12 United States Patent
Gopal et al.

US008887147B2

US 8.887.147 B2
*Nov. 11, 2014

(10) Patent No.:
45) Date of Patent:

(54) METHOD FOR SUPPORTING NEW
NETWORK ELEMENT SOFTWARE
VERSIONS IN AN ELEMENT MANAGEMENT
SYSTEM WITHOUT UPGRADING

(75) Inventors: Niraj Gopal, San Jose, CA (US); Jiong
Sun, Fremont, CA (US); Sai V.

Ramamoorthy, Sunnyvale, CA (US);
David D. Ward, Somerset, WI (US)

(73) Assignee: Cisco Technology, Inc., San Jose, CA
(US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 35 days.

(*) Notice:

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 13/048,018
(22) Filed: Mar. 15, 2011
(65) Prior Publication Data

US 2011/0167418 Al Jul. 7, 2011
Related U.S. Application Data

(63) Continuation of application No. 11/139,063, filed on
May 27, 2005, now Pat. No. 7,926,033.

(51) Int.Cl.
GOGF 9/44

(52) U.S.CL
CPC oo GOGF 8/68 (2013.01)
USPC e 717/170

(58) Field of Classification Search
None
See application file for complete search history.

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS

— COPY OF MERGED VERSION

4,558,413 A * 12/1985 Schmidtetal. 717/170
5,909,689 A 6/1999 Van Ryzin
310~
STORE A BASE XML SCHEMA
FOR A SERVICE
APPLICATION
DERIVE AND STORE BASE

RSION DATA FOR THE
SERVICE APPLICATION

316\. v

RECEIVE INCREMENTAL
VERSION DATA FOR A NEW
VERSION OF THE SERVICE

APPLICATION

314~ T

CHANGES TO SCHEMA OF
SERVICE APPLICATION

6,230,194 Bl 5/2001 Frailong et al.

6,425,125 B1* 7/2002 Friesetal. 717/168

6,884,172 Bl 4/2005 Lloyd et al.

6,963,908 B1* 11/2005 Lynchetal. 709/220

7,213,065 B2 5/2007 Watt

7,415,706 B1* 82008 Rajuetal. 717/170
2004/0059844 Al1* 3/2004 Jonesetal.c..o...... 710/15
2005/0005031 Al* 1/2005 Gordyetal. 709/250
2005/0246687 A1 11/2005 Scott
2005/0267951 Al1* 12/2005 Joshietal.c......l. 709/220
2007/0150524 Al1* 6/2007 Ekeretal. 707/203
2007/0220503 Al1* 9/2007 Fanetal 717/168
2008/0216066 Al1* 9/2008 Oh ...c.coovvvviiviiiiiiiinnn, 717/173
2013/0031201 Al1* 1/2013 Kaganetal. 709/213

* cited by examiner

Primary Examiner — 11 B Zhen
Assistant Examiner — Fvral Bodden

(74) Attorney, Agent, or Firm — Hickman Palermo Truong
Becker Bingham Wong LLP

(57) ABSTRACT

A method and apparatus for configuring an element manage-
ment system server (an EMS server) to support new network
clement service application versions without upgrading the
EMS server soltware 1s provided. The EMS stores base ver-
sion data that describes the data model of a first version of a
service application installed on a network element. When a
second version of the service application 1s available, incre-
mental version data describing changes to the data model
from the first version to the second version 1s obtained and
stored. In response to receiving a client request mvolving a
service application on a particular network element, the EMS
may apply incremental version data, associated with the ver-
sion of the service application installed on the particular
network element, to the base version data to form merged
version data that describes the data model of the version of the
service application installed on the particular network ele-
ment.

20 Claims, 4 Drawing Sheets

318~

OVERLAY THE INCREMENTAL
VERSION DATA ON THE BASE
VERSION DATA TO CREATE A

DATAFOR THE NEW
VERSION QF THE SERVICE
APPLICATION

320~ Y

MAP A VERSION IDENTIFIER
FOR A NETWORK ELEMENT
TO A COPY OF MERGED
VERSION DATA

302~ Y

CREATE CONFIGURATION
FOR THE NETWORK
ELEMENT

U.S. Patent Nov. 11, 2014 Sheet 1 of 4 US 8,887,147 B2

FIG. 1

1 10\ STORE BASE VERSION DATA THAT DESCRIBES A FIRST DATA
MODEL OF A FIRST VERSION OF A SOFTWARE APPLICATION

Y

RECEIVE INCREMENTAL VERSION DATA THAT DESCRIBES

1201 CHANGES TO THE FIRST DATA MODEL WITH RESPECT TO A

SECOND DATA MODEL OF A SECOND VERSION OF THE
SOFTWARE APPLICATION

Y

130~ CORRELATE THE INCREMENTAL VERSION DATA WITH THE BASE
VERSION DATA TO FORM MERGED VERSION DATA

U.S. Patent Nov. 11, 2014 Sheet 2 of 4 US 8,887,147 B2
EMS CLIENT 220| |EMS CLIENT 222
250
250
EMS SERVER 210
: - 252 INCREMENTAL
VERSION —| || 214(1) || 216(1) || 218(1) c VERSION
ENGINE 212 ; a SOURGCE 230
214(n) || 216(n) || 218(n)
254
254
254
NETWORK NETWORK
ELEMENT 240 ELEMENT 244
NETWORK |
ELEMENT 242
200

U.S. Patent Nov. 11, 2014 Sheet 3 of 4 US 8,887,147 B2

310~ 318~ ..._
OVERLAY THE INCREMENTAL
STOREF%EAEEEX%CS; HEMA VERSION DATA ON THE BASE
AP ICATION VERSION DATA TO CREATE A
- —» COPY OF MERGED VERSION |
DATA FOR THE NEW
VERSION OF THE SERVICE
APPLICATION
312~ Y -
DERIVE AND STORE BASE
VERSION DATA FOR THE 190
SERVICE APPLICATION AN Y
MAP A VERSION IDENTIFIER
FOR A NETWORK ELEMENT
TO A COPY OF MERGED
316~ v VERSION DATA |
RECEIVE INCREMENTAL
VERSION DATA FOR A NEW
VERSION OF THE SERVICE
APPLICATION 322~ Y
A CREATE CONFIGURATION
FOR THE NETWORK
31a~ |) ELEMENT
CHANGES TO SCHEMA OF

SERVICE APPLICATION

US 8,887,147 B2

Sheet 4 of 4

OcY

124
1SOH

447
MHOMLAN
VOO0 1

0zY
/

MNTT
- AHOMLAN

Nov. 11, 2014

8CY

U.S. Patent

0ty
BR=EAEN

NOILYOINNAIWOD

30V4d41NI

172004
H055300dd

..................

| 0Tt

JOIA3A
JOVHOLS

——

OV

AdONWaN

NIVIA

24

TOH1INOD
HO54M0

TP

40IAdd LNaNI

A

AV 1dSI1A

¥ Ol

US 8,887,147 B2

1

METHOD FOR SUPPORTING NEW
NETWORK ELEMENT SOFTWARE
VERSIONS IN AN ELEMENT MANAGEMENT
SYSTEM WITHOUT UPGRADING

BENEFIT CLAIM

This application claims the benefit of domestic priority
under 35 U.S.C. §120 as a Continuation of prior U.S. patent
application Ser. No. 11/139,065 now U.S. Pat. No.7,926,033,
filed on May 27, 2005, the entire contents of which are hereby
incorporated by reference as if fully set forth herein. The
applicant(s) hereby rescind any disclaimer of claim scope 1n
the parent application(s) or the prosecution history thereof
and advise the USPTO that the claims 1n this application may
be broader than any claim in the parent application(s).

FIELD OF THE INVENTION

The present invention relates to enabling an element man-
agement system (EMS) to support new network element soft-
ware versions without upgrading the soiftware of the EMS
Server.

BACKGROUND

An element management system server (an EMS server) 1s
a server that 1s responsible for administering one or more
services on one or more network elements. Each network
clement (NE) adminmistered by an EMS server 1s typically the
same type of NE, such as a router or switch 1n a packet-
switched network. Some EMS servers have the capability of
managing multiple types of NEs from a single vendor or
manufacturer. An admimstrator may use an element manage-
ment system client (an EMS client) to communicate with the
EMS server. The EMS client provides an interface that allows
an administrator to manage and configure the services being
provisioned by the EMS server on a particular NE.

A service being administered by an EMS server 1s typically
provided by a service application. An EMS server typically
provisions multiple services on any given NE being admin-
istered by the EMS server. As a result, most NEs execute
multiple service support applications.

For each service application that the software being
executed by an EMS server (the EMS server soitware) sup-
ports, the EMS server software supports a particular set of
versions of the service application. For example, an illustra-
tive EMS server may execute EMS server software that sup-
ports version 1.0 of service application A, version 2.0 of
service application B, and versions 1.0, 2.0, and 2.2 of service
application C.

To 1llustrate, assume that an administrator wishes to con-
figure how a particular service, such as Voice Over 1P (VoIP),
1s being provisioned on router XYZ. The EMS server sofit-
ware supports version 2.0 of the service application providing,
the VoIP service (“the VoIP service application”), and router
XYZ also executes version 2.0 of the VoIP service applica-
tion. The administrator may use an EMS client, hosted on the
administrator’s workstation, to communicate with the EMS
server. After configuring how the EMS server provisions the
VoIP service, the administrator may deploy the VoIP service,
as configured, on router XYZ by sending instructions from
the EMS client to the EMS server to cause the EMS server to
provision the VoIP service, as configured, on router XY Z.

From time to time, new versions of a service application
may become available. When a new version of a service

application becomes available, to enable the EMS server to

10

15

20

25

30

35

40

45

50

55

60

65

2

provision a service using the new version of the service appli-
cation, a new version of the EMS server software that sup-
ports the new version of the service application must be
installed onthe EMS server. This 1s so because an EMS server
may not provision a service on a particular NE that 1s execut-
ing a version of a service application that the EMS server does
not support.

However, upgrading the EMS server solftware requires a
certain amount of time, money, and resources. For example,
betfore 1nstalling a new version of the EMS server software,
the existing version of the EMS server soltware may need to
be uninstalled. Also, the EMS server may need to be taken
offline, and therefore be unavailable, when the EMS server
soltware 1s being upgraded. As a result, all the services being
provisioned by the EMS server may be unavailable during the
time the EMS server software 1s being upgraded. Thus, the
fundamental problem 1s how to enable a management system
to manage NE’s when services on the NE’s change over time,
without reinstalling the management system.

To minimize both the amount of time that an EMS server 1s
unavailable and the inconvenience to the operator of the EMS
server, 1t 1s typical to wait a length of time before upgrading
the EMS server soitware so that new versions of multiple
service applications may be reflected 1n the newly 1nstalled
EMS server soltware. For example, every six months, the
manufacturer of the EMS server may make available a new
version of the EMS server solftware that reflects any new
version of service applications that became available since
the last available release of the EMS server software. Unifor-
tunately, this approach naturally delays the amount of time
before which the EMS server may provision services using a
newly available version of a service applications.

Therefore, 1t would be advantageous to allow an EMS
server to supportnew versions of service applications without
performing a full upgrade of the EMS server software.

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously concetved or pursued. Therefore, unless
otherwise indicated, i1t should not be assumed that any of the
approaches described in this section qualily as prior art
merely by virtue of their inclusion 1n this section.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and 1n which like reference numer-
als refer to similar elements and 1n which:

FIG. 1 1s a flowchart of the high level steps of configuring
a device according to an embodiment;

FIG. 2 1s a block diagram of an 1llustrative system accord-
ing to an embodiment;

FIG. 3 1s a flowchart 1llustrating the steps of enabling an
EMS server to support new versions ol a service application
without upgrading the EMS server soitware according to an
embodiment; and

FIG. 4 1s a block diagram that illustrates a computer system
upon which an embodiment may be implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the embodiments of the mnven-
tion described herein. It will be apparent, however, that the
embodiments of the mnvention described herein may be prac-
ticed without these specific details. In other instances, well-

US 8,887,147 B2

3

known structures and devices are shown 1n block diagram
form 1n order to avoid unnecessarily obscuring the embodi-
ments of the invention described herein.

Functional Overview

Embodiments of the invention enable an element manage-
ment system server (an EMS server) to support new versions
of a service application without upgrading the EMS server
soltware. In this way, when a new version of a service appli-
cation becomes available, the EMS server may be updated to
support the new version of the service application without
performing a full upgrade of the EMS server software. Addi-
tionally, an EMS server may be updated, without performing,
a Tull upgrade of the EMS server software, to support older
versions ol service applications that the EMS server did not
previously support.

An EMS server may not be able to properly provision a
service on a particular network element using a service appli-
cation 1f the way the EMS server represents data for the
service application differs from the way that the network
clement represents data for the service application. Certain
embodiments operate under the recognition that, 11 an EMS
server 1s already supports a first version of a service applica-
tion, then the EMS server can support a second version of the
service application by storing data that describes changes to a
data model used by the service application from the first
version to the second version. In this way, the EMS server can
construct the data model used by the second version of the
service application by correlating the data model of the first
version with information about the changes to the data model
from the first version to the second version. After the EMS
server constructs the data model used by the second version of
the service application, the EMS server may provision a ser-
vice on any network element, which 1s executing the second
version of a service application, using the constructed data
model of the second version of the service application.

FI1G. 1 1s a flowchart of the high level steps of configuring
a device, such as an EMS server, according to an embodiment
of the mmvention. In step 110, base version data 1s stored that
describes a first data model of a first version of a software
application. For example, in step 110, an EMS server may
store base version data that describes a data model of version
2.0 of a service application used to provision a VoIP service
on network elements by the EMS server. The service appli-
cation 1s hosted on one or more network elements.

In step 120, incremental version data that describes
changes to the first data model with respect to a second data
model of a second version of the service application 1s
received. For example, 1n step 120, the EMS server may
receive incremental version data that describes changes made
to the data model of the service application between version
2.0 and version 3.0.

The second version of the service application need notbe a
subsequent version of the soiftware application; the second
version may be an earlier version or any other different ver-
sion. For example, 1n step 120, the EMS server may receive
incremental version data that describes changes made to the
data model of the service application between version 1.0 and
version 2.0.

In step 130, the incremental version data and the base
version data are correlated to form merged version data. The
merged version data allows the EMS server to provision a
service on a network element that 1s executing a service
application having the same version that was associated with
the incremental version data. For example, assuming, in step
120, that the EMS server recetved incremental version data

10

15

20

25

30

35

40

45

50

55

60

65

4

that describes the changes made to a data model from a first
version of a service application to version 3.0 of the service

application, then 1n step 130, the EMS server may use the
merged version data, that was formed 1n step 130, to provision
a service to any network element executing version 3.0 of the
service application.

In an embodiment, an EMS server may store multiple sets
of merged version data. In thus way, the EMS server may
support any version of a service application for which the
EMS server 1s storing either base version data or merged
version data. For example, an 1llustration EMS server may
store (a) base version data for version 2.0 of service applica-
tion ABC, and (b) merged version data for versions 1.0, 1.2,
and 3.0 of service application ABC. Thus, the EMS server can
provision a service on any network element that 1s executing
versions 1.0, 1.2, 2.0, or 3.0 of service application ABC.

Architecture Overview

FIG. 2 1s a block diagram of an illustrative system 200
according to an embodiment. System 200 may be used to
enable an EMS server to support new versions ol a service
application without upgrading the EMS server software. In an
embodiment, system 200 comprises an EMS server, an EMS
client, an incremental version source, a network element, and
one or more communications links.

EMS server 210 may be implemented using any functional
component that 1s capable of provisioning a service on a
network element. An illustrative, non-limiting example of
EMS server 210 1s the Cisco Transport Manager (C'1M),
available from Cisco Systems, Inc. of San Jose, Calif.

In an embodiment, EMS server 210 includes a version
engine 212, base version data 214, one or more sets of incre-
mental version data 216, and one or more sets of merged
version data 218. A version engine 212, as broadly used
herein, refers to any functional component capable of per-
forming the steps illustrated 1n FIG. 1. In an embodiment,
version engine 212 may be implemented as a software mod-
ule executing on the EMS server 210.

Base version data 214 refers to data that describes a first
data model of a first version of a software application man-
aged by the EMS server 210. Incremental version data 216
refers to data that describes changes to the first data model
associated with base version data 214 with respectto a second
data model of a second version of the software application.
Merged version data 218 1s data that describes the second data
model. Base version data 214, incremental version data 216,
and merged version data 218 may be stored at a location at or
accessible to the EMS server 210. The creation and use of
base version data 214, incremental version data 216, and
merged version data 218 shall be discussed 1in further detail
below.

EMS client 220 and EMS client 222 may each be imple-
mented using any functional component that 1s capable of
communicating with an EMS server to allow an administrator
to manage and configure the services being provisioned by
the EMS server on a particular network element. A non-
limiting, illustrative example of an EMS client 1s the NE
Explorer application, available from Cisco Systems, Incor-
porated of San Jose, Calif.

An 1incremental version source, such as incremental ver-
s1on source 230, as broadly used herein represents any poten-
t1al source for incremental version data 216. EMS server 210
may retrieve incremental version data 216 from incremental
version source 230 over communications link 252. A provider
of a particular service application may periodically make

available incremental version data 216 for the particular ser-

US 8,887,147 B2

S

vice application. Non-limiting, illustrative examples of incre-
mental version source 230 include a website affiliated with
the provider of the service application or the EMS server 210
(for example, the Cisco Connection Online website, which 1s
a website well known to customers of Cisco Systems, Inc. as
a source for obtaining mnformation and downloadable files).

A network element (NE), such as network element 240,
242, and 244, as broadly used herein, refers to any functional
component upon which an EMS server may provision a ser-
vice. A NE may include any network infrastructure device,
such as a router, switch, etc. A non-limiting, illustrative
example of a network element 1s the CRS-1 router, available
from Cisco Systems, Inc. of San Jose, Calif.

Communications link 250 may be implemented by any
medium or mechanism that provides for the exchange of data
between an EMS client and an EMS server. Communications
link 252 may be implemented by any medium or mechanism
over which the EMS server may retrieve incremental version
data. Communications link 254 may be implemented by any
medium or mechanism that provides for the exchange of data
between an EMS server and a network element. Examples of
communications links 250, 252, and 254 include, without
limitation, a network such as a Local Area Network (LAN),
Wide Area Network (WAN), Ethernet or the Internet, or one
or more terrestrial, satellite or wireless links.

For ease of explanation, only one incremental version
source, two EMS clients and three network elements are
depicted in FIG. 2. However, system 200 may include any
number of incremental version sources, any number of EMS
clients, and any number of network elements. Consequently,
embodiments are not limited to the number of incremental
version sources, EMS clients, or network elements within
system 200.

Having described the architecture of an illustrative, the
process ol configuring EMS server 210 using incremental
version data 216 shall be described below according to an
embodiment.

Configuring a Device Using Incremental Version
Data

FIG. 3 1s a flowchart 1llustrating the steps of enabling an
EMS server to support new versions of a service application
without upgrading the EMS server software according to an
embodiment of the invention. For ease of explanation, while
base version data 214, incremental version data 216, and
merged version data 218 may be stored for two or more
service applications, the performance of the steps of FIG. 3
are explained below with respect to recerving a single set of
incremental version data 216 for a single service application
and creating a single set of merged version data 218. How-
ever, the steps of FIG. 3 may be repeated to store additional
sets of base version data 214, incremental version data 216,
and merged version data 218 for two or more service appli-
cations or two or more versions of a service application. In an
embodiment, the steps of FIG. 3 may each be performed by
version engine 212 of EMS server 210.

10

15

20

25

30

35

40

45

50

55

6

In step 310, EMS server 210 stores a base XML schema for
a service application. A base XML schema i1s a schema,
expressed 1 an XML format, that defines or models how the
service application represents data. The base XML schema
provides information about a version of a service application
to the EMS server 210 to enable the EMS server 210 to
provision a service on a network element using the version of
the service application associated with the base XML
schema.

For example, step 310 may be performed by EMS server
210 installing a set of software (“EMS server soitware”™) that
(a) supports the operation of the EMS server 210, and (b)
provides the EMS server 210 with the capability of provision-
Ing one or more versions of one or more service application.
The EMS server software contains a XML schema for each
version of a service application that the EMS server software
provides to the EMS server 210 the capability of provision-
ing.

To 1llustrate, 11 the EMS server 210 1s installed with EMS
server software that supports version 1.0 of service applica-
tion ABC, then the EMS server software may comprise a base
XML schema for version 1.0 of service application ABC.

As a specific example, EMS server 210 may be deployed in
the field. EMS server 210 may be installed with EMS server
soltware that comprises a data definition for a BGP applica-
tion, an ISIS application, and a MPLS application. These data
definitions are based on a version of the service application,
typically the most recent version available at the time of the
release of the EMS server 210. These data definition files may
be auto-generated by running a script against a set of publicly
available XML schemas for that image version. These data
definition files store information to enable the EMS server
210 to dynamically determine, at runtime, the compatibility
between the EMS server 210 and a particular service appli-
cation.

After a base XML schema for a service application 1s
stored by the EMS server 210, processing proceeds to step
312.

In step 312, EMS server 210 derives and stores base ver-
sion data 114 for the service application. Base version data
114 1s data that describes a data model of a version of a
soltware application. Base version data 114 may be imple-
mented using any format that describes a data model of a
version of a soitware application.

In an embodiment, version engine 212 may derive the base
version data 114 from the base XML schema stored 1n step

310. Base version data 114 may be stored i a location at or
accessible to EMS server 210.

For illustration purposes, a sample portion of base version
data 114 1s provided below 1n Example 1.

Example 1

<?xml version="1.0" encoding="UTF-8"7>
<Component Name="IFCOMMON" ComponentVersionID="1"">
<VersionInfo>

<VersionedClass>
XPath="/Interface AllConfiguration™
MajorVersion="1"
MinorVersion=""3"
</VersionedClass>

</Versionlnfo>

US 8,887,147 B2

-continued

<Record
Name="1FGeneralRecord"
DBTableName="HFR COMMON INTERFACE CONFIG"

CommonPath="/InterfaceAllConfiguration/InterfaceConfiguration”

Type="Vector'™>
<Property Name="InterfaceName"
DBColumnName="1FID"

XPath="/Interface AllConfiguration/InterfaceConfiguration/Naming/name"

RelativePath="/Naming/name"
Type="String"
DisplayName="InterfaceName"
Key="true"
Required="true"
Visible="true"
Serializable="true"/>

<Property Name="I1PMTU"

DBColumnName="IFMTU"

XPath="/Interface AllConfiguration/InterfaceConfiguration/IPV4/MTU”

Type="UnsignedInt"
RelativePath="1PV4IOInterface/MTU"
DisplayName="MTU (Layer 3)"
Required="1alse"
MinValue="6%"
MaxValue="65535"
Visible="true"
Serializable="true'/>

<Property
Name='"NewField"
DBColumnName="NEWFIELD”

XPath="/Interface AllConfiguration/InterfaceConfiguration/NewField"

RelativePath="NewField"
Type=UnsignedInt32
DisplayName="New[F1eld”
Required="true”
Serializable="true”/>
</Record>
</Component>

As shown above 1n Example 1, in an embodiment, base 35
version data 214 may be expressed using the XML syntax.
After the EMS server 210 derives and stores base version data
114 for the service application, processing proceeds to step
314.

In step 314, changes are made to the schema of the service 40
application. Step 314 may be accomplished by a new version
of a service application being made available. For example, 1f
the base version data 214 that was derived and stored 1n step
312 1s associated with version 2.0 of a service application,
then step 314 may be performed by a version 2.2 or version 45
3.0 of the service application being made available.

However, step 314 need not imnvolve a full, new version of
the service application, as step 314 may be accomplished by
performing any change, large or small, to the data model
identified by the base version data 214. For example, the
provider or manufacturer of the service application may make
available a small patch to address a bug in the service appli-
cation, and the small patch may make a change to the data
model of the service application. Thus, step 314 1s broadly
represents any change to data model of the version of service
application represented by the base version data 214. After
the performance of step 314, processing proceeds to step 316.

In step 316, incremental version data for a new version of
the service application 1s recerved. Incremental version data
216 15 data that describes changes to the first data model with
respect to a second data model of a second version of the
soltware application.

As an example, steps 314-316 may nvolve the following:
A new version of a service application 1s released. The new
version of the service application has a data model that has
changed from a prior version of the service application. A
script 1s run against (a) the publicly available XML schemas
for the new version of the service application and (b) the

50

55

60

65

publicly available XML schemas for the version of the service
application associated with the base version data 214, to
generate the incremental version data 216 for the new version
of the service application. The incremental version data 216
may be specified using an extensible meta-language, such as
XML, using tags or mnemonics to indicate the type of
changes that have been made to the schemas or data model.
The following types of changes are supported to the schema
or data model: (a) the addition of new attributes, (b) the
deletion of existing attributes, and (¢) modification of
attributes, e.g., type change, range change, etc. Incremental
version data 216 may be shipped to a customer site and copied
to an appropriate location based on the install location of the
EMS server 210. Alternately, incremental version data 216
may be made available on a public web site and/or automati-

cally installed at the appropriate location 1n the EMS server
210.

In an embodiment, 1n step 316, incremental version data
216 15 obtained from incremental version source 230 over
communications link 252. In an embodiment, the version
engine 212 may be configured to check incremental version
source 230 to determine 1f incremental version data 216 1s
available. For example, the version engine 212 may be con-
figured to check, after the expiration of a specific interval or at
a specified time, a public website, such as the Cisco Connec-
tion Online website. If the version engine 212 determines that
incremental version data 216 1s available from the incremen-
tal version source 230, then the version engine 212 may be
configured to either notity an administrator (to allow the
administrator to obtain the incremental version data 216) or
automatically download the incremental version data 216
without further user intervention.

In other embodiments, the administrator of EMS server
210 may check the imcremental version source 230, and 1f

US 8,887,147 B2

9

incremental version data 216 1s available, download the incre-
mental version data 216 to the EMS server 210.

For illustration purposes, a sample portion of incremental
version data 216 1s provided below 1n Example 2.

Example 2

<7xml version="1.0" encoding="UTF-8"?>
<Component Name="IFCOMMON" ComponentVersionID="0"">
<Versionlnfo>
<VersionedClass>
XPath="/Interface AllConfiguration™
DeltaType ="Change”
MajorVersion=""1"
MinorVersion="0"
</VersionedClass>
</Versionlnfo>
<Record Name="1FGeneralRecord"

CommonPath="/Interface AllConfiguration/InterfaceConfiguration”

Type="Vector"

<Property
Name="IPMTU"

DeltaType ="Change”

XPath="/Interface AllConfiguration/InterfaceConfiguration/MTU"

RelativePath="MTU" />
<Property

Name="0ldField"

DeltaType="Add”

DBColumnName="OLDFIELD”

10

The incremental version data 216 of Example 2 includes the
following XML tags and associated data:

<VersionedClass>
XPath="/Interface AllConfiguration”

XPath="/Interface AllConfiguration/InterfaceConfiguration/OldField"

RelativePath="0ldF1eld"
Type=UnsignedInt32
DisplayName="0ldF1ield”
Required="true”
Serializable=""true”/>

<Property
Name="NewField"

DeltaType ="Delete” />
</Record>
</Component>

As shown above 1mn Example 2, 1n an embodiment, incre-
mental version data 216 may be expressed using the XML
protocol.

The incremental version data 216 obtained 1n step 316 may
correspond to a version of the service application that reflects
the changes made to the schema 1n step 314. However, the
incremental version data 216 obtained 1n step 316 need not
reflect the changes to the schema made 1n step 314, as incre-
mental version data 216 may also correspond to an earlier
version of the service application that the version associated
with the base version data 214. After incremental version data
216 for a new version of the service application is recerved,
processing proceeds to step 318.

In step 318, the incremental version data 216 1s overlaid on
the base version data 214 to create merged version data 218
for the new version of the service application. In an embodi-
ment, the incremental version data 216 may be overlaid on the
base version data 214 using the XML tags of the incremental
version data 216 and the base version data 214.

To 1llustrate, the base version data 214 of Example 1
includes the following XML tags and associated data:

<VersionedClass>
XPath="/Interface AllConfiguration™
MajorVersion=""1"
MinorVersion=""3"
</VersionedClass>

40

45

50

55

60

65

-continued

DeltaType ="Change”
MajorVersion="1"
MinorVersion=""0"

</VersionedClass>

The above XML tags 1llustrate that the base version data

214 1s associated with version 1.3 of the service application,
while the incremental version data 216 1s associated with

version 1.0 of the service application. The above tags also

illustrate how information may be updated from a first version
(1dentified using a set of tags in the base version data 214) to
a second version (1dentified using the same set of tags 1n the
incremental version data 216). By correlating data identified
by a set of tags 1n the base version data 214 with data identi-
fied by the same set of tags in the incremental version data
216, the merged version data 218 may be created.

For illustration purposes, a sample portion of merged ver-
sion data 218, based on the base version data 214 of Example
1 and the incremental version data 216 of Example 2, i1s
provided below in Example 3. As Example 3 illustrates, the
information encapsulated by the <VersionedClass> XML tag,
in the merged version data 218, has been updated based onthe
revised information contained in the incremental version data

216.

US 8,887,147 B2

11

Example 3

<7xml version="1.0" encoding="UTF-8"7>
<Component Name="IFCOMMON" ComponentVersionID="0"">
<VersionInfo>
<VersionedClass>
XPath="/Interface AllConfiguration™
MajorVersion=""1"
MinorVersion="0"
</VersionedClass>
</Versionlnfo>
<Record Name="TFGeneralRecord"
DBTableName="HFR__ COMMON__INTERFACE CONFIG"

CommonPath="/Interface AllConfiguration/InterfaceConfiguration”

Type="Vector'>
<Property Name="InterfaceName"
DBColumnName="1FID"

12

clement using that particular version of that particular service

XPath="/Interface AllConfiguration/InterfaceConfiguration/Naming/name"

RelativePath="/Naming/name"
Type=">String"
DisplayName="InterfaceName"
Key="true"
Required="true"
Visible="true"
Serializable="true"/>

<Property Name="I1PMTU"

DBColumnName="IFMTU"

XPath="/Interface AllConfiguration/InterfaceConfiguration/MTU"

RelativePath="MTU"
Type="UnsignedInt"
DisplayName="MTU (Layer 3)"
Required="1alse"
MinValue="68"
MaxValue="65535"
Visible="true"
Serializable="true'/>
<Property
Name="0OldField"
DBColumnName="0OLDF

51D

XPath="/Interface AllConfiguration/InterfaceConfiguration/OldField"

RelativePath="0ldF1eld"
Type=UnsignedInt32
DisplayName="0ldF1eld”
Required="true”
Serializable=""true”/>

</Record>
</Component>

The merged version data 218 of Example 3 illustrates a
portion of the data model of version 1.0 of the service appli-
cation, while the base version data 214 of Example 1 1llus-
trates a portion of the data model of version 1.3 of the service
application. As shown above in Example 3, in an embodi-
ment, merged version data 218 may be expressed using the
XML protocol.

In an embodiment, version engine 212 only creates merged
version data 218 once. For example, version engine 212 may
create merged version data 218 for a new version of a service
application in response to (a) when the EMS server 210
receives icremental version data for the new version, or (b)
the first time that the EMS server 210 receives a request from
an EMS client to provision a service on a particular network
clement using the new version of the service application.
After the version engine 212 creates the merged version data
218, the version engine 212 may store the merged version
data 218 so that subsequent requests imvolving the new ver-
sion may be processed without overlaying the incremental
version data 216 on the base version data 214 to create the
merged version data 218.

Once the merged version data 218 1s created for a particular

45

50

55

60

version of a particular service application (e.g., version 3.4 o 65

service application A), anytime that the EMS server 210
receives a request to provision a service using on a network

application (e.g., version 3.4 of service application A), the
EMS server 210 may use the merged version data 218 asso-
ciated with particular version of the particular service appli-
cation. Thus, merged version data 218 may be created and
stored for any version of any service application supported by
the EMS server 210.

After merged version data 218 1s created, processing pro-
ceeds to step 320.

In step 320, a version identifier for a network element 1s
mapped to a copy of the merged version data. The motivation
of performing step 320 1s to enable the EMS server 210 to
determine, which network elements are executing a version of
a service application associated with a set of merged version
data 218 stored at the EMS server 210. Thus, 1n step 320, the
version engine 212 may store, for each set of merged version
data 218 maintained by the version engine 212, a set of one or
more version identifiers that identity which network elements
are executing a version ol a service application associated
with each set of merged version data 218. After the perfor-
mance of step 320, processing proceeds to step 322.

In step 322, a configuration for a network element 1s cre-
ated. The purpose of step 322 1s for the EMS server 210 to
maintain data that identifies all versions of all service appli-
cations on each network element managed by the EMS server
210. In this way, when the EMS server 210 receives a request
to provision a service on a network element, the EMS server

US 8,887,147 B2

13

210 can determine which versions of which applications are
installed on the network element. Further, using the mapped
version 1dentifier of step 320, the EMS server 210 can deter-
mine which sets of merged version data 218 are associated
with the versions of service applications mstalled on the
network element. In this way, the EMS server 210 can deter-
mine the data model of a service application for use in
responding to a provisioning request on a particular network
clement.

The performance of steps 320 and 322 may be performed in
a different order than that depicted 1n FIG. 3. For example,
step 322 may be performed when a network element regis-
tered with EMS server 210, and thus, may be performed prior
to the performance of step 310. Thus, sequence of steps
depicted 1in FIG. 3 are merely illustrative, as other embodi-
ments perform the steps of FIG. 3 1n a different order.

Storing Multiple Sets of Merged Version Data

In an embodiment, EMS server 210 may store one or more
sets of base version data 214(1)-(nz), and each set of base
version data 214(1)-(») may be associated with a different
service application. Using the one or more sets of base ver-
sion data 214 (1)-(»), the EMS server 210 may retrieve one or
more sets ol incremental version data 216(1)-(») to create one
or more sets ol merged version data 218. For example, version
engine 212 may create and store multiple sets of merged
version data 218 (1)-218 (), where each set of the merged
version data 218 (1)-218 () 1s associated with a different
version of the service application. For example, base version
data 214 may be associated with version 2.0 of a service
application, merged version data 218(1) may be associated
with version 1.0 of the service application, and merged ver-
sion data 218(2) may be associated with version 3.0 of the
service application. In this way, the EMS server 210 may
support version 1.0, 2.0, and 3.0 of the service application
using either base version data 214 or merged version data
218(1) or 218(2).

In addition, the EMS server 210 may store sets of merged
version data 218 for different service applications supported
by the EMS server 210. For example, base version data 214
(1) may be associated with version 1.0 of service application
A, while base version data 214 (2) may be associated with
version 1.0 of service application B. Incremental version data
216 may be obtained for different versions of service appli-
cation A and for different versions of service application B.
As a result, merged version data 218 may be created and
stored for any number of service applications, and for any
number of versions of a particular service application.

Informing the EMS Server and the EMS Client of
Version Information

In an embodiment, when an administrator wishes to man-
age a new network element using EMS server 210, the admin-
istrator will use EMS client 220 to communicate with the
EMS server 210 to add the new network element to the list of
network elements managed by the EMS server 210. This
process may require the EMS server 210 to collect some
information from the network element. For example, the
EMS server 210 may collect information about all the ver-
sions of service applications executed by the network ele-
ment. The EMS server 210 may then store this information for
future use.

If the EMS server 210 determines that the network element
1s executing a version of a service application (“an unknown
version”’) for which the EMS server 210 1s not storing either

10

15

20

25

30

35

40

45

50

55

60

65

14

(a) base version data 214 or (b) merged version data 218, then
the EMS server 210 may determine whether the EMS server
210 1s storing incremental version data 216 associated with
the unknown version, and 11 so, generate and store merged
version data 218 for the unknown version as described above.
Alternately, 11 the EMS server 210 1s not storing incremental
version data 216 associated with the unknown version, then
the EMS server 210 may try to obtain incremental version
data 216 from incremental version source 230, and thereafter
generate and store merged version data 218 for the unknown
version as described above.

In an embodiment, when an administrator uses EMS client
220 to communicate with the EMS server 210 to provision a
service on network element 240, EMS client 220 mitially
communicates with EMS server 210 to obtain a list of the
network elements that are managed by the EMS server 210.
Thereafter, EMS client 220 provides a graphical user inter-
tace (GUI) to the administrator that allows the administrator
to select a particular network element (such as network ele-
ment 240), from the list of network elements managed by the
EMS server 210, which the administrator wishes to configure.
After the administrator makes his or her selection, EMS client

220 transiers data that indicates the selection to EMS server
210. The EMS server 210 responds by transmitting to EMS
client 220 a list of all the service applications executing on
network element 240.

Once the administrator makes a selection of which service
application that the admimstrator wishes to configure, EMS
client 220 may transmit the selection to the EMS server 210.
After receiving the selection, the EMS server 210 may trans-
mit, to EMS client 220, information about the data model of
the version of the selected service application executing on
the selected network element that the administrator wishes to
configure. In this way, the EMS client 220 1s informed of the
new data model of the new version of the service application.

Dynamic Adjustment of an EMS Client GUI

While embodiments of the invention advantageously allow
EMS server 210 to support new versions of a service appli-
cation without upgrading the EMS server software, 1t 1s noted
that the graphical user intertace (GUI) of EMS client 220
would still need to be upgraded to retlect the new version of a
service application being supported by the EMS server 210.
This 1s so because the GUI of the EMS client 220 1s typically
designed for use with the version of the service application
associated with the base version data 214, which is usually the
most recent version available when the EMS server software
1s 1nstalled on the EMS server 210. However, as indicated
above, the EMS client 220 may be used to configure versions
of service applications other than those the EMS client 220
was designed to be used. As described below, various embodi-
ments of the mvention may address this situation using dif-
ferent approaches.

According to one embodiment, 1f the GUI of EMS client
220 does not reflect the data model of a selected version of a
selected service application that an administrator wishes to
configure, the EMS client GUI may disable any data fields
that the GUI cannot handle. For example, assume that the
EMS client GUI is designed to work with version 2.0 of a
service application, but in version 3.0, several attributes have
been removed from the data model. If the administrator
attempts to use that GUI to configure version 3.0 of the server
portion of service application that 1s executing on the EMS
server 210, then the data fields corresponding to removed
attributes may be disabled. Disabled data fields are typically

US 8,887,147 B2

15

shown grayed out, and do not permit the administrator to
perform any modifications using the disabled data fields.

According to another embodiment, the EMS client 220
may dynamically construct a GUI based on the information
sent from the EMS server 210 to the EMS client 220. In this
way, 1f attributes have been added to a data model, then the
EMS client 220 may be able to dynamically generate a GUI to
that displays data fields associated with the added attributes to
allow their configuration. Similarly, the GUI may be dynami-
cally generated such that it does not display data fields asso-
ciated with attributes that have been removed from a data
model.

For example, the EMS server 210 may transmit to the EMS
client 220 information about the data model of the version of
the service application that the administrator wishes to con-
figure. The EMS client 220 may use the information about the
attributes of the data model to dynamically generate a GUI
that may be used to configure the server portion of the service
application executing on the EMS server 210.

For example, the EMS server 210 may send, to the EMS
client 220, the merged version data 218 associated with the
selected version of the service application. In an embodiment,
incremental version data 216 may contain certain XML tags
that indicate which screen of a GUI, used by EMS client 220,
that data fields, associated with attributes of the data model,
should appear. For example, attributes of the data model may
be associated with an XML tag that identifies how the data
ficlds associated with these attributes should appear on the
GUI, e.g., the data fields should appear on the same page or 1n
a table having a certain dimension.

In this way, the EMS client 220 may dynamically generate
a screen of a GUI by displaying a set of data fields that are
associated with attributes identified by one or more XML
tags. To illustrate, 1f a new version of a service applications
adds 10 new data items, then these new data items may be
shown on the same screen by associating those 10 data items
with a XML tag in the incremental version data 216.

When incremental version data 216 1s created, information
about how to display the changed attributes at the GUI of the
EMS client 210 may be stored therein. The merged version
data 218 will contain the new tags containing such informa-
tion after the version engine 212 overlays the incremental
version data 216 with the base version data 214. Thus, when
the EMS server 210 transmits the merged version data 218 to
the EMS client 220, the EMS client 220 will be able to use that
information to dynamically generate a GUI to show the new
data 1tems 1n a manner that makes more visual sense to the
administrator.

Implementing Mechanisms

In an embodiment, an EMS client, an EMS server, an
incremental version source, and a network element may be
implemented using a computer system. FIG. 4 1s a block
diagram that illustrates a computer system 400 upon which an
embodiment of the invention may be implemented. Computer
system 400 includes a bus 402 or other communication
mechanism for communicating information, and a processor
404 coupled with bus 402 for processing information. Com-
puter system 400 also includes a main memory 406, such as a
random access memory (RAM) or other dynamic storage
device, coupled to bus 402 for storing information and
instructions to be executed by processor 404. Main memory
406 also may be used for storing temporary variables or other
intermediate information during execution of mstructions to
be executed by processor 404. Computer system 400 further
includes a read only memory (ROM) 408 or other static

10

15

20

25

30

35

40

45

50

55

60

65

16

storage device coupled to bus 402 for storing static informa-
tion and 1nstructions for processor 404. A storage device 410,
such as a magnetic disk or optical disk, 1s provided and
coupled to bus 402 for storing information and instructions.

Computer system 400 may be coupled via bus 402 to a
display 412, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 414, includ-
ing alphanumeric and other keys, 1s coupled to bus 402 for
communicating information and command selections to pro-
cessor 404. Another type of user input device 1s cursor control
416, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 404 and for controlling cursor movement
on display 412. This input device typically has two degrees of
freedom 1n two axes, a first axis (e.g., X) and a second axis
(e.g., v), that allows the device to specily positions 1n a plane.

The invention 1s related to the use of computer system 400
for implementing the techniques described herein. According
to one embodiment of the mmvention, those techniques are
performed by computer system 400 in response to processor
404 executing one or more sequences ol one or more 1nstruc-
tions contained in main memory 406. Such instructions may
be read into main memory 406 from another machine-read-
able medium, such as storage device 410. Execution of the
sequences ol instructions contained in main memory 406
causes processor 404 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used 1n place of or in combination with software instruc-
tions to implement the mvention. Thus, embodiments of the
invention are not limited to any specific combination of hard-
ware circuitry and software.

The term “machine-readable medium™ as used herein
refers to any medium that participates 1in providing data that
causes a machine to operation 1n a specific fashion. In an
embodiment implemented using computer system 400, vari-
ous machine-readable media are mvolved, for example, 1n
providing instructions to processor 404 for execution. Such a
medium may take many forms, including but not limaited to,
non-volatile media, volatile media, and transmission media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as storage device 410. Volatile media
includes dynamic memory, such as main memory 406. Trans-
mission media includes coaxial cables, copper wire and fiber
optics, mncluding the wires that comprise bus 402. Transmis-
s1ion media can also take the form of acoustic or light waves,
such as those generated during radio-wave and infra-red data
communications.

Common forms of machine-readable media include, for
example, a tloppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other

optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and

EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.

Various forms of machine-readable media may be involved
1n carrying one or more sequences ol one or more imstructions
to processor 404 for execution. For example, the istructions
may 1nitially be carried on a magnetic disk of a remote com-
puter. The remote computer can load the mstructions nto its
dynamic memory and send the instructions over a telephone
line using a modem. A modem local to computer system 400
can recerve the data on the telephone line and use an infra-red
transmitter to convert the data to an infra-red signal. An
inira-red detector can receive the data carried 1n the infra-red
signal and appropriate circuitry can place the data on bus 402.
Bus 402 carries the data to main memory 406, from which

US 8,887,147 B2

17

processor 404 retrieves and executes the instructions. The
instructions received by main memory 406 may optionally be
stored on storage device 410 either before or after execution
by processor 404.

Computer system 400 also includes a commumnication
interface 418 coupled to bus 402. Communication interface
418 provides a two-way data communication coupling to a
network link 420 that 1s connected to a local network 422. For
example, communication interface 418 may be an integrated
services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of
telephone line. As another example, communication interface
418 may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
communication interface 418 sends and receives electrical,
clectromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 420 typically provides data communication
through one or more networks to other data devices. For
example, network link 420 may provide a connection through
local network 422 to a host computer 424 or to data equip-
ment operated by an Internet Service Provider (ISP)426. ISP
426 1n turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 428. Local network 422
and Internet 428 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 420 and
through communication interface 418, which carry the digital
data to and from computer system 400, are exemplary forms
of carrier waves transporting the information.

Computer system 400 can send messages and receive data,
including program code, through the network(s), network
link 420 and communication interface 418. In the Internet
example, a server 430 might transmit a requested code for an
application program through Internet 428, ISP 426, local
network 422 and communication interface 418.

The received code may be executed by processor 404 as 1t
1s receirved, and/or stored in storage device 410, or other
non-volatile storage for later execution. In this manner, com-
puter system 400 may obtain application code in the form of
a carrier wave.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. Thus, the sole and exclusive indicator of what 1s the
invention, and 1s mtended by the applicants to be the mven-
tion, 1s the set of claims that 1ssue from this application, 1n the
specific form in which such claims 1ssue, including any sub-
sequent correction. Any defimitions expressly set forth herein
for terms contained in such claims shall govern the meaning
of such terms as used in the claims. Hence, no limitation,
clement, property, feature, advantage or attribute that 1s not
expressly recited 1in a claim should limait the scope of such
claim in any way. The specification and drawings are, accord-
ingly, to be regarded 1n an 1llustrative rather than a restrictive
sense.

What 1s claimed 1s:

1. A method comprising:

storing, at a server, base version data that describes a first
data model, wherein the first data model 1s for a first
version of a software application hosted on the server;

without upgrading soitware of the server, recerving, at the
server, incremental version data that describes changes
between the first data model for the first version of the

10

15

20

25

30

35

40

45

50

55

60

65

18

software application and a second data model for a sec-
ond version of the software application;

wherein the second data model 1s a data representation

schema for the second version of the software applica-
tion;
correlating and overlaying the incremental version data
with the base version data to form merged version data
that describes the second data model, and which com-
prises at least one element that 1s present in the incre-
mental version data and not present in the base version
data; and
the server using the merged version data, without upgrad-
ing the server to the second version of the software
application, to communicate with the second data model
associated with the second version of the software appli-
cation hosted on a network element to provision a new
service on the network element, and using the base ver-
sion data to communicate with the first data model to
provision services on another network element;

wherein the method 1s performed by one or more comput-
ing devices.
2. The method of claim 1, wherein the correlating and
overlaying the incremental version data with the base version
data are performed 1n response to recerving a request to per-
form an operation mmvolving the second version of the soft-
ware application on a particular network element.
3. The method of claim 1, further comprising storing, at the
server, a plurality of sets of merged version data based on
pluralities of base version data and incremental version data,
wherein each set of the plurality of sets of merged version data
corresponds to a different version of a plurality of service
applications hosted by a plurality of network elements.
4. The method of claim 1, wherein the incremental version
data contains information for use by a client to dynamically
generate a GUI for use in configuring how to provision the
new service on the network element using the second version
of the software application.
5. The method of claim 1, wherein the incremental version
data contains information for use by a client to disable an
input capability of one or more data fields of a GUI for use 1n
configuring how to provision the new service on the network
clement using the second version of the software application.
6. The method of claim 1, further comprising providing a
client interface through which a user may 1nitiate provision-
ing the new service on the network element without an
upgrade.
7. A method comprising:
storing, at a server, base version data that describes a first
data model, wherein the first data model 1s for a version
of a first soitware application hosted on the server;

storing, at the server, incremental version data that
describes changes between the first data model and a
second data model for a second version of the first soft-
ware application;
correlating and overlaying the incremental version data
with the base version data to form merged version data
that describes the second data model and which com-
prises at least one element that 1s present 1n the incre-
mental version data, but not in the base version data;
storing, at the server, merged version data;
collecting, at the server, second base version data about a
service application hosted by a second network element;

based on the second base version data, determining that the
second network element 1s executing an unknown soft-
ware application version of the service application for
which the server 1s not storing incremental version data,
or merged version data;

US 8,887,147 B2

19

in response to determining that the second network ele-
ment 1S executing the unknown software application
version of the service application, without upgrading the
server to the unknown software application version of
the service application, requesting and recerving from an
incremental version source, second incremental version
data and not the unknown software application version
of the service application,

wherein the second incremental version data describes

changes between a base data model for base data and a
third data model associated with the unknown software
application version, and 1s used, at least 1n part, to com-
municate with the second network element, hosting the
unknown software application version of the service
application, to provision the second network element;
wherein the third data model 1s a data representation
schema for the unknown software application version.

8. The method of claim 7, further comprising;

receiving, at the server, the second incremental version

data that describes changes between the unknown sofit-
ware application version and the third data model for a
subsequent version of the unknown software application
version;

correlating and overlaying the second incremental version

data with the second base version data to form second
merged version data that describes the third data model,
and using the second merged version data to communi-
cate the third data model associated with the subsequent
version of the unknown software application to provi-
sion a new service on the second network element with-
out an upgrade.

9. The method of claim 7, further comprising;

based on the second base version data, determining that the

second network element 1s hosting a software applica-
tion version for which the server is storing correspond-
ing mcremental version data that describes a third data
model for a subsequent version of the software applica-
tion version;

correlating and overlaying the corresponding incremental

version data with the second base version data to form
second merged version data that describes the third data
model, and using the second merged version data to
communicate with the software application version to
provision a new service on the second network element
without an upgrade.

10. The method of claim 7, further comprising maintain-
ing, at the server, a list of network elements managed by the
server, the list including the first network element and the
second network element, and wherein the step of collecting
information about all versions of applications executed by the
second network element 1s performed 1n response to adding
the second network element to the list of network elements.

11. The method of claim 7, further comprising storing, at
the server, a plurality of sets of merged version data based on
pluralities of base version data and incremental version data,
wherein each set of the plurality of sets of merged version data
corresponds to a different version of a plurality of service
applications hosted by a plurality of network elements.

12. The method of claim 7, wherein the incremental ver-
s1on data contains information for use by a client to disable an
input capability of one or more data fields of a GUI for use 1n
configuring how to provision the new service on the network
clement using the second version of the soitware application.

13. A non-transitory computer-readable volatile or non-
volatile storage medium storing one or more sequences of
instructions which, when executed by one or more proces-
sors, cause the one or more processors to perform:

10

15

20

25

30

35

40

45

50

55

60

65

20

storing, at a server, base version data that describes a first
data model, wherein the first data model 1s for a first
version of a software application hosted on the server;

without upgrading software of the server, receving, at the
server, incremental version data that describes changes
between the first data model for the first version of the
soltware application and a second data model for a sec-
ond version of the software application;

wherein the second data model 1s a data representation

schema for the second version of the software applica-
tion;

correlating and overlaying the incremental version data

with the base version data to form merged version data
that describes the second data model, and which com-
prises at least one element that 1s present in the incre-
mental version data and not 1in the base version data; and
the server using the merged version data without upgrading
the server to the second version of the software applica-
tion to communicate with the second data model asso-
ciated with the second version of the software applica-
tion hosted on a network element to provision a new
service on the network element, and using the base ver-
sion data to communicate with the first data model to
provision services on another network element.
14. The non-transitory computer-readable storage medium
of claim 13, wherein the instructions that cause correlating
and overlaying the incremental version data with the base
version data are performed 1n response to receiving a request
to perform an operation involving the second version of the
soltware application on a particular network element.
15. The non-transitory computer-readable storage medium
of claim 13, further comprising instructions which, when
executed, cause storing, at the server, a plurality of sets of
merged version data based on pluralities of base version data
and incremental version data, wherein each set of the plurality
of sets of merged version data corresponds to a different
version of a plurality of service applications hosted by a
plurality of network elements.
16. A non-transitory computer-readable volatile or non-
volatile storage medium storing one or more sequences of
instructions which, when executed by one or more proces-
sors, cause the one or more processors to perform:
storing, at a server, base version data that describes a first
data model, wherein the first data model 1s for a version
of a first software application hosted on the server;
correlating and overlaying the incremental version data
with the base version data to form merged version data
that describes the second data model and which com-
prises at least one element that 1s present in the incre-
mental version data and not in the base version data:
storing, at the server, merged version data;
storing, at the server, merged version data that describes the
second data model by correlating and overlaying the
incremental version data with the base version data;

collecting, at the server, second base version data about
applications hosted by a second network element;

based on the second base version data, determining that the
second network element 1s executing an unknown soft-
ware application version of the service application for
which the server 1s not storing incremental version data,
or merged version data;

in response to determining that the second network ele-

ment 1s executing the unknown software application
version of the service application, withoutupgrading the
server to the unknown software application version of
the service application, requesting and recerving from an

US 8,887,147 B2

21

incremental version source, second incremental version
data and not the unknown software application,
wherein the second incremental version data describes
changes between a base data model for base data and a
third data model associated with the unknown software
application version, and 1s used, at least in part, to com-
municate with the second network element, hosting the
unknown software application version of the service
application, to provision the second network element;

wherein the third data model 1s a data representation 10

schema of the unknown software application version.
17. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions which when
executed cause:
receiving, at the server, the second incremental version
data that describes changes between the base data model
for the base data and the third data model for the
unknown software application version;
correlating and overlaying the second incremental version

data with the second base version data to form second »¢

merged version data that describes the third data model,
and using the second merged version data to communi-
cate with the subsequent version of the unknown soft-
ware application to provision a new service on the sec-
ond network element without an upgrade.

18. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions which, when
executed, cause:

based on the second base version data, determining that the

second network element 1s hosting a software applica-

15

25

22

tion version for which the server 1s storing correspond-
ing mcremental version data that describes a third data
model for a subsequent version of the software applica-
tion version;

correlating and overlaying the corresponding incremental

version data with the second base version data to form
second merged version data that describes the third data
model, and using the second merged version data to
communicate with the software application version to
provision a new service on the second network element
without an upgrade.

19. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions which when
executed cause maintaining, at the server, a list of network
clements managed by the server, the list including the first
network element and the second network element, and
wherein mstructions which when executed cause collecting
information about all versions of applications executed by the
second network element are performed 1n response to adding,
the second network element to the list of network elements.

20. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions which when
executed cause storing, at the server, a plurality of sets of
merged version data based on pluralities of base version data
and incremental version data, wherein each set of the plurality
of sets of merged version data corresponds to a different
version of a plurality of service applications hosted by a
plurality of network elements.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

