US008892499B2

12 United States Patent

Phelan et al.

US 8.892.499 B2
Nov. 18, 2014

(10) Patent No.:
45) Date of Patent:

(54) LIFE CYCLE MANAGEMENT OF RULE SETS 2007/0244932 Al 10/2007 Ahn et al.
2008/0178169 Al 7/2008 Grossner et al.
(75) Inventors: Thomas G. Phelan, Beaverton, OR 2009/0099882 Al 4/2009 Karabulut
US): Brent W. Yardley, Hillshoro, OR 20ih0/0043050 Ajh 2/2th0 N_adalm et al.
(" - Ys ’ 2010/0057666 Al™* 3/2010 Ziegleretal. 706/59
(US) 2010/0185963 Al* 7/2010 Sliketal.cccccovvnnnne.. 715/764
2010/0217737 Al 82010 Shama
(73) Assignee: International Business Machines 2010/0250320 A1 9/2010 Channabasavaiah et al.
Corporation, Armonk, NY (US) 2010/0269148 A1 10/2010 Almeida et al.
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 IBM; “A Method and Apparatus for Linkage Based Software Devel-
U.5.C. 154(b) by 390 days. opment Lifecycle Management”, ip.com No. IPCOM000137130D,
Jun. 9, 2006, pp. 1-18, 1p.com, Country: Undisclosed, Disclosure
(21) Appl. No.: 13/340,762 File: English (United States).
(22) Filed: Dec. 30, 2011 * cited by examiner
(65) Prior Publication Data Primary Examiner — Jellirey A Gallin
US 2013/0173527 Al Jul. 4, 2013 Assistant Examiner — Dave Misir
(74) Attorney, Agent, or Firm —EBEdward J. Lenart;
(51) Int. CL Katherine S. Brown; Biggers Kennedy Lenart Spraggins LLP
GO6N 5/02 (2006.01)
(52) U.S. CL (57) ABSTRACT
. IF{Si;j fCl ﬁ S h 706/59 Iife cycle management of rule sets, each rule set including
(58) Field of Classification Searc 0. / rules for managing the operation of a computing system,
(S:PC 1 """ ﬁlf “““““ ﬁ%Q 10 11101"1_GO6N >/02 including: identifying, by a life cycle management module, a
ee application lile for complete search history. rule life cycle state for each rule 1n the rule set, wherein the
: rule life cycle state specifies the current deployment status of
(56) References Cited the rule; identitying, by the life cycle management module, a
US PATENT DOCUMENTS linkage set for each rule 1n the rule set, wherein the linkage set
identifies versions of the rule that are in a different rule life
7,987,325 Bl 7/2011 Patil et al. cycle state; and updating, by the life cycle management mod-
%88%? 8%‘ é %g é i: é? %88; gﬁStTfmeﬂt etl al. . ;82? % é ule, the rule set, including: updating the rule life cycle state
1 ANCLIOS CL Alovvii i : . : :
2004/0162741 Al* 82004 Flaxeretal.ccc........ 705/7 ~ loroneormore rules in the rule set; and updating the linkage
2006/0059172 Al* 3/2006 Devarakonda 707/100 Set lor one or more rules in the rule set.
2006/0129978 Al* 6/2006 Abranetal. 717/110
2007/0244897 Al 10/2007 Voskuil et al. 19 Claims, 6 Drawing Sheets

Inceptiorn 190

| Revision 191

Deployment States 185

Activation 122

Deprication 193;

Exclusion 194

U.S. Patent Nov. 18, 2014 Sheet 1 of 6 US 8.892.499 B2

b - o >
| Computer Display |
| 192 180 '
| — '
| - Video Life Cycle Management |
| Adapter Module 120 |
| 1 209 . '
: Front Video Bus :
Sl_de 164

| Bus Memory Bus 166 Operating System 154 ‘
L 162 Bus - - l
| Adapter ‘
: 198 Expansion Bus 160 :
l User Input |
| Comm. 1o Devices 131 Drive |
(| Adapter Adapter .,,,,@?;f% Adapter '
| 167 178 172 '
| 4. — '

S !

- T T T T T]
| |
| |
| |
I Computer 182 |
| |
| |
| |

“““““““““ —d

FIG. 1

U.S. Patent Nov. 18, 2014 Sheet 2 of 6 US 8.892.499 B2

inception 190

| Revision 191

iDeployment States 195

Activation 192

Deprication 193

Exclusion 194

FIG. 2

U.S. Patent Nov. 18, 2014 Sheet 3 of 6 US 8.892.499 B2

'Life Cycle Management Module 12

Rule Set 300

Rule 302
Rule 304
Rule 306

Identify A Rule Life Cycle State For Each Rule In The Rule Set, Wherein The Rule Life Cycle
State Specifies The Current Deployment Status Of The Rule 308

Versions Of The Rule That Are In A Different Rule Life Cycle State 310

Update The Rule Set 312

Update The Rule Life Cycle State For One Or More Rules In The Rule Set 314

|

|

|

I

|

|

|

I

|

|

|

|

I

|

|

I

|

|

I

|

: Identify A Linkage Set For Each Rule In The Rule Set, Wherein The Linkage Set Identifies
|

|

|

|

|

I

|

|

|

|

|

|

|

|

: Update The Linkage Set For One Or More Rules in The Rule Set 316
I
|

U.S. Patent Nov. 18, 2014 Sheet 4 of 6 US 8.892.499 B2

rLi?g égcl-e_MEn-az;e_r-r-]eﬁ h%d]euj_f_é_: _____________________

Rule Set 300

Rule 302 Rule 404
Rule 304 Rule 406
Rule 306 Rule 408

ldentify A Rule Life Cycle State For Each Rule In The Rule Set, Wherein The Rule Life Cycle
State Specifies The Current Deployment Status Of The Rule 308

[dentify A Linkage Set For Each Rule In The Rule Set, Wherein The Linkage Set Identifies
Versions Of The Rule That Are In A Different Rule Life Cycle State 310

Receive An Updated Rule Set 410

Update The Rule Set In Dependence Upon The Updated Rule Set 412

Update The Rule Life Cycle State For One Or More Rules In The Rule Set 314

Update The Linkage Set For One Or More Rules In The Rule Set 316

U.S. Patent Nov. 18, 2014 Sheet 5 of 6 US 8.892.499 B2

Rule Set 300

Rule 302
Rule 304
Rule 3006

ldentify A Rule Life Cycle State For Each Rule In The Rule Set 308

dentify A Linkage Set For Each Rule In The Rule Set 310

Receive User Input Identifying An Update To Apply To An Existing Rule In The Rule Set 502

Update The Rule Set In Dependence Upon The User input identifying An Update To Apply 1o An
Existing Rule In The Rule Set 504

Update The Rule Life Cycle State For Cne Or More Rules In The Rule Set 314

Update The Linkage Set For One Or More Rules In The Rule Set 316

Identify A Rule Thatis To Be Excluded From The Rule Set 506

Exclude The Rule From The Rule Set, Including Removing The Rule From The Linkage Set Of Al
Other Rules 508

US 8,892,499 B2

Sheet 6 of 6

Nov. 18, 2014

U.S. Patent

Group 2 604 Group 3 606

Group 1 602

app e ey ey
N N N g
el
E N e g
el A e e i ey
dr dr dr e dr d e ar ke kX
e el
N N N
Ll e N a
dr dr dr e ey e
N e
o kN
app e ey ey
dry e e e e e e e e e e

....H.._.H.._.H.._.H...H...H...H...H...H...H...H...H...H...H...H...
o kN
app e ey ey
dry e e e e e e e e e e

T

N)
PN

X

.._.H._,.H.,_.H.._.H...H.,.H...H...H...H...H...H...H...H...H...H...
E N e g
el A e e i ey
dr dr dr e dr d e ar ke kX
e el
N N N
e e e

Rule B 810

e e e e e e e e e e e
E N N A N e
L N kN

ol
ol
Ea
Eo
s
o

X

F3
I

)
x

A A e T

X

i
R K e XX Y

P

X X
Ea)
P
P
X X
P
Ea)

i
Ea)
i
i X
i
X
i
P

Ea
i
P
i
P
i
Ea)

X
)
i
i
)
i
i

X ¥
i
i
i
X ¥
i
i
o

I
I
s

T

M N M N

Ea)
i X
I

I
s

s

i
i
iali

Ea
P

O N N

X
e

i
S

e e

P
P
¥
P
¥

P)

)

X
i

P
i
i

X
X
i
i x
i
P

s
i
i

X
XX RN X KX

i
s

i
Ty

i X
i
i
i

X
iy
i

)

¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
3
o
¥
¥
X
¥
¥

¥
i
i
I
i
s
I
i
i
¥
i
s
I
i
s
¥
i
i
¥
i
s
I
i
i
¥
i
i
I
i
s
¥
i
i
¥
i
s
I
i
i
¥
i
i
¥
i
s
I
i
i
¥
i
i
I
i
i

P

i
Ea)
i
i X

i X
i
i
)

X
iy
i

T e T e T

g al a a a a

X
D e e g

)

)

i
e
Pl

X
¥

F

i
X

i
¥
i
i

P

X ¥
i
i
i
PN
)
Tty

Pl S S e g

i
N N

I
s

N

i X

X
Eara)
P
PN
X
¥ X
P

X
X
i
i X
x
X
i

X X
i
i X
i
X X
i
i X

i
i
i
i
i
o
i

i X
i
i
i
i X
i
i

X
)
i
i
x
)
i

X X
i
P
i
i

e a a a a aa a a a a a a a a ra a aa Na a a a a)
L)

N N NN NN NN NN NN N NN
e e

dr o d e e kA d kK
X

i
T T T e e e e T T
X e e

i X
i

Rule £ 616

Rule C 614

Rule B 610

Rule F 618
Rule B.Dep 624

RuleD 612

Rule C 614

Rule A.Dep 622

Rule C.Dep 626

Rule Custom.D 628

II.I.!.III!L

Rule Custom.A 620

Rufe Custom.A 620

FIG. 6

US 8,892,499 B2

1
LIFE CYCLE MANAGEMENT OF RULE SETS

BACKGROUND OF THE INVENTION

1. Field of the Invention
The field of the invention 1s data processing, or, more

specifically, methods, apparatus, and products for life cycle
management of rule sets.

2. Description of Related Art

Modern computing systems can be configured and operate
through the use of rules that dictate the manner in which the
computing system 1s configured and the manner 1n which the
computing system operates. The life cycle of rule typically
runs through three stages: a rule 1s created, a rule 1s deployed,
and a rule 1s deleted. Any new rules, modified rules, or cus-
tomized rules simply over-write current rules, so that existing
rules may be unintentionally deleted.

SUMMARY OF THE INVENTION

Methods, apparatus, and products for life cycle manage-
ment of rule sets, each rule set including rules for managing
the operation of a computing system, including: identifying,
by a life cycle management module, a rule life cycle state for
cach rule i the rule set, whereimn the rule life cycle state
specifies the current deployment status of the rule; identify-
ing, by the life cycle management module, a linkage set for
cach rule in the rule set, wherein the linkage set 1dentifies
versions of the rule that are 1n a different rule life cycle state;
and updating, by the life cycle management module, the rule
set, including: updating the rule life cycle state for one or
more rules 1n the rule set; and updating the linkage set for one
or more rules 1n the rule set.

The foregoing and other objects, features and advantages
of the mvention will be apparent from the following more
particular descriptions of example embodiments of the inven-
tion as 1llustrated 1n the accompanying drawings wherein like
reference numbers generally represent like parts of example
embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 sets forth a block diagram of automated computing
machinery comprising an example computer useful 1n life
cycle management of rule sets according to embodiments of
the present invention.

FI1G. 2 sets forth a graph illustrating rule life cycle states
that a rule may be within at a particular point 1n time.

FIG. 3 sets forth a flow chart illustrating an example
method for life cycle management of rule sets according to
embodiments of the present invention.

FIG. 4 sets forth a flow chart illustrating a further example
method for life cycle management of rule sets according to
embodiments of the present invention.

FI1G. 5 sets forth a flow chart illustrating a further example
method for life cycle management of rule sets according to
embodiments of the present invention.

FIG. 6 sets forth a block diagram illustrating the state of a
rule set at various points in the life cycle of the rule set
according to embodiments of the present invention.

DETAILED DESCRIPTION OF EXAMPL.
EMBODIMENTS

L1

Example methods, apparatus, and products for life cycle
management of rule sets 1 accordance with the present
invention are described with reference to the accompanying

10

15

20

25

30

35

40

45

50

55

60

65

2

drawings, beginning with FIG. 1. FIG. 1 sets forth a block
diagram of automated computing machinery comprising an
example computer (152) useful 1n life cycle management of
rule sets according to embodiments of the present invention.
The computer (152) of FIG. 1 includes at least one computer
processor (156) or ‘CPU’ as well as random access memory
(168) (‘RAM’) which 1s connected through a high speed
memory bus (166) and bus adapter (158) to processor (156)
and to other components of the computer (152).

Stored in RAM (168) 1s a life cycle management module
(126), a module of computer program instructions for life
cycle management of rule sets according to embodiments of
the present invention. In the example of FIG. 1, the life cycle
management module (126) 1s a module of computer program
instructions that, when executed, carries out life cycle man-
agement of rule sets (300) according to embodiments of the
present invention. The life cycle management module (126)
of FIG. 1 may be embodied, for example, as a stand-alone
module of computer program instructions or, alternatively, as
a module of computer program 1nstructions that i1s part of a
larger computing system management module or computing
system configuration module.

In the example of FIG. 1, each rule set includes one or more
rules for managing the operation of a computing system. The
rules may dictate the manner 1n which the computing system
1s configured or operates. For example, a first rule may
specily that a host bus adapter in the computing system must
have two ports that are connected to computer storage
devices. Another rule may specily, for example, that if a
computing system has a particular operating system installed
on the computing system and has a particular type of data
communications adapter installed on the computing system,
the system must include a particular version of firmware.
Other rules will occur to those of skill in the art and are within
embodiments of the present invention.

The life cycle management module (126) of FIG. 1 1s
configured to identily a rule life cycle state for each rule in the
rule set. The rule life cycle state specifies the current deploy-
ment status of a rule. The current deployment status of a rule
identifies the current stage in the life cycle of a rule that the
rule 1s currently within. The life cycle management module
(126) of FIG. 1 may 1dentity arule life cycle state for each rule
in the rule set, for example, by imnspecting a data descriptor or
other data structure that associates a rule with the current rule
life cycle state for the rule. The current rule life cycle state for
the rule may be contained, for example, as a field 1n a particu-
lar object that contains the implementation of the rule. Alter-

natively, the current rule life cycle state for the rule may be
contained 1n a rule state or other data structure as will occur to
those of skill in the art.

The life cycle management module (126) of FI1G. 1 1s also
configured to identify a linkage set for each rule 1n the rule set.
The linkage set identifies versions of the rule that are 1n a
different rule life cycle state. Consider an example 1n which a
rule 1identified as ‘Rule A’ 1s created that stipulates that a host
bus adapter in a computing system must have two ports that
are coupled to computer memory. The user of the computing
system may determine that, for the user’s particular imple-
mentation, the host bus adapter must have four ports that are
coupled to computer memory. In such an example, the user
may create a copy of Rule A thatisidentified as ‘Rule A2.” The
user may subsequently modify Rule A2 such that the rule
stipulates that a host bus adapter in a computing system must
have four ports that are coupled to computer memory. In such
an example, Rule A would be identified as being part of the
linkage set of Rule A2. Rule A2 would similarly be identified

as being part of the linkage set of Rule A. Furthermore, Rule

US 8,892,499 B2

3

A2 will inherit any properties of Rule A and Rule A2 will
become the active rule 1n the configuration whereas Rule A
will become 1nactive.

The life cycle management module (126) of FIG. 1 1s also
configured to update the rule set. Updating the rule set may be
carried out, for example, by adding new rules to the rule set.
The new rules may be rules that represent a modification to an
existing rule, a new rule that 1s entirely unrelated to any of the
existing rules, and so on. Readers will appreciate that updat-
ing the rule set cannot be carried out by simply overwriting
the rules in the rule set, even if a new rule represents a
modification of an existing rule in the rule set.

In the example of FIG. 1, the life cycle management mod-
ule (126) 1s configured to update the rule set by updating the
rule life cycle state for one or more rules 1n the rule set. As
described above, rules are not updated by simply overwriting
the rule, even 1f a new rule represents a modification of an
existing rule. Consider an example 1n which a new rule 1s a
modified version of a particular rule in the rule set. In such an
example, the new rule may be added to the rule set and the life
cycle state for the new rule may be changed to ‘activation’
while the life cycle state for the original rule may be changed
to ‘deprecation.” In such an example, the computing system
will operate by applying the new rule during operations.
Alternatively, the user of a computing system may determine
that they do not want to apply the new rule as the original rule
may contain modifications that are specific and useful to the
operation of their particular computing system. In such an
example, the life cycle state for the new rule may be changed
to ‘deprecation’ while the life cycle state for the original rule
may remain ‘activation.” In such an example, the computing
system will operate by applying the original rule during
operations.

In the example of FIG. 1, the life cycle management mod-
ule (126) 1s further configured to update the rule set by updat-
ing the linkage set for one or more rules 1 the rule set.
Updating the linkage set for one or more rules 1n the rule set
may be carried out, for example, by including new rules that
were added to the rule set into the linkage set of a previously
existing rule, by removing rules that have been transitioned
into the ‘exclusion’ life cycle state from the linkage set of all
rules 1n the rule set, and so on. Consider an example 1n which
a new rule, Rule B2, 1s a modified version of a rule, Rule B,

which was already part of the rule set. In such an example, the
Rule B2 would be added to the linkage set of Rule B and Rule

B would be added to the linkage set of Rule B2.
Also stored in RAM (168) 1s an operating system (134).

Operating systems useful life cycle management of rule sets
according to embodiments of the present invention include
UNIX™ Linux™ Microsoit XP™ AIX™ [BM’s 15/0S™
and others as will occur to those of skill 1n the art. The
operating system (154) and the life cycle management mod-
ule (126) 1n the example of FIG. 1 are shown in RAM (168),
but many components of such software typically are stored in
non-volatile memory also, such as, for example, on a disk
drive (170).

The computer (152) of FIG. 1 includes disk drive adapter
(172) coupled through expansion bus (160) and bus adapter
(158) to processor (156) and other components of the com-
puter (152). Disk drive adapter (172) connects non-volatile
data storage to the computer (152) 1n the form of disk drive
(170). Disk drive adapters usetul in computers for life cycle
management of rule sets according to embodiments of the
present 1nvention include Integrated Drive FElectronics
(‘IDE’) adapters, Small Computer System Interface (*SCSI’)
adapters, and others as will occur to those of skill 1n the art.
Non-volatile computer memory also may be implemented for

10

15

20

25

30

35

40

45

50

55

60

65

4

as an optical disk drive, electrically erasable programmable

read-only memory (so-called ‘EEPROM’ or ‘Flash’

memory), RAM drives, and so on, as will occur to those of
skill 1n the art.

The example computer (152) of FIG. 1 includes one or
more input/output (‘1/0”) adapters (178). I/O adapters imple-
ment user-oriented mmput/output through, for example, soft-
ware drivers and computer hardware for controlling output to
display devices such as computer display screens, as well as
user iput from user mput devices (181) such as keyboards
and mice. The example computer (152) of FIG. 1 includes a
video adapter (209), which 1s an example of an I/O adapter
specially designed for graphic output to a display device
(180) such as a display screen or computer monitor. Video

adapter (209) 1s connected to processor (156) through a high
speed video bus (164), bus adapter (158), and the front side
bus (162), which 1s also a high speed bus.

The example computer (152) of FIG. 1 includes a commu-
nications adapter (167) for data communications with other
computers (182) and for data communications with a data
communications network (100). Such data communications
may be carried out serially through RS-232 connections,
through external buses such as a Universal Serial Bus
(‘USB’), through data communications networks such as IP
data communications networks, and 1n other ways as will
occur to those of skill in the art. Communications adapters
implement the hardware level of data communications
through which one computer sends data communications to
another computer, directly or through a data communications
network. Examples of communications adapters useful for
life cycle management of rule sets according to embodiments
of the present invention include modems for wired dial-up
communications, Fthernet (IEEE 802.3) adapters for wired
data communications network communications, and 802.11
adapters for wireless data communications network commu-
nications.

For turther explanation, FIG. 2 sets forth a graph 1llustrat-
ing rule life cycle states that a rule may be within at a particu-
lar point 1n time. In the example of F1G. 2, the current deploy-
ment status of a rule may be one of the five following rule life
cycle states: inception, revision, activation, deprecation, or
exclusion.

In the example method of FIG. 2, the ‘inception’ rule life
cycle state (190) 1s a state 1n which the rule 1s first created. A
rule that 1s 1n the ‘inception’ rule life cycle state (190) has
been conceptualized and even embodied, for example, as a
module of computer program instructions. A rule that 1s 1n the
‘inception’ rule life cycle state (190), however, 1s a rule that
has never been deployed 1nto an operating environment for a
computing system.

In the example method of FIG. 2, the ‘revision’ rule life
cycle state (191) 1s a state 1n which the rule has been concep-
tualized and created and 1s now available for revisions. A rule
that 1s 1n the ‘revision’ rule life cycle state (191) 1s not cur-
rently deployed but may be ready for deployment after it has
been revised. IT a rule has previously been deployed and 1s 1n
need of modification, the rule must be returned to the ‘revi-
sion’ rule life cycle state (191) before it 1s revised and must
remain in this state until the rule 1s redeployed.

In the example method of FIG. 2, the ‘activation’ rule life
cycle state (192) 1s the first of two deployment states (195) 1n
which the rule can be deployed. A rule that 1s 1n the ‘activa-
tion’ rule life cycle state (192) 1s current and has been revised
as necessary. All rules 1n this state are fully supported and can
be cloned or copied by a user to create custom variations of
the rule.

US 8,892,499 B2

S

In the example method of FIG. 2, the ‘deprecation’ rule life
cycle state (193) 1s the second of the two deployment states
(195) 1n which the rule can be deployed. A rule that 1s in the
‘deprecation’ rule life cycle state (193) 1s being prepared for
exclusion. All rules 1n this state cannot be cloned or copied by
a user to create custom variations of the rule.

In the example method of FIG. 2, the ‘exclusion’ rule life
cycle state (194) 1s the final state 1n the life cycle of a rule. A
rule that 1s 1n the ‘exclusion’ rule life cycle state (194) cannot
be cloned or copied by a user to create custom variations of
the rule. Likewise, rule that 1s 1n the ‘exclusion’ rule life cycle
state (194) cannot be linked to any other rules and cannot be
deployed.

Rules which are 1n the revision, activation or deprecation
states can be clone or copied. Rules can only be deployed 1n
the activation or deprecation states. When a rule 1s cloned or
copied, 1ts 1nitial state 1s set to inception.

For further explanation, FIG. 3 sets forth a flow chart
illustrating an example method for life cycle management of
rule sets (300) according to embodiments of the present
invention. In the example method of FIG. 3, the rule set (300)
includes one or more rules (302, 304, 306) for managing the
operation of a computing system. The rules (302, 304, 306)
may dictate the manner 1n which the computing system 1s
configured or operates. For example, a first rule may specity
that a host bus adapter 1n the computing system must have two
ports that are connected to computer storage devices. Another
rule may specily, for example, that 1f a computing system has
a particular operating system 1installed on the computing sys-
tem and has a particular type of data communications adapter
installed on the computing system, the system must include a
particular version of firmware. Other rules will occur to those
of skill 1n the art and are within embodiments of the present
ivention.

The example method of FIG. 3 includes identitying (308),
by a life cycle management module (126), a rule life cycle
state for each rule (302, 304, 306) in the rule set (300). In the
example method of FIG. 3, the life cycle management module
(126) 1s a module of computer program instructions that,
when executed, carries out life cycle management of rule sets
(300) according to embodiments of the present invention. The
life cycle management module (126) of FIG. 3 may be
embodied, for example, as a stand-alone module of computer
program 1nstructions or, alternatively, as a module of com-
puter program instructions that 1s part of a larger computing,
system management module or computing system configu-
ration module.

In the example method of FIG. 3, the rule life cycle state

specifies the current deployment status of a rule (302, 304,
306). The current deployment status of a rule (302, 304, 306)
identifies the current stage in the life cycle of a rule that the
rule (302, 304, 306) 1s currently within. In the example
method of FIG. 3, identitying (308) a rule life cycle state for
cach rule (302, 304, 306) 1n the rule set (300) may be carried
out, for example, by inspecting a data descriptor or other data
structure that associates arule (302, 304, 306) with the current
rule life cycle state for the rule (302, 304, 306). In the example
method of FIG. 3, the current rule life cycle state for the rule
(302, 304, 306) may be contained, for example, as a field 1n a
particular object that contains the implementation of the rule.
Alternatively, the current rule life cycle state for the rule (302,
304, 306) may be contained 1n a rule state table as shown
below:

10

15

20

25

30

35

40

45

50

55

60

65

0
TABL.

(Ll

1

Rule State Table

Rule Identifier Rule State

A Inception
Deprecation
Activation
Activation
Exclusion
Revision

g lesBwi@Rve

The rule state table depicted above has entries for six rules:
rule A, rule B, rule C, rule D, rule E, and rule F. Each entry in
the rule state table also 1dentifies the current rule life cycle
state for each of the six rules. As rules are moved into different
states, the corresponding entry in the rule state table can be
updated to show the new current rule life cycle state for the
rule.

The example method of FIG. 3 also includes 1dentiiying
(310), by the life cycle management module (126), a linkage
set for each rule (302, 304, 306) 1n the rule set (300). In the
example method of FIG. 3, the linkage set 1dentifies versions
of the rule (302, 304, 306) that are 1n a different rule life cycle

state. Consider an example 1n which a rule identified as ‘Rule
A’ 1s created that stipulates that a host bus adapter in a com-
puting system must have two ports that are coupled to com-
puter memory. The user of the computing system may deter-
mine that, for their particular use and implementation, the
host bus adapter must have four ports that are coupled to
computer memory. In such an example, the user may create a
copy ol Rule A that 1s identified as ‘Rule A2.” The user may
subsequently modify Rule A2 such that the rule stipulates that
a host bus adapter 1n a computing system must have four ports
that are coupled to computer memory. In such an example,

Rule A would be 1identified (310) as being part of the linkage
set of Rule A2. Rule A2 would similarly be identified (310) as
being part of the linkage set of Rule A.

The example method of FIG. 3 also includes updating
(312), by the life cycle management module (126), the rule set
(300). In the example method of FIG. 3, updating (312) the
rule set (300) may be carried out, for example, by adding new
rules to the rule set (300). The new rules may be rules that
represent a modification to an existing rule (302, 304, 306), a
new rule that 1s entirely unrelated to any of the existing rules
(302,304, 306), and so on. Readers will appreciate that updat-
ing (312) the rule set (300) cannot be carried out by simply
overwriting the rules (302, 304, 306) 1n the rule set (300),
even 11 a new rule represents a modification of an existing rule
(302, 304, 306) 1n the rule set (300).

In the example method of FIG. 3, updating (312) the rule
set (300) includes updating (314) the rule life cycle state for
one or more rules (302, 304, 306) 1n the rule set (300). In the
example method of FIG. 3, as described above, rules (302,
304, 306) are not updated by simply overwriting the rule (302,
304, 306), even 1f a new rule represents a modification of an
existing rule (302, 304, 306). Consider an example 1n which
a new rule 1s a modified version of a particular rule (302) 1n
the rule set (300). In such an example, the new rule may be
added to the rule set (300) and the life cycle state for the new
rule may be changed to ‘activation” while the life cycle state
for the original rule (302) may be changed to ‘deprecation.’” In
such an example, the computing system will operate by
applying the new rule during operations. Alternatively, the
user of a computing system may determine that they do not
want to apply the new rule as the original rule (302) may
contain modifications that are specific and usetul to the opera-

US 8,892,499 B2

7

tion of their particular computing system. In such an example,
the life cycle state for the new rule may be changed to ‘dep-
recation’ while the life cycle state for the original rule (302)
may remain ‘activation.” In such an example, the computing
system will operate by applying the original rule (302) during
operations.

In the example method of FIG. 3, updating (312) the rule
set (300) also includes updating (316) the linkage set for one
or more rules (302, 304, 306) in the rule set (300). In the
example method of FIG. 3, updating (316) the linkage set for
one or more rules (302, 304, 306) 1n the rule set (300) may be
carried out, for example, by including new rules that were
added to the rule set (300) 1nto the linkage set of a previously
existing rule, by removing rules that have been transitioned
into the ‘exclusion’ life cycle state from the linkage set of all
rules 1n the rule set (300), and so on. Consider an example in
which a new rule 1s a modified version of a particular rule
(302) in the rule set (300). In such an example, the new rule
would be added to the linkage set of the particular rule (302)
in the rule set (300).

For further explanation, FIG. 4 sets forth a flow chart
illustrating a further example method for life cycle manage-
ment of rule sets (300, 402) according to embodiments of the
present invention. The example method of FI1G. 4 1s simailar to
the example method of FIG. 3 as it also includes 1dentifying,
(308) arule life cycle state for each rule (302, 304,306) in the
rule set (300) and 1dentifying (310) a linkage set for each rule
(302, 304, 306) 1n the rule set (300).

The example method of FIG. 4 also includes recerving
(410), by the life cycle management module (126), an
updated rule set (402). In the example method of FIG. 4, the
updated rule set (402) includes one or more rules (404, 406,
408) for managing the operation ol a computing system. The
updated rule set (402) may include new rules (404, 406, 408)
that have no corresponding rule (302, 304, 306) 1n the rule set
(300). Alternatively, the updated rule set (402) may include
rules (404, 406, 408) that represent modifications of rules
(302, 304, 306) 1n the rule set (300). Readers will appreciate
that the updated rule set (402) may be embodied entirely as a
new set of rules, entirely as a set of modified rules, or any
combination thereof.

The example method of FIG. 4 also includes updating
(412), by the life cycle management module (126), the rule set
(300) 1n dependence upon the updated rule set (402). In the
example method of FIG. 4, updating (412) the rule set (300)
in dependence upon the updated rule set (402) may be carried
out, for example, by adding all of the rules (404, 406, 408) 1n
the updated rule set (402) to the rule set (300) such that the
rule set (300) includes all of the rules (404, 406, 408) 1n the
updated rule set (402) 1n addition to those rules (302, 304,
306) that were already in the rule set (300). Readers will
appreciate that updating (412) the rule set (300) 1n depen-
dence upon the updated rule set (402) cannot be carried out by

simply overwriting the rules (302, 304, 306) 1n the rule set
(300), even 11 rules (404, 406, 408) 1n the updated rule set

(402) represent modifications of the rules (302, 304, 306) 1n
the rule set (300).

In the example method of FIG. 4, updating (412) the rule
set (300) 1n dependence upon the updated rule set (402)
includes updating (314) the rule life cycle state for one or
more rules (302,304, 306) in the rule set (300). In the example
method of FIG. 4, as described above, rules (302, 304, 306)
are not updated by simply overwriting the rule (302, 304, 306)
with a rule (404, 406, 408) contained 1n the updated rule set
(402). Instead, updating (412) the rule set (300) 1s carried by

changing the rule life cycle state for one or more rules (302,

10

15

20

25

30

35

40

45

50

55

60

65

8

304, 306) 1n the rule set (300) such that the updated rule 1s 1n
the activated state while the prior version of the rule 1s dep-
recated.

Consider an example 1n which a particular rule (404) 1in the
updatedrule set (402) 1s amodified version of a particular rule
(302) 1n the rule set (300). In such an example, the modified
rule (404) may be added to the rule set (300) and the life cycle
state for the modified rule (404) may be changed to ‘activa-
tion” while the life cycle state for the original rule (302) may
be changed to ‘deprecation.’ In such an example, the comput-
ing system will operate by applying the modified rule (404)
during operations. Alternatively, the user of a computing sys-
tem may determine that they do not want to apply the modi-
fied rule (404) as the original rule (302) may contain modifi-
cations that are specific and usetul to the operation of their
particular computing system. In such an example, the life
cycle state for the modified rule (404) may be changed to
‘deprecation’ while the life cycle state for the original rule
(302) may remain ‘activation.” In such an example, the com-
puting system will operate by applying the original rule (302)
during operations. Alternatively, the computer system can
make the decision based on the linkage and life cycle state
such that 11 a new rule 1s meant to deprecate an existing rule,
the existing rule would remain active while the new rules,
while still 1n the activation state, are not applied. This allows
the computing system to automatically contlict resolve the
rule set application.

In the example method of FIG. 4, updating (412) the rule
set (300) in dependence upon the updated rule set (402) also
includes updating (316) the linkage set for one or more rules
(302,304, 306) 1n the rule set (300). In the example method of
FIG. 4, updating (316) the linkage set for one or more rules
(302, 304, 306) 1n the rule set (300) may be carried out, for
example, by including rules (404, 406, 408) in the updated
rule set (402) into the linkage set of a previously existing rule
(302, 304, 306) 1n the rule set (300), by removing rules that
have been transitioned into the ‘exclusion’ life cycle state
from the linkage set of all rules 1n the rule set (300), and so on.
Consider an example 1n which a rule (404) in the updated rule
set (402) 1s a modified version of a particular rule (302) in the
rule set (300). In such an example, the rule (404) in the
updated rule set (402) would be added to the linkage set of the
particular rule (302) 1n the rule set (300).

For turther explanation, FIG. 5 sets forth a flow chart
illustrating a further example method for life cycle manage-
ment of rule sets according to embodiments of the present
invention. The example method of FIG. 5 1s similar to the
example method ol FIG. 3 as it also includes identitying (308)
a rule life cycle state for each rule (302, 304, 306) 1n the rule
set (300) and 1dentitying (310) a linkage set for each rule
(302, 304, 306) 1n the rule set (300).

The example method of FIG. 5 also includes receiving
(502), by the life cycle management module (126), user input
identifving an update to apply to an existing rule (302, 304,
306) 1n the rule set (300). In the example method of FIG. 5,
user input 1dentitying an update to apply to an existing rule
(302,304,306)1n therule set (300) may be provided to the life
cycle management module (126), for example, through a
graphical user interface that 1s presented to the user. The user
input 1dentifying an update to apply to an existing rule (302,
304, 306) in the rule set (300) may include, for example, an
identification of the rule to update, an identification a variable
that is used by the rule that 1s to be updated, a new value for the
variable that1s used by the rule that 1s to be updated, and so on.
Furthermore, 1f automatic contlict resolution was used based
on linkage and rule state, the user interface would present the
user information identifying changes that were made, as well

US 8,892,499 B2

9

as information 1dentifying which rules are currently 1n the
deployment state and which rules are active.

In the example method of FIG. 5, updating (504) the rule
set (300) includes updating the rule set (300) 1n dependence
upon the user mput i1dentifying an update to apply to an
existing rule (302, 304, 306) in the rule set (300). In the
example method of FIG. 5, updating the rule set (300) 1n
dependence upon the user input i1dentifying an update to
apply to an existing rule (302, 304, 306) 1n the rule set (300)
may be carried out, for example, by identifying the particular
rule (302, 304, 306) that the user i1s attempting to update
through the use of a rule 1dentifier and subsequently creating,
a copy ol the particular rule (302, 304, 306) that the user 1s
attempting to update. The copy of the particular rule (302,
304, 306) that the user 1s attempting to update may be modi-
fied 1n accordance with the user input and treated as a new rule
in the rule set (300). Consider an example 1n which a rule
specifies the maximum number of virtual machines that may
be executing on a computing system at a given time. In such
an example, a user may attempt to modify this rule through
the use of a user interface that allows the user to specity the
maximum number of virtual machines that may be executing,
on a computing system at a grven time. In such an example,
the life cycle management module (126) can make a copy of
the rule that specifies the maximum number of virtual
machines that may be executing on a computing system at a
given time and update the copied rule to include the user
specified maximum number of virtual machines that may be
executing on a computing system at a given time.

The example method of FIG. 5 also includes identifying
(506), by the life cycle management module (126), a rule
(302, 304, 306) that 1s to be excluded from the rule set (300).
In the example method of FIG. 5, identifying (506) a rule
(302, 304, 306) that 1s to be excluded from the rule set (300)
may be carried out, for example, by recetving user input
identifying a rule (302, 304, 306) that 1s to be excluded from
the rule set (300), by determining that a rule 1s no longer valid
based on the expiration of a predetermined life length, and so
on. In such an example, the rule (302, 304, 306) that 1s to be
excluded from the rule set (300) may have been replaced by
an updated rule, the rule (302, 304, 306) that 1s to be excluded
from the rule set (300) may no longer apply as the computing
system has changed, or the rule (302, 304, 306) that 1s to be
excluded from the rule set (300) may need to be removed from
the rule set (300) for other reasons as will occur to those of
skill 1n the art.

The example method of FIG. 5 also includes excluding
(508) from the rule set (300), by the life cycle management
module (126), the rule (302, 304, 306) that 1s to be excluded
from the rule set (300), including removing the rule (302, 304,
306) from the linkage set of all other rules (302, 304, 306). In
the example method of FIG. 5, a rule that 1s set to the exclu-
s1on life cycle state cannot be included in the linkage set of
any other rules. As such, when a rule 1s transitioned 1nto the
exclusion life cycle state, the life cycle management module
(126) can inspect the linkage sets for all other rules 1n the rule
set (300) and remove any reference to the excluded rule that1s
found 1n the linkage set of a rule. In addition, when resolving
linkages for excluded rules, 1f a customization 1s based on a
rule which 1s transitioning to exclusion states, and another
rule has been linked as a replacement rule, the customized
rule 1s re-linked to the rule that replaced the excluded rule. IT
no new rule exists, then the link 1s broken and the customized
rule stands alone.

For turther explanation, FIG. 6 sets forth a block diagram
illustrating the state of a rule set at various points in the life
cycle of the rule set. In the example of FIG. 6, a set of rules 1s

10

15

20

25

30

35

40

45

50

55

60

65

10

shown at three points 1n time, labeled as Group 1 (602), Group
2(604), and Group 3 (606). In Group 1 (602), three rules (608,

610, 614) arc initially deployed. The three rules are Rule A
(608), Rule B (610), and Rule C (614). The example of FIG.
6 illustrates an example 1n which a user creates a new rule
(620) that represents a customization of Rule A (608). In such
an example, Rule Custom.A (620) will supersede Rule A
(608) such that Rule A 1s 1nactive, as noted using the shading
of Rule A (608) 1n FIG. 6.

The example of FIG. 6 1llustrates the state of the rule set at
a second point 1 time, labeled as Group 2 (604). Group 2
(604) includes some of the same rules as were contained 1n
Group 1 (602), including Rule B (610) and Rule C (614)
which have not been modified or deactivated in Group 2
(604). In Group 2 (604), a new rule has been created which 1s
labeled as Rule D (612). Rule D (612) represents a replace-
ment of Rule A (608) from Group 1 (602). Because Rule D
(612) replaces Rule A (608), Rule A (608) can be deprecated
as shown with Rule A.Dep (622). While Rule A (608) is
deprecated, a rule that was created as a customization of Rule
A (608), which1s Rule Custom. A (620), may still be an active
and deployed rule. Rule D (612), which 1s a Replacement for
Rule A (612), 1s currently inactive due to the fact that Rule
Custom. A (620) 1s still active. Because Rule Custom.A (620)
superseded Rule A (608), Rule Custom.A (620) also super-
sedes Rule D (612). In Group 2 both Rule A.Dep (622) and
Rule D (612) are mnactive due to Rule Custom. A (620). If Rule
Custom.A (620) was ever deprecated or made 1nactive, then
Rule D (612) 1n Group 2 would become the active rule.

The example of FIG. 6 1llustrates the state of the rule set at
a third point 1n time, labeled as Group 3 (606). Group 3 (606)
includes one of the rules, Rule D (612), that was found 1n
Group 2 (604). In Group 3 (606), two of the rules (610, 614)

from Group 2 (604) have been deprecated as noted by Rule
B.Dep (624) and Rule C.Dep (626). In Group 3 (606), a new

rule labeled as Rule E (616) has been created and activated to
replace Rule C (614) from Group 2 (604). Rule B (610) from
Group 2 (604) was simply deprecated with no replacement
rule created 1n 1ts place. Furthermore, Rule A.Dep (622) 1s no
longer 1n the rule set as illustrated by 1ts absence from Group
3 (606). In such an example, Rule A.Dep (622) has been
excluded from the rule set and removed from the rule set.
Group 3 (606) also 1llustrates that a customization of Rule D
(612), labeled as Rule Custom.D (628), has been created and
Rule D (612) has been deactivated.

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, inirared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
tollowing: an electrical connection having one or more wires,

US 8,892,499 B2

11

a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic 53
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or 1n connection with an instruction
execution system, apparatus, or device. 10

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag- 15
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an instruction execution system, 20
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including,
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing. 25

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro- 30
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soitware package, partly on the
user’s computer and partly on a remote computer or entirely 35
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the 40
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be 45
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the tlow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a 50
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func- 55
tions/acts specified 1n the tlowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to 60
function 1n a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified 1n the tlowchart and/or block diagram
block or blocks. 65

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-

12

ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified 1n the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, 1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer 1nstructions.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from 1ts true
spirit. The descriptions 1n this specification are for purposes
of illustration only and are not to be construed 1n a limiting
sense. The scope of the present invention 1s limited only by
the language of the following claims.

What 1s claimed 1s:

1. A method of life cycle management of rule sets, each rule
set including rules for managing the operation of a computing,
system, the method comprising:

identitying, by a life cycle management module, a rule life

cycle state for each rule 1n the rule set, wherein the rule
life cycle state specifies the current deployment status of
the rule;

identifying, by the life cycle management module, a link-

age set for each rule 1n the rule set, wherein the linkage
set 1dentifies versions of the rule that are 1n a different
rule life cycle state; and

updating, by the life cycle management module, the rule

set, including:

updating the rule life cycle state for one or more rules in
the rule set; and

updating the linkage set for one or more rules 1n the rule
set.

2. The method of claim 1 further comprising;:

recerving, by the life cycle management module, an

updated rule set;

wherein updating the rule set includes updating the rule set

in dependence upon the updated rule set.

3. The method of claim 1 further comprising:

recerving, by the life cycle management module, user input

identifying an update to apply to an existing rule in the
rule set;

wherein updating the rule set includes updating the rule set

in dependence upon the user input 1dentitying an update
to apply to an existing rule 1n the rule set.

4. The method of claim 1 further comprising;:

identitying, by the life cycle management module, a rule

that 1s to be excluded from the rule set; and

US 8,892,499 B2

13

excluding from the rule set, by the life cycle management
module, the rule that 1s to be excluded from the rule set,
including removing the rule from the linkage set of all
other rules.

5. The method of claim 1 wherein the rule life cycle state 1s
one of:

inception, revision, activation, deprecation, or exclusion.

6. The method of claim 1 wherein the rule set 1s a configu-
ration rule set that includes rules specitying how the comput-
ing system must be configured.

7. An apparatus for life cycle management ol rule sets, each
rule set including rules for managing the operation of a com-
puting system, the apparatus comprising a computer proces-
sor, a computer memory operatively coupled to the computer
processor, the computer memory having disposed within 1t
computer program instructions that, when executed by the
computer processor, cause the apparatus to carry out the steps
of:

identifying, by a life cycle management module, a rule life

cycle state for each rule 1n the rule set, wherein the rule
life cycle state specifies the current deployment status of
the rule;

identifying, by the life cycle management module, a link-

age set for each rule 1n the rule set, wherein the linkage
set 1dentifies versions of the rule that are 1n a different
rule life cycle state; and

updating, by the life cycle management module, the rule

set, including:

updating the rule life cycle state for one or more rules in
the rule set; and

updating the linkage set for one or more rules 1n the rule
set.

8. The apparatus of claim 7 further comprising computer
program 1nstructions that, when executed by the computer
processor, cause the apparatus to carry out the step of:

receiving, by the life cycle management module, an

updated rule set;

wherein updating the rule set includes updating the rule set

in dependence upon the updated rule set.

9. The apparatus of claim 7 further comprising computer
program 1instructions that, when executed by the computer
processor, cause the apparatus to carry out the step of:

receiving, by the life cycle management module, user input

identifying an update to apply to an existing rule 1n the
rule set;

wherein updating the rule set includes updating the rule set

in dependence upon the user input identifying an update
to apply to an existing rule 1n the rule set.

10. The apparatus of claim 7 further comprising computer
program 1instructions that, when executed by the computer
processor, cause the apparatus to carry out the steps of:

identifying, by the life cycle management module, a rule

that 1s to be excluded from the rule set; and

excluding from the rule set, by the life cycle management

module, the rule that 1s to be excluded from the rule set,
including removing the rule from the linkage set of all
other rules.

11. The apparatus of claim 7 wherein the rule life cycle
state 1s one of:

10

15

20

25

30

35

40

45

50

55

14

inception, revision, activation, deprecation, or exclusion.

12. The apparatus of claim 7 wherein the rule set 1s a
configuration rule set that includes rules specitying how the
computing system must be configured.

13. A computer program product for life cycle manage-
ment of rule sets, each rule set including rules for managing
the operation of a computing system, the computer program
product disposed upon a non-transitory computer readable
medium, the computer program product comprising com-
puter program instructions that, when executed, cause a com-
puter to carry out the steps of:

identifying, by a life cycle management module, a rule life

cycle state for each rule 1n the rule set, wherein the rule
life cycle state specifies the current deployment status of
the rule;

identifying, by the life cycle management module, a link-

age set for each rule 1n the rule set, wherein the linkage
set 1dentifies versions of the rule that are 1n a different
rule life cycle state; and

updating, by the life cycle management module, the rule

set, including:;

updating the rule life cycle state for one or more rules 1n
the rule set; and

updating the linkage set for one or more rules 1n the rule
set.

14. The computer program product of claim 13 further
comprising computer program instructions that, when
executed, cause a computer to carry out the step of:

recerving, by the life cycle management module, an

updated rule set;

wherein updating the rule set includes updating the rule set

in dependence upon the updated rule set.

15. The computer program product of claim 13 further
comprising computer program instructions that, when
executed, cause a computer to carry out the step of:

receving, by the life cycle management module, user input

identifying an update to apply to an existing rule 1n the
rule set;

wherein updating the rule set includes updating the rule set

in dependence upon the user input 1dentifying an update
to apply to an existing rule 1n the rule set.

16. The computer program product of claim 13 further
comprising computer program instructions that, when
executed, cause a computer to carry out the steps of:

identifying, by the life cycle management module, a rule

that 1s to be excluded from the rule set; and

excluding from the rule set, by the life cycle management

module, the rule that 1s to be excluded from the rule set,
including removing the rule from the linkage set of all
other rules.

17. The computer program product of claim 13 wherein the
rule life cycle state 1s one of: inception, revision, activation,
deprecation, or exclusion.

18. The computer program product of claim 13 wherein the
rule set 1s a configuration rule set that includes rules specity-
ing how the computing system must be configured.

19. The computer program product of claim 13 wherein the
computer readable medium comprises a storage medium.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

