfies the capabailities assigned to the
user 410. In Step 4, the capability database 430 can repackage
the request and communicate with the labeler 125 on the host
50 where the specified resource, file F 435, 1s located. In Step
5, the labeler 125 on the host 50 can locate the resource, file F
435, and perform the requested operation on the specified
taint 210 on file F’s label 200. Depending on the outcome of
this action, the labeler 125 can inform the capability database
430 and the authentication service and management console
445 about the success status of the request. In Step 6, the
authentication service and taint management console 445 can
communicate the success or failure of the user’s request back
to the user through the taint management application 425.
Enforcement of Labels with Information Flow Checks

FIG. 5 illustrates an example of checking information tlow
within a single host 50, according to an exemplary embodi-
ment of the present invention. It will be understood that this
example 1s provided for illustrative purposes only and does
not restrict the scope of the invention. As shown in FI1G. 4, file
F and process P reside on the host 50. Process P attempts to
read secret File F, which would result 1in a flow of information
from file F to process P.

File F 1s a secret file (1.e., 1s labeled with a taint having a set
secrecy characteristic). When process P attempts to read F, the
labeler 125 retrieves the labels for file F and process P from
the local label store 123. The labeler 125 then queries the host
enforcer 115 with the labels 200 of F and P to determine
whether mnformation from F to P 1s permissible. The host
enforcer 115 retrieves the capabilities of the users that own F
and P for all taints 1n the labels of F and P from the capability
database 430, and the hose enforcer 115 then determines
whether the attempted information flow would cause a viola-
tion of the secrecy rule, the integrity rule, or another infor-
mation flow rule.

FIG. 5 1llustrates an example of checking information tlow
between two resources on different hosts 50 across the net-
work 10, according to an exemplary embodiment of the
present invention. As shown in FIG. 5, suppose a malicious
process P on a first host 50 attempts to exploit a trusted server
process (Q on a second host 50. Because the attempted 1nfor-
mation flow requires P’s data to be transmitted over the net-
work 10, the labeler 125 on the first host 50 pushes P’s current
label 200 to the label repository 128, which can be at a

US 8,893,300 B2

11

location accessible to the network enforcer 118 and the
labeler 125 of the second host 50. The network enforcer 118
can check whether the attributes of the information flow and
of P’s label 200 permit the attempted information flow to
occur. If the network enforcer 118 allows the mnformation
flow to reach the second host 50, the labeler 125 of the second
host 50 can retrieve P’s label 200 from the label repository
128. From this point forward, the security system’s opera-
tions can be the same or similar to those that would occur
from an information tlow attempt 1solated to a single host 50.
The second host’s labeler 125 can invoke its host enforcer 115
to perform the information flow check using the respective
labels 200 of P and Q. The host enforce 115 can complete this
check after retrieving the approprate user capabilities from
the capability database 430.

Preventing Data Leaks

The security system can prevent data leaks using informa-
tion tlow control. Sensitive data that 1s to be protected from
leaks can be associated with a taint 210, T. The user that
applies the taint T to the sensitive data may ensure that none
but a trusted set of enterprise users are granted the s+ capa-
bility on the taint T. Thus, when an unauthorized user not in
the set of trusted users attempt to access a file protected with
taint T, the host enforcers 115 on the applicable hosts 50 can
determine, using the capability database 430, that the infor-
mation tlow to the unauthorized user’s program constitutes an
unpermitted information tlow, and can therefore prevent the
operation from taking place.

Now assume that one of the users in the trusted set of users
who are granted the s+ capability on taint T 1s malicious and
wishes to leak the sensitive information outside the enterprise
network. Such cases would include, for example: (1) the user
1s benign but 1s accidentally running a malicious program
which attempts to leak the data, or (2) the user 1s benign, but
a service that runs under the user’s capability 1s under the
control of a hacker external to the enterprise. Because the user
1s granted s+, his programs are able to read the sensitive data,
and even make copies, some of which may even be encrypted.
However, the labeler 125 on the malicious user’s host 50 can
ensure that all copies of the sensitive data will continue to
carry the taint T.

Now suppose the malicious user attempts to copy an
encrypted version of the sensitive data to a removable disk
drive. The host enforcer 115 on host 50 cam always assign
immutable empty labels 200, which carry no taints 210, to
cach output device that represents a potential data leak. Thus,
the host enforcer 115 can understand that writes of sensitive-
labeled data to unauthorized output devices, including, for
example, removable disk drives, printers, secondary network
cards, Bluetooth, and infrared, constitute a violation of infor-
mation flow control rules, because the label 200 of the output
device cannot carry a secret taint 210, even if the user pos-
sesses the s+ capability. Thus, the host enforcer 115 can detect
a potential data leak and stop the requested transier from
taking place. The malicious user may also be unable to leak
sensitive data over the network 10 (e.g., over an encrypted
connection to a remote Internet server) because the network
data that he sends out can be i1dentified as carrying sensitive
content by the network enforcer 118 using the label repository
128, and can therefore be blocked from leaving the network
10. Because the owner of the taint T only granted the mali-
cious user the s+ capability and not the s— capability, the user
may be unable to remove the taint T from any of his files that
contain sensitive content.

Preventing Data Leaks in Web-Based Applications

An exemplary embodiment of the security system 100 can

be used to prevent data leaks in web-based applications that

10

15

20

25

30

35

40

45

50

55

60

65

12

are used to access sensitive data stored in files or database
records. Web-based applications may be used by enterprise
users to access their sensitive data stored 1n internal enterprise
servers Irom outside the enterprise. Unifortunately, web-
based applications today are a primary vector of data leaks
from enterprises and are regularly exploited to leak sensitive
database records from organizations. Embodiments of the
security system 100 can defend against breaches that exploit
web application vulnerabilities while permitting legitimate
enterprise users to scamlessly access their sensitive data from
outside the enterprise.

FIG. 6 illustrates an exemplary embodiment of the security
system 100 designed to protect a set of sensitive database
records accessible through a web-based application 620. It
will be understood that various other implementations of the
security system 100 may also be used to prevent data leaks
through web applications 620, and the implementation pro-
vided in FIG. 6 1s for 1llustrative purposes only.

A sensitive database 610 on a host 50 can contain one or
more records that are sensitive, with an enterprise user’s
sensitive data occupying one or more rows of the database
610. For example, and not limitation, the database 610 can
include three columns: a user name, a secret (e.g., an account
balance), and a taint 210 that 1s attached to each sensitive
record. The database 610 may be accessible to enterprise
users ifrom outside the enterprise network 10 through an
untrusted web application 620. The web application may be
susceptible to compromise by external hackers, or the web
application 620 itself may be malicious and attempt to send
data 1t reads from the database 610 to unauthorized destina-
tions outside the network 10. The database 610 and untrusted
web application 620 can run on hosts 50 equipped with the
labeler 125 and host enforcer 115, positioned within the
enterprise network 10 behind the network enforcer 110 and an
authentication service and taint management console 443.
This exemplary embodiment of the security system 100
can allow legitimate users to retrieve their secret database
records while disallowing hackers, or a malicious web appli-
cation components, from leaking data. In Step 1, a legitimate
user may connect to the web application’s Uniform Resource
Locator (URL) 1n order to access the user’s secret data. Prior
to reaching the web application 620, the user can be redi-
rected to the authentication service and taint management
console 445 1n Step 2, where the user must authenticate
himsell by presenting his enterprise credentials. Once
authenticated, the user can be redirected to the untrusted web
application 620 in Step 3, where the user man request that the
web application 620 retrieve his secret account balance from
the database 610. In step 4, the web application 620 may 1ssue
a retrieve request on behalf of the user for the user’s database
entry. In Step 5, the requested database record may be
released by the database 610 after applying an applicable taint
210 to the data prior to release. This taint 210 can be com-
pared by the host enforcer 110, on either the database server
host 50 or the web application server host 50, to ensure that
the requesting user has the requisite capability to view the
record (e.g., the s+ capability). After recerving the database
record, the web application 620 may forward a response to the
user through the network enforcer 110. At thus stage, 1n Step
6, the network enforcer 118 can compare the taint 210 on the
outgoing data flow with the list of users that are logged 1n,
utilizing the authentication service and taint management
console 445 as needed. This step may be crucial to decide
whether the user who requested the data has the requisite
capability to declassify the data such that it can be sent outside
the enterprise network 10 (e.g., the s— capability). After the
network enforcer 118 confirms that the tainted network tlow

US 8,893,300 B2

13

1s destined to the web session of an authenticated user with the
appropriate capability with respect to the taint 210, the net-
work enforcer 118 can automatically declassity the taint 210
to permit the data to leave the enterprise network 10.

Resultantly, the security system 100 can prevent data leaks
even 1f the untrusted web application 620 1s compromised 1n
one of many potentially unknown ways. Even 1f an attacker
has complete control over the web application 620 and can
read any database record from the database 610 without hin-
drance, the attacker may be blocked from exporting sensitive
data outside the network 10, because the authentication ser-
vice and taint management console 445 can find that the
attacker 1s attempting to access sensitive information carrying
a taint 210 on which the attacker does not have the s— capa-
bility.

Improvements Over Prior Art 1n Information Flow Control

Some aspects of the present imnvention are related to prior
art 1n information tlow control. Specifically, 1n “A Decentral-
1zed Model for Information Flow Control” published 1n the
1997 Sympostum on Operating Systems Principles by
Andrew C. Myers and Barbara Liskov, the authors propose a
programmatic model to restrict the flow of information
between components of applications such that an untrusted
application cannot leak 1t. In “Information Flow Control for
Standard OS Abstractions™ published in the 2007 Symposium
on Operating Systems Principles, Maxwell Krohn et al. pro-
pose an information flow control scheme that works on com-
modity operating systems.

Various embodiments of the present invention include
improvements over prior art that can make the present secu-
rity system 100 more effective, convenmient, functional, prac-
tical, or cost-effective than the prior art. First, the present
invention can perform information flow control for unmodi-
fied, legacy applications, whereas the prior art requires appli-
cations to be rewritten to take advantage of the information
flow control system. In the prior art, applications are required
to manage labels and capabilities programmatically and 1n a
decentralized fashion. This approach proves difficult or
impossible 1n most orgamizations where applications are pro-
prietary and run on commodity operating systems, and modi-
tying source code for such applications 1s not possible.
Embodiments of the present invention need not require appli-
cation modification, and can work on commodity operating
systems. Using a simple and lightweight operating system
update that 1nstalls the labeler 125, label store 123, and host
enforcer 115, the security system 100 can track information
flow for unmodified applications by offloading the work of
setting and managing policies on labels 200 to the users of the
enterprise network 10 through the centralized authentication
service and taint management console 445 and the capability
database 430.

A second advantage of various embodiments of the present
invention 1s the ability to perform imnformation tlow tracking
over hosts 50 1n a large, globally distributed enterprise net-
work 10, whereas previous inventions in information flow
control are limited to a single host or, at the most, to a small
number of hosts. In the present invention, the host labelers
125 can coordinate with the label repository 128 to transier
labels 200 between processes communicating over the net-
work 10. A globally distributed enterprise network 10 may
have multiple globally distributed label repositories 128 to
ensure information flow tracking at a global scale. The label
communication scheme works on the existing IP protocol and
thus requires no reconfiguration of traflic filtering rules 1n the
enterprise network 10.

A third and major improvement of some embodiments of
the present invention 1s an improvement to the rules of infor-

10

15

20

25

30

35

40

45

50

55

60

65

14

mation flow control used in prior art, and improvement that
can result in minimal inconvenience for enterprise users when
dealing with resources whose labels 200 have one or more
taints 210 with the secrecy characteristic 220 set. Typically, in
enterprise networks 10, sensitive information i1s broadly
accessible to enterprise employees and users, and the key
need for enterprises 1s not to prevent employees from viewing
sensitive data but to prevent them from exfiltrating such data
outside the enterprise network confines. In conventional
information tlow control policy schemes, if a resource P with
no taints in its label attempts to read information from a
resource () with one secrecy taint 210, the resource P first has
to apply the taint 210 to 1ts own label 200 to raise 1ts own
secrecy level, provided the user that owns P possesses the s+
capability on the taint 210; only then can P attempt reading
from the resource Q. If the present invention followed stan-
dard rules of information flow control, the user that owns P
would have to manually apply the taint 210 to P each time P
accessed a sensitive resource, even 1f the user possessed the s+
capability on the taint 210.

To reduce user intervention and to allow newly created
processes to read secret files without alerts and warning mes-
sages, the security system 100 can modity the conventional
rules for information flow control. Specifically, 1n some
embodiments of the security system 100, the labeler 125 can
automatically allow information flows that only raise a
resource’s secrecy (or mtegrity), provided that the user own-
ing the resource has the s+ capability to the raise the resourc-
es’s secrecy. Thus, within the enterprise network perimeter
protected by the security system 100, users can access sensi-
tive resources as normal, using various programs oi their
choice, with information tlow tracking being transparent to
them and their applications.

This novel functionality can be implemented using the
wildcard capability 340 1n the capability table for a taint 210.
At taint creation, the user that creates a taint 210 can choose
to set a default wildcard policy for other enterprise users,
which can grants other users the s+ capability without grant-
ing them the s— capability. This policy can ensure that users
other than the creator of the taint 210 can read sensitive
resources labeled with the taint 210 but may not remove the
taint 210, so as to leak information outside the network 10.

In contrast, lowering secrecy or integrity, such as by unset-
ting a characteristic from a taint 210, can potentially cause
data leaks, and may thus require explicit user action. Remov-
ing the secrecy characteristic 220 on a taint 210 for a resource
1s known as declassification. In some embodiments of the
security system 100, declassification may always require user
intervention, to confirm that the user wished to declassity a
particular resource. In many cases, even 1f the user who
requests declassification possesses the s— capability for the
tamnt 210 1n question, the authentication service and taint
management console 445 can require the user to solve a
CAPTCHA to ensure that the declassification 1s not requested
by an automated malicious program masquerading as the
user.

Implementation: Overview

One or more aspects of the security system 100 and related
methods can be embodied, 1n whole or in part, 1n a computing
device 700. For example, one or more hosts 530 can be com-
puting devices, and the network enforcer 118 can be a com-
puting device 700 or a portion thereof. FIG. 7 illustrates an
example of a suitable computing device 700 that can be used
in the network 10 1n which the security system 100 operates,
according to an exemplary embodiment of the present inven-
tion.

US 8,893,300 B2

15

Although specific components of a computing device 700
are 1llustrated 1n FI1G. 7, the depiction of these components 1n
lieu of others does not limait the scope of the invention. Rather,
various types of computing devices 700 can be used to imple-
ment embodiments of the security system 100. Exemplary
embodiments of the security system 100 can be operational
with numerous other general purpose or special purpose com-
puting system environments or configurations. Examples of
well-known computing systems, environments, and/or con-
figurations that can be suitable for use with the invention
include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor sys-
tems, microprocessor-based systems, set top boxes, program-
mable consumer electronics, network PCs, minicomputers,
mainframe computers, distributed computing environments
that include any of the above systems or devices, and the like.

Exemplary embodiments of the security system 100 can be
described 1 a general context of computer-executable
istructions, such as one or more applications or program
modules, stored on a computer-readable medium and
executed by a computer processing unit. Generally, program
modules can include routines, programs, objects, compo-
nents, or data structures that perform particular tasks or
implement particular abstract data types.

With reference to FIG. 7, components of the computing
device 700 can comprise, without limitation, a processing
unit 720 and a system memory 730. A system bus 721 can
couple various system components including the system
memory 730 to the processing unit 720.

The computing device 700 can include a variety of com-
puter readable media. Computer-readable media can be any
available media that can be accessed by the computing device
700, including both volatile and nonvolatile, removable and
non-removable media. For example, and not limitation, com-
puter-readable media can comprise computer storage media
and commumnication media. Computer storage media can
include, but are not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital ver-
satile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store data accessible by the computing device 700. For
example, and not limitation, communication media can
include wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared
and other wireless media. Combinations of any of the above
can also be included within the scope of computer readable
media.

The system memory 730 can comprise computer storage
media in the form of volatile or nonvolatile memory such as
read only memory (ROM) 731 and random access memory
(RAM) 732. A basic input/output system 733 (BIOS), con-
taining the basic routines that help to transfer information
between elements within the computing device 700, such as
during start-up, can typically be stored 1n the ROM 731. The
RAM 732 typically contains data and/or program modules
that are immediately accessible to and/or presently in opera-
tion by the processing unit 720. For example, and not limita-
tion, FIG. 7 1llustrates operating system 734, application pro-
grams 733, other program modules 736, and program data
737.

The computing device 700 can also include other remov-
able or non-removable, volatile or nonvolatile computer stor-
age media. By way of example only, FIG. 7 1llustrates a hard
disk drive 741 that can read from or write to non-removable,
nonvolatile magnetic media, a magnetic disk drive 751 for
reading or writing to a nonvolatile magnetic disk 752, and an

10

15

20

25

30

35

40

45

50

55

60

65

16

optical disk drive 755 for reading or writing to a nonvolatile
optical disk 756, such as a CD ROM or other optical media.
Other computer storage media that can be used 1n the exem-
plary operating environment can include magnetic tape cas-
settes, tlash memory cards, digital versatile disks, digital

video tape, solid state RAM, solid state ROM, and the like.

The hard disk drive 741 can be connected to the system bus
721 through a non-removable memory interface such as inter-
tace 740, and magnetic disk drive 751 and optical disk drive
753 are typically connected to the system bus 721 by a remov-
able memory interface, such as interface 750.

The drives and their associated computer storage media
discussed above and illustrated 1n FIG. 7 can provide storage
of computer readable 1nstructions, data structures, program
modules and other data for the computing device 700. For
example, hard disk drive 741 1s illustrated as storing an oper-
ating system 744, application programs 745, other program
modules 746, and program data 747. These components can
either be the same as or different from operating system 734,
application programs 735, other program modules 736, and
program data 737.

A web browser application program 735, or web client, can
be stored on the hard disk drive 741 or other storage media.
The web client 735 can request and render web pages, such as
those written 1n Hypertext Markup Language (“HTML”), in
another markup language, or 1n a scripting language.

A user of the computing device 700 can enter commands
and information 1nto the computing device 700 through 1input
devices such as a keyboard 762 and pointing device 761,
commonly referred to as a mouse, trackball, or touch pad.
Other input devices (not shown) can include a microphone,
joystick, game pad, satellite dish, scanner, electronic white
board, or the like. These and other input devices are often
connected to the processing umt 720 through a user input
interface 760 coupled to the system bus 721, but can be
connected by other interface and bus structures, such as a
parallel port, game port, or a universal serial bus (USB). A
monitor 791 or other type of display device can also be
connected to the system bus 721 via an interface, such as a
video mterface 790. In addition to the monitor, the computing
device 700 can also include other peripheral output devices
such as speakers 797 and a printer 796. These can be con-
nected through an output peripheral interface 795.

The computing device 700 can operate in a networked
environment, being i communication with one or more
remote computers 780, such as other hosts 50, over the net-
work 10. The remote computer 780 can be a personal com-
puter, a server, a router, a network PC, a peer device, or other
common network node, and can include many or all of the
clements described above relative to the computing device

700, including a memory storage device 781.

When used 1n a LAN networking environment, the com-
puting device 700 can be connected to the LAN 771 through
a network interface or adapter 770. When used 1n a WAN
networking environment, the computing device 700 can
include a modem 772 or other means for establishing com-
munications over the WAN 773, such as the internet. The
modem 772, which can be internal or external, can be con-
nected to the system bus 721 via the user mput interface 760
or other appropriate mechanism. In a networked environ-
ment, program modules depicted relative to the computing
device 700 can be stored in the remote memory storage
device. For example, and not limitation, FIG. 7 illustrates
remote application programs 785 as residing on memory
storage device 781. It will be appreciated that the network

US 8,893,300 B2

17

connections shown are exemplary and other means of estab-
lishing a communications link between the computers can be
used.

The mventors built a prototype of the security system 100,
the details of which are discussed below. It will be understood
that the prototype 1s illustrative of one exemplary embodi-
ment and does not limit the scope of the invention.
Implementation: Host Components

In the prototype security system 100, the labeler 125, the
label store 123, and the host enforcer 1135 are implemented as
an operating system patch for the open source Linux operat-
ing system. The labeler 125 1s implemented using Linux
Security Modules (LLSM), which 1s a framework within the
Linux kernel that allows various security models to be added-
on without changing core kernel code. LSM provides hooks
within system call handlers that can be implemented by a
security module. Thus, a third party module can implement
mandatory access control for a system call (e.g., read(2))
without changing the core implementation of the system call
handler (e.g., sys_read). Using LSM hooks, the labeler 125
intercepts all system calls that transfer information between
resources on a host 50. Hooks are used to track information
flow for system calls listed 1n Table 1, which appears below.
These are merely exemplary, not limiting, and the security
system 100 may track information flow for calls not listed 1n
Table 1 or calls that are added to operating systems 1n future.

TABL.

1

(L]

Syscall Type Example syscalls

send(2), shmat(2), msgsnd(2),
kill(2)

read(2), unlink(2), mknod(2)
fork(2), execve(2), clone(2)
mmap(2), mprotect(2)
sysctl(2), mit__module

Inter-process Communication

File/device operations
Process creation
Memory operations
Kernel configuration

In addition to hooking system calls that transier informa-
tion, the prototype labeler 125 also monitors access to
memory pages. Specifically, where the labels 200 are tracked
at the granularity of memory pages, and not at the granularity
ol a process that consists of several memory pages, system
calls are not sufficient to track all flow of information between
memory pages. For example, and not limitation, a userspace
process may have two memory pages mapped 1nto 1ts virtual
address space. Suppose that one of such memory pages has a
label 210 attached to 1t while the other memory page does not.
I1 the process executes an 1nstruction in userspace that moves
a byte of data from the labeled memory page to the unlabeled
memory page, a system call hook at the kernel will be unable
to 1ntercept this information flow.

To intercept this information flow from the kernel without
placing any trust in the userspace applications, the labeler 125
1s augmented with additional functionality. Specifically, the
labeler 125 uses hardware-level write protection on memory
pages, which 1s available on all major processor architectures,
to be notified whenever there 1s a write to a memory page. In
the example of two memory pages cited above, the labeler
125, at the time of allocating a memory page and mapping it
to a process’s virtual address space, sets the write-protection
on the page 11 any other pages 1n the process’s address space
carry a label 200. This step can ensure that whenever an
instruction executing in userspace attempts to copy informa-
tion to the unlabeled memory page, the write protection can
raise a fault, which can be trapped by the labeler 125 residing,
in the kernel. At this point, the labeler 125 1mnspects the source
and destination of the instruction that caused the trap. In case

10

15

20

25

30

35

40

45

50

55

60

65

18

the source originated from a page that had a label 200, the
label 200 1s carried over to the write-protected page, and the
write protection 1s removed betfore allowing the instruction to
execute. Otherwise, the write-protect 1s temporarily removed,
the instruction 1s executed, and the write-protect 1s re-enabled
betfore returning control back to user-space.

An enterprise administrator installs the labeler 125 module
on the operating system of the host 50 when the host 1s 1n a
known “clean” state (e.g., as might be determined by an audit,
virus scanner, or by using a Linux distribution with the pre-
loaded labeler for installation). On reboots, the labeler 125 1s
automatically loaded shortly after initialization (1.¢., 1nit) dur-
ing the boot sequence.

The labeler 1235 maintains a label 200 for every resource on
the host 50 that 1s associated with at least one taint 210. Each
taint 210 of a label 200 includes an 1dentification, a secrecy
bit, and an mtegrity bit. A taint 210 1s described by the taint
identification and 1ts current setting of secrecy and integrity
bits. The local labeler 125 does not maintain capabilities of
the user that owns the resource, as such capabilities are main-
tained 1n the central capability database 130. For efliciency,
the labeler 125 does not create or maintain labels 200 for files
and directories that have no taints in their label 200, instead
assigning such resources a “null” label 200.

The local label store 123 1s a partition that 1s encrypted
using a key embedded 1n the kernel image. The local label
store 123 1s stored 1n a partition not readable to user space
processes (enforced using LSM checks). On disk, labels 200
are indexed by the inode numbers or process identifications of
the resources to which they map. Label 200 reads and writes
are bulfered using an in-memory cache. At shutdown, labels
for files and directories are written to disk, and process labels
are discarded. To prevent loss of sensitive labels 200 1n the
event of a machine crash, the prototype security system 100
use a journaling file system on the label store 123 partition.
Labels 200 of a file are written back to the label store 123
betore the file’s inodes themselves are written to disk.
Although not required 1 every embodiment of the security
system 100, the label store 123 of the prototype security
system 100 back up the labels 200 to the label repository 128
periodically.

The labeler 1235 enforces information tlow control checks
using the host enforcer 115, which 1s implemented as a kernel
patch. Alternatively, the host enforcer 115 can be 1mple-
mented below the kernel in a hypervisor or on a trusted
platform module. The host enforcer 115 executes with the
same or higher security and privileges as the labeler 125. The
labeler 125 1nvokes the host enforcer 115 when 1t detects
information flow between two resources that have incompat-
ible labels 200. The host enforcer 115 communicates with the
capability database 430 to retrieve the appropriate capabili-
ties, but 1n some 1nstances, the host enforcer 115 can make a
decision without querying the capability database 430. For
example, 1f the sending resource’s label 200 cannot be auto-
matically declassified and has one or more secrecy taints 210,
and the destination 1s a removable drive, the host enforcer 115
denies the mnformation flow without checking the capability
database 430.

The capability database 130 and label repository 128 are
hash tables that allow clients to look up values of keys. Both
of these services are implemented using Redis, an exemplary
high performance key-value store. Redis supports only string
keys, but values can be of any type. Keys for the capability
database are the taint identifications 250, and each value 1s a
structure that contains the name for the taint 210 and a list of
users and their capabilities over the taint 210.

US 8,893,300 B2

19

Implementation: Network Components

A challenge 1n enforcing information tlow control through-
out the network 10 1s that a recerving host’s enforcer 115 may
need to make information flow control decisions without
having immediate access to the labels 200 associated with the
sending resource. To uniquely associate a sending resource
with a label 200, the sender’s labeler 125 can annotate each
packet with a resource 1dentification and a version number.
Thenetwork enforcer 118 or the enforcer 115 onthe receiving
host 530 canretrieve the sending resource’s label 200 using the
sender’s IP address, resource 1identification, and version num-
ber from the label repository 128. The resource identification
can be unique during a resource’s lifetime. Version numbers
can increment from zero and indicate the version of the send-
ing process’s label 200. It the sending process’s label 200
changes, the sender’s labeler 125 can annotate subsequent
packets with the incremented version number to indicate to
the receiving labeler 125 that the sender’s label 200 has
changed.

During an information flow check, the receiving labeler
1235 can extract the resource 1dentification and version num-
ber from the packet header for an incoming flow and can
retrieve the sender’s label 200 from the label repository 128.
Because the labeler 125 has local access to the current label
200 for the recewving process, the labeler 125 can perform
information flow control checks using the host enforcer 115 at
the receiving host 50 1n the same, or similar manner, that such
checks would be performed for an intra-host information flow
check.

The network enforcer 118 can typically reside at bound-
aries between networks of different trust levels, such as at the
edge of the enterprise network 10 leading to the Internet, or
between wired and wireless network boundaries within the
enterprise. The network enforcer 118 can have policies that
designate immutable secrecy and integrity taint sets to certain
destination prefixes or to specific ports of the network device.
For example, and not limitation, a host enforcer 1135 of a
sending host 50 can designate traffic destined to the Internet
as having a particular immutable taint 210. When a network
enforcer 118 sees a new data flow, 1t can extract the resource
identification and version number from the packet header and
retrieve the sender’s label 200 from the label repository 128.
The network enforcer 118 can then perform information flow
control checks to ensure that the attempted imnformation flow
1s permitted. When the network enforcer 118 sees the immu-
table taint 210 related to Internet traflfic, it can determine
whether the sending process had any secrecy taints 210 at all.
If the sending process had secrecy taints, the network
enforcer 118 can prohibit the attempted mnformation tlow.

If a flow passes information flow control checks, the net-
work enforcer 118 can install a rule that allows future packets
with the same resource identification and version number
back into the network 10 without undergoing checks.

Although the network enforcer 118 may be any of various
devices capable of inspecting network traific and correspond-
ing labels from the label repository 128, the prototype secu-
rity system 100 uses a slightly-modified OpenFlow switch
implementation, along with a custom NOX controller that
communicates with the switch over a secure channel. The
controller queries the capability database 130 and the label
repository 128 to make information flow decisions and
installs rules on the network switch to forward or block flows
based on the decisions. The prototype security system 100
uses modified OpenFlow switches to augment flow table
entries with label version numbers. When a new tlow arrives,
the switch forwards the traffic to the controller, and the net-
work enforcer 118 at the controller performs any necessary

10

15

20

25

30

35

40

45

50

55

60

65

20

information flow control checks. If the information flow 1s
permitted, the controller nserts a flow table entry in the
switch, and data packets that match this entry are forwarded
without further checks. If the version numbers embedded 1n
the data packets change mid-tlow, the flow table entry will no
longer match, at which point the controller performs a new

information tlow check on the new version of the sender’s
label.

Implementation: Security Features

Although the label repository 128 can contain labels from
various hosts 50, a particular labeler 125 can be limited to
pushing and manipulating labels 200 1n the label repository
128 only for resources that are associated with its host 50. In
some embodiments, labelers 125 can be uniquely identifiable
so that the security system 100 can associate each labeler 125
with its host 50, even as hosts 50 enter and leave the network
10 or change IP addresses. Thus, an administrator may assign
a unique private/public key pair to each labeler 125 when the
labeler 125 1s installed on the corresponding host 50. The
public key can act as an identification for the host 50 and can
be used for seli-certification. The public key can also be used
to generate a session encryption key to encrypt control traffic
related to the security system 100.

When a host 50 enters the network 10 and joins the security
system 100, 1ts labeler 125 can register with a labeler authen-
tication service. The labeler authentication service can asso-
ciate each host 50 with its host identification, so the public key
for a host 50 can be used to prove the labeler’s identity and to
securely establish an expirable session key for use between
the labeler 125 and enterprise services (e.g., label repository
128, capability database 430, authentication service and taint
management console 443). The labeler 125 can interact
securely with the label repository 128 to register storage for
itsell as needed and to push and retrieve labels 200 for inter-
host communication.

In some cases, a host 50 may have multiple network 1nter-

faces, with only one 1s connected to the enterprise network
(1.e., the “primary” interface). In that case, the labeler 1235 can
determine the primary interface, so as to denote all other
interfaces as potential avenues for data leaks. To discover the
primary interface, the host labeler 125 can broadcast a mes-
sage to all configured interfaces and then designate the inter-
face on which it recerves a signed response from the labeler
authentication service as the primary network interface.
The security system 100 can fix the taints of certain
resources, so as to limit the abilities of such resources. For
example, at boot time, the host enforcer 115 can build a list of
all output devices (except the display device) as potential
avenues for information leaks. The host enforcer can then set
an immutable label 200 of these devices, so as to prevent
tainted resources from writing to these devices. The primary
network interface card and the primary hard disk can be
excluded from the devices receiving this label 200. These two
devices can instead recerve an immutable “master’” label 200.
The master label 200 can indicate that send(2) and recv(2)
through these interfaces do not involve information flow
checks or label adjustments.

For example, and not limitation, all electronic messages
and external drives, such as flash drives, can recerve empty
immutable labels 200. Thus, 1n the attempt of a user to copy a
file to a flash drive where the file has any secrecy taints 210,
the user may be unable to raise the secrecy of the flash drive
so as to enable the information flow. However, 1f the user has
the capability to lower the secrecy of the file with respect to
the applicable taints 210, then the user can do so, thus
enabling the file to written to the flash drive.

US 8,893,300 B2

21

As mentioned above, a user who owns a taint 210 may limit
which people have the capability of unsetting the secrecy
characteristic 220 of that taint 210. Resultantly, a user may
limit which users can transmit data associated with the taint
210 outside of the network 10.

In short, labels 200 can enable users of the security system
100 to protect the tlow of their data. By labeling a resource
with a particular taint 210, a first user can assert control over
the tflow of information from that resource. The first user can
grant a {irst set of other users the right to imtiate information
flows from the resource, and can grant a second set of other
users the right to take information from the resource out of the
network.

As discussed above 1n detail, various exemplary embodi-
ments of the present invention can provide an effective means
to reduce or prevent data leaks 1n an enterprise network, by
requiring information flows to comply with applied resource
labels. While security systems and methods have been dis-
closed 1 exemplary forms, many modifications, additions,
and deletions may be made without departing from the spirit
and scope of the system, method, and their equivalents, as set
forth 1n the following claims.

What 1s claimed 1s:

1. A security system for a plurality of resources 1n a com-
puter network having a plurality of hosts, the security system
comprising:

a computer processor;

a memory operatively coupled to the computer processor

and configured for storing data and instructions;

a plurality of taints, each taint configured to be applied by
a labeling system to at least one of the plurality of
resources, and each taint having a plurality of character-
istics including identification data, secrecy data, and
integrity data, the characteristics variably being in a first
state or a second state;

a plurality of labels, each label comprising at least one
taint;

the labeling system 1n communication with the plurality of
hosts and configured to apply, by the processor, a label of
the plurality of labels to a corresponding operating sys-
tem resource of the plurality of resources, and to receive
notifications of attempted writes to the operating system
resource, wherein the operating system resource
includes one or more of a file, process, socket, thread, or
memory page;

a capability database configured for associating each of a
plurality of users with a respective corresponding capa-
bility set for each respective taint of the plurality of
taints, wherein according to a first capability set of a first
user for a first taint, the first user has a capability to
change the characteristics of the first taint from the sec-
ond state to the first state, and from the first state to the
second state, 1n the first label,

wherein the labeling system 1s further configured to auto-
matically modity the state of the first label on behalf of
the first user, to facilitate the information flow; and

an enforcement system in communication with the plural-
ity ol hosts and configured to block outgoing computer
network traffic from each host, responsive to determin-
ing the outgoing computer network tratfic includes a first
resource where at least one taint 1n a first label of the first
resource 1s 1n the first state.

2. The security system of claim 1, the enforcement system
being configured to block an information flow from the first
resource having the first label to a second resource having a
second label, responsive to determining the first label com-

10

15

20

25

30

35

40

45

50

55

60

65

22

prises a first taint with characteristics in the first state and the
second label lacks the first taint with characteristics 1n the first
state.

3. The secunty system of claim 2, the labeling system
applying an immutable label to the second resource, wherein
the second resource leads outside the computer network.

4. The security system of claim 2, the enforcement system
being configured to block the information flow to the second
resource absent content-scanning of the information tlow.

5. The security system of claim 2, the enforcement system
being configured to determine provenance ol the first
resource based on the first label having the first taint with
characteristics 1n the first state.

6. The security system of claim 1, wherein according to a
second capability set of a second user for the first taint, the
second user lacks the capability to change the characteristics
of the first taint from the second state to the first state.

7. The security system of claim 1, the plurality of resources
comprising a plurality of database entries, wherein the label-
ing system 1s configured to apply a corresponding label to
cach of the plurality of database entries.

8. The security system of claim 7, wherein the computer
network 1s an enterprise network, the enforcement system
being further configured to 1dentily login credentials of users
who access a database from locations external to the enter-
prise network, and to selectively allow authorized users to
retrieve the database entries from locations external to the
enterprise.

9. A securnity system for a plurality of resources 1n a com-
puter network having a plurality of hosts, the security system
comprising;

a computer processor;

a memory operatively coupled to the computer processor

and configured for storing data and instructions;

a plurality of taints, each taint configured to be applied by
a labeling system to at least one of the plurality of
resources, and each taint having a plurality of character-
istics including identification data, secrecy data, and
integrity data, the characteristics variably being in a first
state or a second state;

a plurality of labels, each label comprising at least one
taint;

the labeling system 1n communication with the plurality of
hosts and configured to apply, by the processor, alabel of
the plurality of labels to a corresponding operating sys-
tem resource of the plurality of resources, and to receive
notifications of attempted writes to the operating system
resource, wherein the operating system resource
includes one or more of a file, process, socket, thread, or
memory page:;

a capability database configured for associating each of a
plurality of users with a respective corresponding capa-
bility set for each respective taint of the plurality of
taints, wherein according to a first capability set of a first
user for a first taint, the first user has a capability to
change the characteristics of the first taint from the sec-
ond state to the first state, but not from the first state to
second state, 1n the first label,

wherein the labeling system 1s further configured to auto-
matically modify the state of the first label on behalf of
the first user, to facilitate the information flow; and

an enforcement system 1n commumication with the plural-
ity of hosts and configured to block outgoing computer
network traflic from each host, responsive to determin-
ing the outgoing computer network tratfic includes a first
resource where at least one taint in a first label of the first
resource 1s 1n the first state.

US 8,893,300 B2

23

10. The security system of claim 9, the enforcement system
being configured to block an information flow from the first
resource having the first label to a second resource having a
second label, responsive to determining the first label com-
prises a first taint with characteristics in the first state and the
second label lacks the first taint with characteristics in the first
state.

11. The security system of claim 9, the labeling system
applying an immutable label to the second resource, wherein
the second resource leads outside the computer network.

12. The security system of claim 9, the enforcement system
being configured to block the information flow to the second
resource absent content-scanning of the mnformation flow.

13. The security system of claim 9, the enforcement system
being configured to determine provenance of the first
resource based on the first label having the first taint with
characteristics 1n the {irst state.

14. The securnity system of claim 9, wherein according to a
second capability set of a second user for the first taint, the
second user lacks the capability to change the first taint from
the second state to the first state.

15. The security system of claim 9, the plurality of
resources comprising a plurality of database entries, wherein
the labeling system 1s configured to apply a corresponding,
label to each of the plurality of database entries.

16. The secunity system of claim 15, wherein the computer
network 1s an enterprise network, the enforcement system
being turther configured to 1dentily login credentials of users
who access a database from locations external to the enter-
prise network, and to selectively allow authorized users to
retrieve the database entries from locations external to the
enterprise.

10

15

20

25

30

24

	Front Page
	Drawings
	Specification
	Claims

