12 United States Patent

US008886827B2

(10) Patent No.: US 8.886.827 B2

Goel et al. 45) Date of Patent: Nov. 11, 2014
(54) FLOW CACHE MECHANISM FOR 2002/0046291 Al* 4/2002 O’Callaghan et al. 709/238
PERFORMING PACKET FLLOW LOOKUPS IN 2003/0065812 Al* 42003 Beteretal. ... 709/236
2004/0085958 Al* 5/2004 Omancccoeeeennnn, 370/389

A NETWORK DEVICE 2005/0195832 Al 9/2005 Dharmapurikar et al.
2005/0219929 Al1* 10/2005 Navasccoevvvveeeennnn, 365/212
(75) Inventors: Deepak Goel, Sunnyvale, CA (US); 2006/0184690 A1* 82006 Millikencc............ 709/238

John Keen, Mountain View, CA (US); .
(Continued)

Venkatasubramanian Swaminathan,
San Jose, CA (US)

(73) Assignee: Juniper Networks, Inc., Sunnyvale, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 72 days.
(21) Appl. No.: 13/372,014
(22) Filed: Feb. 13, 2012

(65) Prior Publication Data
US 2013/0212296 Al Aug. 15,2013

(51) Int.Cl.
GO6F 15/173 (2006.01)

(52) U.S.CL
USPC e 709/238

(58) Field of Classification Search
CPC .. HO4L 45/7453; HO4L 45/742; HO4L 45/748
USPC ... 709/238, 242 370/230, 231, 232, 233,
370/234, 235
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,768,739 Bl 7/2004 Kobayashi et al.
7,730,207 B2* 6/2010 Zhangetal. 709/242
8,005,868 B2 8/2011 Saborit et al.
8,018,940 B2 9/2011 Hao et al.
2001/0028651 A1 10/2001 Murase

“ "'JIII
I 104

LOOKLP PREFIX IN HASH
TABLE

I

FOREIGN PATENT DOCUMENTS

CN 101150483 A * 3/2008

CN 101398820 A * 4/2009

JP 2008011448 A * 1/2008

WO 02076042 Al 9/2002
OTHER PUBLICATIONS

Berenbrink et al., “Balanced Allocations: The Heavily Loaded Case,”
Siam J. Comput. vol. 35 No. 6, pp. 1350-1385, Aug. 2005.

(Continued)

Primary Examiner — Kostas Katsikis
(74) Attorney, Agent, or Firm — Shumaker & Sieflert, P.A.

(57) ABSTRACT

An example network device includes a network interface
configured to receive a packet of a packet flow, wherein the
packet tlow 1s one of a plurality of packet tlows processed by
the network device, a flow cache configured to receive a
lookup key associated with the packet tlow, and a Bloom filter
configured to process the lookup key. The flow cache 1s fur-
ther configured to store immformation about a portion of the
plurality of packet flows processed by the network device,
and determine whether to store information about the packet
flow by at least applying a selection criterion to processing of
the lookup key by the Bloom filter. The tlow cache 1s config-
ured to determine whether the lookup key 1s stored 1n the flow
cache, and, when the lookup key 1s stored 1n the flow cache,
retrieve a stored result associated with the lookup key and
output the stored result.

20 Claims, 7 Drawing Sheets

106
IN HASH
TABLE?

NO
108

ADDITIONAL

YES

110
DETERMINE NEXT LONGEST

-

PREFIXES?

NO

& f-112

DETERMINE NUMBER OF
CLOCK CYCLES ELAPSED

1 .""'-114

DETERMINE NUMBER OF
LOOKUPS PERFORMED

116
YES

STORE

PREFIX IN BLOOM FILER

JII,.---1115
» STORE RESULT AND ADDRESS

RESULT?

120

SEND HASH TABLE LOOKUF
RESULT

[

US 8,886,827 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0016666 Al* 1/2007 Dutheld etal. 709/223
2007/0136331 Al* 6/2007 Hasanetal. 707/100
2007/0168550 Al* 7/2007 Wangetal. 709/238
2008/0181217 Al* 7/2008 Sheppard etal. 370/389
2009/0182726 Al 7/2009 Wang
2009/0228433 Al 9/2009 Saborit et al.
2010/0040066 Al 2/2010 Hao et al.
2010/0098081 Al 4/2010 Dharmapurikar et al.
2010/0118885 Al* 5/2010 Congdoncceeeee. 370/419
2010/0281150 Al* 11/2010 Sailhanetal. 709/223
2010/0284405 A1 112010 Lim
2010/0290468 Al* 11/2010 Lynametal. 370/392
2011/0069632 Al* 3/2011 Chenetal. 370/253
2012/0084459 Al* 4/2012 Wuetal.ooooeooee 709/238
2012/0117319 Al 5/2012 Slavin
2012/0136846 Al 5/2012 Songetal. 707/698
2012/0233349 Al 0/2012 Aybaycccooovvvvviiiinnnnnn, 709/234
2013/0031229 Al 1/2013 Shiga et al.

OTHER PUBLICATIONS

Kirsch et al., “More Robust Hashing: Cuckoo Hashing With a Stash,”
Siam J. Comput., vol. 39, 4, pp. 1543-1561, Oct. 2009.

Pagh et al., “Cuckoo Hashing,” Preprint submitted to Elsevier Sci-
ence Dec. 8, 2003, 27 pp.

Panigrahy, “Efficient Hashing with Lookups 1 two Memory
Accesses,” found at http://arxiv.org/PS_ cache/cs/pdi/0407/
0407023v1.pdf, Feb. 1, 2008, 12 pp.

Friedgut et al., “Every Monotone Graph Property Has a Sharp
Threshold,” American Mathematical Society vol. 124, No. 10, Oct.
1996. 10 pp.

Askitis, “Fast Compact Hash Tables for Integer Keys,” presented at
the 32nd Australasian Computer Science Conference (ACSC 2009),
Wellington, New Zealand, Jan. 2009, 10 pp.

Dharmapurikar et al., “Longest Prefix Matching Using Bloom Fil-
ters,” IEEE/ACM Transactions on Networking, vol. 14, No. 2, Apr.
2006, 13 pp.

Steger et al., “Balanced Allocations: The Heavily Loaded Case,”
Powerpoint Presentation, Institut fur Informatik Technische
Universitat Munchen, Retrieved on Mar. 1, 2011, 14 pp.

Srinivasan et al, “Fast Address Lookups Using Controlled Prefix
Expansion,” ACM Transactions on Computer Systems, vol. 17 No. 1,
Feb. 1999, 40 pp.

U.S. Appl. No. 12/425,517, by Arun Kumar S P et al., filed Apr. 17,
20009.

U.S. Appl. No. 13/239,915, by John Keen, filed Sep. 22, 2011.

U.S. Appl. No. 13/194,571, by Scott Mackie, filed Jul. 29, 2011.
Extended European Search Report mailed May 24, 2013 in corre-

sponding EP Application No. 12199338.0, 7 pgs.
U.S. Appl. No. 13/239,774, by John Keen, filed Sep. 22, 2011.
Response filed Feb. 12, 2014 to the Extended European Search

Report mailed May 24, 2013 in corresponding EP Application No.
12199338.0, 17 pgs.

* cited by examiner

1 Ol

US 8,886,327 B2

aci
d31N0yd

~
S
=
o
g
= 91 —
77 371

30IA30

MIANIS d311N0d
= — —
= oCl acl
- a431N0y 431N0y
o
> —
M 0l

MHOMLAN

U.S. Patent
A

Vel
d311N0d

Vi

J0IA30
LIN3ITO

U.S. Patent Nov. 11, 2014 Sheet 2 of 7 US 8.886.827 B2

ROUTER
20

CONTROL UNIT
22

CONTROL PLANE
32

ROUTING POLICIES
PROTOCOLS a7
3% 37

DATA PLANE
34

FILTER

LOOKUP FILTERS
40 42

LPM MODULE
44

SERVICE
IFC IFC CARDS
24A 24N 30

26A 28A 26N 28N

FIG. 2

¢ Old

US 8,886,327 B2

9%
AddTT1O0HLNOD
HSVH

8%

319V.L
HSVH AdM

I~
-
e,
b
b
i
7).

ars 09

A31171d NOO1d JGHOVO MO14
.4
y—
—
g |
1-.;,
—
X
7 ___ 75
v¥s 31NAOI 0S
HA311714d NOO13 dAMOOT X434 HA9D9VYVNVIN AdM

(1] 7
dNYMO01 ¥31114

U.S. Patent

¥ Old

US 8,886,327 B2

N9.
ANVE NdIN

Sheet 4 of 7

Nov. 11, 2014
I I N I

N¥. NCL

d3711041NOD NOILONN4d HSVH

dcl
NOILONNd HSVH

av.

97 d3T1041LNOD

ANVA NJdIN

ViL
NOILONMN4d HSVH

471
43T7104LNOD

VoL
MNVE NdIN
VS
dd1114 NOO18

U.S. Patent

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

S3AN3NO

U.S. Patent

Nov. 11, 2014 Sheet 5 of 7

FLOW CACHE
60

CACHE
CONTROLLER
80

POLICIES
84

HASH
FUNCTION
86

FLOW
INFORMATION
82

FIG. 5

US 8,886,327 B2

U.S. Patent Nov. 11, 2014 Sheet 6 of 7 US 8.886.827 B2

9
RECEIVE PACKET
9
EXTRACT NETWORK ADDRESS
9

96

94
YES
@ RETURN CACHED RESULT
NO
GENERATE PREFIXES

0

2

8

100
INITIALIZE COUNTERS

02

1

LOOKUP PREFIXES IN
BLOOM FILTER

FIG. 6A

U.S. Patent Nov. 11, 2014 Sheet 7 of 7 US 8.886.827 B2

A
\ ;’j
104
LOOKUP PREFIX IN HASH
TABLE

YES IN HASH

TABLE?
110
ADDITIONAL DETERMINE NEXT LONGEST
PREFIXES? PREFIX IN BLOOM FILER
NO

112
DETERMINE NUMBER OF
CLOCK CYCLES ELAPSED
114
DETERMINE NUMBER OF
LOOKUPS PERFORMED

YES

STORE
RESULT?

SEND HASH TABLE LOOKUP
RESULT

STORE RESULT AND ADDRESS

FIG. 6B

US 8,886,827 B2

1

FLOW CACHE MECHANISM FOR
PERFORMING PACKET FLOW LOOKUPS IN
ANETWORK DEVICE

TECHNICAL FIELD

This disclosure relates to computer networks and, more
particularly, to forwarding traific within computer networks.

BACKGROUND

A computer network 1s a collection of interconnected com-
puting devices that can exchange data and share resources. In
a packet-based network, the computing devices communicate
data by dividing the data into small blocks called packets,
which are individually routed across the network from a
source device to a destination device. The destination device
extracts the data from the packets and assembles the data into
its original form. Dividing the data into packets enables the
source device to resend only those individual packets that
may be lost during transmission.

The packets are transmitted between the source device and
destination device using intermediate network devices, such
as gateways, firewalls, switches and routers. When a network
receives an incoming packet or sends an outgoing packet, the
network device may apply one or more filters to the packet to
perform a defined action on the packet under certain condi-
tions. In order to 1dentily the terms of the filters to apply to a
given packet, the network device may extract information
from the packet, such as a source or destination Internet
Protocol (IP) address, a source or destination port, and pro-
tocol. The network device then performs a search of the filter
terms installed within the network device to determine
whether the extracted information satisfies criteria specified
by any of the filter terms.

One conventional approach to identifying matching filter
terms to apply to packets includes applying a hash function to
at least a portion of the extracted information (i.e., a key) to
determine possible locations 1n a hash table for the extracted
information. A key corresponds to a portion of the extracted
information having a predefined length (e.g., a prefix of a
source or destination IP address). That 1s, one or more keys
are inputted into a hash function to generate one or more
possible locations 1n a hash table. The network device then
looks up each possible location 1n the hash table to determine
if the key 1s found 1n any of the possible locations. A key 1s
found 1n the hash table when one or more filter terms are
defined for the possible location. According to a longest pre-
fix match algorithm, the router applies the filter terms asso-
ciated with the longest prefix for which a match 1s found for
the corresponding key in the hash table. Performing the
lookup for each key in the hash table 1s done serially, such that
cach possible location for the extracted information is looked
up in the hash table one location at a time.

In order to improve the speed at which the network device
identifies filter terms to apply to the packets, the network
device may be configured to minimize the number of lookups
in the hash table. In some cases, the network device may
utilize a Bloom filter as an 1nitial assessment of whether the
key 1s affirmatively not present within the hash table or, alter-
natively, whether the key may possibly be stored 1n the hash
table. In this way, the Bloom filter may provide an efficient
mechanism for avoiding computationally expensive searches
of ahash table when the key 1s affirmatively not present within
the hash table. Conventionally, the Bloom f{ilter 1s 1mple-
mented as a bit array that stores one 1-bit value at each entry
of the array, where each 1-bit entry may correspond to a

10

15

20

25

30

35

40

45

50

55

60

65

2

different “bucket” of a corresponding hash table and indicate
that at least one entry in the hash table exists for that particular

“bucket.” When the Bloom filter 1s implemented 1n hardware
(e.g., when the bit array 1s stored 1n multiple memory banks),
the network device may perform a look up for multiple keys
in the Bloom filter 1n parallel, reducing the total number of
clock cycles required to look up all of the keys generated for
the extracted information. However, when a large number of
search keys all require reads from the same memory bank, the
queue for the memory bank may become full and force the
scheduling component of the router to stall, so that the sched-
uler cannot 1ssue lookup requests to any of the memory banks
ol the Bloom filter until the queue 1s no longer full. Thus, the
memory bank having the full queue may be a bottleneck that
limits the overall throughput of the Bloom filter lookups and
operation of the network device.

SUMMARY

In general, techniques are described for identifying packet
flows that are limiting overall throughput of the network
device and selectively storing information about the problem-
atic packet flows 1n a cache unit of a network device. A
network device 1s described 1n which the network device may
be programmatically configured to identify packet tlows eli-
gible for storage within the cache based on configurable
parameters and selectively store mformation about the eli-
gible packet tlows. For example, in accordance with tech-
niques of this disclosure, a flow cache may be programmati-
cally configured to 1identity packets flows as eligible for being
stored 1n the cache based at least 1n part on a number of hash
table lookups required and/or the amount of time required
(e.g., anumber of clock cycles) to service a request belonging
to the flow. The tlow cache may then be programmatically
configured to determine whether the packet flow information
identified as eligible for being stored in the tlow cache 1is
stored 1n the flow cache and where the information 1s stored 1n
the flow cache.

In one example, a method includes receiving, with a tlow
cache of a network device, a lookup key associated with a
packet flow, wherein the packet flow 1s one of a plurality of
packet flows processed by the network device, wherein the
flow cache stores information about a portion of the plurality
of packet tlows processed by the network device, and wherein
the flow cache determines whether to store information about
the packet flow by at least applying a selection criterion to
processing of the lookup key by a Bloom filter of the network
device. The method further includes determining, with the
flow cache, whether the lookup key 1s stored 1n the flow cache,
and, when the lookup key 1s stored 1n the flow cache, retriev-
ing, with the flow cache, a stored result associated with the
lookup key, and outputting the stored result.

In another example, a network device includes a network
interface configured to receive a packet of a packet tlow,
wherein the packet flow 1s one of a plurality of packet flows
processed by the network device, a flow cache configured to
receive a lookup key associated with the packet tlow, and a
Bloom filter configured to process the lookup key. The flow
cache 1s further configured to store information about a por-
tion of the plurality of packet tlows processed by the network
device, and determine whether to store information about the
packet tlow by at least applying a selection criterion to pro-
cessing of the lookup key by the Bloom filter. The flow cache
1s configured to determine whether the lookup key 1s stored 1n
the flow cache, and, when the lookup key 1s stored 1n the tlow
cache, retrieve a stored result associated with the lookup key
and output the stored result.

US 8,886,827 B2

3

In another example, a computer-readable storage medium
1s encoded with istructions for causing one or more pro-
grammable processors ol a computing device to receive a
lookup key associated with a packet flow, wherein the packet
flow 1s one of a plurality of packet tlows processed by the
computing device, wherein a flow cache of the computing
device stores information about a portion of the plurality of
packet flows processed by the network device, and wherein
the flow cache determines whether to store information about
the packet tlow based at least in part on applying a selection
criterion to processing of the lookup key by a Bloom filter of
the network device. The instructions further cause the one or
more programmable processors to determine whether the
lookup key 1s stored 1n the flow cache, and, when the lookup
key 1s stored in the tflow cache, retrieve a stored result asso-
ciated with the lookup key, and output the stored result.

The techniques of this disclosure may provide several
advantages. For example, the techniques provide program-
matic control over a controller and a flow cache 1n a way that
allows software to configure the manner in which a caching
mechanism 1s implemented on a particular device. This may
allow the caching mechanism to be tailored to the particular
environment 1n which the network device 1s deployed. Selec-
tively storing information about packet flows based at least in
part on a number of hash table lookups required and/or the
amount of time required (e.g., a number of clock cycles) may
increase the throughput and performance of a network device
as compared to conventional methods of processing packet
flows using a Bloom filter and key hash table. The increase 1n
throughput that may result from implementing the techniques
of this disclosure may be the greatest when a large number of
packet flows share the same destination network address or a
few different destination network addresses. Furthermore,
techniques of this disclosure may enable a network device to
identily and cache information about the packet flows most
likely to impact the performance of the network device. Lim-
iting the caching of packet tlow information to those most
likely to impact the performance may reduce the size of the
cache that 1s required to increase performance, reducing hard-
ware costs.

The details of one or more examples are set forth 1n the
accompanying drawings and the description below. Other
teatures, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram 1llustrating an example system
including a variety of network devices, any of which may
implement the techniques of this disclosure.

FIG. 2 1s a block diagram illustrating an example router
including a filter lookup block that 1s configured in accor-
dance with one or more techniques of this disclosure.

FIG. 3 1s a block diagram illustrating an example filter
lookup block of the router 1n greater detail.

FIG. 4 1s a block diagram illustrating an example Bloom
filter of the router 1n greater detail.

FIG. 5 1s a block diagram illustrating an example flow
cache of the router 1n greater detail.

FIGS. 6A and 6B are tlowcharts illustrating an example
method for performing a lookup in accordance with one or
more techniques of this disclosure.

DETAILED DESCRIPTION

FI1G. 1 1s a block diagram 1llustrating an example system 2
that includes a variety of network devices, any of which may

10

15

20

25

30

35

40

45

50

55

60

65

4

implement the techniques of this disclosure. As 1llustrated 1n
FIG. 1, system 2 includes network 10, client device 14, and
server device 16. Network 10 includes routers 12A-12E (col-
lectively, “routers 127°) that facilitate the access of content
between various network devices connected to network 10,
including client device 14 and server device 16. While 1llus-
trated as including routers 12, in other examples, system 2
may include additional or alternative network devices, such
as gateways, switches, hubs, firewall, intrusion detection/
prevention (IDP) devices, and/or any other type of network-
ing equipment or device that facilitates the transfer of data
between the various network devices. Although described
with respect to a router or other network device, any device
that includes a hash table and one or more Bloom filters may
implement the techmiques described herein and the tech-
niques should not be limited to routers or other network
devices.

Network 10 enables transmission of content between net-
work devices using one or more packet-based protocols, such
as a Transmission Control Protocol/Internet Protocol (TCP/
IP). In this respect network 10 may support the transmission
of data via discrete data units, often referred to as “packets.”
As aresult, network 10 may be referred to as a “packet-based”
or “packet switched” network. While described 1n this disclo-
sure as transmitting, conveying, or otherwise supporting
packets, network 10 may transmit data according to any other
discrete data unit defined by any other protocol, such as a cell
defined by the Asynchronous Transfer Mode (ATM) protocol,
or a datagram defined by the User Datagram Protocol (UDP).

Client device 14, 1n this example, represents a device that
submits requests for services to server device 16. Server
device 16, likewise, represents an example of a device that
provides services to client device 14 1n response to requests.
Client device 14 and server device 16 may also participate 1n
a bidirectional communication session, in which server
device 16 requests services from client device 14, and client
device 14 provides the requested services to server device 16.
In this manner, client device 14 and server device 16 can each
act as both a server and a client. Client device 14 may repre-
sent an endpoint device, such as a mobile device (e.g., a laptop
computer, tablet computer, or cellular phone), a personal
computer, a computing terminal, an Internet-capable televi-
sion or device for providing Internet-based television ser-
vices, or other such devices. Server device 16 may represent
a web server, a file server, a peer device (e.g., another user’s
computing device), a database server, a print server, or other
device from which a client device requests services.

Client device 14 submits requests to server device 16 via
network 10. In the example illustrated 1n FIG. 1, client device
14 1s communicatively coupled to router 12A. In other
examples, client device 14 may be communicatively coupled
to router 12 A via additional network devices, such as access
lines, wireless infrastructure and backhaul networks, and the
like. Routers 12 of network 10 are configured to determine
routes through network 10 to reach various destinations, such
as server device 16. Routers 12 implement routing protocols
to determine routes through network 10, as well as to share
determined routes with other routers 12. In the example of
FIG. 1, router 12 A determines that two routes exist to reach
server device 16. A first route beginning at router 12A to reach
server device 16 includes router 12D, router 12E, and server
device 16. A second route beginning at router 12A to reach
server device 16 includes router 12B, router 12C, router 12E,
and server device 16. In general, router 12A includes a control
plane that executes routing protocols to learn the topology of
network 10 and to select one of these routes over the other.
Upon recerving data from client device 14 destined for server

US 8,886,827 B2

S

device 16, a data plane of router 12A performs a lookup
function on keying information within the packet and for-
wards the data along the selected route.

Prior to forwarding a packet, routers 12 may apply one or
more filters to the packet. In some examples, filters specily
one or more conditions and a set of actions to be performed on
packets that match the conditions. In various examples, the
conditions specily one or more of a source Internet protocol
(IP) address, a destination IP address, a source port, a desti-
nation port, a protocol, and/or other fields of a packet. The
actions to perform may include one or more of appending a
label to the packet (for multiprotocol label switching (MPLS)
to tunnel the packet), removing or swapping a label on the
packet, mspecting the packet for viruses, performing deep
packet inspection on the packet, performing quality of service
processing on the packet (e.g., prioritizing the packet over
other packets), blocking or dropping the packet (e.g., when
the source or destination associated with the packet have been
determined to be malicious) or other services.

In some examples, the data plane implements a longest
prefix match algorithm when forwarding an individual packet
to 1dentily one or more filters to apply to the packet. For
example, the filters may be stored in a filter table and specity
criteria to be matched against the packet, such as network
prefix. Collectively, the criteria specified by the filters control
which of the filters are to be applied to the packet by the data
plane. As one example, router 12A may not necessarily be
configured with a specific source or destination network
address of an individual server device 16 (e.g., 10.1.1.8), but
instead may be configured such that packets having a source
or destination address matching a certain prefix (e.g., arange
of addresses corresponding to the network prefix 10.1/16) are
to have a certain filter applied to the packets by router 12A. In
general, the data plane of router 12A uses the longest prefix
match algorithm to identify the entry in the filter table that
corresponds to the longest prefix that matches the key infor-
mation of a received packet. Router 12A applies the set of
filters specified 1n the entry of the filter table 1dentified as
storing the longest matching prefix that 1s satisfied by the key
information of the recerved packet.

Routers 12, 1n some examples, use hashing units to identify
filters that match a particular packet. In one example, the
hashing unit supports prefix lengths (which act as key values
in the hashing unit) from /0 to /128. Prefixes with lengths from
/0 to /64, 1n some examples, consume a single cell of a bucket
of the hashing unit, while prefixes with prefix lengths from
/65 to /128 consume two consecutive cells, referred to as a
double cell, in the hashing umt. Hash tables of the hashing
unit, in some examples, physically support 64K single cells,
with two cells per bucket. In some examples, if all prefixes are
of single cells, each hash table can support loads of approxi-
mately 80% to 90% (e.g., 51,000 to 57,600 entries). In some
examples, 11 all prefixes are of double cells, each hash table of
the hashing unit can support loads of approximately 40% to
45% (e.g., 28,800 entries). The physical hash tables of a
hashing unit may be referred to as key hash tables. In some
examples, each key hash table has a capacity of approxi-
mately 16K cells and associated results. One example imple-
mentation of a hashing unit and corresponding hash tables 1s
described by U.S. patent application Ser. No. 13/239,774,
entitled “DYNAMICALLY ADIJUSTING HASH TABLE
CAPACITY,” by Keen et al., filed Sep. 22, 2011, which 1s
hereby incorporated by reference in 1ts entirety.

When adding a value to the key hash table, the hashing unit
stores the key value and an associated value 1in one of the cells
of the bucket to which the key value maps. For example, with

respect to the filters of router 12A, different length prefixes of

10

15

20

25

30

35

40

45

50

55

60

65

6

source or destination network addresses act as key values,
while associated values each represent the particular terms of
the filter that match a particular key value. Accordingly,
router 12A stores a destination address and an associated
value 1n a cell of a bucket to which a hash function maps the
destination address. The associated value may specily a net-
work interface or particular terms of a filter that matches the
destination address. By storing the prefixes in the cell, 11 two
or more prefixes are mapped to the same bucket, router 12A
can determine which of the cells stores the value associated
with a particular length prefix.

In some examples, router 12A 1ncludes multiple hashing
units to implement a Bloom filter. A Bloom filter 1s generally
a data structure for storing an indication of whether a particu-
lar value has been stored (or been previously processed). In
one example, a Bloom filter 1s a bit array that stores one 1-bit
value at each entry of the array. The Bloom filter data structure
1s generally designed such that false negatives are avoided,
while leaving open the (albeit small) possibility of false posi-
tives. That 1s, a well-designed Bloom filter can provide an
indication of whether a particular value has not been stored,
but 1n some cases may provide an incorrect indication that the
value has been stored (when 1n fact, the value has not been
stored).

When router 12A stores a key value 1n, e.g., the key hash
table, router 12A adds the key value to the Bloom filter. In
general, when a Bloom filter 1s queried with a particular
value, the Bloom filter provides an indication of whether the
value 1s stored 1n the Bloom filter. In one example, the lookup
returns the value one 1f the particular value 1s stored 1n the
Bloom filter and returns the value zero 11 the particular value
1s not stored in the Bloom filter. While false positives are
possible when using a Bloom filter, false negatives are typi-
cally not possible, due to the design of the Bloom filter.
Therefore, upon recerving a key value comprising a prefix of
a source or destination address for a packet, router 12A first
determines whether the key value 1s stored in the Bloom filter,
and 11 so, determines whether the key value 1s actually stored
in the key hash table.

In some examples, the Bloom filter may be implemented 1n
hardware (e.g., when the bit array 1s stored i multiple
memory banks) or 1n software. When implemented in hard-
ware, router 12A may perform a look up for multiple keys 1n
parallel, which may reduce the total number of clock cycles
required to look up the keys. However, when a large number
of search keys all require reads from the same memory bank
(e.g., when there are a large number of packet tlows directed
to the same destination network address), a queue for the
memory bank may become full, preventing additional lookup
requests from being 1ssued to any of the memory banks of the
Bloom filter until the queue 1s no longer full. Thus, the
memory bank having the full queue may be a bettleneek that
limits the overall throughput of the Bloom filter lookups and
the router. The memory bank having the full queue may be
referred to as a “hot bank™ 1n this disclosure. While described
with respect to a Bloom filter, techniques of this disclosure
may be applied to any memory structure, such as a hardware-
implemented hash table. A large number of reads may be
required from the same memory bank of any memory struc-
ture. Thus, any memory structure may suifer from “hot bank-
ing” that may limit the overall throughput of the memory
structure.

In accordance with the techniques of this disclosure, router
12A may 1dentity packet flows that require more than a con-
figurable threshold number of clock cycles to process or that
require more than a configurable threshold number of look-
ups 1n the key hash table. Router 12A 1s configured with a

US 8,886,827 B2

7

scheduling element that manages the lookup requests for the
Bloom filter. When a queue of a Bloom filter 1s full, the
scheduling element may not direct additional keys to the
queue, thereby increasing the number of clock cycles
required to process a key. Once the key 1s processed and a
result 1s retrieved from the key hash table, a controller of
router 12A determines the number of clock cycles that
clapsed between when the packet information was first
received by the filter lookup unit and when the result was
retrieved from the key hash table. If the number of clock
cycles exceeds a configurable threshold, the controller marks
the packet tlow information as being eligible for storage 1n a
flow cache of router 12A. The controller may also determine
the number of lookups 1n the key hash table that were required
to determine that no match was found or to find a match and
retrieve the result. When the number of lookups exceeds a
configurable threshold number of lookups, the controller
marks the packet flow information as being eligible for stor-
age 1n the flow cache.

In some examples, both the number of clock cycles
required to process the packet tlow information and the num-
ber of lookups 1n the key hash table may exceed each respec-
tive configurable threshold. However, the controller may
mark the packet tlow information as eligible for storage 1n the
flow cache when either threshold i1s exceeded. In various
instances, router 12A may be configured to require both
thresholds to be exceeded prior to the controller marking the
packet tlow information as being eligible to be stored 1n the
flow cache. Typically, router 12 A stores a destination network
address and the result retrieved from the key hash table 1n the
flow cache. However, router 12A may be configured to store
any combination of key and result information. For example,
router 12A may use a combination of a source network
address and a destination network address as a key 1n the flow
cache. In another example, router 12 A may use a combination
of a destination network address and a port number as akey 1n
the flow cache.

When router 12A receives a subsequent packet or packet
flow having the same key imnformation (e.g., the same desti-
nation network address) as a previously processed packet,
router 12A may first lookup the destination network address
or other key 1n the tlow cache. If the key 1s found 1n the flow
cache, the controller may use the result associated with the
key stored in the flow cache and bypass performing a lookup
in the Bloom filter or the key hash table. In this manner,
techniques of this disclosure may reduce the number of look-
ups performed 1n a Bloom {ilter and key hash table, thereby
reducing the occurrence of hot banking and improving the
throughput of the network device.

Though described primarily with respect to router 12A, 1t
should be understood that the techniques of this disclosure
may be implemented by any of routers 12, client device 14,
service device 16, or any other computing device that would
implement hashing functionality. Moreover, the techniques
of this disclosure may be applied to other contexts and for
otheruses. For example, the techniques of this disclosure may
also be applied by router 12 A when performing packet lookup
and forwarding. The data plane of router 12A may implement
the longest prefix match algorithm when forwarding an 1ndi-
vidual packet to identily an entry of a forwarding information
base (FIB) of the data plane that best matches the destination
address of the packet. Router 12A, 1n various instances, stores
the FIB 1n a hashing umit having a plurality of hash tables and
implements one or more Bloom filters in conjunction with the
hash tables. Router 12A may then apply techniques of this

5

10

15

20

25

30

35

40

45

50

55

60

65

8

disclosure to programmatically configure the hashing unit of
the FIB to dynamically bypass one or more of the Bloom
f1lters.

FIG. 2 1s a block diagram 1illustrating an example router 20
including a filter lookup block 40 that 1s configured in accor-
dance with one or more techniques of this disclosure. For
purposes of 1illustration, router 20 may be described below
within the context of system 2 shown 1n the example of FIG.
1 and may represent any one of routers 12. In this example
embodiment, router 20 includes control unit 22, interface
cards (IFCs) 24 A-24N (collectively, “IFCs 24”), and service
cards 30.

Router 20 typically includes a chassis (not shown 1n the
example of FIG. 2 for ease of 1llustration purposes) having a
number of slots for recerving a set of cards, including IFCs 24
and service cards 30. Each card may be inserted 1into a corre-
sponding slot of a chassis for communicably coupling the
card to a control unit 22 via a bus, backplane, or other elec-
trical communication mechanism. IFCs 24 send and receive

packet flows or network traffic via mbound network links
26A-26N (collectively, “inbound links 26”) and outbound

network links 28A-28N (collectively, “outbound links 287).
Inbound links 26 and outbound links 28 1n some examples for
common IFCs form common, physical communication
media for the IFCs, which operate 1n full duplex mode. That
1s, 1n some examples, each of IFCs 24 1s coupled to respective
communication media that can send and receive data substan-
tially simultaneously. In other examples, inbound links 26
and outbound links 28 form separate physical media for
respective IFCs 24.

Control unit 22 may 1nclude one or more processors (not
shown 1n FIG. 2) that execute soitware 1nstructions, such as
those used to define a software or computer program, stored
on a computer-readable storage medium (again, not shown 1n
FIG. 2), such as a storage device (e.g., a disk drive, or an
optical drive), or memory (such as Flash memory, random
access memory or RAM) or any other type of volatile or
non-volatile memory, that stores instructions to cause a pro-
grammable processor to perform the techniques described
herein. Alternatively, control unit 22 may comprise dedicated
hardware, such as one or more integrated circuits, one or more
Application Specific Integrated Circuits (ASICs), one or
more Application Specific Special Processors (ASSPs), one
or more Field Programmable Gate Arrays (FPGAs), or any
combination of one or more of the foregoing examples of
dedicated hardware, for performing the techmques described
herein.

Control umit 22 may also be divided 1nto logical or physical
“planes” to include a first control or routing plane 32, and a
second data or forwarding plane 34. In some examples, con-
trol unit 22 may be further divided into a third logical or
physical “plane,” a service plane. That 1s, control unit 22 may
implement three separate functionalities, e.g., the routing,
forwarding and service functionalities, either logically, e.g.,
as separate software instances executing on the same set of
hardware components, physically, e.g., as separate physical
dedicated hardware components that either statically imple-
ment the functionality 1n hardware or dynamically execute
soltware or a computer program to implement the function-
ality, or some combination of logical and physical implemen-
tations.

Control plane 32 of control unit 22 may provide the routing,
functionality of router 20. In this respect, control plane 32
may represent hardware or a combination of hardware and
soltware of control unit 22 that implements routing protocols
36. Routing protocols 36 may include, for example, interme-
diate system to intermediate system (IS-IS), open shortest

US 8,886,827 B2

9

path first (OSPF), routing information protocol (RIP), border
gateway protocol (BGP), or other routing protocols. By
executing routing protocols 36, control plane 32 identifies
existing routes through the network and determines new
routes through the network. Control plane 32 stores routing 53
information within routing information base (RIB) 38. The
routing information may include information defining a
topology of a network, such as network 10 of FIG. 1. Control
plane 32 may resolve the topology defined by the routing
information to select or determine one or more routes through 10
network 10.

Control plane 32 may then update data plane 34 in accor-
dance with these routes to program data plane 34 with for-
warding information stored within forwarding information
base (FIB) 46. The forwarding information associates keying 15
information (e.g., IP addresses or IP prefixes or labels) with
next hops (e.g., neighboring routers) and ultimately with out-
put interfaces of router 20 coupled to outbound links 28.
When forwarding a packet, data plane 34 processes a key
extracted from the packet’s header to traverse the forwarding 20
information stored in FIB 46 and selects a next hop to which
to forward the packet. Based on the selected next hop, data
plane 34 1dentifies the set of one or more outbound links 28
that are coupled to the next hop.

Prior to forwarding a packet via one or more outbound 25
links 28, data plane 34 may apply one or more filters to the
packet. As 1llustrated in FIG. 2, data plane 34 includes a filter
lookup block 40, filters 42, and a longest prefix match algo-
rithm module (LPM MODULE) 44. Filters 42 include one or
more filters defined for one or more different network address 30
prefixes. In some examples, filters specily one or more con-
ditions and a set of actions to be performed on packets that
match the network address prefixes. The actions may include
one or more of appending a label to the packet, removing or
swapping a label on the packet, inspecting the packet for 35
viruses, performing deep packet inspection on the packet,
performing quality of service processing on the packet,
blocking or dropping the packet or other services.

In general, longest prefix match algorithm module 44
implements the longest prefix match algorithm and 1s used by 40
filter lookup block 40 to identily the terms of a filter 42 that
match the network address for the longest defined prefix of
the network address. According to the longest prefix match
algorithm, a certain number of prefixes are generated from a
network address. The number of prefixes generated from a 45
network address may be configured by an administrator or
may vary based on the type of network address used for the
algorithm, as examples. In one example, sixteen or fewer
prefixes, each having a different length, are generated based
on the network address. One goal of the longest prefix match 50
algorithm 1s to find the longest prefix having a match. In
accordance with thus goal, the hardware or software 1mple-
menting the longest prefix match algorithm first performs a
search for the longest prefix (1.e., the most specific prefix). If
no match 1s found, a search 1s performed for the next longest 55
prefix. This process 1s an iterative process that continues until
a match 1s found or until a search has been pertormed for all
possible prefixes.

Filter lookup block 40 stores the prefixes for which at least
one {ilter 1s defined. In some examples, the prefix stored 1 60
filter lookup block 40 may be concatenated with the prefix
length (e.g., the prefix 10.1 may be concatenated with the
prefix length /16 for the entry “10.1/16” 1n filter lookup block
40). Filter lookup block 40 also generates a set of prefixes for
cach packet received by router 20 and searches for an asso- 65
ciated value for each packet using the longest prefix match
algorithm. That 1s, filter lookup block 40 performs searches

10

on each of the generated prefixes, starting with the longest
prefix and moving to the shortest prefix, in order, until a match
1s found. In one example, the longest prefix match may be
performed by filter lookup block 40 on a source address (e.g.,
a source media access control address, a source [P address, or
a source 1dentifier) or a destination address (€.g., a destination
media access control address, a destination IP address, or a
destination identifier).

An administrator of router 20 may configure policies 37
that may be used by control plane 32 to programmatically
configure the manner 1n which filter lookup block 40 per-
forms the filter lookups. For example, control plane 32 may
receive system performance information from data plane 34
that 1s reflective of the performance of filter lookup block 40.
Based on policies 37 and the system performance informa-
tion, control plane 32 configures filter lookup block 40 1n a
manner that, in various istances, may increase the perfor-
mance of filter lookup block 40. That 1s, control plane 32 may
select one of policies 37 to configure filter lookup block 40.
One aspect of filter lookup block 40 configurable by control
plane 32 includes the thresholds used by filter lookup block
40 to determine when a packet 1s eligible for storage 1n a flow
cache of filter lookup block 40 and how filter lookup block 40
manages the mformation stored in the flow cache. Further
details of filter lookup block 40 are described with respect to
FIGS. 3-6.

FIG. 3 1s a block diagram illustrating an example filter
lookup block 40 of router 20 in greater detail. For purposes of
illustration, filter lookup block 40 may be described below
within the context of router 20 shown in the example of FIG.
2. In this example embodiment, filter lookup block 40

includes key manager 50, prefix lookup module 52, Bloom
filters 34 A and 34B (collectively, “Bloom filters 34°°), hash

controller 56, key hash table 58, and flow cache 60. The
entries ol prefix lookup module 52, Bloom filters 54, key hash
table 58, and flow cache 60 may be configured based on input
received from an administrator interacting with router 20. For
example, 1f the administrator configures a new filter on router
20, filter lookup block 40 stores one or more prefixes associ-
ated with the filter within key hash table 38 and adds entries 1n
cach of Bloom filters 54 to indicate that there are correspond-
ing matching entries 1n key hash table 38 for the prefixes.

In general, when router 20 receives a packet, at least a
portion of the information included in the packet 1s sent to
filter lookup block 40. In one example, the source or destina-
tion network address 1included 1n the packet 1s sent to filter
lookup block 40. Key manager 50 receives the information
and generates a lookup key based on the information. In some
examples, the lookup key includes the destination network
address included 1n the packet. In other examples, the lookup
key may include any combination of the source network
address, the destination network address, and the port number
included in header information of the packet. Key manager 50
sends a command and the lookup key to flow cache 60 to
cause tlow cache 60 to perform a lookup on the lookup key. In
some examples, key manager 50 sends the lookup key to
prefix lookup module 52 1n parallel to sending the lookup key
to flow cache 60.

If flow cache 60 finds a match for the lookup key 1n a hash
table of flow cache 60, flow cache 60 retrieves the stored
result information associated with the lookup key and sends
the result mformation to prefix lookup module 52. If flow
cache 60 does not find a match for the key, flow cache 60
sends a message to prefix lookup module 52 indicating that a
match was not found.

Prefix lookup module 52 processes the lookup key based at
least 1n part on the result recerved from flow cache 60. For

US 8,886,827 B2

11

example, when flow cache 60 finds a match and sends the
stored result information to prefix lookup module 52 as the
result, prefix lookup module 52 does not generate a set of
prefixes based on the lookup key. Instead, prefix lookup mod-
ule 52 sends the result information received from flow cache
60 to hash controller 56.

When flow cache 60 does not find a match, prefix lookup
module 52 sends a message to hash controller 56 that instructs
hash controller 56 to mnitialize to zero at least a clock cycle
counter for the lookup key and generates a set of prefixes
using the lookup key. The number and the lengths of the
prefixes generated from the lookup key are specified 1n prefix
lookup module 52. The clock cycle counter increments for
cach clock cycle that elapses between when the clock cycle
counter begins and when a match 1s found 1n key hash table 58
or it 1s determined that no match for the lookup key 1s located
in key hash table 58 (e.g., because none of the prefixes gen-
crated from the lookup key were found 1n key hash table 58).
In some examples, the clock cycle counter starts when prefix
lookup module 52 sends the generated set of prefixes to
Bloom filters 54.

After generating the set of prefixes specified 1n prefix
lookup module 52, filter block 40 performs a lookup for the
one or more of the generated prefixes 1n each of Bloom filters
54. That 1s, the full set of generated prefixes 1s looked up 1n
Bloom filter 34A and 1n Bloom filter 54B. For each prefix
looked up 1n each Bloom filter 34, a value 1s returned indi-
cating whether the prefix was found 1n the respective Bloom
filter 54. In one example, the value one indicates that the
prefix was found and the value zero indicates that the prefix
was not found. While shown 1 FIG. 3 as including two
Bloom filters 54A and 54B, other examples of filter lookup
block 40 may include one Bloom filter or more than two
Bloom filters.

Hash controller 56 determines whether to perform a lookup
in key hash table 58 for each prefix. Hash controller 56 exam-
ines the value returned from the Bloom filter lookup for each
of the prefixes and 1dentifies the longest prefix that may be
included in key hash table 58. If both values returned from the
lookups performed in Bloom filters 54 A and 54B indicate that
the prefix may be included in key hash table 58, hash control-
ler 56 determines that the prefix may be included 1n key hash
table 58. If erther value returned from the lookups performed
in Bloom {ilter tables 54 A and 54B indicates that the prefix 1s
not included 1n key hash table 58, hash controller determines
that the prefix 1s not included 1n key hash table 58. The
likelihood of getting a false positive result for a single prefix
from both Bloom filters 1s lower than 11 only one Bloom filter
1s used. Because hash controller 56 considers performing a
lookup for a prefix 1n key hash table 38 only when the return
values from both of Bloom filters 34 indicate that the prefix
may be 1n the set, the number of unneeded or unsuccessiul
lookups performed on key hash table 58 may be reduced
when two Bloom filters are used as compared to when one
Bloom filter 1s used.

When hash controller 56 1dentifies at least one prefix that
may be included in key hash table 58, hash controller 56
initializes a counter that counts the number of lookups that are
performed 1n key hash table 58 until an outcome has been
determined. Hash controller 56 i1dentifies the longest prefix
that may be 1n key hash table 58, performs a lookup 1n key
hash table 58 using the identified prefix, and increments the
key hash table lookup counter. When hash controller 56 per-
torms the lookup, hash controller 56 applies a hash function
to the prefix in order to 1dentity the location 1n key hash table
58 at which the prefix should be located 11 the prefix is stored
in key hash table 58. If the prefix 1s not found 1n key hash table

10

15

20

25

30

35

40

45

50

55

60

65

12

58 (e.g., because of a false positive indication received from
the Bloom filter), hash controller 56 identifies the next longest
prefix that may be 1n key hash table 58, performs a lookup 1n
key hash table 58 using the next longest prefix, and incre-
ments the key hash table lookup counter. This process con-
tinues until a prefix 1s found in key hash table 58 or there are
no more prefixes to lookup 1n key hash table 58.

When a match 1s found or there are no more prefixes to
lookup 1n key hash table 58, hash controller 56 stops the clock
cycle counter. Hash controller 56 sends the value of the clock
cycle counter, the value of the key hash table lookup counter,
the lookup key, and the result associated with the lookup key
to flow cache 60. The result associated with the lookup key
includes the information returned from the lookup 1n key hash
table 58 when a match was found or an indication that the
lookup key 1s not found 1n key hash table 38 when a match was
not found.

Flow cache 60 determines i1 the value of the clock cycle
counter 1s greater than a configurable threshold or 11 the value
of the key hash table lookup counter i1s greater than another
configurable threshold. In examples where the value of the
clock cycle counter 1s greater than the configurable threshold
or where the value of the key hash table lookup counter 1s
greater than the other configurable threshold, flow cache 60
identifies the lookup key as being eligible for storage in flow
cache 60.

For packet flows that are eligible for storage in flow cache
60, flow cache 60 determines where to store the lookup key
and result by at least applying a hash function to the lookup
key. The hash result corresponds to a location (e.g., a bucket)
within the hash table of flow cache 60. In one example, flow
cache 60 1s implemented as a hash table having 512 buckets
cach with 2 cells per bucket. The combination of the lookup
key and the associated result consumes one cell. Thus, 1n this
example, each bucket may store information about two packet
flows and tlow cache 60 may store information about 1024
packet flows.

In some 1nstances, a lookup key and associated result may
already be stored 1n one or both of the cells that correspond to
the bucket identified by the hash result. Flow cache 60 may be
programmatically configured to select which cell to store the
lookup key and associated result using any number of differ-
ent algorithms including random eviction and least recently
used. In examples where tflow cache 60 1s programmed to use
random eviction, flow cache 60 may include a shift register
that generates a random number (e.g., a zero or a one) that
corresponds to one of the two cells of the hash bucket. Flow
cache 60 stores the lookup key and associated result in the cell
that corresponds to the generated random number. In
examples where flow cache 60 1s programmed to use a least
recently used algorithm to select the cell to store the lookup
key and associated result, flow cache 60 maintains access
information and marks cells as eligible to be replaced based
on when the cell was last accessed. Flow cache 60 1dentifies
the cell of the bucket that includes information that was least
recently accessed or used by tflow cache 60 and stores the new
lookup key and associated result in the 1dentified cell.

FIG. 4 15 a block diagram 1illustrating an example Bloom
filter 54A of router 20 1n greater detail. For purposes of
illustration, Bloom filter 54 A may be described below within
the context of filter lookup block 40 shown 1n the example of
FIG. 3 and router 20 shown 1n the example of FIG. 2. Bloom
filter 34 A 1s one example of a Bloom filter of router 20. In
other examples, router 20 may include Bloom filters having a

different configuration. Bloom filter 54 A includes queues
70A-TON (collectively, “queues 70”), hash functions 72A-

72N (collectively, “hash functions 72”), controllers 74 A-74N

US 8,886,827 B2

13

(collectively, “controllers 74”’), and memory banks (MEM
BANK) 76 A-76N (collectively, “memory banks 76”).

Each of memory banks 76 1s a separate hardware bank of
memory that may each be accessed 1n parallel with other ones
of memory banks 76. The data structure of Bloom filter 54 A
1s stored 1n memory banks 76 such that the values indicating
whether a prefix was likely stored in key hash table 38 or
definitely not stored 1n key hash table 58 are stored across
memory banks 76 based on the results of applying a hash
function to each prefix associated with a filter. In one
example, the number of memory banks 76 1s the same as the
number of queues 70. In another example, the number of
memory banks 76 1s greater than the number of queues 70
(e.g.,32 memory banks when there are 16 queues). By having
more memory banks 76 than queues 70, the values may be
spread across more memory banks, thus reducing the likeli-
hood that two different prefixes will require lookups from the
same one of memory banks 76. Reducing the number of
prefixes that require lookups from the same one of memory
banks 76 may increase the parallelism of the lookup operation
and may decrease the buildup of prefixes 1n one or more of
queues 70.

Bloom filter 54 A receives a set of prefixes from prefix
lookup module 52 and temporarily stores the prefixes 1n
queues 70. Each of queues 70 1s configured to store prefixes of
a certain length. In one example, queues 70 includes sixteen
queues where each queue 1s configured to store one of sixteen
different length prefixes included in the set of prefixes
received from prefix lookup module 52. For example, queue
70A may be configured to store the longest prefix length from
a set of sixteen prefix lengths (e.g., prefixes of length /32),
queue 70B may be configured to store the second longest
prefix length from the set of sixteen prefix lengths (e.g.,
prefixes of length /24), and queue 70N may be configured to
store the shortest prefix length from the set of sixteen prefix
lengths (e.g., prefixes of length /2). While illustrated as each
of queues 70 having five “slots” for storing prefixes, queues
70 may be configured with any amount of storage (e.g., any
number of bytes) capable of having any number of “slots™ for
storing prefixes (e.g., four, e1ght, or twelve slots). The number
of slots, 1n various instances, 1s equal to the 1nitial value of the
corresponding credit counter of prefix lookup module 52.

When Bloom filter 54 A performs a lookup, Bloom filter
54A removes a set of prefixes from queues 70. In one
example, queues 70 are configured as first-in-first-out queues
such that when Bloom filter 54 A removes a prefix from one of
queues 70, Bloom filter 54 A removes the prefix that was first
added to the queue (1.¢., the prefix that was in the queue for the
longest period of time). Upon removing a prefix from each of
queues 70, Bloom filter 54 A applies a respective one of hash
functions 72 to the prefix to generate a location within
memory banks 76 (e.g., a memory address) 1n which to look
for the prefix. Hash functions 72 may be implemented 1n
hardware such that hash functions 72 include N different
hardware implementations of the same hash function. In
some examples, the number of hardware-implemented hash
functions equals the number of queues 70.

Each of hash functions 72 are the same hash function
within a single Bloom filter, but may be diflerent between
Bloom filters. For example, the hash functions implemented

in Bloom filter 54 A may be different than the hash functions
implemented in Bloom filter 1n 54B. By implementing dii-
ferent hash functions in different Bloom filters, the likelihood
that all of the Bloom filters will return a false positive 1s
reduced as compared to implementing one hash function in
multiple Bloom filters. By implementing one hash function

10

15

20

25

30

35

40

45

50

55

60

65

14

72 1n hardware for each of queues 70, hash functions 72 may
hash each of the set of prefixes in parallel.

The value generated by hashing the prefix 1s the index for
the Bloom filter. The index 1s passed to the respective one of
controllers 74. The index serves as a memory address. Con-
trollers 74 perform a read from a memory bank 76 based on
the index. In one example, controllers 74 examine the first five
bits of the index to determine which one of memory banks 76
to use for the lookup. Controllers 74 may also be 1mple-
mented 1n hardware and the number of controllers 74 may be
the same as the number of queues 70. By implementing
controllers 74 in hardware and implementing the same num-
ber of controllers 74 as the number of queues 70, controllers
74 may determine the appropriate one of memory banks 76 1n
which to perform the read from a memory bank 76 for the
index value for each of the set of prefixes in parallel.

In some 1nstances, two or more prefixes of a single set of
prefixes may require a lookup in the same one of memory

banks 76. In these instances, one lookup 1s typically per-
formed on the one memory bank 76 1n one clock cycle and the
second lookup on the one memory bank 76 1s performed 1n the
next clock cycle. For example, 11 the first prefix is retrieved
from queue 70A and the second prefix is retrieved from queue
70B and both prefixes require a lookup 1n memory bank 76B.
In this example, controller 74 A may perform a lookup on the
first prefix 1n memory bank 76B 1n a first clock cycle and
controller 74B may perform a lookup on the second prefix 1n
memory bank 76B 1n the second clock cycle.

During the second clock cycle, Bloom filter 54A may
retrieve another prefix from queue 70 A because a lookup was
performed on the previously retrieved prefix. In this manner,
the lengths of each of queues 70 may be different. During the
second clock cycle, prefix lookup module 52 may send an
additional set of prefixes to Bloom filter 54 A, which are then
stored 1n queues 70. I several prefixes require a lookup from
the same one of memory banks 76, one or more of queues 70
may {ill up (1.e., hot banking).

After a lookup 1s performed by each of controllers 74,
controllers 74 sends the result of the lookup to hash controller
56 of filter lookup block 40. For example, when controller
74A completes a lookup for a prefix retrieved from queue
70A, controller 74A sends the result of the lookup to hash
controller 56. The result of the lookup 1ndicates whether the
prefix 1s likely stored in key hash table 58 or 1s definitely not
stored 1n key hash table 58.

FIG. 5 1s a block diagram illustrating an example flow
cache 60 of router 20 1n greater detail. For purposes of 1llus-
tration, flow cache 60 may be described below within the
context of filter lookup block 40 shown in the example of FIG.
3 and router 20 shown in the example of FIG. 2. Flow cache
60 1s one example of a tlow cache of router 20. Flow cache 60
includes cache controller 80 and tlow information 82. Cache
controller 80 further includes policies 84 and hash function
86.

Flow cache 60 1s programmable (e.g., by control plane 32
of router 20) to configure policies 84 that cache controller 80
applies to lookup keys to determine if the packet tlow asso-
ciated with a lookup key 1s eligible for storage within tlow
cache 60. Policies 84 include the threshold values used to
determine whether a lookup key 1s eligible for storage within
flow cache 60 and may also include configuration information
that 1dentifies the replacement algorithm to use when storing
a lookup key and 1ts associated result in flow information 82.
In some examples, filter lookup block 40 outputs statistical
information (e.g., throughput, cache hits, etc.) to control
plane 32. Control plane 32 may automatically adjust the

US 8,886,827 B2

15

thresholds stored 1n policies 84 based at least 1n part on the
statistical information received from flow cache 60.

Upon receiving a lookup key and associated result from
hash controller 56, cache controller 80 determines whether
the lookup key and associated result are eligible for storage
within flow information 82. As described above, hash con-
troller 56 maintains a clock cycle counter and a key hash table
lookup counter and sends the value of each counter to flow
cache 60. Cache controller 80 retrieves threshold values for

cach counter from policies 84 and determines whether the
value of either counter exceeds the respective threshold value.
When neither of the values of the counters exceeds a respec-
tive threshold value, cache controller 80 discards the lookup
key and associated result without storing the lookup key and
associated result in flow information 82.

When the value of either counter exceeds a respective
threshold value, cache controller 80 marks the lookup key and
associated result as being eligible for storage in flow 1nfor-
mation 82. Cache controller 80 applies hash function 86 to the
lookup key to generate a location within flow information 82
in which to store the lookup key and associated result. Flow
information 82 may be implemented as a hardware hash table
that includes 512 buckets each having two cells. Each cell
stores a lookup key and associated result for a packet tlow. In
one example, the lookup key 1s the destination network
address of the packet flow that 1s included in header informa-
tion of each packet of the packet flow. The location generated
by applying hash function 86 to the lookup key corresponds to
one of the buckets included 1n tlow information 82. Cache
controller 80 stores the lookup key and the associated result in
one of the two cells of the 1dentified bucket.

If both cells of the bucket include previously stored infor-
mation, cache controller 80 may select which cell will be
overwritten with the lookup key and associated result. In one
example, cache controller 80 uses a random eviction algo-
rithm by at least generating a random number and storing the
lookup key and associated result in the cell that corresponds
to the generated random number (e.g., a zero corresponds to
a first cell and a one corresponds to a second cell). In another
example, cache controller 80 uses a least recently used algo-
rithm by at least maintaining state information about each cell
and storing the lookup key and associated result 1n the cell
that includes information that was the least recently used.
While described 1n the context of a bucket having two cells,
the techniques described above may also be applied to a
bucket having any number of cells (e.g., four, ten, or fifty).

Flow cache 60 also receives lookup keys from key manager
50. When router 20 receives a packet that needs to be pro-
cessed by filter lookup block 40, key manager 50 receives
network address information included in the packet and
passes at least a portion of the network address information to
flow cache 60. In some examples, the network address 1nfor-
mation passed to flow cache 60 1s the destination network
address for the packet. In general, the network address infor-
mation sent to flow cache 60 by key manager 50 corresponds
to the lookup key stored 1n flow information 82.

Cache controller 80 applies hash function 86 to the
received network address information to 1dentify a location
within flow mnformation 82 and performs a lookup at the
location. If no match for the received network address is
found at either cell of the bucket associated with the location,
cache controller 80 determines that information for the packet
flow 1s not stored within flow cache 60 and sends a message to
prefix lookup module 52 indicating that a match was not
found. If a match for the received address 1s found, cache
controller 80 retrieves the lookup key and associated result

5

10

15

20

25

30

35

40

45

50

55

60

65

16

from flow information 82 and outputs the lookup key and
associated result to prefix lookup module 52.

Cache controller 80 may be configured to flush the infor-
mation stored 1n flow information 82. If, for example, control
plane 32 changes a route associated with a packet tlow, con-
trol plane 32 may send flow cache 60 a command that causes
cache controller 80 to flush the information stored in flow
information 82. By flushing the information stored in tlow
information 82, tflow cache 60 automatically starts relearning
information about packet tlows identified as being eligible for
storage 1n flow cache 60.

FIGS. 6A and 6B are flowcharts illustrating an example
method for performing a lookup i accordance with one or
more techniques of this disclosure. For purposes of clarity, the
method shown 1 FIGS. 6A and 6B will be described with
respectto system 2 of FIG. 1, router 20 of FIG. 2, filter lookup
block 40 of FIG. 3, and flow cache 60 of FIG. 5. Router 20
receives a packet via one of IFCs 24 and mbound links 26
from a device (e.g., client device 14 of FIG. 1) (90). Data
plane 34 extracts information from the packet (92) and sends
the key information to filter lookup block 40. In some
examples, the information 1s extracted from a header of the
packet and may include a source or destination network
address, a source or destination port, or a protocol.

Key manager 50 of filter lookup block 40 of router 20
receives the information, generates a lookup key based on the
information, and sends the lookup key to flow cache 60 to
determine whether the lookup key 1s located 1n tlow cache 60
(94). Flow cache 60 performs a lookup within tlow informa-
tion 82 to determine whether information about the packet
flow 1dentified by the lookup key 1s stored within flow cache
60. If a match for the lookup key 1s found 1n flow information
82 (“YES” branch of 94), flow cache 60 outputs the lookup
key and associated result to prefix length module 52 which, in
turn, outputs the information to hash controller 36 for output
to control plane 32 or data plane 34 (96). That 1s, when a
match 1s found, filter lookup block 40 returns the cached
result information to the appropriate hardware or software
clement of router 20.

If a match for the lookup key 1s not found in flow informa-
tion 82 (“NO” branch o1 94), prefix length module 52 gener-
ates a set of prefixes based at least 1n part on the lookup key
generated by key manager 50 (98). The number and the
lengths of the prefixes generated from the lookup key are
specified 1n prefix lookup module 52. In one example, the
prefix information stored in prefix lookup module 52 indi-
cates that sixteen prefixes should be generated for a 32-bit IP
address and the prefix lengths should be /2, /4, /6, /8, /10,
continuing to /32. When generating the prefixes from the key
information, prefix lookup module 52 masks a number of bits
of the lower portion of the key information based on the prefix
length. For example, 11 the prefix length 1s /8 and the key
information 1s the 32-bit IP address 192.168.1.43, the prefix is
192/8 as the lower 24 bits of the IP address are masked with
zeros. It the prefix length 1s /24, the prefix 1s 192.168.1/24.

Prefix length module 52 sends a message to hash controller
56 to 1nitialize a clock cycle counter for the lookup key (100)
and sends the generated set of prefixes to each of Bloom filters
54 for lookup (102). The clock cycle counter 1s incremented
for each clock cycle that elapses between when the clock
cycle counter 1s imitialized and when a key hash table lookup
result 1s obtained. Bloom filters 54 store each of the prefixes
in a respective queue and, when performing a lookup, remove
a prefix from each queue and apply one of hash functions 72
to the prefix to generate an index for the data structure of the
Bloom filter 534 (102). The index, 1n one example, 1s amemory
address of a location 1n a memory bank of the Bloom filter.

US 8,886,827 B2

17

Each of Bloom filters 54 implements a different hash function
that 1s independent from the hash function implemented 1n the
other Bloom filter 34. Using different hash functions may
reduce the likelihood that a queue corresponding to the same
prefix length 1s tull 1n both Bloom filters 54. After the prefix
1s looked up in memory banks 76, Bloom filter 54 A sends the
result of the lookup to hash controller 56.

Once hash controller 56 has receirved a lookup result for
cach of the prefixes generated from the key information and
for each ofthe Bloom filters 54, hash controller 56 determines
the longest prefix of the prefixes that were indicated as being,
found 1 both Bloom filters 34. If either Bloom filter lookup
result for a prefix indicates that the prefix was not found in the
Bloom filter, the prefix 1s not in key hash table 58 and hash
controller 56 discards the prefix from consideration. Hash
controller 56 then performs a lookup on the longest prefix 1in
key hash table 58 (104) and determines whether the longest
prefix was found in key hash table 58 (106). Hash controller
56 maintains a key hash table lookup counter that counts the
number of lookups in key hash table 58 that are performed for
a particular lookup key before a result 1s obtained. If the
longest prefix 1s not found 1n key hash table 58 (“NO” branch
of 106), hash controller 56 increments the key hash table
lookup counter and determines whether there are any addi-
tional prefixes to lookup in key hash table 58 (108). If there
are additional prefixes to lookup (“YES” branch of 108), has
controller 56 determines the next longest prefix that was
indicated as being found 1n both Bloom filters 54 (110) and
performs a lookup 1n key hash table 58 using the next longest
prefix (104) to determine if the next longest prefix 1s found in
key hash table 58 (106). Controller 56 continues determining,
the next longest prefix (110), incrementing the key hash table
lookup counter, and performing a lookup in key hash table 58
(104) until the prefix 1s found in key hash table 58 (“YES”
branch of 106) or until all possible prefixes are looked up in
key hash table 58 (“NO” branch of 108).

Controller 56 retrieves the values from the clock cycle
counter and the key hash table lookup counter to determine
how many clock cycles elapsed since prefix lookup module
52 began processing the key information (112) and determine
how many lookups 1n key hash table 58 were performed
(114). Controller 56 sends the lookup key, the associated
result obtained from key hash table 58, the value of the clock
cycle counter, and the value of the key hash table counter to
flow cache 60.

Cache controller 80 of flow cache 60 applies policies 84 to
the value of the clock cycle counter and the value of the key
hash table lookup counter to determine whether the packet
flow 1s eligible for storage within flow cache 60 (116). Poli-
cies 84 includes a configurable threshold value for the clock
cycle counter and a configurable threshold value for the key
hash table lookup counter. If the value of the clock cycle
counter 1s greater than the corresponding threshold value or 1f
the value of the key hash table lookup counter 1s greater than
the corresponding threshold value, cache controller 80 1den-
tifies the packet tlow as being eligible for storage in flow
information 82 (*“YES” branch of 116) and stores the lookup
key and associated result in flow information 82 (118). If the
value of the clock cycle counter 1s not greater than the corre-
sponding threshold value and 11 the value of the key hash table
lookup counter 1s not greater than the corresponding thresh-
old value, cache controller 80 1dentifies the packet flow as not
being eligible for storage 1n flow cache 60 (“NO” branch of
116). In either instance, hash controller 56 outputs the key
hash table lookup result to data plane 34 (120).

The techniques described 1n this disclosure may be imple-
mented, at least 1n part, 1n hardware, software, firmware or

10

15

20

25

30

35

40

45

50

55

60

65

18

any combination thereof. For example, various aspects of the
described techniques may be implemented within one or
more processors, including one or more microprocessors,
digital signal processors (DSPs), application specific inte-
grated circuits (ASICs), field programmable gate arrays (FP-
(GAs), or any other equivalent integrated or discrete logic
circuitry, as well as any combinations of such components.
The term “processor” or “processing circuitry” may generally
refer to any of the foregoing logic circuitry, alone or 1n com-
bination with other logic circuitry, or any other equivalent
circuitry. A control unit comprising hardware may also per-
form one or more of the techniques of this disclosure.

Such hardware, soiftware, and firmware may be 1mple-
mented within the same device or within separate devices to
support the various operations and functions described 1n this
disclosure. In addition, any of the described units, modules or
components may be implemented together or separately as
discrete but interoperable logic devices. Depiction of differ-
ent features as modules or units 1s mtended to highlight dii-
terent functional aspects and does not necessarily imply that
such modules or units must be realized by separate hardware
or software components. Rather, functionality associated
with one or more modules or units may be performed by
separate hardware or software components, or integrated
within common or separate hardware or software compo-
nents.

The techniques described 1n this disclosure may also be
embodied or encoded 1n a computer-readable medium, such
as a computer-readable storage medium, containing instruc-
tions. Instructions embedded or encoded 1n a computer-read-
able medium may cause a programmable processor, or other
processor, to perform the method, ¢.g., when the instructions
are executed. Computer readable storage media may include
random access memory (RAM), read only memory (ROM),
programmable read only memory (PROM), erasable pro-
grammable read only memory (EPROM), electronically eras-
able programmable read only memory (EEPROM), flash
memory, a hard disk, a CD-ROM, a tloppy disk, a cassette,
magnetic media, optical media, or other computer-readable
storage media. It should be understood that the term “com-
puter-readable storage media” refers to physical storage
media, (e.g., non-transitory media) and not signals, carrier
waves, or other transient media.

Various embodiments of the invention have been
described. These and other embodiments are within the scope
of the following claims.

What 1s claimed 1s:
1. A method comprising;:
recerving, with a network device, a packet of a packet tlow,
wherein the packet tlow 1s one of a plurality of packet
tlows processed by the network device;
processing, with a filter block of the network device, a
lookup key associated with the packet to determine
whether a prefix associated with the lookup key 1s stored
in a hash table of the filter block, wherein processing the
lookup key comprises:
processing, with a Bloom filter of the network device, at
least one prefix associated with the lookup key to
1dentily one or more prefixes to use 1n searching the
hash table, wherein the Bloom filter stores indications
of whether various prefixes associated with the plu-
rality of packet flows processed by the network device
are stored 1n the hash table; and
searching the hash table using at least one of the 1denti-
fied one or more prefixes, wherein the hash table
stores a plurality of key value and prefix pairs for at

US 8,886,827 B2

19

least a first portion of the plurality of packet tlows
processed by the network device; and
responsive to determining, with the network device, that a
duration required to process the lookup key 1s greater
than a threshold duration, storing information about the
packet tlow 1n a flow cache of the filter block, wherein
the flow cache stores information about a second portion
of the plurality of packet tlows processed by the network
device.
2. The method of claim 1, further comprising;
responsive to determining, with the filter block and based
on the lookup key, that information about the packet flow
1s stored 1n the tlow cache:
retrieving, with the filter block, the stored result from the
flow cache; and

outputting the stored result.

3. The method of claim 1, further comprising;

sending, from a prefix lookup module of the filter block and
to the Bloom filter, the at least one prefix for processing
with the Bloom filter;

initializing, with a controller of the filter block, a clock

cycle counter to a value; and

incrementing, with the controller, the value of the clock

cycle counter for each clock cycle that elapses until the
controller receives a result from the search of the hash
table,

wherein determining that the duration required to process

the lookup key 1s greater than the threshold duration
comprises: determining that the value of the clock cycle
counter exceeds a threshold value.

4. The method of claim 1, wherein storing information
about the packet flow 1n the flow cache comprises:

applying a hash function to the lookup key in order to

identify a location within the flow cache, wherein the
location includes a plurality of cells, and wherein each of
the plurality of cells 1s configured to store a respective
lookup key and result pair;

determining whether all of the plurality of cells of the

location currently store previous lookup key and result
pairs;
when all of the plurality of cells currently store previous
lookup key and result pairs, selecting one of the plurality
of cells to store the lookup key and the result; and

overwriting the selected one of the plurality of cells with
the lookup key and the result.

5. The method of claim 4, wherein selecting one of the
plurality of cells to store the lookup key and the result com-
Prises:

generating a random number; and

selecting the one of the plurality of cells based on the

generated random number.

6. The method of claim 4, wherein selecting one of the
plurality of cells to store the lookup key and the result com-
Prises:

retrieving session information for each of the plurality of

cells;

determining which cell of the plurality of cells was least

recently used based on the session information for each
respective cell of the plurality of cells; and

selecting the one of the plurality of cells based on which

cell was least recently used.

7. The method of claim 1, wherein searching the hash table
turther comprises:

initializing, with a controller of the filter lookup block, a

lookup counter to a value;

selecting, with the controller, a first prefix of the identified

one or more prefixes;

10

15

20

25

30

35

40

45

50

55

60

65

20

searching, with the controller and based on the first prefix,

the hash table;

recerving a result of the search of the first prefix; and

when the result of the search of the first prefix indicates that

a match was found 1n the hash table, sending, from the

controller and to the flow cache, the lookup key, the

result of the search of the first prefix, and the value of the
lookup counter.

8. The method of claim 7, wherein determining that the
duration required to process the lookup key 1s greater than the
threshold duration comprises:

comparing, with the tlow cache, the value of the lookup

counter to a threshold value; and

determiming that the duration required to process the

lookup key 1s greater than the threshold duration when

the value of the lookup counter 1s greater than the thresh-
old value.

9. The method of claim 7, further comprising, when the
result of the search of the first prefix indicates that a match
was not found 1n the hash table:

incrementing the value of the lookup counter;

selecting a second prefix of the identified one or more

prefixes, wherein the second prefix 1s different from the

first prefix;

searching, with the controller and based on the second

prefix, the hash table;

recerving a result of the search of the second prefix; and

when the result of the search of the second prefix indicates

that a match was found in the hash table, sending, from
the controller and to the flow cache, the lookup key, the
result of the search of the second prefix, and the value of
the lookup counter.

10. The method of claim 1, turther comprising:

applying a hash function to the lookup key to generate a

hash result:

identitying, based on the hash result, a location within a

hash table of the flow cache:

retrieving a value stored at the 1dentified location;

determining, with the filter block and based on a compari-

son of the value stored at the 1dentified location and the
value of the lookup key, whether the lookup key 1s stored
in the flow cache.

11. A network device comprising;:

one or more network interfaces configured to receive a

packet of a packet tlow, wherein the packet flow 1s one of

a plurality of packet flows processed by the network

device;

a filter block comprising:

a tlow cache configured to store information about a
second portion of the plurality of packet flows pro-
cessed by the network device;

a hash table configured to store a plurality of key value
and prefix pairs for at least a first portion of the plu-
rality of packet flows processed by the network
device; and

a Bloom filter configured to store indications of whether
various prefixes associated with the plurality of
packet flows processed by the network device are
stored 1n the hash table,

wherein the filter block 1s configured to process a lookup

key associated with the packet to determine whether a

prefix associated with the lookup key 1s stored in the

hash table by at least causing the Bloom filter to process
at least one prefix associated with the lookup key to
identily one or more prefixes to use 1in searching the hash
table and searching the hash table using at least one of
the 1dentified one or more prefixes, and 1s further con-

US 8,886,827 B2

21

figured to, responsive to determining that a duration

required to process the lookup key 1s greater than

d

threshold duration, store information about the packet

flow 1n the flow cache.
12. The device of claim 11, wherein the filter block

1S

configured to, responsive to determining, based on the lookup
key, that information about the packet tlow 1s stored in the
flow cache: retrieve the stored result from the flow cache, and

output the stored result.

13. The network device of claim 11, further comprising:

ONe Or MOre Processors;

a prefix lookup module executable by the one or more
processors to recerve the lookup key and generate, based
on the lookup key, the at least one prefix ; and

a controller,

wherein the prefix lookup module 1s executable by the one
or more processors to send the at least one prefix to the
Bloom filter for processing by the Bloom filter, and send
a message to the controller to cause the controller to start
a clock cycle counter,

wherein the controller 1s configured to receive the message
and 1nitialize the clock cycle counter to a value, incre-
ment the value of the clock cycle counter for each clock
cycle that elapses until the controller recerves a result
from the search of the hash table, and, responsive to
receiving the result, send the lookup key, the result, and
the value of the clock cycle counter to the flow cache,
and

wherein the flow cache 1s configured to determine whether
the value of the clock cycle counter exceeds a threshold
value, and store the lookup key and the result when the
value of the clock cycle counter exceeds the threshold
value.

14. The network device of claim 11, wherein the flow cache

includes:

a flow cache hash table having a plurality of buckets each
having a plurality of cells, wherein each of the plurality
of cells 1s configured to store arespective lookup key and
result pair,

wherein the flow cache 1s configured to apply a hash func-
tion to the lookup key 1n order to 1dentify one of the
plurality of buckets of the flow cache hash table, deter-
mine whether all of the plurality of cells of the identified
bucket currently store previous lookup key and result
pairs, when all of the plurality of cells currently store
previous lookup key and result pairs, select one of the
plurality of cells to store the lookup key and the result,
and overwrite the selected one of the plurality of cells
with the lookup key and the result.

15. The network device of claim 14,

wherein the flow cache 1s configured to select one of the
plurality of cells to store the lookup key and the result by
at least being configured to generate a random number,
and select the one of the plurality of cells based on the
generated random number.

16. The network device of claim 14, wherein the flow cache

1s configured to select one of the plurality of cells to store t.
lookup key and the result by at least being configured

ne
o

retrieve session information for each of the plurality of cells,
determine which cell of the plurality of cells was least
recently used based on the session information each respec-

10

15

20

25

30

35

40

45

50

55

60

22

tive cell of the plurality of cells, and select the one of the
plurality of cells based on which cell was least recently used.

17. The network device of claim 11, wherein the filter block

further comprises:

a controller configured to 1mitialize a lookup counter to a
value, select a first prefix of the identified one or more
prefixes, search the hash table based on the first prefix,
receive aresult of the search of the first prefix, and, when
the result of the search of the first prefix indicates that a
match was found in the hash table, send the lookup key,
the result of the search of the first prefix, and the value of
the lookup counter to the flow cache.

18. The network device of claim 17,

wherein the filter block 1s configured to determine that the
duration required to process the lookup key 1s greater
than the threshold duration by at least being configured
to compare the value of the lookup counter to a threshold
value, and determining at the duration required to pro-
cess the lookup key 1s greater than the threshold duration
when the value of the lookup counter 1s greater than the
threshold value.

19. The network device of claim 17,

wherein, when the result of the search of the first prefix
indicates that a match was not found 1n the hash table, the
controller 1s configured to increment the value of the
lookup counter, select a second prefix of the 1dentified
one or more prefixes, wherein the second prefix 1s dii-
ferent from the first prefix, search the hash table based on
the second prefix, receive a result of the search of the
second prefix, and, when the result of the search of the
second prefix indicates that a match was found in the
hash table, send the lookup key, the result of the search
of the second prefix, and the value of the lookup counter
to the tlow cache.

20. A non-transitory computer-readable storage medium

encoded with instructions for causing one or more program-
mable processors of a computing device to:

recerve a packet of a packet flow, wherein the packet flow 1s
one of a plurality of packet flows processed by the com-
puting device;

process a lookup key associated with the packet to deter-
mine whether a prefix associated with the lookup key 1s
stored 1 a hash table of the filter block by at least
causing a Bloom filter of the computing device to pro-
cess at least one prefix associated with the lookup key to
identily one or more prefixes to use 1n searching the hash
table, wherein the Bloom filter stores indications of
whether various prefixes associated with the plurality of
packet tlows processed by the network device are stored
in the hash table and searching the hash table using at
least one of the 1dentified one or more prefixes, wherein
the hash table stores a plurality of key value and prefix
pairs for at least a first portion of the plurality of packet
flows processed by the network device; and

responsive to determining that a duration required to pro-
cess the lookup key 1s greater than a threshold duration,
store information about the packet flow 1n a flow cache
of the computing device, wherein the flow cache stores
information about a second portion of the plurality of
packet flows processed by the computing device.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

