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Compare data bits to error vectors to determine which of

the data bits correspond to memory cells having stuck-at

faults or unstable values. 501

Locate the longest sequence of error vectors that can be
accommodated by applying repetitions of a selected one

of the base vectors, starting from the current bit position. | 502

Determine the largest number of repetitions of the base
vector that can be applied to the data bits to generate
encoded data bits that accommodate the sequence of

error vectors located in operation 502. 203

Apply the base vector to the data bits beginning at a
starting bit that is as close to the current bit position as
possible to generate a set of encoded data bits. 504

Apply the base vector to subsequent data bits by the
number of repetitions determined in operation 503,
ending prior to where the base vector can no longer be
applied to accommodate the error vectors, to generate | 5p5
additional encoded data bits.

Yes More error

vectors?
500

No
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TECHNIQUES FOR STORING DATA IN
STUCK MEMORY CELLS

CROSS REFERENCE TO RELATED
APPLICATION

This patent application claims the benefit of U.S. provi-
sional patent application 61/629,385, filed Nov. 16, 2011,
which 1s incorporated by reference herein in 1ts entirety.

FIELD OF THE DISCLOSUR.

(L]

The present disclosure relates to data storage systems, and
more particularly, to techniques for storing data 1n memory
cells where some of the memory cells are stuck at one of two
possible stable states.

BACKGROUND

Many data communication systems use error correction
encoders and decoders to detect and correct errors in data.
Storage systems are frequently modeled as a communication
system with a delay, where data 1s transmitted during a write
operation and data 1s received at a read operation. In a storage
system, random errors can be corrected up to a rate of about
1x10™* with an acceptable overhead. To protect against an
error rate of about 1x10™*, an error correction encoder may
generate encoded bits having about 10% more bits than 1ts
input bits.

Phase change memory (PCM) 1s a class of non-volatile
semiconductor memory. PCM devices have many advantages
over traditional non-volatile flash memory. However, PCM
devices may generate a large number of errors that are
induced by writing cycle degradation. For example, a PCM
device may generate errors at a rate of 1x107~ or greater if
cycled to millions or tens of millions of cycles.

At the limits of endurance, the error rate 1n non-volatile
memory devices 1s dominated by writing cycle degradation,
not by random errors. Errors that are dominated by degrada-
tion 1nclude stuck-at faults and unstable bits. Each of these
two types of errors have different statistics than the random
errors that are commonly assumed 1n data communication
systems and corresponding error correcting approaches.

BRIEF SUMMARY

According to some embodiments, a data storage system
includes a memory circuit and a control circuit. The control
circuit 1s operable to receive data bits provided for storage 1n
memory cells of the memory circuit. The control circuit 1s
operable to compare each of the data bits provided for storage
in a corresponding one of the memory cells having a stuck-at
fault to a value of the stuck-at fault, and to invert each of the
data bits having a different value than the value of the stuck-at
fault of the corresponding one of the memory cells to generate
encoded data bits. The control circuit 1s operable to generate
redundant bits that indicate the encoded data bits to mnvert to
regenerate the data bits.

Various objects, features, and advantages of the present
invention will become apparent upon consideration of the
tollowing detailed description and the accompanying draw-
ngs.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates an example of a data storage system that
can 1include embodiments of the present invention.

FI1G. 2 1s a flow chart that 1llustrates a process for encoding
data to match stuck-at faults 1n corresponding memory cells,
according to an embodiment of the present invention.

FIG. 3 15 a flow chart that 1llustrates a process for generat-
ing encoded data bits for storage 1n memory cells of amemory
circuit having stuck-at faults, according to an embodiment of
the present invention.

FIG. 4 illustrates an example of how the encoded data bits
and the stream code generated by the process of FIG. 3 can be
stored 1n different memory circuits, according to an embodi-
ment of the present invention.

FIG. § illustrates examples of operations that are per-
formed by an algorithm to encode data bits to generate
encoded data bits, according to an embodiment of the present
invention.

FIGS. 6 A-6D 1llustrate how exemplary base vectors can be
applied to an exemplary set of data bits to generate encoded
data bits that accommodate error vectors indicating stuck-at
faults and unstable values of memory cells, according to an
embodiment of the present invention.

FIG. 7A 1llustrates an exemplary set of encoded data bits
having segments, according to an embodiment of the present
ivention.

FIG. 7B illustrates an example of a stream code generated
by an encoder that generates the encoded data bits of FI1G. 7A,
according to an embodiment of the present invention.

FIG. 7C 1llustrates an alternative example of a stream code
generated by an encoder that generates the encoded data bits
of FI1G. 7A, according to an embodiment of the present inven-
tion.

FIG. 8 A 1llustrates another exemplary set of encoded data
bits having segments, according to an embodiment of the
present 1nvention.

FIG. 8B 1llustrates an example of a stream code generated
by an encoder that generates the encoded data bits of FIG. 8 A,
according to an embodiment of the present invention.

FIG. 9A 1llustrates an example of encoded data bits having,
discontinuous segments that are generated using an exem-
plary constraint, according to an embodiment of the present
invention.

FIG. 9B 1illustrates additional details of the discontinuous
segments of the encoded data bits shown i FIG. 9A.

FIG. 9C 1llustrates an example of a stream code generated
by an encoder that generates the encoded data bits of FIG. 9A,
according to an embodiment of the present invention.

FIG. 9D illustrates another example of a stream code gen-
erated by an encoder that generates the encoded data bits of
FIG. 9A, according to an embodiment of the present inven-
tion.

FIG. 10A 1illustrates another example of a process for
encoding data bits to generate encoded data bits and redun-
dant bits for accommodating memory cells having stuck-at
faults, according to an embodiment of the present invention.

FIG. 10B 1llustrates an example of a process for decoding,
the encoded data bits generated 1n the process of FIG. 10A to
regenerate the data bits using the redundant bits, according to
an embodiment of the present invention.

FIG. 11A illustrates an example of data bits that are pro-
vided for storage 1n memory cells having stuck-at faults,
according to an embodiment of the present invention.

FIG. 11B 1llustrates an exemplary application of an encod-
ing technique that encodes data bits by only changing the data
bits having digital values that do not match the values of the



US 8,887,025 B2

3

stuck-at faults of the corresponding memory cells, according
to an embodiment of the present invention.

FIG. 11C 1llustrates an exemplary application of an encod-
ing technique that encodes data bits by changing data bits 1n
regions, according to an embodiment of the present invention.

FIG. 11D illustrates another exemplary application of an
encoding technique that encodes data bits by changing data
bits 1n regions, according to an embodiment of the present
ivention.

FIGS. 12A-12C illustrate examples of how a binary tree
algorithm can be used to encode data bits provided for storage
in memory cells having stuck-at faults to generate encoded
data bits and index bits, according to embodiments of the
present invention.

FI1G. 13 illustrates a graphical example of a binary tree that
1s subdivided into binary sub-trees, according to an embodi-
ment of the present invention.

FIGS. 14A-14C 1llustrate an exemplary application of an
encoding techmque that encodes data bits by dividing the data
bits into two halves and exchanging data bits between the two
halves to achieve the same number of stuck-at faults in each
half, according to an embodiment of the present invention.

FIG. 15 illustrates graphically how a block of data bits can
be continuously subdivided into equal subdivisions of data
bits, until each of the smallest subdivisions has exactly one
stuck-at fault, according to an embodiment of the present
invention.

DETAILED DESCRIPTION

According to some embodiments described herein, an
encoder analyzes input data bits to generate encoded data bits
and redundant bits. The encoded data bits generated by the
encoder are stored in a memory circuit. The encoded data bits
accommodate memory cells 1n the memory circuit that have
stuck-at faults. As an example, the memory circuit may be a
phase change memory circuit (e.g., that uses chalcogenide
glass) or another type of memory circuit that has stuck-at
faults.

A memory cell having a stuck-at fault 1s a memory cell that
can only store a single digital value. A memory cell having a
stuck-at fault value of 1 can only store a logic high value, and
a memory cell having a stuck-at fault value o1 O can only store
a logic low value. Thus, only a logic high value can be read
from a memory cell having a stuck-at fault value of 1 (1.e.,
stuck-at 1), and only a logic low value can be read from a
memory cell having a stuck-at fault value of 0 (1.e., stuck-at
0). Memory cells having stuck-at faults generally have stuck-
at fault values that are stable over time.

The techniques described herein are directly applicable to
single-level and multi-level memory cells. Single-level
memory cells can only store one bit per memory cell. Multi-
level memory cells can store more than one bit per memory
cell. For example, if a memory cell stores 2 bits, and 1t
becomes stuck, then the values of those two bits are fixed, and
they can be treated as two separate stuck-at fault locations.
Because the location of one of the stuck-at faults 1s known, the
location of the other stuck-at fault 1s also known. As a result,
for the same stuck-at fault error rate, less redundant bits can
be generated for multi-level memory cells than the redundant
bits that are generated for single-level memory cells. The
number of redundant bits may be smaller, for example, by a
factor equal to the number of bits per memory cell.

If some of the memory cells in the memory circuit have
stuck-at faults, the values of the stuck-at faults and the
addresses of the memory cells having the stuck-at faults are
determined before the encoding process and are provided to
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the encoder. The encoder encodes data bits to generate
encoded data bits and redundant bits using the values and
addresses of the stuck-at faults. The redundant bits may be
stored 1n the same memory circuit as the encoded data bits or
in a different memory circuit.

Subsequently, the encoded data bits and the redundant bits
are read from memory and provided to a decoder. The decoder
decodes the encoded data bits using the redundant bits to
regenerate the data bits. The data bits regenerated by the
decoder do not contain errors that are caused by the known
stuck-at faults in the memory circuat.

FIG. 1 illustrates an example of a data storage system 100
that can include embodiments of the present invention. Sys-
tem 100 includes a control circuit 101, a memory circuit 102,
and a memory circuit 103. Control circuit 101 may be, for
example, a memory controller circuit, a processor circuit, or
any other type of control circuit that encodes and/or decodes
data for storage in memory circuits 102-103. Control circuit
101 provides encoded data to and receives encoded data from
memory circuits 102-103. Control circuit 101, memory cir-
cuit 102, and memory circuit 103 may be 1n the same 1nte-
grated circuit or 1n separate integrated circuits. Thus, system
100 may be a single integrated circuit device that includes
circuits 101-103. Alternatively, system 100 may include three
separate integrated circuit devices 101-103.

FIG. 2 1s a flow chart that 1llustrates a process for encoding,
data to match any stuck-at faults in corresponding memory
cells, according to an embodiment of the present invention.
Initially, data bits are provided for storage in memory cells of
a memory circuit. The memory circuit may be, for example,
memory circuit 102 or 103. The operations of FIG. 2 may, for
example, be performed by control circuit 101.

In operation 201, the data bits are written to the memory
cells of the memory circuit. In operation 202, the data bits are
read from the memory cells of the memory circuit. In opera-
tion 203, the data bits read from the memory cells of the
memory circuit are compared to the original data bits.

The data bits read from the memory cells may, for example,
be compared to an error-ifree copy of the original data bits
stored 1n another memory circuit. If 1t 1s determined at opera-
tion 203 that all of the data bits read from the memory cells of
the memory circuit match the original data bits, then the
process terminates at operation 208.

If any of the data bits read from the memory cells do not
match corresponding ones of the original data bits, then these
data bits may have been stored 1n memory cells with errors.
For example, some of the data bits may have been stored 1n
memory cells having stuck-at faults with digital values that
are different than the digital values of the corresponding ones
of these data bits. If it 1s determined at operation 203 that any
of the data bits read from the memory cells of the memory
circuit do not match corresponding ones of the original data
bits, then the digital value of each of the data bits 1s inverted
in operation 204. The inverted data bits are then written to the
same memory cells of the memory circuit 1n operation 205.
The1nverted data bits are subsequently read from the memory
cells of the memory circuit 1n operation 206.

In operation 207, the inverted data bits read from the
memory cells of the memory circuit are iverted again and
compared to the original data bits (e.g., an error-free copy of
the original data bits stored 1n another memory circuit). Alter-
natively, the original data bits are inverted and then compared
to the mverted data bits read from the memory cells of the
memory circuit. If it 1s determined at operation 207 (1n con-
junction with operation 203) that all of the data bits read from
the memory cells of the memory circuit match the original
data bits, or 1t all of the inverted data bits read from the
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memory cells match the inverted original data bits, then the
process terminates at operation 208.

If any of the data bits read from the memory cells do not
match a corresponding one of the original data bits, or it any
of the inverted data bits read from the memory cells do not
match a corresponding one of the inverted original data bits,
then that data bit may have been stored in a memory cell with
an error. For example, some of the data bits may have been
stored 1n memory cells with stuck-at faults having digital
values that are different than the inverted digital values of the
corresponding ones of these data bits. As another example,
some of the data bits may have been stored 1n memory cells
having unstable values.

If 1t 1s determined at operations 203 and 207 that any of the
data bits read from the memory cells do not match a corre-
sponding one of the original data bits, or 1f any of the inverted
data bits read from the memory cells do not match a corre-
sponding one of the inverted original data bits, an algorithm 1s
performed 1n operation 209 to find a compact representation
of the error pattern represented by the stuck-at faults and
unstable values of the memory cells of the memory circuit.
The algorithm encodes the data bits to generate encoded data
bits and redundant bits. An example of such an algorithm 1s
discussed in further detail below with respect to FIG. 5.

In operation 210, the encoded data bits are written to the
memory cells of the memory circuit. In operation 211, the
encoded data bits are subsequently read from the memory
cells of the memory circuit. In operation 212, the encoded
data bits read from the memory cells of the memory circuit are
decoded to generate decoded data bits, and the decoded data
bits are compared to the original data bits (e.g., an error-free
copy of the original data bits stored in another memory cir-
cuit). The decoded data bits that do not match corresponding
ones of the original data bits are in error. If the number of the
decoded data bits 1n error exceeds a threshold at operation
213, the decoded data bits are invalidated in operation 214. If
the memory addresses that were targeted for the data bits are
not suitable for those data bits, those memory addresses are
marked so that they are never used again. For example, the
memory addresses may have too many memory cells having,
unstable values. If the number of the decoded data bits 1n error
does not exceed the threshold at operation 213, the decoded
data bits are valid, and the process terminates at operation
208.

In some embodiments, repeated read and write operations
can be performed to determine which memory cells present
errors that are not consistent with stuck-at fault behavior.
Such memory cells are 1dentified as unstable memory cells.
The encoder prevents any data bits or encoded data bits from
being stored 1n the memory cells 1dentified as unstable. As an
example, a bit can be written to a memory cell and then read
from the memory cell. If the bit read from the memory cell 1s
in error, the same bit 1s mverted, written to the memory cell
and then read from the memory cell. I the inverted bit read
from the memory cell 1s in error, then the memory cell may be
identified as an unstable memory cell. Sometimes random
noise 1n the reading circuitry may cause a memory cell to be
mischaracterized as unstable using this technique. In some
embodiments, an error correction code (ECC) wrap can be
used to 1dentily memory cells that may have been mischar-
acterized as unstable.

FI1G. 3 1s a flow chart that 1llustrates a process for generat-
ing encoded data bits for storage in memory cells of a memory
circuit having stuck-at faults, according to an embodiment of
the present invention. The process of FIG. 3 may, for
example, be performed by control circuit 101.
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FIG. 3 illustrates a stuck vector 301 and data bits 302. The
data bits 302 are provided for storage 1n memory cells of a
memory circuit. One or more of the memory cells of the
memory circuit have stuck-at faults. The digital values of the
stuck-at faults and the addresses of the stuck-at faults of the
memory cells are indicated by stuck vector 301. In operation
303, a data change vector 304 1s generated using the stuck
vector 301 and the data bits 302. The data change vector 304
indicates which of the data bits 302 are to be inverted prior to
storage 1in the memory cells to generate encoded data bats that
match the digital values of the stuck-at faults of the corre-
sponding memory cells.

In operation 305, the data change vector 304 1s applied to
data bits 302 to generate encoded data bits 306 and stream
code 307. The encoded data bits 306 are the result of applying
the data change vector 304 to the data bits 302. If data change
vector 304 indicates that the digital values of one or more of
the stuck-at faults do not match the digital values of the
corresponding data bits, the digital values of those data bits
are mverted during operation 305 so that each of the encoded
data bits stored 1n a memory cell having a stuck-at fault has
the same digital value as that stuck-at fault.

The stream code 307 includes redundant bits that are
usable by a decoder to decode encoded data bits 306 to regen-
crate data bits 302. In operation 308, the encoded data bits 306
and the stream code 307 are stored in memory. The encoded
data bits 306 are stored in the corresponding memory cells.
Subsequently, the encoded data bits 306 are read from the
corresponding memory cells, and then decoded using stream
code 307 to regenerate the data bits 302.

FIG. 4 illustrates an example of how the encoded data bits
and the stream code generated by the process of FIG. 3 can be
stored 1n different memory circuits, according to an embodi-
ment of the present invention. In the embodiment of FIG. 4,
the encoded data bits 306 are stored in a phase change
memory circuit 401, and the stream code 307 1s stored 1n a
dynamic random access memory (DRAM) circuit 402. Some
of the memory cells 1n the phase change memory circuit 401
may have stuck-at faults, as described above.

Errors may also occur in the stream code 307 when 1t 1s
written to and subsequently read from DRAM circuit 402.
After the stream code 307 1s read from DRAM circuit 402
prior to the decoding process, any errors 1n the stream code
307 are corrected using, for example, an error detection and
correction encoding technique. The stream code that 1s pro-
vided to the decoder ideally 1s 1dentical to the stream code 307
generated during operation 305. If the stream code 307 1s
written to phase change memory cells, error correcting
schemes can be used to make sure the stream code 307 1s read
without errors. Because the stream code 307 1s usually much
shorter 1n length than the encoded data bits it refers to, the
stream code 307 allows for strong error correcting approaches
to be used to protect the stream code 307 without significantly
increasing the overall amount of redundant bits.

FIG. § illustrates examples of operations that are per-
formed by an algornithm to encode data bits to generate
encoded data bits, according to an embodiment of the present
invention. The algorithm may, for example, be performed by
an encoder 1n control circuit 101. The algorithm encodes data
bits to generate encoded data bits that are compatible with
stuck-at faults in corresponding memory cells of a memory
circuit where the encoded data bits will be stored. The algo-
rithm also generates a stream code. A decoder uses the stream
code to decode the encoded data bits to regenerate the original
data bits.

An example of such an algorithm described with respect to
FIG. § applies base vectors to the data bits to generate the
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encoded data bits. If a subset of the encoded data bits are to be
stored in memory cells having stuck-at faults, the base vectors
cause the subset of the encoded data bits to have the same
digital values as their corresponding stuck-at faults. The base
vectors may, for example, invert some of the data bits and not
invert the remaining data bits to generate the encoded data
bits.

If one of the data bits provided for storage 1n a memory cell
having a stuck-at fault has the same digital value as that
stuck-at fault, then the base vector applied to that data bit does
not invert that data bit when generating a corresponding,
encoded data bit. If one of the data bits provided for storage 1in
a memory cell having a stuck-at fault has a different digital
value than that stuck-at fault, then the base vector applied to
that data bit inverts that data bit when generating a corre-
sponding encoded data bit. The base vectors may invert or not
ivert data bits that are provided for storage 1n memory cells
not having stuck-at faults when generating the corresponding,
encoded data bits. The algorithm may also modify the data
bits to generate a stream code that accommodates memory
cells in the memory circuit having unstable values. A memory
cell having an unstable value cannot reliably store either
digital value 1 or 0. According to some of the embodiments
described herein, the addresses of unstable memory cells are
known at the time control circuit 101 encodes the data bits to
be written to memory. The addresses of the unstable memory
cells are used to generate the encoded data bits as described
herein.

Initially, the algorithm receives data bits that are provided
for storage i memory cells of a memory circuit (e.g.,
memory circuit 102 or 103). Prior to operation 501, error
vectors are generated that indicate the digital values and
addresses of any stuck-at faults (e.g., stuck vectors 301) 1n the
memory cells. The error vectors also indicate the addresses of
any of the memory cells that have unstable values. The error
vectors are provided to the algorithm. In operation 501, the
algorithm compares the data bits to the error vectors to deter-
mine which of the data bits correspond to memory cells
having stuck-at faults or unstable values.

In operation 502, the algorithm Ilocates the longest
sequence of error vectors that can be accommodated by
applying repetitions of a selected one of the base vectors,
starting from the current bit position. A base vector accom-
modates an error vector if the base vector can be applied to a
subset of the data bits to generate encoded data bits that can be
stored 1n the corresponding memory cells having that error
vector without being corrupted by that error vector.

In operation 503, the algorithm determines the largest
number of repetitions of the base vector that can be applied to
the data bits to generate encoded data bits that accommodate
the sequence of error vectors located 1n operation 502. The
algorithm generates a stream code that indicates the base
vector selected 1n operation 502 and the number of repetitions
determined 1n operation 503. The stream code may be stored
in the same memory circuit as the encoded data bits or 1n a
different memory circuit as described above with respect to
FIG. 4.

In operation 504, the algorithm applies the selected base
vector to the data bits beginning at a starting bit that 1s as close
to the current bit position as possible to generate a first set of
encoded data bits. In operation 505, the algorithm applies the
selected base vector to subsequent data bits by the number of
repetitions determined 1n operation 503, ending prior to
where the base vector can no longer be applied to accommo-
date the error vectors, to generate additional encoded data
bits. In operations 504-503, the algorithm generates encoded
data bits that accommodate the sequence of error vectors
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located 1n operation 502 by applying the base vector selected
in operation 502 to the data bats.

In decision operation 506, the algorithm determines 1f there
are any more error vectors in the memory cells that have not
been accommodated by previous applications of base vectors
to the data bits to generate encoded data bits. It all of the error
vectors have been accommodated at decision operation 506,
the algorithm terminates at operation 507. If there are addi-
tional error vectors that have not been accommodated at deci-
sion operation 506, the algorithm repeats operations 502-3506.

FIGS. 6 A-6D 1llustrate how exemplary base vectors can be
applied to an exemplary set of data bits to generate encoded
data bits that accommodate error vectors indicating stuck-at
faults and unstable values of memory cells, according to an
embodiment of the present invention. FIG. 6 A 1llustrates an
exemplary set of 25 data bits 1n bit positions 0-24. The 25 data
bits shown 1n FIG. 6 A are provided to an encoder for storage
in 235 corresponding memory cells of a memory circuit. Each
of the data bits 1s provided for storage 1 a corresponding
memory cell having the same bit position as that data bit. For
example, the leftmost data bit shown in FIG. 6 A at bit position
0 1s provided for storage in the corresponding leftmost
memory cell shown 1n FIG. 6A at bit position 0.

Some of the memory cells shown 1n FIG. 6 A have stuck-at
faults. The memory cells having stuck-at 0 faults are 1denti-
fied by S0 1n FIG. 6 A. The memory cells at bit positions 2, 4,
and 13 have stuck-at O faults. The memory cells having stuck-
at 1 faults are 1dentified by S1 1n FIG. 6 A. The memory cells
at bit positions 18 and 21 have stuck-at 1 faults. The memory
cell at bit position 10 has an unstable value.

FIG. 6B illustrates examples of modifications that an
encoder makes to data bits so that the encoded data bits
accommodate errors 1 memory cells, according to an
embodiment of the present invention. The encoder may, for
example, perform the algorithm described above with respect
to FIG. 5. In the example of FI1G. 6B, the encoder uses the data
bits and the errors in the memory cells that are shown 1n FIG.
6A.

In the example of FI1G. 6B, the memory cells corresponding,
to bit positions 2, 4, 10, 13, 18, and 21 have errors, as
described above with respect to FIG. 6A.

The data bit 1n bit position 4 has a digital value of 1, and the
memory cell at bit position 4 has a stuck-at O fault. The data b1t
in bit position 13 has a digital value of 1, and the memory cell
at bit position 13 has a stuck-at 0 fault. The data bit 1n bat
position 21 has a digital value of 0, and the memory cell at bit
position 21 has a stuck-at 1 fault. Thus, the data bits 1n bit
positions 4, 13, and 21 have different digital values than the
stuck-at faults of their corresponding memory cells. The data
bits 1n bit positions 4, 13, and 21 are inverted before they are
stored 1n the memory cells at bit positions 4, 13, and 21,
respectively. The encoder mverts the digital value of each of
the data bits 1n bit positions 4, 13, and 21 to generate encoded
data bits 1n bit positions 4, 13, and 21, respectively, as shown
by the I designations 1n these bit positions 1n FIG. 6B.

The data bit 1n bit position 2 has a digital value of 0, and the
memory cell at bit position 2 has a stuck-at O fault. The data b1t
in bit position 18 has a digital value of 1, and the memory cell
at bit position 18 has a stuck-at 1 fault. Thus, the data bits 1n
bit positions 2 and 18 have the same digital values as the
stuck-at faults of their corresponding memory cells. The data
bits 1n bit positions 2 and 18 can be stored in the memory cells
at bit positions 2 and 18, respectively, without inverting their
digital values. Theretfore, the encoder maintains the digital
value of each of the data bits 1n bit positions 2 and 18 constant
when generating encoded data bits at bit positions 2 and 18,
respectively, as shown by the M designations 1in these bit
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positions 1n FIG. 6B. The memory cell at bit position 10 1s
unstable and cannot store any data as indicated by the U
designation 1n FIG. 6B.

FIG. 6C 1llustrates four exemplary base vectors that can be
applied to data bits to generate encoded data bits, according to
an embodiment of the present invention. A base vector may
have any number of values. In the example of FIG. 6C, each
ol the four base vectors 1-4 has two values. Each of the two
values 1n each of the base vectors 1-4 1s etther 1 or —1. In the
four base vectors 1-4 shown 1n FIG. 6C, a value of -1 indi-
cates to mvert a data bit during encoding, and a value of 1
indicates not to invert the data bit during encoding. Thus, 1
indicates to maintain the digital value of the data bit constant
during encoding.

According to additional embodiments, other base vector
sets can be applied to data bits to generate encoded data bits
that accommodate stuck-at faults. For example, a setof 8 base
vectors with each base vector having three bits can be used to
generate the encoded data bits. Larger base vectors can
encode more data bits with less applications of the base vec-
tors. However, larger base vectors generate more complexity
when the encoder and decoder process each base vector. As
another example, a base vector set can be formed by only 2
base vectors, such that each of the 2 base vectors has one bit
represented by a value of 1 or -1.

Each application of each base vector in FI1G. 6C affects two
data bits. If base vector 1 1s applied to two data bits, neither of
the two data bits are inverted to generate two encoded data
bits. If base vector 2 1s applied to first and second data bits, the
first data bit 1s not inverted to generate a first encoded data bat,
and the second data bit 1s mverted to generate a second
encoded data bit. If base vector 3 1s applied to first and second
data bits, the first data bit 1s mverted to generate a {first
encoded data bit, and the second data bit 1s not inverted to
generate a second encoded data bit. If base vector 4 1s applied
to two data bits, both of the two data bits are inverted to
generate two encoded data bits.

FIG. 6D illustrates examples of base vectors that an
encoder applies to an exemplary set of data bits to generate
encoded data bits that accommodate an exemplary set of
stuck-at faults in memory cells, according to an embodiment
of the present invention. The encoder may, for example, per-
form the algorithm described above with respect to FIG. 5. In
the example of FIG. 6D, the encoder uses the data bits and the
errors 1n the memory cells that are shown 1n FIG. 6A, the
modifications that are shown 1in FIG. 6B, and the base vectors
of FIG. 6C.

In the example of FIG. 6D, bit position 0 is the starting bit.
As shown 1n FIG. 6D, the encoder applies base vector1 (1, 1)
to the four data bits 1n bit positions 0-3. Each apphcatlon of
cach of the base vectors shown 1n FIG. 6C affects two data
bits. Theretfore, base vector 1 1s applied twice, corresponding,
to one repetition of base vector 1, 1n the example of FIG. 6D,
so that base vector 1 affects each of the four data bits 1n bat
positions 0-3. The encoder maintains the digital value of each
of the data bits 1n bit positions 0-3 constant when generating
the encoded data bits at bit positions 0-3. Thus, the encoded
data bit 1n bit position 2 matches the digital value of the
stuck-at O fault 1n the memory cell at bit position 2.

As shown 1 FIG. 6D, the encoder applies base vector 4
(-1, —1) to the si1x data bits in bit positions 4-9. Base vector 4
1s applied three times, corresponding to two repetitions of
base vector 4, 1n the example of FIG. 6D, so that base vector
4 affects each of the six data bits 1n bit positions 4-9. The
encoder mverts the digital value of each of the data bits 1n bit
positions 4-9 to generate the encoded data bits at bit positions
4-9. The data bit at bit position 4 1s inverted so that the
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encoded data bit at bit position 4 matches the digital value of
the stuck-at O fault in the memory cell at bit position 4.

The encoder prevents any of the data bits from being stored
in the memory cells that have unstable values. The memory
cell at bit position 10 has an unstable value. Therefore, the
encoder prevents a data bit or an encoded data bit from being
stored 1n the memory cell at bit position 10.

As shown 1n FIG. 6D, the encoder applies base vector 4
(-1, —1) to the s1x data bits in bit positions 11-16. Base vector
4 1s applied three times, corresponding to two repetitions of
base vector 4, 1n the example of FIG. 6D, so that base vector
4 affects each of the six data bits in bit positions 11-16. The
encoder 1nverts the digital value of each of the data bits 1n bat
positions 11-16 to generate the encoded data bits at bit posi-
tions 11-16. The data bit at bit position 13 1s imnverted so that
the encoded data bit at bit position 13 matches the digital
value of the stuck-at 0 fault in the memory cell at bit position
13.

As shown 1n FIG. 6D, the encoder applies base vector 3
(-1, 1) to the eight data bits 1n bit positions 17-24. Base vector
3 15 applied four times, corresponding to three repetitions of
base vector 3, 1n the example of FIG. 6D, so that base vector
3 1s applied to each of the eight data bits 1n bit positions 17-24.
The encoder inverts the digital value of each of the data bits 1n
bit positions 17, 19, 21, and 23 to generate encoded data bits
in bit positions 17,19, 21, and 23, respectively. The data bit at
bit position 21 1s mverted so that the encoded data bit at bit
position 21 matches the digital value of the stuck-at 1 fault in
the memory cell at bit position 21. The encoder does not invert
the digital values of the data bits 1n bit positions 18, 20, 22,
and 24 to generate encoded data bits at bit positions 18, 20, 22,
and 24, respectively. The data bit at bit position 18 1s not
inverted so that the encoded data bit at bit position 18 matches
the digital value of the stuck-at 1 fault in the memory cell at bit
position 18.

FIG. 7A 1llustrates an exemplary set of encoded data bits
700 having segments, according to an embodiment of the
present invention. An encoder may generate the encoded data
bits 700 using, for example, the algorithm described above
with respect to FIG. 5.

Encoded data bits 700 include an N number of segments of
encoded data bits. N may be any positive integer greater than
0. In the example shown 1in FIG. 7A, encoded data bits 700
include segment 1, segment 2, segment 3, segment N, and
other segments of encoded data bits. The number of encoded
data bits in each of the N segments 1s indicated by the stream
code associated with encoded data bits 700, as described
below with respect to FIGS. 7TB-7C.

FIG. 7B 1illustrates an example of a stream code 710 gen-
crated by an encoder that generates the encoded data bits 700
of FI1G. 7A, according to an embodiment of the present inven-
tion. The encoder may generate the stream code 710 using, for
example, the algorithm described above with respect to FIG.
5.

Stream code 710 1includes redundant bits that are used by a
decoder to decode the encoded data bits 700 to regenerate the
original data bits. Stream code 710 includes redundant bits
that indicate the base vector selected 1n each iteration of
operation 502. Stream code 710 also includes redundant bits
that indicate the number of repetitions to apply the base vector
in each segment as determined 1n each 1teration of operation
503.

Stream code 710 1s subdivided into an N number of entries.
Each of the N entries in stream code 710 provides information
for decoding the encoded data bits in a corresponding one of
the N segments having the same number as the entry. Each of
the entries 1n stream code 710 includes a base vector and a
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number of repetitions of the base vector to be applied to
encoded data bits 1n the corresponding one of the N segments
during decoding to regenerate a corresponding subset of the
original data bits.

For example, entry 1 of stream code 710 includes a base
vector indicated by bits b1 and b2 and a number of repetitions
of the base vector indicated by bits r1-rX to be applied to the
encoded data bits 1n segment 1 during decoding to regenerate
a first subset of the original data bats. Bits r1-rX may have any
suitable number of bits. For example, bits r1-rX may have a
log,(2/E) number of bits (i.e., X=log,(2/E)). E 1s the rate (or
the approximate rate) of memory cells having stuck-at faults
that is based on the error vectors. As an example, E=1x107>,
which corresponds to a rate of 1 memory cell having a stuck-
at fault for every 100 memory cells on average.

Entry 2 of stream code 710 includes a base vector indicated
by bits bl and b2 and a number of repetitions of the base
vector mndicated by bits r1-rX to be applied to the encoded
data bits 1n segment 2 during decoding to regenerate a second
subset of the original data bits. Entry 3 of stream code 710
includes a base vector indicated by bits bl and b2 and a
number of repetitions of the base vector indicated by bits
rl-rX to be applied to the encoded data bits in segment 3
during decoding to regenerate a third subset of the original
data bits. Entry N of stream code 710 includes a base vector
indicated by bits b1 and b2 and a number of repetitions of the
base vector indicated by bits r1-rX to be applied to the
encoded data bits 1n segment N during decoding to regenerate
a last subset of the original data bats.

FI1G. 7C 1llustrates an alternative example of a stream code
720 generated by an encoder that generates the encoded data
bits 700 of FIG. 7A, according to an embodiment of the
present invention. In the embodiment of FI1G. 7C, the encoder
generates stream code 720 instead of stream code 710. The
encoder may generate stream code 720 using, for example,
the algorithm described above with respect to FIG. 5.

Stream code 720 includes redundant bits that are used by a
decoder to decode the encoded data bits 700 to regenerate the
original data bits. Stream code 720 includes redundant bits
that indicate the base vector selected in each iteration of
operation 502. Stream code 720 also includes redundant bits
that indicate the number of repetitions to apply the base vector
in each segment as determined 1n each 1teration of operation
503. Stream code 720 also includes dash bits. Each of the dash
bits indicates the number of bits that indicate the repetitions to
apply the base vector 1n each segment.

Stream code 720 1s subdivided into an N number of entries.
Each of the N entries 1n stream code 720 provides information
tor decoding the encoded data bits in a corresponding one of
the N segments having the same number as the entry. Each of
the entries in stream code 720 includes a base vector as
indicated by bits b1 and b2. Each of the entries 1n stream code
720 also includes a number of repetitions of the base vector b1
and b2 to be applied to encoded data bits in the corresponding
one of the N segments during decoding to regenerate a cor-
responding subset of the original data bits. The number of
repetitions of the base vector bl and b2 1s indicated by bits
r1-rX or bits v1-vY.

Each of the entries in stream code 720 also includes a dash
bit. The dash bit indicates the number of bits indicating the
number of repetitions of the base vector to apply 1n the cor-
responding segment of encoded data bits. In the example of
FI1G. 7C, 11 the dash bit 1s O, then a first number of bits r1-rX
indicates the number of repetitions of the base vector. If the
dash bit 1s 1, then a second number of bits v1-vY indicates the
number of repetitions of the base vector. In an embodiment,
v1-vY has a larger number of bits than r1-rX. As an example,
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bits r1-rX may have a log,(2/E) number of bits (i.e., X=log,
(2/E)), where E 1s the error rate of the memory cells, or a
rounded error rate of the memory cells, that 1s based on the
error vectors. Bits vl-vY may, for example, have a log,k
number of bits, where k 1s the number of the original data bits.
In this example, bits vl-vY have enough bits to potentially
apply repetitions of one base vector to all of the data bits.

In FIG. 7C, entry 1 of stream code 720 includes a base
vector indicated by bits b1 and b2, a dash bit that equals O, and
a number of repetitions of that base vector indicated by bits
r1-rX to be applied to the encoded data bits in segment 1
during decoding to regenerate a first subset of the original
data bits. Entry 2 of stream code 720 includes a base vector
indicated 2 bits bl and b2, a dash bit that equals 1, and a
number of repetitions of that base vector indicated by bits
vl-vY to be applied to the encoded data bits 1n segment 2
during decoding to regenerate a second subset of the original
data bits. Entry 3 of stream code 720 includes a base vector
indicated by bits bl and b2, a dash bit that equals O, and a
number of repetitions of that base vector indicated by bits
r1-rX to be applied to the encoded data bits in segment 3
during decoding to regenerate a third subset of the original
data bits. Entry N of stream code 720 includes a base vector
indicated by bits bl and b2, a dash bit that equals O, and a
number of repetitions of that base vector indicated by bits
r1-rX to be applied to the encoded data bits 1n segment N
during decoding to regenerate a last subset of the original data
bits.

FIG. 8A illustrates another exemplary set of encoded data
bits 800 having segments, according to an embodiment of the
present invention. An encoder may generate the encoded data
bits 800 using, for example, the algorithm described above
with respect to FIG. 3.

Encoded data bits 800 include an N number of segments of
encoded data bits. N may be any positive integer greater than
0. In the example shown 1n FIG. 8A, encoded data bits 800
include segment 1, segment 2, segment 3, segment N, and
other segments of encoded data bits. In the example of FIG.
8 A, one or two of encoded data bits 800 between segments 1
and 2 are provided for storage in memory cells having
unstable values, as indicated by the U designation. The num-
ber of encoded data bits 1n each segment 1s indicated by the
stream code associated with encoded data bits 800, as
described below with respect to FIG. 8B.

FIG. 8B 1llustrates an example of a stream code 810 gen-
crated by an encoder that generates the encoded data bits 800
of FIG. 8A, according to an embodiment of the present inven-
tion. The encoder may generate the stream code 810 using, for
example, the algorithm described above with respect to FIG.
5.

Stream code 810 includes redundant bits that are used by a
decoder to decode the encoded data bits 800 to regenerate the
original data bits. Stream code 810 includes redundant bits
that indicate the base vector selected in each iteration of
operation 502.

Stream code 810 also includes redundant bits that indicate
the number of repetitions to apply that base vector 1n each
segment as determined in each iteration of operation 503.
Stream code 810 also includes dash bits. The dash bits are
used as described above with respect to FIG. 7C. Stream code
810 also includes unstable bits. The unstable bits indicate
memory cells that have unstable values. A memory cell with
an unstable value cannot reliably store a digital 1 or 0.

The encoder generates one or more data sections 1n the
stream code to compensate for memory cells having unstable
values. Data bits that are provided for storage in memory cells
having unstable values are stored 1in a data section of the
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stream code instead of being stored in the memory cells
having unstable values. Each data section in a stream code
stores one or more data bits that correspond to one or more
memory cells having unstable values. Each data section
includes at least one unstable bit and one or more of the data
bits. The unstable bit 1identifies the one or more subsequent
bits 1n the stream code as data bits that are to be copied into the
decoded data bits by the decoder during the decoding process.
Copying the data bits from the stream code 1nto the decoded
data bits during decoding ensures that those data bits are free
of errors. Storing data bits corresponding to memory cells
having unstable values in the stream code 1s particularly
advantageous 1 the memory circuit has significantly less
memory cells having unstable values compared to memory
cells having stuck-at faults.

Stream code 810 1s subdivided into N entries and one data
section. Each of the N entries in stream code 810 provides
information for decoding the encoded data bits 1n a corre-
sponding one of the N segments having the same number as
the entry. Each of the entries 1n stream code 810 includes a
base vector as indicated by bits b1 and b2. Each of the entries
in stream code 810 also includes a number of repetitions of
the base vector b1 and b2 to be applied to encoded data bits in
the corresponding one of the N segments during decoding to
regenerate a corresponding subset of the original data bits.

Each of the entries 1n stream code 810 also 1includes a dash
bit. The dash bit indicates the number of bits (r1-rX or vli-vY)
indicating the number of repetitions to apply the base vector
in that segment. The number of repetitions of the base vector
b1 and b2 1s indicated by bits r1-rX or bits vl-vY, as described
above with respect to FIG. 7C.

Each of the entries and the data section 1n stream code 810
includes an unstable bit. In the example of FIG. 8B, the
unstable bit 1n each entry 1s O when none of the memory cells
where the encoded data bits 1n the corresponding segment are
to be stored have unstable values. The unstable bit in the data
section 1s 1 when a corresponding one of the memory cells has
an unstable value. In the example of FIG. 8B, i a data bit 1s
provided for storage in a memory cell having an unstable
value, the digital value of that data bit and the digital value of
the next data bit are stored 1n the stream code after an unstable
bit value of 1.

In FIG. 8B, entry 1 of stream code 810 includes an unstable
bit that equals 0, a base vector indicated by bits b1 and b2, a
dash bit that equals 0, and a number of repetitions of that base
vector mndicated by bits r1-rX to be applied to the encoded
data bits 1n segment 1 during decoding to regenerate a {first
subset of the original data bits. The data section of stream
code 810 1ncludes an unstable bit that equals 1 and two data
bits d1 and d2. Data bits d1 and d2 are copied from the data
section as decoded data bits during decoding. Entry 2 of
stream code 810 includes an unstable bit that equals 0, a base
vector indicated by bits b1 and b2, a dash bitthatequals 1, and
a number of repetitions of that base vector indicated by bits
vl-vY to be applied to the encoded data bits 1n segment 2
during decoding to regenerate a third subset of the original
data bits. Entry N of stream code 810 includes an unstable bit
equal to 0, a base vector indicated by bits b1 and b2, a dash bat
that equals 0, and a number of repetitions of that base vector
indicated by bits r1-rX to be applied to the encoded data bits
in segment N during decoding to regenerate a last subset of
the original data bits.

According to some embodiments, each base vector 1s
applied to data bits 1n discontinuous segments to generate
encoded data bits that accommodate stuck-at faults in corre-
sponding memory cells. As an example, a constraint can be
used to generate a compact set of redundant bits 1n the stream
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code that causes the discontinuous segments to have the same
length. According to this exemplary constraint, each set of
two consecutive discontinuous segments are separated by the
same number of bits, and the discontinuous segments span the
whole data set length. FIG. 9A 1llustrates an example of
encoded data bits 900 having discontinuous segments that are
generated using this exemplary constraint, according to an
embodiment of the present invention.

The encoded data bits 900 have consecutive bit positions

that are numbered O-F 1n FIG. 9A, where F 1s a non-zero
positive integer. Each of the encoded data bits 900 has the

same bit position as the data bit used to generate that encoded
data bit. In the example of FIG. 9A, the encoded data bits 900
include three sets of segments. The first set of segments
includes three discontinuous segments 1A, 1B, and 1C. The
second set of segments includes three discontinuous seg-
ments 2A, 2B, and 2C. The third set of segments includes
three discontinuous segments 3A, 3B, and 3C.

FIG. 9B 1llustrates additional details of the discontinuous
segments of the encoded data bits 900 shown 1n FIG. 9A.
Initially, an encoder applies a first base vector to the data bits
in three discontinuous segments during encoding to generate
the encoded data bits 1n three discontinuous segments 1A-1C.
The encoder generates redundant bits 1n a stream code that
indicate the number of repetitions of the first base vector
applied 1n each of the three discontinuous segments 1A-1C.
The number of encoded data bits between the first bit 1n each
of discontinuous segments 1A and 1B, as shown by arrow
901, equals the number of encoded data bits between the first
bit 1n each of discontinuous segments 1B and 1C, as shown by
arrow 902. The encoder also generates discontinuous pointer
bits 1n the stream code that indicate the number of encoded
data bits between the first bits 1n each pair of consecutive
segments 1n the set of discontinuous segments 1A-1C.

Then, the data bits that have not yet been encoded are
reorganized as a new continuous data set with consecutive bit
positions that are renumbered O-G, as shown 1 FIG. 9B,
where G 15 a non-zero positive integer that 1s less than F. The
encoder applies a second base vector to the data bits 1n three
discontinuous segments during encoding to generate the
encoded data bits 1n three discontinuous segments 2A-2C.
The encoder generates redundant bits 1n the stream code that
indicate the number of repetitions of the second base vector
applied in each of the three discontinuous segments 2A-2C.
The number of encoded data bits between the first bit 1n each
of discontinuous segments 2A and 2B, as shown by arrow
903, equals the number of encoded data bits between the first
bit 1n each of discontinuous segments 2B and 2C, as shown by
arrow 904. The encoder also generates discontinuous pointer
bits 1n the stream code that indicate the number of encoded
data bits between the first bits 1n each pair of consecutive
segments 1n the set of discontinuous segments 2A-2C.

Subsequently, the data bits that have not yet been encoded
are reorganized as a new continuous data set with consecutive
bit positions that are renumbered O-H, as shown 1n FIG. 9B,
where H 1s a non-zero positive integer that 1s less than G. The
encoder applies a third base vector to the data bits 1n three
segments during encoding to generate the encoded data bits 1n
three segments 3A-3C. Segments 3A-3C are discontinuous
with respect to the original bit positions numbered O-F. The
encoder generates redundant bits 1n the stream code that
indicate the number of repetitions of the third base vector
applied 1n the three segments 3A-3C.

FIG. 9C 1llustrates an example of a stream code 910 gen-
erated by the encoder that generates the encoded data bits 900
of F1G. 9A, according to an embodiment of the present inven-
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tion. The encoder may generate the stream code 910 using, for
example, the algorithm described above with respect to FIG.
5.

Stream code 910 includes redundant bits that are used by a
decoder to decode the encoded data bits 900 to regenerate the
original data bits. The redundant bits 1n stream code 910
indicate the base vector selected in each iteration of operation
502 and the number of repetitions to apply the base vector to
cach of the segments as determined 1n each 1teration of opera-
tion 503. Stream code 910 also includes dash bits, as
described above with respect to FIG. 7C. Stream code 910
also includes unstable bits, as described above with respect to
FIG. 8B.

The encoded data bits 900 are subdivided into discontinu-
ous segments of encoded data bits that are separated by other
encoded data bits, as described above with respectto FIG. 9A.
Stream code 910 further includes discontinuous pointer bits
that indicate the number of encoded data bits between the first
bits 1n each pair of consecutive segments in each set of dis-
continuous segments, as described above with respect to FIG.
OA.

Stream code 910 1s subdivided into an N number of entries.
Each of the N entries 1n stream code 910 provides information
for decoding the encoded data bits 1n the segments 1n a cor-
responding set of discontinuous segments having the same
number as the entry. Each of the entries 1n stream code 910
includes a base vector and a number of repetitions of the base
vector to be applied to the encoded data bits 1n each of the
segments 1n the corresponding set of discontinuous segments
during decoding to regenerate a subset of the original data
bits. Each of the entries 1n stream code 910 also includes an
unstable bit and a dash bait. If the dash bit equals 1 1n an entry,
then that entry also includes a set of discontinuous pointer
bits.

In FIG. 9C, entry 1 of stream code 910 includes an unstable
bit that equals 0, a base vector indicated by bits b1 and b2, and
a dash bit that equals 1. Entry 1 of stream code 910 also
includes a number of repetitions of that base vector as indi-
cated by bits v1-vY to be applied to the encoded data bits 1n
cach of the segments (e.g., segments 1A-1C) 1n the first set of
discontinuous segments during decoding to regenerate a first
subset of the oniginal data bits. Entry 1 of stream code 910
also 1includes discontinuous pointer bits pl-pZ. The discon-
tinuous pointer bits pl1-pZ 1n entry 1 indicate the number of
encoded data bits between the first bits 1n each pair of con-
secutive segments 1n the first set of discontinuous segments.

In FIG. 9C, entry 2 of stream code 910 includes an unstable
bit that equals 0, a base vector indicated by bits b1 and b2, and
a dash bit that equals 1. Entry 2 of stream code 910 also
includes a number of repetitions of that base vector as indi-
cated by bits v1-vY to be applied to the encoded data bits 1n
cach of the segments (e.g., segments 2A-2C) 1n the second set
of discontinuous segments during decoding to regenerate a
second subset of the original data bits. Entry 2 of stream code
910 also 1ncludes discontinuous pointer bits p1-pZ. The dis-
continuous pointer bits pl-pZ 1n entry 2 indicate the number
of encoded data bits between the first bits 1n each pair of
consecutive segments 1n the second set of discontinuous seg-
ments. The first set of discontinuous segments are 1gnored by
the decoder when using the discontinuous pointer bits pl1-pZ
in entry 2 to count the number of encoded data bits between
the first bits 1n each pair of consecutive segments in the
second set of discontinuous segments.

In FI1G. 9C, the last entry N of stream code 910 includes an
unstable bit that equals O, a base vector indicated by bits bl
and b2, a dash bat that equals 0, and a number of repetitions of
that base vector as indicated by bits r1-rX to be applied to the
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encoded data bits 1n each of the segments (e.g., segments
3A-3C) 1 the last set of discontinuous segments during
decoding to regenerate the last subset of the original data bats.
Because the last entry N of stream code 910 does not include
discontinuous pointer bits, the decoder applies the base vector
indicated by bits b1 and b2 1n entry N 1n continuous repeti-
tions to the encoded data bits at the renumbered and numerti-
cally consecutive bit positions of the last set of discontinuous
segments. The encoder does not apply the base vector 1ndi-
cated 1n the last entry N to the previous sets of discontinuous
segments. The decoding process terminates aiter the last
entry N 1s processed.

FIG. 9D illustrates another example of a stream code 920
generated by an encoder that generates the encoded data bits
900 of FIG. 9A, according to an embodiment of the present
invention. The encoder may generate the stream code 920
using, for example, the algorithm described above with
respect to FI1G. 5.

Stream code 920 includes redundant bits that are used by a
decoder to decode the encoded data bits 900 to regenerate the
original data bits. The redundant bits 1n stream code 920
indicate the base vector selected in each iteration of operation
502 and the number of repetitions to apply the base vector to
cach of the segments as determined 1n each 1teration of opera-
tion 503. Stream code 920 also includes dash bits, as
described above with respect to FIG. 7C. Stream code 920
also includes unstable bits, as described above with respect to
FIG. 8B. Stream code 920 further includes discontinuous
pointer bits that indicate the number of encoded data bits
between the first bits in consecutive pairs of the segments in
cach set of the discontinuous segments.

Stream code 920 1s subdivided into an N number of entries.
Each of the N entries 1in stream code 920 provides information
for decoding the encoded data bits 1n the segments 1n the
corresponding set of discontinuous segments having the same
number as the entry. Each of the entries in stream code 920
includes an unstable bit, a base vector, a number of repetitions
of the base vector to be applied to encoded data bits in each of
the segments 1n the corresponding set of discontinuous seg-
ments during decoding to regenerate a subset of the original
data bits, a dash bit, and discontinuous pointer bits.

In FIG. 9D, entry 1 through entry (N-1) of stream code 920
include the same bits that are described above with respect to
entry 1 through entry (N-1) 1n FIG. 9C. The last entry N of
stream code 920 includes an unstable bit that equals 0, a base
vector indicated by bits b1 and b2, a dash bit thatequals 1, and
a number of repetitions (as indicated by bits vl-vY) of that
base vector to be applied to the encoded data bits 1n each
segment 1n the last set of discontinuous segments during
decoding to regenerate the last subset of the original data bits.
Entry N of stream code 920 also includes discontinuous
pointer bits pl-pZ that equal the number of bits 1n each
segment 1n the last set of discontinuous segments to indicate
to the decoder that the renumbered bit positions of the last set
of discontinuous segments are numerically consecutive.
Therefore, the decoder applies the base vector indicated by
bits b1l and b2 1n entry N to the encoded data bits 1n the last set
of discontinuous segments in continuous repetitions. The
decoding process terminates aiter the last entry N 1s pro-
cessed.

According to some embodiments, the encoder can select
one of multiple encoding techniques to apply to a set of data
bits to generate encoded data bits based on the error rate of
stuck-at faults and unstable values in the corresponding
memory cells. The encoding technique selected by the
encoder 1s then provided to the decoder. For example, the
encoder may select among the encoding techniques described
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herein with respectto FI1G. 5, 6 A-6D, 7A-7C, 8A-8B, 9A-9D,
10A, 11A-11D, 12A-12C, 13, 14A-14C, or 15.

The redundant bits, such as the stream codes, discussed
herein are stored 1n memory after encoding, then read from
memory and provided to the decoder during decoding.
According to some embodiments, the redundant bits, includ-
ing the stream codes, that are provided to the decoder do not
contain errors. Error correction codes may be applied to the
stream codes so that the streams codes are error-iree. For
example, an error correction code (ECC) wrap around the
stream code protects the stream code from memory cells
having unstable values and random errors if the stream code
1s saved 1n error-prone phase change memory cells. As
another example, the stream code may be stored 1n DRAM,
and be only prone to random errors typical of DRAM cells
with correction of errors by an ECC technique for memory.

Some memory cells in the memory circuit may be catego-
rized as having stuck-at faults or as having unstable values
based on a smaller number of writes and reads to these
memory cells. In some 1nstances, random errors at the time of
those writes and reads may cause one or more memory cells
to be incorrectly indicated as having a stuck-at fault or an
unstable value. According to some embodiments, a global
ECC wrap 1s added to both the encoded data bits and the
stream code to protect against the potential incorrect catego-
rization of some memory cells as having stuck-at faults or
unstable values.

FIG. 10A 1s a flow chart that illustrates another example of
a process for encoding data bits to generate encoded data bits
and redundant bits for accommodating memory cells having
stuck-at faults, according to an embodiment of the present
invention. The encoded data bits are stored 1n memory cells
that may have stuck-at faults. The addresses of the memory
cells with stuck-at faults and the digital values of the stuck-at
taults are known prior to performing the operations shown 1n
FIG. 10A. The operations of FIG. 10A are performed instead
of storing the data bits in the memory cells. The operations of
FIG. 10A may, for example, be performed by control circuit
101.

Prior to operation 1001, each of the data bits 1s assigned to
a corresponding memory cell 1n the memory circuit. Some of
these memory cells may have stuck-at faults. If some of the
memory cells assigned to the data bits have known stuck-at
faults, an encoder compares these data bits to the digital
values of the corresponding stuck-at faults to determine
which of these data bits have the same digital values as their
corresponding stuck-at faults and which of these data bits do
not have the same digital values as their corresponding stuck-
at faults 1n operation 1001.

In operation 1002, the encoder encodes the data bits to
generate encoded data bits and redundant bits using, for
example, one of the encoding algorithms described herein. In
operation 1002, the digital values of the data bits that do not
match their corresponding stuck-at faults are mnverted to gen-
erate corresponding ones of the encoded data bits. In opera-
tion 1002, the digital values of the data bits that match their
corresponding stuck-at faults are not inverted to generate
corresponding ones of the encoded data bits. The redundant
bits may, for example, include a stream code, as described
above. As another example, the redundant bits may 1nclude
index bits, as described below. In operation 1003, the encoded
data bits are stored 1n their corresponding memory cells. The
redundant bits are also stored in memory. The encoded data
bits and the redundant bits may be stored in the same memory
device or 1n different memory devices.

FIG. 10B 1s a flow chart that illustrates an example of a
process for decoding the encoded data bits generated 1n the
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process of FIG. 10A to regenerate the data bits using the
redundant bits, according to an embodiment of the present
invention. In operation 1011, the encoded data bits and the
redundant bits are read from memory. In operation 1012, the
decoder applies a decoding algorithm to the encoded data bits
to regenerate the data bits using the redundant bits. The
decoder may, for example, apply one of the decoding algo-
rithms described herein. The redundant bits indicate to the
decoder which of the encoded data bits to invert and which of
the encoded data bits not to invert to regenerate the data bits.
The encoding and decoding algorithms of FIGS. 10A-10B
may, for example, be performed by control circuit 101 or by
control circuits 1n either of memory circuits 102-103.

FIG. 11A 1llustrates an example of data bits that are pro-
vided for storage in memory cells having stuck-at faults,
according to an embodiment of the present invention. FIG.
11A 1llustrates 16 data bits having bit positions numbered
0-15 as an example. Examples of the digital values of the 16
data bits are shown inside the 16 boxes 1n FIG. 11A. The 16
data bits are provided for storage i 16 corresponding
memory cells. The bit position of each data bit 1s shown below
that data bit in FIG. 11 A. In the example of F1IG. 11 A, the data
bits at bit positions 3, 7, and 9 are provided for storage in
memory cells having stuck-at faults. The addresses of the
memory cells with stuck-at faults and the digital values of the
stuck-at faults are known prior to encoding. The data bit at bit
position 3 1s provided for storage in a memory cell that 1s
stuck-at 1, and the data bits at bit positions 7 and 9 are
provided for storage in memory cells that are stuck-at 0. In
FIGS.11A-11D, the stuck-at 1 faults are identified as S1, and
the stuck-at 0 faults are identified as S0.

An encoder compares the digital values of the data bits to
the digital values of the stuck-at faults of the corresponding
memory cells, as described above with respect to operation
1001. The encoder determines which data bits have the same
digital values as their corresponding stuck-at faults and which
data bits have different digital values than their corresponding
stuck-at faults. The encoder then nverts the data bits having
digital values that do not match their corresponding stuck-at
faults to generate encoded data bits. The encoder also gener-
ates index bits that indicate the bit positions of the iverted
data bits. The index bits described herein are redundant bats.

FIG. 11B illustrates an exemplary application of an encod-
ing technique that encodes data bits by only changing the data
bits having digital values that do not match the digital values
of the stuck-at faults of the corresponding memory cells,
according to an embodiment of the present invention. The
example of FIG. 11B uses the same data bits, stuck-at faults,
and bit positions shown 1n FIG. 11A. As shown in FIG. 11A,
the data bit at bit position 3 has a digital value of O, but the
corresponding memory cell at bit position 3 1s stuck-at 1.
Therefore, an encoder mverts the digital value of the data bat
to be stored 1n that memory cell from O to 1, as indicated by an
I at bit position 3 in FIG. 11B, when generating the corre-
sponding encoded data bit. The data bit at bit position 9 has a
digital value of 1, but the corresponding memory cell at bat
position 9 1s stuck-at 0. Therefore, the encoder inverts the
digital value of the data bit to be stored 1n that memory cell
from 1 to 0, as indicated by an I at bit position 9 1n FIG. 11B,
when generating the corresponding encoded data bit.

As shown 1n FIG. 11A, the data bit at bit position 7 has a
digital value of O, and the corresponding memory cell at bat
position 7 1s stuck-at 0. Therefore, the encoder does not invert
the digital value of the data bit to be stored 1n that memory
cell, as indicated by the C at bit position 7 1n FIG. 11B, when
generating the corresponding encoded data bit. In the
embodiment of FIG. 11B, the encoder only evaluates the data
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bits to be stored 1n memory cells with known stuck-at faults.
Thus, 1n the embodiment of FIG. 11B, the encoder does not
change the digital values of the data bits that are provided for
storage 1n memory cells not having known stuck-at faults
when the encoder generates the corresponding encoded data
bits.

The encoder also generates index bits as shown in FIG.
11B. In the embodiment of FIG. 11B, the index bits indicate
the bit position of each of the encoded data bits that 1s stored
in a memory cell having a stuck-at fault. A decoder uses the
index bits to decode the encoded data bits to regenerate the
original data bits. The bit position of each data bit can be
described by log,k bits, where k 1s the number of data bits, as
shown 1n equation (1) below. In equation (1), 1 1s an index
value, e refers to the i” stuck-at fault, each b' is an index bit,
and s 1s the number of stuck-at faults where a subset of the
encoded data bits are stored 1n memory. Thus, equation (1)
indicates the number of index bits needed to describe the bit
position of each stuck-at fault.

;=D g 11’ - - - D1'b’ Where i€{0, . . ., s—1} (1)

In the embodiment of FIG. 11B, the index bits have log,k
bits for storing the bit position of each memory cell having a
stuck-at fault. Thus, an s(log,k) number of index bits are used
in the embodiment of FIG. 11B to store the bit positions of the
memory cells having stuck-at faults where encoded data bits
are stored.

Also, an additional s number of index bits are added to the
index to indicate whether each of the encoded data bits stored
in a memory cell having a stuck-at fault was inverted or not
inverted relative to the corresponding original data bit. As an
example that 1s not intended to be limiting, a 1 bit may be
stored 1n the index bits for each encoded data bit that was
inverted relative to an original data bit before being stored 1n
a memory cell having a stuck-at fault, and a 0 bit may be
stored 1n the index bits for each encoded data bit that was not
inverted relative to an original data bit before being stored 1n
a memory cell having a stuck-at fault.

An advantage of allocating index bits that provide an exact
description of the bit positions of all the s stuck-at fault bit
positions and s additional 1index bits 1s that the bit positions
and the digital values of the stuck-at faults do not need to be
determined prior to encoding each set of data bits. For
example, operations 201-208 shown in FIG. 2 do not need to
be performed prior to encoding every set of data bits, even
alter many write cycles, because the accrual of stuck-at faults
in the memory circuit 1s assumed to be slow. The two addi-
tional physical write operations 201 and 205 in FIG. 2 may
consume a significant amount of time. By not performing
operations 201-208, the encoding process can be performed
in substantially less time. An additional error correction
scheme (e.g., using parity check bits) can be applied to the
data bits to detect when a new stuck-at fault occurs. Opera-
tions 201-208 only need to be performed when the error
correction scheme detects a new stuck-at fault in the memory
cells.

A total of s(log,k)+s index bits are stored in the index to
represent the digital values and the bit positions of the
encoded data bits that are stored in memory cells having
stuck-at faults. Equation (2) below represents the lower
bound on the number of index bits b, .- that can be used to
represent the digital values and bit positions of the encoded
data bits that are stored 1n memory cells having stuck-at faults
using the encoding technique described with respect to FIG.

11B.

(2)

bagn=log, (sk) +S

10

15

20

25

30

35

40

45

50

55

60

65

20

FIG. 11C1llustrates an example application of an encoding,
technique that encodes data bits by changing data bits in
regions, according to an embodiment of the present invention.
In this embodiment, each region includes data bits provided
for storage in memory cells having one or more stuck-at
faults. If a region has multiple memory cells with stuck-at
faults, then all of the stuck-at faults 1n that region either have
the same digital values as their corresponding data bits, or all
of the stuck-at faults 1n that region have the opposite digital

values as their corresponding data bits. Each region includes
data bits having consecutive or non-consecutive bit positions.

The data bits as shown 1n FIG. 11 A 1nclude a data bit at bat
position 3 having a 0 digital value that 1s provided for storage
in a memory cell having a stuck-at 1 fault. In this embodi-
ment, the encoder mverts each of the 6 data bits 1n region 1
from bit positions 0 to 5, as shown 1n FIG. 11C, to generate a
first set of encoded data bits. Thus, the encoded data bit at bit
position 3 1s mverted to a digital value of 1 for storage 1n the
memory cell having the stuck-at 1 fault. The data bits as
shown 1n FIG. 11A include a data bit at bit position 7 having,
a 0 digital value that 1s provided for storage 1n a memory cell
that1s stuck-at 0. The encoder does not invert any of the 3 data
bits inregion 2 from bit positions 6 to 8, as shown in F1G. 11C,
to generate a second set of encoded data bits. Thus, the
encoded data bit at bit position 7 remains at a digital value of
0 for storage in the memory cell having the stuck-at 0 fault.
The data bits as shown 1n FIG. 11 A include a data bt at bat
position 9 having a 1 digital value that 1s provided for storage
in a memory cell that 1s stuck-at 0. The encoder inverts each
of the 7 data bits in region 3 from bit positions 9 to 15, as
shown 1n FIG. 11C, to generate a third set of encoded data
bits. Thus, the encoded data bit at bit position 9 1s inverted to
a digital value of O for storage 1n the memory cell having the
stuck-at O fault.

FIG. 11D illustrates another example application of an

encoding technique that encodes data bits by changing data
bits 1n regions, according to an embodiment of the present
invention. In the embodiment of FIG. 11D, each region
includes data bits provided for storage 1n memory cells with
one or more stuck-at faults. If a region has multiple memory
cells with stuck-at faults, then all of the stuck-at faults 1n the
region either have the same digital values as their correspond-
ing data bits, or all of the stuck-at faults 1n the region have the
opposite digital values as their corresponding data bits. Each
region includes data bits having consecutive or non-consecu-
tive bit positions.

In the embodiment of FIG. 11D, an encoder compares the
digital value of each stuck-at fault within a set of memory
cells to the digital value of the data bit provided for storage 1n
the memory cell having that stuck-at fault. The encoder deter-
mines which of the data bits to invert and which of the data
bits not to mvert to generate encoded data bits that match the
digital values of the corresponding stuck-at faults. The
encoded data bits are stored 1n the memory cells.

The encoder then compares the binary values of the bit
positions of the data bits provided for storage 1in the memory
cells having the stuck-at faults bit-by-bit from their most
significant bits to their least significant bits. The encoder
selects the most significant bit location 1n these bit positions
such that the bits at that bit location 1n the bit positions of data
bits that are inverted have a first digital value and the bits at
that bit location 1n the bit positions of data bits that are not
inverted have a second digital value. The bits at the selected
bit location are then used to define multiple regions. All of the
data bits 1n each of the regions are inverted or not inverted to
generate encoded data bits for thatregion. Each of the regions
corresponds to memory cells having one or more stuck-at
faults, and the stuck-at faults in each region have the same
orientation with respect to their corresponding data bits. That
1s, the stuck-at faults in a region either have the same digital
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values as their corresponding data bits or the opposite digital
values as their corresponding data bits. The encoded data bits
tor the regions are then stored in the corresponding memory
cells.

FIG. 11D 1illustrates an example of encoded data bits that
have been generated using this encoding technique. In the
example shown 1n FIG. 11D, the encoder uses the same data
bits, stuck-at faults, and bit positions that are shown 1n FIG.
11A. Table 1 below 1illustrates the binary values of the bit
positions of the data bits provided for storage in correspond-
ing memory cells that have stuck-at faults, 1n the example of
FIG. 11A. Errors e, €,, and e, are the stuck-at faults shown 1n
FIG. 11A at bit positions 3, 7, and 9, respectively.

TABLE 1
Binary Bit Position
€o 0 0 1
€4 0 1 1
€5 1 0 0
Bit b, bio by, boo
location

As discussed above, the data bits at bit positions 3 and 9
need to be mverted to match the digital values of their corre-
sponding stuck-at faults, and the data bit at bit position 7 does
not need to be 1nverted to match the digital value of 1ts cor-
responding stuck-at fault. As shown 1n Table 1, the bit loca-
tion b,, 1s the most significant bit location among the bit
positions of errors €., €,, and e, that has the same digital value
(1.e., 0) for errors e, and e, and a difterent digital value (1.e., 1)
tor error ¢,. Therelore, the encoder selects bit location b .

In this example, the encoder creates two regions among the
16 data bits based on the digital value of the selected bit
location b, ,1n each of the bit positions for errors ¢, €,, and ¢,.
During encoding, the encoder inverts the data bits that have
bits at bit location b, ; 1n their bit positions equal to 0, and the
encoder does not invert the data bits that have bits at bit
location b, 1n their bit positions equal to 1. Thus, in this
example, the encoder inverts the data bits having bit positions
0-3 and 8-11 (region 1), but does not invert the data bits
having bit positions 4-7 and 12-15 (region 2) to generate
encoded data bits that are stored in memory cells at these
corresponding bit positions.

Each bit location in the bit position of a k number of data
bits can be characterized by a log, log,k number of bits. At
least log, log,k bits are used for the index bits 1n the encoding
technique of FIG. 11D to indicate the selected bit location of
the bit positions used to create the regions 1n which the data
bits are inverted or not inverted to generate the encoded data
bits, as described above. The maximum number of index bits
b, .+ that are used to encode and decode data bits using the
embodiment described with respect to FIG. 11D 1s based on
equations (3) and (4) below, 1n which a 1s the bit error rate of
stuck-at faults in the memory cells, s 1s the number of stuck-at
faults in the memory cells, and k 1s the number of data bits.
The encoding technique of FIG. 11D may use less index bits
than the encoding technique of FIG. 11B for data bits having,
a large number of stuck-at faults.

barsixv—=3s-1)+(s-1)log> log,k (3)

(4)

buriax =45+ (1 —a)slog,log, —
o
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According to another embodiment, an encoder encodes
data bits using a binary tree algorithm to generate encoded
data bits that accommodate stuck-at faults in memory cells.
The encoded data bits are stored in the memory cells. Subse-
quently, the encoded data bits are read from the memory cells
and decoded using the binary tree algorithm to regenerate the
original data bits. Exemplary code of a binary tree algorithm
that can be used to build a binary tree according to this
embodiment 1s provided below.

BinaryTreeAlgorithm(S)
Given S = {eg, ..., €c |}
if (S has elements of the same type)
then record the type in the current node of the binary tree
return //mo children generated for current node
else
select b, such that: //split on bit b,
S'={e; | b’, = 0} is non-empty and
S"={e; I b’;=1} is non-empty
record b, in the current node of the binary tree (using log,log,k bits)
left child = BinaryTreeAlgorithm(S')
right child = BinaryTree Algorithm(S")

In the exemplary binary tree algorithm provided above, k 1s
the number of data bits provided for storage in memory cells
having known stuck-at faults, S refers to a set of stuck-at
faults 1n the memory cells, the stuck-at faults in the set S are
referred to as {e,, ..., e._,}, each b, refers to a node in the
binary tree, 11s a number that references the nodes, and 7 1s a
number that references each of the stuck-at faults 1n the set S.
Each bit b, indicates a bit location within the binary bit posi-
tions of the data bits, as described above.

The exemplary binary tree algorithm provided above 1s
processed to create a binary tree that indicates to an encoder
how to encode data bits to accommodate known stuck-at
faults 1n corresponding memory cells. An 1teration of the
binary tree algorithm 1s processed for each node in the binary
tree. In the first iteration of the binary tree algorithm, all of the
known stuck-at faults 1n the memory cells are processed as
being in the first node of the binary tree.

The binary tree algorithm above 1s used to create a binary
tree having nodes where each node of the binary tree has
either O or 2 children. A node that has no children 1s a leaf. A
node that has 2 children 1s an internal node. The number of
leaves of the binary tree 1s at most s=|S|. If n 1s the number of
internal nodes 1n the binary tree, then the binary tree has n+1
leaves. If the “11”” branch of the binary tree algorithm above 1s
processed, then O children are generated for the current node
of the binary tree. If the “else” branch of the binary tree
algorithm above 1s processed, then 2 children are generated
for the current node of the binary tree. The binary tree algo-
rithm above 1s then repeated for each of the children of the
binary tree from left to right per row of children. Each node of
the binary tree has a set of one or more stuck-at faults.

The “11”” branch of the binary tree algorithm above 1s pro-
cessed 11 the set S of stuck-at faults has elements of the same
type. Set S has elements of the same type 11 all of the stuck-at
faults 1n the set S have digital values that match the digital
values of the corresponding data bits provided for storage in
the memory cells having those stuck-at faults, or if all of the
stuck-at faults 1n the set S have digital values that match the
inverted digital values of the corresponding data bits provided
for storage 1n the memory cells having those stuck-at faults.

The “else” branch of the binary tree algorithm above 1s
processed 11 the set S of stuck-at faults has at least two ele-
ments that are not of the same type. S has elements that are not
of the same type 11 a first one of the stuck-at faults in the set S
has a digital value that matches the digital value of the corre-
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sponding data bit provided for storage in the memory cell

having the first one of the stuck-at faults, and a second one of
the stuck-at faults 1n the set S has a digital value that does not
match the digital value of the corresponding data bit provided

[

for storage 1n the memory cell having the second one of the

-] -

stuck-at faults. Thus, 1f set S has elements that are not of the

same type, then the encoder inverts at least one of the data bits
corresponding to one stuck-at fault 1n the set S and does not
ivert at least one of the data bits corresponding to another

stuck-at fault 1n the set S. In the “else” branch of the binary
tree algorithm above, a bitb, 1s selected for the current node of

the binary tree such that the current node has a left child and

a right child. The lett child of the current node includes all of
the stuck-at faults €, in the set S in which that bit b/, equals O
and 1s a non-empty set. The right child of the current node
includes all ot the stuck-at faults e, 1n the set S 1n which that
bit b/, equals 1 and 1s a non-empty set. The binary tree algo-
rithm 1s then repeated once for the right child and once for the
left child. Each of the right child and the left child 1s a leaf of

the binary tree 11 1t contains stuck-at faults of the same type

and an mternal node of the binary tree 11 1t contains stuck-at
taults of different types.

Based onresults from succinct data structures, a binary tree
can be constructed with at most (2s—1) bits using the binary
tree algorithm provided above. According to some embodi-
ments, the number of index bits generated by an encoder
using the binary tree algorithm provided above equals (2s—
1)+s(log, log,k+1), where s 1s the number of stuck-at faults 1n
the memory cells.

FIGS. 12A-12C illustrate examples of how the binary tree
algorithm described above can be used to encode data bits
provided for storage in memory cells having stuck-at faults to
generate encoded data bits and index bits, according to
embodiments of the present invention. FIG. 12A illustrates
exemplary encoding information for 16 data bits that are
provided for storage in memory cells having bit positions
numbered 0-15. 8 of these 16 memory cells have stuck-at
faults that are known prior to encoding.

The data bits provided for storage in the memory cells
having bit positions 1, 4, 9, 13, and 14 do not have the same
digital values as their corresponding at-stuck faults. The
encoder 1nverts the digital values of these 5 data bits prior to
storage to generate 5 encoded data bits, as indicated by each
I in FIG. 12A, so that the inverted digital values of these 5
encoded data bits match the digital values of the stuck-at
faults of the corresponding memory cells that these encoded
data bits are stored 1n.

The data bits provided for storage in the memory cells
having bit positions 2, 7, and 10 have the same digital values
as their corresponding at-stuck faults. The encoder does not
invert the digital values of these 3 data bits prior to storage to
generate 3 encoded data bits, as indicated by each C in FIG.

12A, so that the digital values of these encoded data bits
match the digital values of the stuck-at faults of the corre-
sponding memory cells that these encoded data bits are stored
in. The bit positions of the 8 data bits provided for storage 1n
memory cells having stuck-at faults are shown in Table 2
below. The last row of Table 2 indicates the bit locations b, of
cach bit of the binary bit positions of these 8 data bits. Bits b,
are the nodes of a binary tree generated using the binary tree
algorithm above.
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TABLE 2
Stuck-At Decimal Bit
Fault Positions Binary Bit Positions
o 1 0 0 0 1
€, 2 0 0 1 0
€5 4 0 1 0 0
€ 7 0 1 1 1
€, 9 1 0 0 1
€5 10 1 0 1 0
g 13 1 1 0 1
& 14 1 1 1 0
Node of binary tree/ b, bio bgy boo

Bit location

FIG. 12B illustrates an example of a bimary tree that 1s
generated using the binary tree algorithm described above
and the exemplary encoding information shown in FIG. 12A.
The binary tree of FIG. 12B includes 4 internal nodes b, ,, b, ,,
bs;, and b, that indicate bit locations within the binary bit
positions of the stuck-at faults. The first mnternal node b,
includes a first set S, of stuck-at faults 1in the 8 memory cells
corresponding to data bit positions {1, 2,4, 7,9, 10, 13, 14}.
The first internal node b,, 1s analyzed in the first iteration
through the binary tree algorithm.

The else clause 1s processed 1n the first iteration of the code
of the binary tree algorithm, because some of the 8 stuck-at
faults 1in S, are not of the same type. In the first iteration of the
code of the binary tree algorithm, the stuck-at faults in the first
set S, are separated into a second set S, of stuck-at faults
corresponding to data bit positions {1, 2, 4, 7} and a third set
S, of stuck-at faults corresponding to data bit positions {9, 10,
13, 14}. The stuck-at faults in the first set S, that have a binary
b1t position bit b, , equal to 0 are placed into the second set S.,.
The stuck-at faults in the first set S, that have a binary bit
position bit b, , equal to 1 are placed into the third set S;.

The second set S, of stuck-at faults 1s assigned to a second
internal node b, of the binary tree. The second internal node
by, of the binary tree 1s analyzed 1n the second iteration of the
code of the binary tree algorithm. The else clause 1s processed
in the second iteration through the code of the binary tree
algorithm, because some of the 4 stuck-at faults in S, are not
of the same type. In the second iteration of the code of the
binary tree algorithm, the stuck-at faults in the second set S,
are separated into a fourth set S, corresponding to data bit
positions {1, 4} and a fifth set S5 corresponding to data bit
positions {2, 7}. The stuck-at faults in the second set S, that
have a binary bit position bit b, equal to O are placed 1nto the
fourth set S,,. The stuck-at faults in the second set S, that have
a binary bit position bit b,,, equal to 1 are placed 1nto the fifth
set S..

The fourth set S, and the fifth set S; of stuck-at faults are
analyzed in third and fourth iterations of the code of the
binary tree algorithm, respectively. The i1 clause 1s processed
in each of the third and fourth iterations of the code of the
binary tree algorithm, because each of the stuck-at faults in S,
are of the same type (1invert), and each of the stuck-at faults 1n
S are of the same type (clear). Therefore, the encoder causes
the fourth set S, and the fifth set S to be leaves of the binary
tree that do not have children.

The third set S; of stuck-at faults 1s assigned to a third
internal node b, of the binary tree. The third internal node b,
of the binary tree 1s analyzed in a fifth 1teration through the
binary tree algorithm. The else clause 1s processed in the fifth
iteration of the code of the binary tree algorithm, because
some of the 4 stuck-at faults in S; are not of the same type. In
the fifth 1teration of the code of the binary tree algorithm, the
stuck-at faults 1n the third set S; are separated 1nto a sixth set
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S corresponding to data bit positions {10, 14} and a seventh
set S, corresponding to data bit positions {9, 13}. The stuck-
at faults 1n the third set S, that have a binary bit position bit b,
equal to 0 are placed into the sixth set S. The stuck-at faults
in the third set S, that have a binary bit position bit b, equal
to 1 are placed into the seventh set S-.

The sixth set S, of stuck-at faults 1s assigned to a fourth
internal node b, , of the binary tree. The fourth internal node
b,, of the binary tree 1s analyzed 1n the sixth 1teration of the
code of the binary tree algorithm. The else clause 1s processed
in the sixth iteration of the code of the binary tree algorithm,
because the 2 stuck-at faults in S, are not of the same type. In
the sixth iteration of the code of the binary tree algorithm, the
stuck-at taults 1n the sixth set S, are separated into an eighth
set S; corresponding to data bit position {10} and a ninth set
S, corresponding to data bit position {14 }. The stuck-at faults
in the sixth set S, that have a binary bit position bit b, , equal
to 0 are placed into the eighth set S_. The stuck-at faults 1n the
sixth set S, thathave a binary bit position bitb, , equal to 1 are
placed into the minth set S,,.

The eighth set S, the ninth set S, and the seventh set S, of
stuck-at faults are analyzed in seventh, eighth, and ninth
iterations of the code of the binary tree algorithm, respec-
tively. The 1f clause 1s processed in each of the seventh,
cighth, and ninth iterations of the code of the binary tree
algorithm, because sets S, and S, each have only one stuck-at
tault, and each of the stuck-at faults in set S, are of the same
type (1nvert). Theretfore, the encoder causes each of the sev-
enth set S-, the eighth set S, and the ninth set S, to be leaves
of the binary tree that do not have children.

A binary tree generated by the binary tree algorithm
described above has an -1 number of internal nodes and a
number of leaves L=s, where s 1s the number of stuck-at faults
in the corresponding memory cells. The encoder generates an
log, log,k number of index bits to represent each of the
internal nodes b, of the binary tree, and there are an L-1
number of mnternal nodes 1n the binary tree. The structure of
the binary tree can be represented with an 2L.—1 number of
index bits. One additional index bit for each of the leaves L of
the binary tree 1s used to indicate 11 the data bits represented
by the leafl of the binary tree are inverted or not inverted.
Theretore, the maximum number of index bits lindex| that the
encoder generates to represent a binary tree generated by the
binary tree algorithm described above 1s shown in equation

(5) below.

index|=(2s—1)+s+(s—1)log, log-k (5)

The binary tree algorithm described above may, for
example, generate a binary tree by evaluating each bit loca-
tion in the binary bits positions of the data bits provided for
storage 1n memory cells having stuck-at faults to determine
which bit location to use for each of the internal nodes of the
binary tree to reduce the number of nodes in the binary tree.
FIG. 12C 1llustrates an example of a binary tree generated by
a binary tree algorithm that evaluates each bit location 1n the
binary bit positions of the data bits provided for storage in
memory cells having stuck-at faults for placement 1n an inter-
nal node of the binary tree to reduce the number of nodes in
the binary tree. In this embodiment, the binary tree algorithm
selects a bit location 1n the binary bit positions of the stuck-at
taults for the current node of the binary tree 11 the selected bit
location allows one or both of the children of the current node
to have stuck-at faults that are all of the same type. The binary
tree ol FIG. 12C has four leaves and three internal nodes. The
binary tree of FIG. 12B has five leaves and four internal
nodes.
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The binary tree algorithm processes the else clause 1n the
first iteration of the code to create the first internal node of the
binary tree shown in FIG. 12C. In the first iteration of the
code, the binary tree algorithm separates the first set S, of
stuek at faults based on binary bit position bit b, to ereate a
second set S, of stuck-at faults corresponding to data bit
positions {1, 4, 9, 13} and a third set S, of stuck-at faults
corresponding to data bit positions {2, 7, 10, 14 }. The stuck-at
taults 1n the first set S, that have a binary bit position bit b,
equal to 0 are placed 1nto the second set S,, and the stuck-at
faults 1n the first set S, that have a binary bit position bit b,
equal to 1 are placed into the third set S;. The binary tree
algorithm separates the first set S, of stuck-at faults based on
binary bit position bit b,,, because the stuck-at faults in the
second set S, shown 1n FIG. 12C are all of the same type
(1nvert). Theretore, the stuck-at-faults in the second set S, do
not need to be separated, which reduces the number of nodes
in the binary tree.

The binary tree algorithm separates the third set S; of
stuck-at faults based on binary bit position bit b, to create a
fourth set S, of stuck-at faults corresponding to data bit posi-
tions {2, 10} and a fifth set S of stuck-at faults corresponding
to data bit positions {7, 14}. The stuck-at faults in the third set
S, that have a binary bit position bit b, , equal to 0 are placed
into the fourth set S,, and the stuck-at faults 1n the third set S,
that have a binary bit position bitb, , equal to 1 are placed 111t0
the fitth set S<. The binary tree algorithm separates the third
set S; of stuek at faults based on binary bit position bit,,
beeause the stuck-at faults 1n the fourth set S, shown 1n FIG.
12C are all of the same type (clear) and de not need to be
separated. The binary tree algorithm then separates the fifth
set S of stuck-at faults based on binary bit position bit b, to
create a sixth set S, having bit position {14} and a seventh set
S, having bit position {7}. The example shown in and
described with respect to FIG. 11C 1llustrates that selecting
the binary bit position bits b, for the nodes of the binary tree in
a particular way can generate a more compact binary tree that
1s significantly smaller than the upper bound.

According to another embodiment, an encoder encodes
data bits using one or more binary sub-trees of a binary tree to
generate encoded data bits that accommodate stuck-at faults
in memory cells. The binary sub-trees are generated using the
binary tree algorithm described above. The encoded data bits
are stored 1n the memory cells. Subsequently, the encoded
data bits are read from the memory cells and decoded using
the binary tree algorithm described above to regenerate the
original data bits.

FIG. 13 1llustrates a graphical example of a binary tree that
1s generated and divided into binary sub-trees, according to an
embodiment of the present invention. FIG. 13 illustrates a
binary tree 1300 (i.e., the large triangle in FIG. 13). Binary
tree 1300 has a log,.k number of rows (1.e., a depth of log,k),
where each row includes at least one node. For example, the
binary trees shown in FIGS. 12B and 12C that were generated
for 16 data bits each contain 4 rows.

Binary tree 1300 includes a binary sub-tree 1301 having a
log,s number of rows, and thus, a depth of'log,s, where s 1s the
number of stuck-at faults 1n the corresponding memory cells.
Binary tree 1300 and binary sub-tree 1301 both have the same
initial internal node at the top of the largest triangle shown 1n
FIG. 13. The last row of sub-tree 1301 has an s number of
leaves, as shown in FIG. 13. For example, the last row of
sub-tree 1301 has 6 leaves. Each of the leaves in the last row
of sub-tree 1301 that has no stuck-at faults 1n the rows of
binary tree 1300 below that leaf 1s marked with a 0. Each of
the leaves 1n the last row of sub-tree 1301 that has stuck-at
faults 1n rows of binary tree 1300 below that leat 1s marked
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with a 1. Thus, each of the leaves 1n sub-tree 1301 that 1s
marked with a 1 1s an internal node of binary tree 1300.
Each of the leaves 1n the last row of sub-tree 1301 that 1s
marked with a 1 has a sub-tree of tree 1300 below that node.
For example, three binary sub-trees 1302, 1303, and 1304 are
below the 3 leaves 1n the last row of binary sub-tree 1301 that

are marked with ones, as shown 1n FIG. 13. The initial internal
node of each of the binary sub-trees 1302-1304 1s a leaf of the

last row of binary sub-tree 1301 that 1s marked with a 1. Each
of the binary sub-trees 1302-1304 below the last row of sub-
tree 1301 has at most a log,(1/0) number of rows (1.e., a
maximum depth of log,(1/a)), as shown in FIG. 13, where
a=s/k, and k 1s the number of data bits. Each of binary
sub-trees 1301-1304 is a sub-tree of binary tree 1300. The last
row of binary tree 1300 has at most a k number of leaves.

The stuck-at faults of binary tree 1300 can be represented
by creating an index that characterizes only the last row of s
leaves 1n the binary sub-tree 1301 having a depth of log,s and
that characterizes the stuck-at faults in the binary sub-trees
1302-1304 that are below the last row of leaves 1n binary
sub-tree 1301. The maximum number of 1ndex bits that are
generated by the encoder to represent binary tree 1300 1n this
embodiment 1s shown below 1n equation (6). The data bits are
then encoded by inverting the subset of the data bits that do
not match the corresponding stuck-at faults in last row of
leaves in binary sub-tree 1301 and the corresponding stuck-at
faults 1n binary sub-trees 1302-1304.

L 6
index bits <4s + (1 —a)s lmgzlggz(_] (0)
o

According to yet another embodiment, an encoder encodes
data bits to generate encoded data bits by dividing the data
bits 1nto two halves having the same number of data bits and
by exchanging the data bits between the halves to achueve the
same number of stuck-at faults 1n each half. The encoded data
bits accommodate stuck-at faults i memory cells. The
encoded data bits are stored in the memory cells. Subse-
quently, the encoded data bits are read from the memory cells
and decoded to regenerate the data bats.

FIGS. 14 A-14C illustrate an exemplary application of an
encoding technique that encodes data bits by dividing the data
bits into two halves and exchanging data bits between the two
halves to achieve the same number of stuck-at faults in each
half, according to an embodiment of the present mvention.
FIG. 14 A 1llustrates bit positions 0-135 for 16 data bits pro-
vided for storage in 16 corresponding memory cells. The
memory cells corresponding to bit positions 0, 1, 3, 4, 6, 10,
12, and 14 have stuck-at faults. Each of the data bits having a
bit position from 0-7 that 1s provided for storage in a memory
cell having a stuck-at fault 1s labeled with an A 1 FIGS.
14 A-14C. Each of the data bits having a bit position from 8-15

that 1s provided for storage in a memory cell having a stuck-at
fault 1s labeled with a B in FIGS. 14A-14C.

Asshownin FIG. 14 A, the encoder divides the data bits and
the corresponding memory cells into two halves. The first half
has the data bits having bit positions 0-7, and the second half
has the data bits having bit positions 8-15. The encoder com-
pares the number of stuck-at faults in the first half with the
number of stuck-at faults in the second half. If the first half
and the second half have the same number of stuck-at faults,
then the encoding process continues using the same encoding,
technique applied to each half. The encoding technique
applied to each half may, for example, be one of the encoding
techniques described herein.
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I1 the first half does not have the same number of stuck-at
taults as the second half, then the encoder exchanges data bits
between the first and the second halves, until the first half has
the same number of stuck-at faults as the second half. In the
example of FIGS. 14 A-14C, the memory cells corresponding
to bit positions 0-7 have 5 stuck-at faults, and the memory
cells corresponding to bit positions 8-15 have 3 stuck-at
faults. Theretore, the first and second halves 1n this example
do not have the same number of stuck-at faults.

The encoder may exchange data bits between the first and
the second halves in any order. In the embodiment of FIG.
14B, the encoder exchanges data bits between the first and the

second halves from the highest bit position to the lowest bit
position (1.e., from right to left in FIGS. 14B-14C). The

encoder may, for example, exchange data bits between the
first and the second halves bit-by-bit or stuck-at fault by
stuck-at fault.

The thick vertical lines shown 1n FIGS. 14B-14C indicate

the dividing lines between data bits that are exchanged
between the first and the second halves and data bits that are
not exchanged between the first and the second halves. The
data bits to the right of the thick vertical line are exchanged
between the first and the second halves. The data bits to the
left of the thick vertical line are not exchanged between the
first and the second halves. In an embodiment, the encoder
moves the thick vertical line from right to left, exchanging
bits to the right of the thick vertical line between the first and
the second halves, until the first half has the same number of
stuck-at faults as the second half. In an embodiment, the
encoding process then continues by applying one of the
encoding techniques described above, for example, to each of
the first and the second halves.

As shown 1n FIG. 14B, 11 the encoder exchanges the data
bits corresponding to bit positions 6 and 7 1in the first half with
the data bits corresponding to bit positions 14 and 15 1n the
second half, the first and the second halves still do not have the
same number of stuck-at faults. As shown in FIG. 14C, 1f the
encoder exchanges the data bits having bit positions 3-7 inthe
first half with the data bits having bit positions 11-15 1n the
second half, the first and the second halves then have the same
number of stuck-at faults (1.e., 4 stuck-at faults).

The encoder then stores the bit positions of the last bits that
were exchanged between the first and the second halves dur-
ing encoding, as indicated by the thick vertical line 1n FIG.
14C. Because each of the first and the second halves has
one-half the total number k of data bits, a log,(k/2) number of
index bits indicate the bit position of each of the last bits
exchanged between the first and second halves during encod-
ing with respect to the k/2 bits in each of the first and second
halves.

The encoder can indicate the bit position of the thick ver-
tical line 1 two ways. One way 1s to indicate a number up to
k/2 (and then up to k/4, then up to k/8, and so on at subsequent
levels of subdwlsmns) that encodes the bit position, and
theretore, requires log,(k/2) index bits (and then log,(k/4),
then log,(k/8), and so on at subsequent levels of subdivi-
s10ms ). Another way 1s to count the number of stuck-at faults
that are on the right side of the thick vertical line, and encode
this number, therefore requiring log,(s) index bits (and then
log,(s/2), then log,(s/4), and so on at subsequent levels of
subdivisions). In this embodiment, the encoder generates
index bits that represent the exact bit positions of the stuck-at
taults. Therefore, knowing the number of stuck-at faults to the
right of the thick vertical line uniquely defines the bit position
from where the exchange will take place between the two
halves.
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In one embodiment, the encoder generates a log,(k/2)
number of index bits to indicate the bit position of each of the

last bits that were exchanged between the first and the second
halves during encoding. The decoder uses the bit position
indicated by the log,(k/2) number of index bits to reconstruct
the original data bits. In example of FIGS. 14A-14C, k/2=8,
and log,(k/2)=3. Theretore, if the example of FIGS. 14A-14C
1s applied to this embodiment, 3 index bits are generated to
indicate the bit position of each of the last bits exchanged
between the first and second halves during encoding. In the
example of FIG. 14C, the last bits exchanged between the
halves during encoding correspond to bit positions 3 and 11.
The data bits provided for storage 1n bit positions 3 and 11 are
cach 1n bit position 3 with respect to the 8 bits (numbered 0-7)
that are 1n each of the first and the second halves. Therefore,
in this example, index bits of 011 (which equal 3) are gener-
ated to indicate the bit position of each of the last bits
exchanged between the first and second halves during the
generation of the encoded data bits.

In another embodiment, the encoder stores a log,s number
ol index bits to indicate the bit positions of the data bits
exchanged between the first and second halves during encod-
ing, where s 1s the number of stuck-at faults 1n the correspond-
ing memory cells where the encoded data bits are stored. In
this embodiment, the log,s index bits indicate the number of
stuck-at faults 1n the first and second halves that were
exchanged between the first and second halves during encod-
ing. The decoder uses the log,s index bits to determine the bit
positions where data bits were exchanged between the first
and second halves during encoding.

In the example of FIG. 14C, log,s equals 3, and the last bits
exchanged during encoding are at bit positions 3 and 11. The
number indicated by the log,s index bits 1s 5, because there
are 5 stuck-at faults in the 10 memory cells 1n the first and
second halves that were exchanged between the first and
second halves during encoding. In this example, index bits of
101 are generated to 1indicate the bit position of each of the last
bits exchanged between the first and second halves during
encoding.

Equation (7) below indicates the number of index bits that
an encoder may generate to represent k data bits provided for
storage 1n memory cells having s stuck-at faults, where the
error rate a=s/k. To generate equation (7), an encoder divides
the data bits 1into two equal halves, and exchanges data bits
between the two halves so that each half has the same number
of stuck-at faults, as described above. In equation (7),

'dx(k 5]
1NdAe E,ﬂf,z

1s the number of index bits that are generated by applying the
same encoding technique to each half of the data bits, where
cach half has the same number of stuck-at faults.

. . K S (7)
index(k, o, s) = 2(111(16){5, o, 5]] + log, s

After the data bits have been divided into two equal halves
that each has the same number of stuck-at faults, each of these
two halves of data bits 1s subdivided into two equal quarters of
data bits to generate four quarters that each has the same
number of data bits. Data bits are exchanged between the first
two quarters so that each of the first two quarters has the same
number of stuck-at faults, and data bits are exchanged
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between the second two quarters so that each of the second
two quarters has the same number of stuck-at faults, as
described above with respect to the first and second halves.
Each of the four quarters of data bits 1s then subdivided into
two equal eighths of data bits to generate eight subdivisions.
Each of the eight subdivisions has the same number of data
bits. The process of exchanging data bits 1s then repeated for
cach set of two of the eight subdivisions, each set of two of
sixteen subdivisions, etc., until each of the smallest subdivi-
sions of data bits has exactly one stuck-at fault 1n 1ts corre-
sponding memory cells. After there 1s exactly 1 stuck-at fault
in each of the smallest subdivisions, then log,(1/ca) index bits
can be used to represent the bit position of each of the stuck-at
taults. Equations (8)-(15) below indicate the number of index
bits that may be generated by an encoder to represent encoded
data bits using these encoding techniques. Equations (8)-(14)
show only the number of index bits 1 the mndex used to
indicate the bit positions of the stuck-at faults. Equation (15)
includes an additional s number of 1ndex bits are added to the
index to indicate whether each of the encoded data bits stored

in a memory cell having a stuck-at fault was 1nverted or not
inverted relative to the corresponding original data bat.

_ _ k S S (3)
index(k, a, s) = 2[2(111(?16){2, o, ED + 1‘3%25

+ log,s

(9)

' _ k S S S
index(k, ., s) = 2[2[2(1ndex(§, o, g]] + log, 1 + log, 5 + log,s

((fogps)-1) (10)

. .. k : s
index(k, a, s) = 2°%2 lﬂdﬁr){—, o, 1] + Z 2 1Dg25

A
1=0

((logps)—1)) (11)

1 .
index(k, @, s) = s log, - + 5 log,s — log,s — Z i2
i=0

12
index(k, @, s) =slog,— +slog,s —log,s — [(log,s —2)s + 2] (12)
o

. 1 (13)
index(k, @, s) =2s —log,s =2 + s log, —
o

. 1 (14)
index(k, a, s) = 5(2 + log, E] —log,s =2

| 1 (15)
index(k, a, s) =5+ 5(2 + log, —] —log,s =2
0

FIG. 15 illustrates graphically how a block of data bits can
be continuously subdivided into equal subdivisions of data
bits, until each of the smallest subdivisions has exactly one
stuck-at fault, according to an embodiment of the present
invention. Initially, an encoder divides a k number of data bits
into two subdivisions 1501 and 1502 that each has a k/2
number of data bits. The encoder exchanges data bits between
subdivisions 1501 and 1502 so that each of the subdivisions
1501 and 1502 has the same number of stuck-at faults, as
described above.

Subsequently, the encoder subdivides the k/2 number of
data bits in subdivision 1501 into two subdivisions 1503 and
1504 that each has a k/4 number of data bits, and the encoder
subdivides the k/2 number of data bits in subdivision 1502
into two equal subdivisions 1505 and 1506 that each has a k/4
number of data bits. The encoder exchanges data bits between
subdivisions 1503 and 1504 so that each of the subdivisions
1503 and 1504 has the same number of stuck-at faults, as
described above. The encoder exchanges data bits between
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subdivisions 1505 and 1506 so that each of the subdivisions
1505 and 1506 has the same number of stuck-at faults, as
described above.

The encoder then subdivides the k/4 number of data bits in
cach of the subdivisions 1503-1506 into two subdivisions that
each has a k/8 number of data bits. Thus, subdivision 1503 1s
subdivided into subdivisions 1507-1508, subdivision 1504 1s
subdivided into subdivisions 1509-1510, subdivision 1505 is
subdivided into subdivisions 1511-1512, and subdivision
1506 1s subdivided into subdivisions 1513-1514. Each of
subdivisions 1507-1514 has k/8 data bits. The encoder
exchanges data bits between subdivisions 1507 and 1508,
between subdivisions 1509 and 1510, between subdivisions
1511 and 1512, and between subdivisions 1513-1514 so that
cach of the subdivisions 1507-1514 has the same number of
stuck-at faults, as described above.

The encoder continues the process of subdividing each of
the subdivisions mnto smaller subdivisions having an equal
number of data bits, until each of the smallest subdivisions
has exactly one stuck-at fault. When each of the smallest
subdivisions has exactly one stuck-at fault, the subdividing
process terminates. Each of the smallest subdivisions has a
1/a number of data bits. FIG. 15 1llustrates an example of the
smallest subdivisions 1515 each having a 1/a number of data
bits. The encoding process then continues using, for example,
one of the encoding techniques described above to encode the
data bits 1n each of the smallest subdivisions. The number of
data bits 1n each of the smallest subdivisions may be recorded
in the index bits.

Embodiments of the present invention can, for example, be
implemented using one or a combination of hardware, sofit-
ware, and a computer-readable medium containing program
instructions. Embodiments of the present invention can be
embodied as program code stored on a non-transitory coms-
puter readable medium that can be run on a computer. Soft-
ware implemented by embodiments of the present invention
and results of the present invention can be stored on a com-
puter-readable medium such as semiconductor memory, hard
disk drive, compact disc (CD), digital video disc (DVD), or
other media. Results of the present invention can be used for
various purposes such as being executed or processed by a
processor, being displayed to a user, transmitted in a signal
over a network, etc. Embodiments of the present invention
may also be embodied as a computer readable program code
unit stored on a non-transitory computer readable medium,
for causing a number of computer systems connected via a
network to affect distributed processing.

The foregoing description of the exemplary embodiments
of the present invention has been presented for the purposes of
illustration and description. The foregoing description 1s not
intended to be exhaustive or to limit the present invention to
the examples disclosed herein. In some 1nstances, features of
the present invention can be employed without a correspond-
ing use of other features as set forth. Many modifications,
substitutions, and variations are possible 1n light of the above
teachings, without departing from the scope of the present
invention.

What 1s claimed 1s:

1. A data storage system comprising:

a memory circuit; and

a control circuit to recerve data bits provided for storage in

memory cells of the memory circuit,

wherein the control circuit compares each of the data bits

provided for storage in a corresponding one of the
memory cells having a stuck-at fault to a value of the
stuck-at fault, wherein the control circuit inverts each of
the data bits having a different value than the value of the
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stuck-at fault of the corresponding one of the memory
cells to generate encoded data bits, and

wherein the control circuit generates redundant bits that

indicate the encoded data bits to invert to regenerate the
data bits.

2. The data storage system of claim 1, wherein the control
circuit inverts digital values of a first subset of the data bits
having a first set ol bit positions to generate a first subset of the
encoded data bits, wherein the first subset of the data bits are
provided for storage 1n a {irst subset of the memory cells that
has at least one memory cell having a stuck-at fault and at
least one memory cell without a stuck-at fault, and wherein
the control circuit generates the redundant bits to indicate the
first set of the bit positions.

3. The data storage system of claim 2, wherein the control
circuit maintains digital values of a second subset of the data
bits having a second set of bit positions to generate a second
subset of the encoded data bits, wherein the second subset of
the data bits are provided for storage in a second subset of the
memory cells that has at least one memory cell having a
stuck-at fault and at least one memory cell without a stuck-at
tault, and wherein the control circuit generates the redundant
bits to indicate the second set of the bit positions.

4. The data storage system of claim 3, wherein the control
circuit selects the first and the second sets of bit positions
based on a bit ata bit location in each of the bit positions in the
first and the second sets such that the bits at the bit location 1n
the bit positions of the data bits 1n the first subset have a first
digital value and the bits at the bit location 1n the bit positions
of the data bits 1n the second subset have a second digital
value.

5. The data storage system of claim 1, wherein the control
circuit encodes the data bits to generate the encoded data bits
using a binary tree, wherein the binary tree comprises leaves
and internal nodes, wherein each of the internal nodes corre-
sponds to a unique bit location 1n bit positions of the data bits,
wherein each of the leaves corresponds to a subset of the data
bits that have one of a first type or a second type, wherein the
control circuit inverts the data bits of the first type to match
values of corresponding stuck-at faults, and wherein the con-
trol circuit maintains values of the data bits of the second type
to match values of corresponding stuck-at faults.

6. The data storage system of claim 5, wherein the binary
tree comprises first and second binary sub-trees that are used
to generate the redundant bits.

7. The data storage system of claim 1, wherein the control
circuit divides the data bits into first and second halves and
exchanges the data bits between the first and the second
halves to cause the data bits 1n the first half to be provided for
storage 1n a {irst subset of the memory cells that have a first
number of stuck-at faults and to cause the data bits 1n the
second half to be provided for storage in a second subset of the
memory cells that have the first number of stuck-at faults, and
wherein the control circuit generates the redundant bits based
on bit positions ol the encoded data bits within the first and the
second halves.

8. The data storage system of claim 7, wherein the control
circuit divides the data bits in the first half into first and second
quarters and exchanges the data bits in the first half between
the first and the second quarters to cause the data bits 1n the
first quarter to be provided for storage in a third subset of the
memory cells having a second number of stuck-at faults and
to cause the data bits 1n the second quarter to be provided for
storage 1n a fourth subset of the memory cells having the
second number of stuck-at faults,

wherein the control circuit divides the data bits in the

second half into third and fourth quarters and exchanges
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the data bits in the second half between the third and the
fourth quarters to cause the data bits in the third quarter
to be provided for storage 1n a fifth subset of the memory
cells having the second number of stuck-at faults and to
cause the data bits 1n the fourth quarter to be provided for
storage 1n a sixth subset of the memory cells having the
second number of stuck-at faults, and

wherein the control circuit generates the redundant bits

based on bit positions of the encoded data bits within the
first, the second, the third, and the fourth quarters.

9. The data storage system of claim 8, wherein the control
circuit continues to subdivide the data bits into subdivisions
cach having an equal number of data bits until each of the
subdivisions 1s provided for storage in a subset of the memory
cells having only one stuck-at fault.

10. A data storage system comprising:

a memory circuit; and

a control circuit to recerve data bits provided for storage in

memo cells of the memory circuit,

wherein the control circuit compares each of the data bits

provided for storage in a corresponding one of the
memory cells having a stuck-at fault to a value of the
stuck-at fault wherein the control circuit inverts each of
the data bits having a different value than the value of the
stuck-at fault of the corresponding one of the memory
cells to generate encoded data bits,

wherein the control circuit generates redundant bits that

indicate the encoded data bits to invert to regenerate the
data bits, and wherein the control circuit generates the
redundant bits to indicate a bit position of each of the
encoded data bits that 1s stored in one of the memory
cells having one of the stuck-at faults.

11. A method comprising:

receiving data bits that are provided for storage 1n memory

cells of a memory circuit;

comparing each of the data bits provided for storage in a

corresponding one of the memory cells having a stuck-at
fault to a value of the stuck-at fault:
generating encoded data bits by inverting each of the data
bits having a different value than the value of the stuck-at
fault of the corresponding one of the memory cells; and

generating redundant bits that indicate at least one opera-
tion to perform on the encoded data bits to regenerate the
data bits.

12. The method of claim 11, wherein generating redundant
bits that indicate at least one operation to perform on the
encoded data bits to regenerate the data bits further comprises
generating the redundant bits to indicate a bit position of each
of the encoded data bits that 1s stored in one of the memory
cells having one of the stuck-at faults.

13. The method of claim 11, wherein generating encoded
data bits by 1nverting each of the data bits having a different
value than the value of the stuck-at fault of the corresponding,
one of the memory cells further comprises iverting digital
values of a first subset of the data bits having a first set of bit
positions to generate a first subset of the encoded data bits,
wherein the first subset of the data bits are provided for
storage 1n a first subset of the memory cells that has at least
one memory cell having a stuck-at fault and at least one
memory cell without a stuck-at fault, and wherein the redun-
dant bits indicate the first set of the bit positions.

14. The method of claim 13, wherein generating encoded
data bits by 1nverting each of the data bits having a different
value than the value of the stuck-at fault of the corresponding,
one of the memory cells further comprises maintaining digital
values of a second subset of the data bits having a second set
of bit positions to generate a second subset of the encoded
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data bits, wherein the second subset of the data bits are pro-
vided for storage 1n a second subset of the memory cells that
has at least one memory cell having a stuck-at fault and at
least one memory cell without a stuck-at fault, and wherein
the redundant bits indicate the second set of the bit positions.
15. The method of claim 14, wherein generating encoded
data bits by 1inverting each of the data bits having a different
value than the value of the stuck-at fault of the corresponding
one of the memory cells further comprises selecting the first
and the second sets of bit positions based on a bit at a bat
location 1n each of the bit positions 1n the first and the second
sets such that the bits at the bit location 1n the bit positions of
the data bits 1n the first subset have a first digital value and the
bits at the bit location 1n the bit positions of the data bits 1n the
second subset have a second digital value.
16. The method of claim 11, wherein generating encoded
data bits by 1inverting each of the data bits having a different
value than the value of the stuck-at fault of the corresponding
one of the memory cells further comprises:
generating a binary tree that comprises leaves and internal
nodes, wherein each of the internal nodes corresponds to
a unique bit location 1n bit positions of the data bits, and
wherein each of the leaves corresponds to a subset of the
data bits that have one of a first type or a second type;

inverting the data bits of the first type to match values of
corresponding stuck-at faults to generate a first subset of
the encoded data bits; and

maintaining values of the data bits of the second type to

match values of corresponding stuck-at faults to gener-
ate a second subset of the encoded data bits.

17. The method of claim 16, wherein generating a binary
tree that comprises leaves and internal nodes further com-
prises generating first and second binary sub-trees that are
used to generate the encoded data bits.

18. The method of claim 11, wherein generating redundant
bits that indicate at least one operation to perform on the
encoded data bits to regenerate the data bits further com-
Prises:

dividing the data bits into first and second halves;

exchanging the data bits between the first and the second

halves to cause the data bits in the first half to be pro-
vided for storage 1n a first subset of the memory cells that
have a first number of stuck-at faults and to cause the
data bits 1n the second half to be provided for storage 1n
a second subset of the memory cells that have the first
number of stuck-at faults; and

generating the redundant bits based on bit positions of the

encoded data bits within the first and the second halves.

19. The method of claim 18, wherein generating redundant
bits that indicate at least one operation to perform on the
encoded data bits to regenerate the data bits further com-
Prises:

dividing the data bits 1n the first half into first and second

quarters;
exchanging the data bits 1n the first half between the first
and the second quarters to cause the data bits 1n the first
quarter to be provided for storage 1n a third subset of the
memory cells having a second number of stuck-at faults
and to cause the data bits in the second quarter to be
provided for storage in a fourth subset of the memory
cells having the second number of stuck-at faults;

dividing the data bits in the second half into third and fourth
quarters;

exchanging the data bits in the second half between the

third and the fourth quarters to cause the data bits 1n the
third quarter to be provided for storage 1n a fifth subset of
the memory cells having the second number of stuck-at
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faults and to cause the data bits 1n the fourth quarter to be
provided for storage 1n a sixth subset of the memory cells
having the second number of stuck-at faults; and
generating the redundant bits based on bit positions of the
encoded data bits within the first, the second, the third, 5

and the fourth quarters.
20. The method of claim 19, wherein generating redundant

bits that indicate at least one operation to perform on the
encoded data bits to regenerate the data bits further comprises
continuing to subdivide the data bits into subdivisions each 10
having an equal number of data bits until each of the subdi-
visions 1s provided for storage in a subset of the memory cells
having only one stuck-at fault.
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