US008874680B1

12 United States Patent
Das

US 8.874,680 B1
Oct. 28, 2014

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(1)

(52)

(58)

INTERCONNECT DELIVERY PROCESS
Dhananjoy Das, Sunnyvale, CA (US)

Inventor:

Assignee: NetApp, Inc., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 128 days.

Appl. No.: 13/288,764

Filed: Nov. 3, 2011

Int. Cl.

GO6F 15/167 (2006.01)

GO6l 12/00 (2006.01)

U.S. CL

USPC e 709/212;711/119

Field of Classification Search

None

See application file for complete search history.

200

202 204

Client

Network

MN-module

2068

208

(56) References Cited
U.S. PATENT DOCUMENTS
6,725,392 B1* 4/2004 Freyetal. 714/6.12
7,657,509 B2* 2/2010 Clarketal. 7077/999.003
8,402,226 B1* 3/2013 Faibishetal. 711/143
8,429,138 B2* 4/2013 Apostolopoulos etal. ... 707/693
2003/0065860 Al* 4/2003 Lesteretal. 710/305
2006/0045099 Al* 3/2006 Changetal. 370/400
2007/0266028 Al* 11/2007 Mulleretal. 707/8
2011/0078467 Al* 3/2011 Hildebrand 713/310
2011/0246686 Al* 10/2011 Cavanaghetal. 710/22

* cited by examiner

Primary Examiner — Joshua Joo

Assistant Examiner — Younes Naji

(74) Attorney, Agent, or Firm — Kleimn, O’Neill & Singh,
LLP

(57) ABSTRACT

A method for enforcing data integrity in an RDMA data
storage system includes flushing data write requests to a data
storage device belfore sending an acknowledgment that the
data write requests have been executed. An RDMA data stor-
age system includes a node configured to flush data write
requests to a data storage device before sending an acknowl-
edgment that a data write request has been executed.

21 Claims, 8 Drawing Sheets

A O SR R R O N e EE A Ny B W N G e i

r

¥

|

|

|

|

|

|

|

i

!

]

]

|

§

: 220

* ~

"

|

| i

¥ |

: :

1222 224 1

B Storage | orage| | |

: i

; S e :

' | Storage Array .

| I

" i
216 1 :

§ whared Storage 227 :

U.S. Patent Oct. 28, 2014 Sheet 1 of 8 US 8.874.680 B1

PROCESSOR
T o4
DATA MEMORY

FIG. 1

100
102

US 8,874,680 B1

Sheet 2 of 8

Oct. 28, 2014

U.S. Patent

L

0¢C

abelols paieug
[AA4

Aeily sbeiols

abriolg " |oBes 018

g |

Bt v e o aw we mm we W W

¢ Old

sjnpour-jy

L onges Bumonms
W eI

4

1l L SINPOUFN \

apnpoin

2PON

80¢

d90¢

] 74

Vo0l

HIOMION

0C

Juaio

0¢

00¢

US 8,874,680 B1

i
m
i
&
&
i
m

302

§_

?’."\-'\: A i A i

1

Sheet 3 of 8

e S i

1

Oct. 28, 2014

300

U.S. Patent

FIG. 3

U.S. Patent Oct. 28, 2014 Sheet 4 of 8 US 8.874.680 B1

408

FIG. 4

104

US 8,874,680 B1

Sheet 5 of 8

06

006

45"

N R S,

-
DL - e . . - . ey . .
e e e e e B L e Ty .v@w.
2 A
;

nu..

o B0 S e 0 0 B 0 B S e

e el S S b e b

Oct. 28, 2014

U.S. Patent

)
oy
%WWMMMMMMHNW}?'

i k 3

h ks 3

2 b =)

o :

o ..._ ¥

ha ks b

3 it i <

e

m._
€ 3D Ajud
eIEpEIDW asuodsay 706G
€ I Anug
giepeia 1senbay

ﬁ L L R B L B B

T J8quinu asuodsay

[Jsquinu 3sanbay

U.S. Patent Oct. 28, 2014 Sheet 6 of 8 US 8.874.680 B1

?

Lo

FLUSHING |
MECHANISM

DE-SEQUENCING
MECHANISM
RE-SEQUENCING
MECHANISM

FIG. 6

U.S. Patent Oct. 28, 2014 Sheet 7 of 8 US 8.874,680 B1

SEND ONE OR MORE WRITE REQUESTS TO A 700
DATA STORAGE DEVICE

WAIT FOR A FLUSH COMPLETION
ACKNOWLEDGMENT THAT THE ONE OR MORE 702

WRITE REQUESTS HAVE BEEN EXECUTED
SEND A METADATA WRITE REQUEST TO THE 704
DATA STORAGE DEVICE
SET A METADATA FLAG IN A DESIGNATED 7035
MEMORY LOCATION
PREVENT ADDITIONAL METADATA WRITE 706
REQUESTS
RECEIVE A METADATA FLUSH 708
ACKNOWLEDGMENT

FIG. 7

U.S. Patent Oct. 28, 2014 Sheet 8 of 8 US 8.874.680 B1

Sheet 8 of 8

RECEIVE ONE OR MORE WRITE REQUESTS TO A 800
DATA STORAGE DEVICE

DE-SEQUENCE THE ONE OR MORE WRITE 801
REQUESTS

EXECUTE THE ONE OR MORE WRITE REQUESTS 8i)2
804
FLUSH DATA TO A DATA STORAGE DEVICE |

SEND ONE OR MORE CONFIRMATIONS THAT THE 806
ONE OR MORE WRITE REQUESTS HAVE BEEN
FLUSHED
RE-SEQUENCE THE ONE OR MORE CONFIRMATIONS I~_ 29/

808

WAIT FOR A METADATA WRITE REQUEST RELATED

TO THE ONE OR MORE WRITE REQUESTS

MONITOR A MEMORY LOCATION FOR A METADATA | 5%
WRITE FLAG
810
RECEIVE A METADATA WRITE REQUEST |

311
FLUSH METADATA TO A DATA STORAGE DEVICE |

312

SEND A CONFIRMATION THAT THE METADATA

WRITE REQUEST HAS BEEN EXECUTED

FIG. 8

US 8,874,680 Bl

1
INTERCONNECT DELIVERY PROCESS

FIELD OF THE INVENTION

The present mvention 1s directed generally toward data
storage systems, and particularly, to out of order delivery for
data and metadata mirroring in a cluster storage system.

BACKGROUND OF THE INVENTION

A storage system typically comprises one or more storage
devices mto which information may be entered, and from
which information may be obtained, as desired. The storage
system 1ncludes a storage operating system that functionally
organizes the system by, inter alia, mnvoking storage opera-
tions in support ol a storage service implemented by the
system. The storage system may be implemented 1n accor-
dance with a variety of storage architectures including, but
not limited to, a network-attached storage environment, a
storage arca network and a disk assembly directly attached to

a client or host computer. A “disk” may refer to a hard disk
drive (HDD), a solid state drive (SSD) or any other persistent
data storage technology.

The storage system may be configured to operate accord-
ing to a client/server model of information delivery to thereby
allow many clients to access data containers stored on the
system. In this model, the client may comprise an application,
such as a database application, executing on a computer that
“connects” to the storage system over a computer network,
such as a point-to-point link, shared local area network
(LAN), wide area network (WAN), or virtual private network
(VPN) implemented over a public network such as the Inter-
net. Each client may request the services of the storage system
by 1ssuing access requests (read/write requests) as file-based
and block-based protocol messages (in the form of packets) to
the system over the network.

One type of data storage system configured to operate on a
client/server model 1s remote direct memory access (RDMA).
RDMA allows a local computer to directly access the
memory ol a remote computer without involving the remote
computer’s operating system. RDMA permits high-through-
put, low-latency networking, which 1s especially useful in
massively parallel computer clusters. When an application
performs an RDMA Read or Write request, the application
data 1s delivered directly to the network, reducing latency and
cnabling fast message transier.

In an RDMA system, the local computer or local “node” 1s
not notified of the completion of the operation when a request
1s posted. The completions on 1I/O operations are reported
asynchronously. Completions are usually reported by events
or completions can be polled using CPU cycles, but these
mechanisms increase the memory footprint and network
latency.

RDMA may be useful 1n applications such as remote mir-
roring of data. Currently, remote mirroring of data imple-
ments an “in-order delivery” (I0D) requirement, whereby
mirroring applications and connections between the nodes
typically support in-order delivery of data between the nodes.
For in-order delivery of data, the data 1s expected to be
received at the remote node 1n the same time order as 1t was
sent at the local node. For example, 1f data sets are sent at the
local node 1n a time order comprising data sets W, X, and then
Y, the IOD requirement requires that the remote node recerves
the data sets in the same time order (1.¢., recerve 1 order W, X,
and then Y). IOD of data results when there 1s a single con-
nection path between the local and remote nodes.

10

15

20

25

30

35

40

45

50

55

60

65

2

In contrast, “out-of-order delivery” (OOD) of data results
when there are multiple connection paths between the local
and remote nodes. Multiple connection paths may be 1mple-
mented to increase data throughput and bandwidth between
nodes. For OOD of data, the data i1s not expected to be
received at the remote node 1n the same time order as 1t was
sent at the local node and may arrive in any order. As such, 1n
the above example, data set Y may arrive at the remote node
prior to data sets W and X in OOD.

OOD of data from the local node to the remote node may
compromise data integrity at the remote node. Typically, for a
group of related data sets (e.g., data sets W, X, Y), there may
also be a metadata set (e.g., metadata set Z) that describes
cach of the related data sets (e.g., metadata set Z describes
data sets W, X, Y), the metadata set to also be stored to the
local and remote non-volatile storage devices. As used herein,
a “related group” of data and metadata sets may comprise one
or more data sets and one metadata set that describes and 1s
associated with each of the one or more data sets. As used
herein, “data integrity” exists when the metadata set of a
related group 1s written to the remote non-volatile storage
device only after each of the data sets within the related group
1s written to the remote non-volatile storage device. If the
metadata set of a related group 1s written before each of the
data sets within the same related group 1s written, data cor-
ruption and inconsistency in the remote non-volatile storage
device may result.

For example, the data sets of a related group may comprise
data sets W, X, Y and metadata set 7, where metadata set Z
specifies that there are 3 valid data sets and the time order of
transmitting to the remote node 1s W, X, Y, and then 7. A
“valid” data set may comprise client data that 1s pending to be
stored to the local and remote non-volatile storage devices. In
IOD of data, data integrity 1s 1ntact since the time order of
receiving and writing to the remote node 1s also W, X, Y, and
then 7Z (where metadata set Z 1s written to the remote non-
volatile storage device only after data sets W, X, and Y are
written). When the metadata set Z 1s written to the remote
non-volatile storage device, this indicates that 3 valid data
sets have already been successiully written to the remote
non-volatile storage device. As such, in IOD of data, the data
and metadata stored at the remote node would be consistent as
metadata set Z written to the remote non-volatile storage
device would accurately reflect that 3 valid data sets W, X, and
Y have been written to the remote non-volatile storage device.

However, in OOD of data, data integrity may not exist if,
for example, metadata set Z 1s recerved and written to the
remote node prior to data sets X and Y. In this example, the
data and metadata stored at the remote node would not be
consistent as metadata set Z being written to the remote
non-volatile storage device would indicate that the 3 valid
data sets W, X, and Y have already been written to the remote
non-volatile storage device, when this 1n fact 1s not true. If a
crash were to occur at the remote node before data sets X and
Y were written to the remote non-volatile storage device, data
corruption at the remote non-volatile storage device would
result. As such, use of OOD of data typically does not provide
data integrity at the remote non-volatile storage device at each
point in time.

10D for remote mirroring has significant drawbacks. For
example, multiple connection paths between the nodes may
be used to increase data throughput and connection band-
width between nodes. However, multiple connection paths
between nodes may cause OOD of data. As such, 10D of data
for remote mirroring may not take advantage of the increased
data throughput and connection bandwidth provided by mul-
tiple connection paths between the nodes and OOD of data.

US 8,874,680 Bl

3

However, in implementations of OOD, data integrity 1s at risk
because the sending or local node does not have any indica-

tion that all data has been received. The local node may
therefore send subsequent data write requests or metadata
write requests before data has been written to a persistent data
storage device, or even before all previous data write requests
have been received. As such, there 1s a need for an improved
method for remote mirroring of data and metadata between
nodes of a cluster storage system. Consequently, 1t would be
advantageous 1 a method and apparatus existed that are suit-
able for enforcing data integrity during OOD delivery
through an execution thread on a remote node in a RDMA
data storage system.

SUMMARY OF THE INVENTION

Accordingly, the present invention 1s directed to a novel
method and apparatus for enforcing data integrity during
OO0D delivery through an execution thread on a remote node
in a RDMA data storage system.

One embodiment of the present invention includes a
RDMA data storage system having a processor, memory and
a data storage device. The processor maintains an execution
thread to monitor incoming data write requests and execute
tflush operations when necessary. The processor receives one
or more data write requests through multiple independent
pathways, executes the one or more data write requests to a
cache and flushes newly written data to the data storage
device. A “flush™ 1s an operation to mirror data stored 1n a
cache to a persistent data storage device; flushing ensures that
data 1s stored 1n at least one location other than volatile
memory. The processor then sends an acknowledgement that
the one or more data write requests have been flushed and
waits to recerve a metadata write request related to the one or
more data write requests.

Another embodiment of the present invention includes a
RDMA data storage system having a processor, memory and
a data storage device. The processor de-sequences one or
more data write requests, sends the one or more data write
requests through multiple independent pathways, then waits
for an acknowledgment that the one or more data write
requests have been flushed. The processor then sends one or
more metadata write requests related to the one or more data
write requests.

Another embodiment of the present invention includes a
method for enforcing data integrity in a RDMA data storage
system. Such method includes recerving one or more data
write requests, executing the one or more data write requests
and flushing newly written data to the a storage device. After
flushing, the method further includes sending an acknowl-
edgement that the one or more data write requests have been
flushed and waiting to receive one or more metadata write
requests related to the one or more data write requests.

Another embodiment of the present invention includes a
method for writing data to a RDMA data storage system that
enforces data integrity. Such method includes de-sequencing
one or more data write requests, sending the one or more data
write requests, then waiting for an acknowledgment that the
one or more data write requests have been flushed. When the
acknowledgement has been received, sending one or more
metadata write requests related to the one or more data write
requests.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are notrestrictive of the inven-
tion claimed. The accompanying drawings, which are incor-
porated 1n and constitute a part of the specification, illustrate

10

15

20

25

30

35

40

45

50

55

60

65

4

an embodiment of the invention and together with the general
description, serve to explain the principles.

BRIEF DESCRIPTION OF THE DRAWINGS

The numerous objects and advantages of the present inven-
tion may be better understood by those skilled 1n the art by
reference to the accompanying figures in which:

FIG. 1 shows block diagram of a system for implementing,
embodiments of the present invention;

FIG. 2 shows a block diagram of an exemplary cluster
environment 1 which some embodiments operate;

FIG. 3 shows a block diagram of data transier paths 1n a
system of two nodes implementing embodiments of the
present invention;

FIG. 4 shows a block diagram of an exemplary node that
may be implemented in the exemplary cluster environment;

FIG. 5 shows a block diagram of the order of data transfers
executed according embodiments of the present invention;

FIG. 6 shows a block diagram of process modules execut-
ing embodiments of the present invention;

FIG. 7 shows a tlowchart of a method for sending data write
requests to enforce data integrity according to embodiments
of the present invention; and

FIG. 8 shows a flowchart of a method for receiving and
executing data write requests to enforce data integrity accord-
ing to embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Retference will now be made 1n detail to the subject matter
disclosed, which 1s 1llustrated 1n the accompanying drawings.
The scope of the invention 1s limited only by the claims;
numerous alternatives, modifications and equivalents are
encompassed. For the purpose of clarity, technical material
that 1s known 1n the technical fields related to the embodi-
ments has not been described in detail to avoid unnecessarily
obscuring the description.

Referring to FIG. 1, a computer in a RDMA data storage
system according to an embodiment of the present invention
includes a processor 100 connected to a memory 102 and a
data storage device 104. The processor 100 may execute
program 1nstructions to pertorm embodiments of the present
invention. Program instructions should be understood to
encompass soltware, firmware or any equivalent of software
or firmware. The processor 100 may recerve one or more data
write requests 1n parallel through a plurality data pathways.
The one or more data write requests may be maintained 1n a
queue. The one or more data write requests may be written to
the memory 102 where the memory 102 1s configured as a
cache. The processor 100 may flush data written to the
memory 102 to a data storage device 104. When data has been
flushed to the data storage device 104, the processor 100 may
send one or more acknowledgements indicating that the data
write requests have been flushed to the data storage device
104. The processor 100 may then wait for a metadata write
request related to the data write requests. The processor may
poll a specific memory address for a metadata write flag
indicating that a write request 1s a metadata write request. The
processor 100 may then execute the metadata write request.

Computers ina RDMA data storage system provide remote
access to data storage devices without any processor inter-
vention by the remote computer. The users of interconnect
services rely on 1 order delivery of any I/0 operations posted
as interconnect services work on serialized operations and
thus for legacy purposes write requests must be sequential. At
least one embodiment of the present mvention 1s a remote

US 8,874,680 Bl

S

computer 1n a RDMA system with a processor configured to
maintain and execute of queue of one or more data write
requests where the one or more data write requests may be
received non-sequentially, and actively send acknowledge-
ments pertaining to each of the one or more data write
requests. Each of the one or more data write requests may
include an explicit request for an acknowledgment from the
remote computer, or remote computer may be configured to
send an acknowledgement for each data write request without
an explicit request.

Referring to FIG. 2, a block diagram of an exemplary
cluster environment 200 utilizing embodiments of the present
invention 1s shown. The exemplary cluster environment 200
may comprise multiple interconnected storage systems
206A, 2068 (each referred to as a “node”) configured to
provide storage services for a set of storage devices 222.
Storage devices 222 may 1nclude hard disk drives, solid state

storage devices such as flash memory, non-volatile storage
device (NVRAM), Magnetic Random Access Memory

(MRAM), Phase Change RAM (PRAM), or any other data
storage technologies. The nodes 206 may be interconnected
by a cluster switching fabric 218 and may comprise various
tfunctional components that cooperate to provide a distributed
storage system architecture of the exemplary cluster environ-
ment 200. Each node 222 may be organized as a network
clement (N-module 210), a data element (D-module 212),
and a management element (M-host 208). The N-module 210
may 1include functionality to enable the node 222 to connect to
one or more clients 202 over a computer network 204, while
cach D-module 212 connects to one or more storage devices
222. The one or more storage devices may be configured as a
storage array 222. The D-module 212 may comprise the pro-
cessor 100 and memory 102 illustrated 1n FI1G. 1. The M-host
208 may further provide cluster communication services
between nodes 206 for generating information sharing opera-
tions to present a distributed file system image for the exem-
plary cluster environment 200.

It should be noted that while there 1s shown an equal
number of N-modules 210 and D-modules 212, there may be
differing numbers of N-modules 210 and D-modules 212, and
different types of functional components implementing each
node 206 in accordance with various embodiments. For
example, there may be multiple N-modules 210 and D-mod-
ules 212 interconnected 1n the exemplary cluster environment
200 that do not reflect a one-to-one correspondence between
the N-modules 210 and D-modules 212 of each node 206. As
such, the description of each node 206 comprising only one
N-module 210 and one D-module 212 should be taken as
illustrative only. For instance, anode 206 A may also have one
N-module 210 and a plurality of D-modules 212, a plurality
of N-modules 210 and one D-module 212, or a plurality of
N-modules 210 and a plurality of D-modules 212. In addition,
the functional components of the N-modules 210 and D-mod-
ules 212 may be implemented in other components of each
node 206 so the novel techniques are not limited to the 1llus-
trative embodiment discussed herein.

Clients 202 may be general-purpose computers configured
to communicate with nodes 206 1n accordance with a client/
server model of information delivery. That 1s, each client 202
may request the services of a node 206 by e.g., submitting a
read or write request, and the node may return the results of
the services requested by the client 202, by exchanging infor-
mation packets over network 204. Client 202 may submit
access requests by issuing packets using file-based access
protocols, such as the Common Internet File System (CIFS)
protocol or Network File System (NFS) protocol, over the
Transmission Control Protocol/Internet Protocol (TCP/IP)

10

15

20

25

30

35

40

45

50

55

60

65

6

when accessing information in the form of files and directo-
ries. Alternatively, client 202 may submit access requests by
1ssuing packets using block-based access protocols, such as
the Small Computer Systems Interface (SCSI) protocol
encapsulated over TCP (1SCSI) and SCSI encapsulated over
Fibre Channel (FCP), when accessing information in the form
of blocks.

In some embodiments, the totality of storage space pro-
vided by the storage devices 222 constitute shared storage
220 which may be commonly accessed by the nodes 206.
Shared storage 220 may be accessible by each D-module 212
ol each node 206, for instance, to provide a high availability
ol service to clients 202 by protecting against a failure of one
of nodes 206 or increasing performance of exemplary cluster
environment 200. As an example, a write request from the
client 202 may be recetved by any of nodes 206 and carried
out on storage array 220 by virtue of each D-module 212
having access to shared storage 220.

To optimize system resources during periods where a high
volume of access requests are serviced by a node 206, each
node 206 may implement a log cache 214, constituting one or
more write logs. A write log may, for instance, include infor-
mation provided by client 202 1n a write request, such as a
volume 1dentifier and the actual data to be written to a storage
device 222 of the shared storage 220. Write logs may then be
grouped 1n log caches for a predetermined period of time and
then stored to a storage device 222. For example, the prede-
termined time may be during an off-peak request period for
the exemplary cluster environment 200.

In an RDMA system configured as in the exemplary cluster
environment 200, one node may be configured as a local node
206 A and another node may be configured as a remote node
206B. The client 202 may send write requests through the
local node 206A, to the remote node 206B. The remote node
206B may then execute the write request to a storage device
222, Write requests in an RDMA system may be followed by
an operation to update metadata associated with the data
modified by the write request. In a contemporary RDMA
system, data may be corrupted i1 a local node 206A sends a
first write request and metadata to a remote node 2068, and
then sends a second, subsequent write request to modity the
same data to the remote node 206B before the metadata has
been flushed to a storage device 222. In an RDMA system
according the present invention, the remote node 2068 may
flush metadata to a storage device 222 and then send a con-
firmation that the metadata was flushed to the local node
206A. The local node 206A may block subsequent write
requests related to the same data until the local node 206 A
receives the confirmation that the metadata has been flushed
to a storage device 222.

Referring to FIG. 3, two nodes 300 and 302 1n a remote
direct memory access (RDMA) system implementing
embodiments of the present invention are shown. RDMA
operations are a mode of I/O across two nodes without the
involvement of a processor on the remote node 302. This
provides for greater performance benefits as the remote node
302 processor 1s usable for servicing other requests rather
than for I/O between nodes. In an RDMA system according to
an embodiment of the present invention, alocal node 300 may
send one or more data write requests through a network
adapter 306 and background architecture 312, connecting to a
remote node 302 through another network adapter 310. A
memory controller 1in the remote node 302 may write the one
or more data write requests to one or more dual 1n-line
memory modules (DIMM) 308 without involvement from the
processor of the remote node 302. The remote node 302 may
induce a flush operation to push data written by the data write

US 8,874,680 Bl

7

operation from the one or more DIMMs 308 to a data storage
device 314 such as a non-volatile random access memory

(NVRAM) hard-disk drive, a solid state drive (SSD) or any

other data storage technology that may be useful 1n 1imple-
menting an RDMA system. One skilled in the art will appre- >
ciate that an RDMA system may be implemented using a
plurality of data storage technologies 1n a tiered data storage
device. Flushing data from the one or more DIMMs 308
requires intervention by the processor in the remote node 302.

After a flush operation pushes data to a data storage device
314, the remote node 302 acknowledges the data write
request has been completed. The remote node 302 may main-
tain a queue of data write requests to be executed after a flush
operation.

A data storage system thus configured may maintain data
integrity even as data write requests are recerved through
various paths, even though the order in which data write
requests are recerved cannot be known. One skilled in the art
will appreciate that even though an RDMA system having a 20
two nodes 300 and 302 1s shown, one skilled in the art will
appreciate that the present invention 1s not limited to two
nodes, and that the present invention may be implemented in
a network having any number of nodes appropriate for an
RDMA system. 25

Referring to FI1G. 4, a block diagram of an exemplary node
206 1s shown. A node 206 may 1llustratively be embodied as
a storage system comprising a processor 102, a memory 104,

a network adapter 402, a cluster access adapter 404, a storage
adapter 406 and non-volatile storage, e.g., request cache 408, 30
interconnected by a system bus 410.

The network adapter 402 may comprise a plurality of ports
adapted to couple the node 206 to one or more clients 202 over
point-to-point links, wide area networks, virtual private net-
works implemented over a public network (Internet) or a 35
shared local area network. The network adapter 402 may
comprise the mechanical, electrical and signaling circuitry
needed to connect the node to the network. Illustratively, a
computer network 204 may be embodied as an Ethernet net-
work or a Fibre Channel (FC) network. Each client 202 may 40
communicate with the node 206 over the network 204 by
exchanging discrete frames or packets of data according to
pre-defined protocols, such as TCP/IP.

Cluster access adapter 404 may comprises a plurality of
ports adapted to couple the node 206 to other nodes of the 45
cluster through cluster switching fabric 218. In the 1llustrative
embodiment, Ethernet 1s used as the clustering protocol and
interconnect media, although 1t will be apparent to those
skilled 1n the art that other types of protocols and intercon-
nects may be utilized within the cluster architecture described 50
herein. In alternate embodiments where the N-module 210
and D-module 212 are implemented on separate storage sys-
tems or computers, cluster access adapter 404 may be utilized
by the N-module 210 and D-module 212 for communicating,
with other N-modules 210 and D-modules 212 1n the cluster 55
200. In vet other embodiments, more than one processor 102
may implement node 206, such that one processor executes
the functions of N-module 210, while another processor
executes the functions of D-module 212.

A node 206 1s 1llustratively embodied as a storage system 60
executing a storage operating system 412 that preferably
implements a high-level layer of abstraction (e.g., file system)
to logically organize the information as a hierarchical struc-
ture of data containers, such as volumes, directories, and files
on the disks. Each “on-disk™ file, for instance, may be imple- 65
mented as a set of data structures, e.g., disk blocks, configured
to store information such as the actual data for the file. Disk

10

15

8

blocks may further be organized as a volume, where each
volume may be, although 1s not necessarily, associated with
its own file system.

Storage adapter 406 cooperates with storage operating sys-
tem 412 executing on the node 206 to access iformation
requested by clients 202. The information may be stored on
any type of writable storage media such as disk drives, mag-
netic tape, tlash memory, electronic random access memory,
or any other media adapted to store information. However, as
illustratively described, information 1s preferably stored on
storage devices 222 configured as storage array 224. Storage
adapter 406 comprises a plurality of ports having input/output
(I/0) interface circuitry that couples to storage devices 222
over an I/0 mterconnect arrangement, such as a conventional
high-performance, FC link topology. Storage array 424 may
turther constitute shared storage 220 of the cluster 200 which
may be accessed by multiple nodes for increasing cluster
performance and protecting against a failure of any single
node.

Information on the storage array 224 is preferably orga-
nized as one or more volumes that comprise a collection of
storage devices 222 cooperating to define an overall logical
arrangement ol volume block number (vbn) space on the
volume(s). The disks within a volume/file system are typi-
cally organized as one or more groups, wherein each group
may be operated as a Redundant Array of Independent (or
Inexpensive) Disks (RAID). Most RAID implementations
enhance the reliability/integrity of data storage through the
redundant writing of data “stripes’ across a given number of
physical disks in the RAID group, and the appropriate storing
of parity information with respect to the striped data.

Memory 104 illustratively comprises storage locations that
are addressable by the processor 102 and the adapters 402,
404, 406 for storing program instructions and data 1n some
embodiments. The processors 102 and adapters 402, 404, 406
may, 1n turn, comprise processing elements and/or logic cir-
cuitry configured to execute the mstructions and manipulate
the data stored in memory 104. In some embodiments,
memory 104 may comprise a form of random access memory
(RAM) comprising ‘“volatile” memory that 1s generally
cleared by a power cycle or other reboot operation.

The storage operating system 412, portions of which are
typically resident in memory 104 and executed by the pro-
cessing elements, functionally organizes the node 206 by
invoking operations in support of the storage services imple-
mented by the node. It will be apparent to those skilled in the
art that other processing and memory means, including vari-
ous computer readable media, may be used for storing and
executing program instructions pertaining to the invention
described herein. In some embodiments, the storage operat-
ing system 412 comprises a plurality of soltware layers that
are executed by the processor 102.

A user console 400 may be implemented by the node 206 to
allow a user (e.g., a storage administrator) to interface with
the node 106 to supply 1nputs to or recerve outputs from the
node 106. Preferably, user console 400 may include a key-
board for receiving e¢.g., command line iterface (CLI) mnputs
from the storage administrator and a monitor for displaying
outputs generated by the node 106. As an example, the storage
administrator may 1nterface with user console 400 when con-
figuring the node 106 to communicate with a failover partner
for mirroring write logs between the nodes. It will be appre-
ciated that other devices and/or components may implement
user console 400, such as a computer remotely located and
networked to the node 106.

One or more non-volatile storage devices may implement a
request cache 408 for locally storing information relating to

US 8,874,680 Bl

9

access requests from clients 102. Preferably, a request cache
408 may be implemented to store write logs corresponding to
write requests from clients 102 in the event of an “ungraceful”™
system shutdown or other unforeseen problem where the
system fails with unflushed data 1n the write cache. To that
end, write logs may be generated by the storage operating
system 412 upon receipt of a write request from a client 102
for carrying out the requested write operation at a later time.
Note that the request cache 408 may include hard disks, flash
memory, non-volatile random access memory (NVRAM),
Magnetic Random Access Memory (MRAM), Phase Change
RAM (PRAM), or any other type of media or device suitable
for storing 1nstructions and/or data thereon/in.

Referring to FIG. 5, a graphic illustration of a timeline for
local node operations 500 and corresponding remote node
operations 302. Local node operations 500 may include a first
set of data write requests 504 and second set of data write
requests 506. The first set of data write requests 504 may be
unrelated to the second set of data write requests 506. The
local node operations 500 may also include a first metadata
write and flush request 514 related to the first set of data write
requests 504 and a second metadata write request 516 related
to the second set of data write requests 306. Remote node
operations 502 may include a first acknowledgement 508 that
the first set of data write requests 504 was flushed to a data
storage device, such as the data storage device 104 shown 1n
FIG. 1 or the data storage device 314 shown in FIG. 3, and a
second acknowledgment 510 that the second set of data write
requests 5306 was flushed a data storage device. The remote
node operations 502 may also include a metadata write and
flush acknowledgement 512 associated with the first meta-
data write and flush request 514.

Where the local node in an RDMA data storage system,
such as the local node 300 shown 1n FIG. 3, attempts to send
data write requests to a remote node, such as the remote node
302 shown in FIG. 3, the local node may send a first set of data
write requests 504 to the remote node by any available routing,
path. The local node may subsequently send an unrelated
second set of data write requests 506. The remote node may
receive the first set of data write requests 304 into a memory,
including a DIMM and the remote node may receive the
second set of data write requests 506 1nto a write request
queue. The remote node may flush the data from the first set
ol data write requests 504 to a data storage device and then
send a first acknowledgement 508 to acknowledge that the
data from the first set of data write requests has been flushed
to a data storage device. Once the local node recerves the first
acknowledgement 508, the local node may send a first meta-
data write request 514 related to the first set of data write
requests 504. The remote node may then send a metadata
write acknowledgement 512 acknowledging that the first
metadata write request was executed. The remote node may
similarly execute the second set of data write requests 506 and
send a second acknowledgement 510 to acknowledge that the
data from the second set of data write requests 506 has been
flushed to a data storage device. Once the local node receives
the second acknowledgement 510, the local node may send a
second metadata write request 516 related to the second set of
data write requests 506.

An RDMA system implementing an embodiment of the
present invention to utilize a processor on a remote node to
flush data and send acknowledgments may send data write
requests by any available path rather than a single, serialized
path. Such a system may utilize more bandwidth for data
write requests, even though certain data write requests sent
over different routing paths are likely to arrive at the remote
node out-of-order, because the local node may not send addi-

10

15

20

25

30

35

40

45

50

55

60

65

10

tional write requests concerning the same data sets until the
local node recetves an acknowledgement that all of the data
write requests have been received and flushed to a data stor-
age device.

Referring to FIG. 6, a block diagram of data transmission
layers 1s shown. A RDMA data storage system according to
the present mnvention may be include one or more clients 602,
604, 606, an interconnect layer 608 implemented on one or
more of the one or more nodes and a transcript layer 614
implemented on one or more of the one or more nodes. The
interconnect layer 608 may incorporate software modules
adapted to perform certain features of the present invention;
for example, the interconnect layer 608 may include an API
module 610 to allow the one or more clients 602, 604, 606 to
post transactions to the RDMA data storage system. The
interconnect layer 608 may also include a flushing module
612 to mitiate a flush operation.

The transaction layer 614 may also incorporate software
modules adapted to perform certain features of the present
invention; for example, the transaction layer 614 may include
a de-sequencing module 616 to separate one or more write
operations combined into a single write request so that the one
or more write operations may be sent to a remote node over a
plurality of available pathways. De-sequencing refers to a
process of dividing a serialized stream of data write requests,
intended for in-order delivery, ito a plurality of individual
data write requests that may be delivered out of order through
a plurality of data pathways. One or more data write requests
may be de-sequenced based on individual data write requests
where each data write request has a unique transmait ID, based
on uniform data block size, or any other basis suitable for
producing 1individual data write requests that may be deliv-
ered 1n parallel. By de-sequencing one or more write opera-
tions, all of the one or more write operations may be sent to a
remote node 1n parallel, thereby increasing write operation
throughput as compared to an RDMA system that sends one
Or more write operations 1n sequence.

Likewise, the transaction layer 614 may include a re-se-
quencing module 618 to combine responses and acknowledg-
ments from a remote node, recerved over a plurality of avail-
able pathways 1n parallel, into a single response 1n a format
expected by the one or more clients 602, 604, 606.

Each of the modules incorporated into the interconnect
layer 608 and the transaction layer 614 may be executed by a
process thread executing on a processor in a node ina RDMA
data storage system. It will be appreciated by one skilled 1n
the art that modules incorporated 1nto the mterconnect layer
608 may be executed on one node 1n an RDMA data storage
system while modules in the transaction layer 614 may be
executed on a different node 1n the RDMA data storage sys-
tem; for example, the modules incorporated 1nto the intercon-
nect layer 608 may be executed by a process thread executing
on a remote node. If will further be appreciated that not all
modules are necessarily invoked during every data write
request.

Retferring to FIG. 7, a method for sending data write
requests 1n a data storage system to enforce data integrity 1s
shown. A local computer may send 700 one or more data write
requests to a remote computer having a data storage device.
The local computer may send the one or more data write
requests by utilizing an API module provided by an intercon-
nect communications layer on a node in the network. The
local computer may then wait 702 for an acknowledgement
that the remote computer has flushed the data from the one or
more data write requests to the data storage device. The local
computer may then send 704 a metadata write request to the
data storage device. When sending a metadata write requests,

US 8,874,680 Bl

11

the local computer may set 705 a flag 1n a predetermined
memory location indication that the write request 1s a meta-
data write request. A remote node executing write requests
may monitor the predetermined memory location to deter-
mine 11 a write request 1s a metadata write request and process
the write request accordingly by ensuring an associated non-
metadata write request has been executed and flushed to a
storage device, then flushing the metadata to a storage device.
The predetermined memory location may be a memory
address accessible by both the local computer and the remote
node. The local computer may prevent 706 any further meta-
data write requests until the local computer receives an
acknowledgment that the metadata has been flushed to a data
storage device. The local computer may then recerve 708 an
acknowledgment that the metadata has been flushed to a data
storage device. The local computer and remote computer may
be nodes 1n a network that enable write operations to a RDMA
data storage device.

Referring to FIG. 8, a method for recerving and processing,
one or more data write requests 1s shown. A remote computer
may recerve 800 one or more data write requests to a RDMA
data storage device. The remote computer may de-sequence
801 the one or more data write requests so that the one or more
data write requests may be transierred in parallel over a
plurality of data paths in a network to a RDMA storage
device. De-sequencing may be performed by a de-sequencing
module 1n a transaction communications layer of anode in the
network. The remote computer may execute 802 the one or
more data write requests. The one or more write requests may
be executed to a cache for subsequent flushing to a storage
device. Where a remote node recerves a plurality of data write
requests 1n parallel, the remote node may place each data
write request 1n a queue. Each data write request may be
associated with a transmit ID. Transmit IDs uniquely 1dentity
cach write request. When the one or more data write requests
have been executed, the remote computer may flush 804 the
data from the one or more data write requests to a data storage
device. Flushing may be initiated by a flushing module 1n a
flushing module 1n an interconnect communications layer on
a node 1n the network, including the remote computer. The
remote computer may then send 806 one or more acknowl-
edgements that the one or more data write requests have been
flushed and wait 808 for a metadata write request related to
the one or more data write requests. Where the one or more
acknowledgements include acknowledgements for a plurality
of transmit IDs, a re-sequencing module 1n a transaction
communications layer on a node in the network, including the
remote computer, may re-sequence 807 the one or more
acknowledgements so that the one or more acknowledge-
ments may be recetved in a sequence expected by a local
computer. Re-sequencing may be based on the transmit 1D of
the data write request associated with each acknowledge-
ment. The remote computer may monitor 809 a specific loca-
tion 1in a memory for a metadata write tlag, indicating that a
write operation 1s a metadata write operation. The remote
computer may then receive 810 and execute one or more
metadata write requests. Metadata may be written to a cache
for subsequent flushing to a storage device. The remote com-
puter may then flush 611 the metadata to the data storage
device and send 812 an acknowledgment that the metadata
write request has been executed.

It 1s believed that the present mvention and many of its
attendant advantages will be understood by the foregoing
description, and i1t will be apparent that various changes may
be made 1n the form, construction, and arrangement of the
components thereof without departing from the scope and
spirit of the invention or without sacrificing all of its material

5

10

15

20

25

30

35

40

45

50

55

60

65

12

advantages. The form herein before described being merely
an explanatory embodiment thereot, it 1s the intention of the
following claims to encompass and 1include such changes.
What 1s claimed 1s:
1. A machine implemented method, comprising;
receving a set of data write requests, out of order using a
plurality of pathways, from a local computer at a remote
computer, where each data write request of the data write
requests 1s associated with a unique transmit identifier;

writing the set of data write requests to a cache by the
remote computer;

flushing the cache to a data storage device by the remote

computer:;

sending an acknowledgement to the local computer by the

remote computer that the set of data write requests were
executed;

transmitting by the local computer a metadata write request

that is related to the data write request, after recerving the
acknowledgement;

setting an 1ndicator by local computer at a pre-determined

memory storage location accessible to the local com-
puter and the remote computer for indicating to the
remote computer that a write request 1s the metadata
write request;

monitoring the pre-determined memory storage location

by the remote computer to determine that the write
request 1s the metadata write request: and

checking that the set of write requests have been executed

prior to executing the metadata write request 1n response
to determining that the write request 1s the metadata
write request;

preventing by the local computer any other metadata write

request until the local computer recerves an acknowl-
edgement from the remote computer that the metadata
write request has been executed by the remote computer.

2. The method of claim 1, wherein the local computer and
the remote computer are nodes 1 a network that enable a
write operation to a remote direct memory access (RDMA)
storage device.

3. The method of claim 1, further comprising receiving the
metadata write request at the remote computer.

4. The method of claim 3, further comprising sending an
acknowledgment by the remote computer that the metadata
write request was executed and metadata associated with the
data write request was flushed to the data storage device.

5. The method of claim 1, further comprising de-sequenc-
ing a serial stream of data write requests 1nto the set of data
write requests for out of order delivery over the plurality of
pathways 1n a network.

6. The method of claim 5, further comprising re-sequenc-
ing acknowledgments for the set of data write requests for
in-order delivery to the local computer 1n a sequence expected
by the local computer.

7. The method of claim 3, further comprising queuing the
set of data write requests recerved 1n parallel.

8. The method of claim 6, wherein a processor executable
re-sequencing module combines responses and acknowl-
edgements from the remote computer 1nto a single response
for the local computer 1n a format expected by the local
computer.

9. A non-transitory, machine readable storage medium
storing executable instructions, which when executed by a
system comprising a local computer and a remote computer,
causes the system to perform a method, the method compris-
ng:

receving a set of data write requests, out of order using a

plurality of pathways, from the local computer at the

US 8,874,680 Bl

13

remote computer, where each data write request of the
data write requests 1s associated with a unique transmuit
identifier:;

writing the set of data write requests to a cache by the

remote computer;

flushing the cache to a data storage device by the remote

computer;

sending an acknowledgement to the local computer by the

remote computer that the set of data write requests were
executed:;

transmitting by the local computer a metadata write request

that is related to the data write request, after recerving the
acknowledgement;

setting an indicator by the local computer at a pre-deter-

mined memory storage location accessible to the local
computer and the remote computer for indicating to the
remote computer that a write request 1s the metadata
write request;

monitoring the pre-determined memory storage location

by the remote computer to determine that the write
request 1s the metadata write request; and

checking that the set of write requests have been executed

prior to executing the metadata write request 1n response
to determining that the write request 1s the metadata
write request;

preventing by the local computer any other metadata write

request until the local computer recerves an acknowl-
edgement from the remote computer that the metadata
write request has been executed.

10. The storage medium of claim 9, wherein the local
computer and the remote computer are nodes 1n a network
that enable a write operation to a remote direct memory
access (RDMA) storage device.

11. The storage medium of claim 10, the method further
comprising recerving the metadata write request at the remote
computer.

12. The storage medium of claim 11, the method further
comprising sending an acknowledgment by the remote com-
puter that the metadata write request was executed and meta-
data associated with the data request was flushed to the data
storage device.

13. The storage medium of claim 9, the method further
comprising de-sequencing a serial stream of data write
requests mto the set of data write requests for out of order
delivery over the plurality of pathways 1n a network.

14. The storage medium of claim 9, the method further
comprising re-sequencing acknowledgments for the set of
data write requests for in-order delivery to the local computer
in a sequence expected by the local computer.

15. The storage medium of claim 14, wherein a processor
executable re-sequencing module combines responses and

10

15

20

25

30

35

40

45

50

14

acknowledgements from the remote computer into a single
response for the local computer 1n a format expected by the
local computer.

16. The storage medium of claim 9, the method further
comprising queuing the set of data write requests received 1n
parallel.

17. A system, comprising: a processor executing program-
mable instructions out of a memory for:

recerving a set of data write requests, out of order using a

plurality of pathways, where each data write request of
the data write requests 1s associated with a unique trans-
mit 1dentifier;

writing the set of data write requests to a cache;

flushing the cache to a data storage device;

sending an acknowledgement to the local computer that the

set of data write requests were executed;

recerving a metadata write request that 1s related to the data

write request, after the local computer recerves the
acknowledgement; and
monitoring a pre-determined memory storage location to
determine that a write request 1s the metadata write
request; wherein the local computer sets an indicator at
the pre-determined memory storage location accessible
to the processor and the local computer for indicating
that a write request 1s the metadata write request; and

checking that the set of write requests have been executed
prior to executing the metadata write request 1n response
to determining that the write request 1s the metadata
write request;

wherein the local computer does not send any other meta-

data write request until the local computer recerves an
acknowledgement from the remote computer that the
metadata write request has been executed.

18. The system of claim 17, wherein the program instruc-
tions are configured to send an acknowledgment after the
metadata write request 1s executed and metadata associated
with the data write request i1s flushed to the data storage
device.

19. The system of claim 17, wherein a serial, in-order
stream of data write requests are de-sequenced 1nto the set of
data write requests for out of order delivery over the plurality
of pathways 1n a network.

20. The system of claim 17, wherein acknowledgments for
the set of data write requests are re-sequenced for mn-order
delivery to the local computer 1n a sequence expected by the
local computer.

21. The system of claim 17, wherein a processor executable
re-sequencing module combines responses and acknowl-
edgements 1nto a single response for the local computer 1n a
format expected by the local computer.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

