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RADAR SIGNATURE DATABASE
VALIDATION FOR AUTOMATIC TARGET
RECOGNITION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 12/770,211 filed on Apr. 29, 2010, which
turther claims the benefit of U.S. Provisional Application Ser.

No. 61/173,694 filed on Apr. 29, 2009, both of which are
entitled “Radar Signature Database Validation for Automatic
Target Recognition™ and both of which are hereby incorpo-
rated herein by reference 1n their entirety.

RIGHTS OF THE GOVERNMEN'T

The 1nvention described herein may be manufactured and
used by or for the Government of the Umted States for all
governmental purposes without the payment of any royalty.

BACKGROUND OF THE

INVENTION

1. Field of the Invention

This ivention relates generally to the field of radar signa-
ture analysis. More particularly, it relates to information theo-
retic methods for assessing radar signature databases for use
in training a radar target recognition decision algorithm and
for 1dentilying real-time target measurements using auto-
matic target recognition.

2. Description of the Related Art

The ability to make radar signature databases portable for
use within similar sensor systems may be critical to the
alfordability of future airborne signature exploitation sys-
tems. The capability to hybridize measured and synthetic
signature database components may maximize the impact of
the mvestment required to build complex radar signature
databases. Radar target scattering mechanisms may be mod-
cled and the signature signal model analyzed as a random
process to enable portability and hybnidization. Modal
mutual information may be developed as a measure of simi-
larity to compare measured signature data to modeled syn-
thetic data. The inherent qualities of mutual information to be
used 1n the context of the automatic target recognition prob-
lem may be demonstrated using synthetic signature sets coms-
prised of both “similar targets™ and “dissimilar targets.”

Signature exploitation systems are of ever-increasing
importance both in air-to-air and air-to-ground sensor sys-
tems. Successiul implementation of these systems often
requires a robust and integrated signature database for train-
ing exploitation algorithms. Signature training databases
should represent the radar measured signature process across
a wide range ol target articulations and configurations, as well
as under many operating conditions including clutter, obscu-
ration, and other sources of RF interference. It 1s also useful to
have signature databases that are portable for use 1n similar
sensor applications. For example, 1t 1s desired that airborne
radar systems associated with a type of aircrait be able to
share a common radar signature database. Construction of a
signature database based entirely on measurements 1s expen-
stve and can be an impractical proposition. It 1s possible to
construct a signature database using electromagnetic scatter-
ing codes.

However, given the complexity of typical targets including
personnel carriers, tanks, aircraft, and missiles, etc., and the
challenge of modeling a variety of electromagnetic scattering
phenomena ranging from specular retlection to edge diffrac-
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tion, smooth surface diffraction etc., computation of signa-
tures with suificient accuracy 1s a challenging task. Further-

more, 1t needs to be established that the computed signatures
are consistent with measured signatures. The validation of the
computed or surrogate sensor signature process with the mea-
sured signature process enables the expanded use of multi-
source signature data for algorithm training within ongoing,
automatic target recognition (AIR) theory efiorts, nearly all
of which depend on a valid characterization of the signature
scattering model for all targets of interest.

The use of high resolution radar measurements has been
useiul 1n the support of research and study of signature
exploitation capability within airborne platforms. In view of
the uncertainties in the aspect angle of the target, the high
resolution signature may be considered to be a random vector.
Given the changing geometry relative to the target within a
typical radar measurement interval, the statistics associated
with the high resolution random vector are often time varying.
Theretfore, the measured high resolution signature of the tar-
get at a given time “t” 15 a realization of a multidimensional
random process (time varying random vector). If the target
statistics are assumed to be stationary (constant with time),
the sample signatures associated with this random vector
correspond to a range of aspect angles 1n a small window
about this reference.

The problem of validation 1s quite different from the design
of target recognition algorithms. In the case of automatic
target recognition algorithms, a signature measured under
field conditions (which may be considered to be a sample
realization of a random process) 1s compared to the signature
random process corresponding to the different target classes
of interest comprising a database. Unlike the automatic target
recognition problem, the database similarity problem (vali-
dation) mmvolves the comparison of two random signature
Processes.

SUMMARY OF THE INVENTION

The present invention compares two different high resolu-
tion signature databases within the context of validation simi-
larity requirements for automatic target recognition systems.
A radar database validation 1s disclosed that includes a first
database associated with measured signature data and a sec-
ond database associated with synthetic signature data. The
second database 1s compared with the first database using
modal mutual information calculations. The calculations of
the modal mutual information for dissimilar targets are well
separated from similar targets throughout the database, vali-
dating the synthetic database for automatic target recognition
radar use.

The present invention includes a method for assessing
radar signature databases for use in training a radar target
recognition decision algorithm. In one embodiment, the
method comprises the steps of: generating radar signature
data from at least three targets using a first process and a
second process, wherein the radar signature data includes at
least one of measured radar data and synthetic radar data, and
wherein the targets comprise at least two different target
classes, at least two targets being in a same target class and at
least one target being 1n a different target class; producing a
first radar signature database using the first process and a
second radar signature database using the second process;
comparing the first radar signature database and the second
radar signature database using an information theoretic
method; computing an amount of cumulative mutual 1nfor-
mation between the first radar signature database and the
second radar signature database for targets comprising the
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same target class and for targets comprising different target
classes, wherein the cumulative mutual information com-
prises a sum of modal mutual information (MMI), derived
from comparison of radar signature data from at least two
targets, whereby numerical instabilities often incurred in
computation of cumulative mutual information are elimi-
nated through incremental computation of MMI; and based
on the amount of cumulative mutual information between the
first radar signature database and the second radar signature
database, determining whether the first process and second
process are suitable for use together to generate a hybrid radar
signature database for training the radar target recognition
decision algorithm.

In one embodiment of the method for assessing radar sig-
nature databases, the targets comprising the same target class
include at least one target comprising at least one in-class
structural variation of at least one dominant and 1solated
geometric mechanism that 1s conventionally critical to suc-
cessiul classification of targets to the same target class,
wherein the in-class structural varnation produces conven-
tional signature features that are dissimilar to the radar sig-
nature data corresponding to the same target class. In one
embodiment of the method where at least one target com-
prises at least one 1n-class structural variation, the amount of
cumulative mutual information 1s =5 Nats, which 1s consis-
tent with 1n-class declaration levels.

In another embodiment of the method for assessing radar
signature databases, at least one of the targets comprising a
different target class includes at least one target comprising at
least one out-oi-class structural variation of at least one domi-
nant and 1solated geometric mechanism that is conventionally
critical to successtul classification of targets to different tar-
get classes, wherein the out-of-class structural variation pro-
duces conventional signature features that are similar to the
radar signature data corresponding to the different target
class. In one embodiment of the method where at least one
target comprises an out-of-class structural variation, the
amount of cumulative mutual information 1s <5 Nats, which
1s consistent with out-of-class declaration levels. In another
embodiment, the amount of cumulative mutual information 1s
greater than zero and less than or equal to one.

In another embodiment, the method further comprises con-
ducting offline improvements to at least one target class. In a
turther embodiment of the method for assessing radar signa-
ture databases, the first radar signature database consists of
measured radar data and wherein the second radar signature
database consists of synthetic radar data.

The present invention further includes a method of using
cumulative modal mutual information to identily real-time
target measurements using automatic target recognition. In
one embodiment, the method comprises the steps of: gener-
ating within an onboard radar system a first radar signature
process measurement derived from a real-time target mea-
surement, wherein the first radar signature process measure-
ment 1s generated through a mapping to a fixed measurement
aspect angle to a field target and a range of frequency sub-
bands centered at a center reference transmit frequency; pro-
ducing a second radar signature process derived from a hybrid
signature database, wherein the hybrid signature database
comprises a combination of radar signature data derived from
measured radar data and synthetic radar data; comparing the
first radar signature process measurement and the second
radar signature process using an information theoretic
method; computing in real-time an amount of cumulative
mutual information between the first radar signature process
measurement and the second radar signature process,
wherein the cumulative mutual information comprises a sum
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of modal mutual mnformation (MMI) derived from compari-
son of the first radar signature process measurement and the
second radar signature process, whereby numerical 1instabili-
ties associated with computing cumulative mutual informa-
tion are eliminated through incremental computation and
combination of MMI; and based on the amount of cumulative
mutual imnformation between the first radar signature process
measurement and the second radar signature process, deter-
mining an identity of the field target.

In one embodiment of the method of using cumulative
modal mutual mnformation to 1dentily real-time target mea-
surements, the target comprises at least one in-class structural
variation of at least one dominant and isolated geometric
mechanism that 1s conventionally critical to successtul clas-
sification of the target, wherein the 1n-class structural varia-
tion produces conventional signature features that are dis-
similar to the radar signature data corresponding to the same
target class. In one embodiment of the method 1n which the
target comprises at least one 1n-class structural vanation, the
amount of cumulative mutual information 1s =25 Nats, which 1s
consistent with in-class declaration levels.

In another embodiment of the method of using cumulative
modal mutual information to 1dentify real-time target mea-
surements, the target comprises at least one out-of-class
structural variation of at least one dominant and 1solated
geometric mechanism that 1s conventionally critical to suc-
cessiul classification of the target, wherein the out-oi-class
structural variation produces conventional signature features
that are similar to the radar signature data corresponding to
the different target class. In one embodiment of the method in
which the target comprises at least one out-of-class structural
variation, the amount of cumulative mutual information 1s <5
Nats, which 1s consistent with out-of-class declaration levels.
In another embodiment of the method, the amount of cumu-
lative mutual information 1s greater than zero and less than or
equal to one.

In a further embodiment of the method of using cumulative
modal mutual information to 1dentify real-time target mea-
surements, the hybrid signature database 1s validated using a
method for assessing radar signature databases for use in
training a radar target recognition decision algorithm as pres-
ently disclosed. In another embodiment, the method further
comprises conducting online improvements to a transmission
wavelorm.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s diagram of target scatterers extended 1n range and
Cross range.

FI1G. 2 1s a theoretical point spread function example for the
band limited response.

FIGS. 3A and 3B are comparisons of Kolmogorov-
Smirnov test results and 1llustrate the agreement between the
theoretical and simulated Gaussian cumulative probability
distributions.

FIG. 4 1s an e1genspectrum 1llustration for BTR-70 ground
target 1n 2.5 Azx2.5 El degree spatial sampling window; 100
signatures umiformly distributed in Az/FEl, 1 it. resolution.

FIG. 5 1s an eigenmodes illustration for BTR-70 ground
target 1n 2.5 Azx2.5 El degree spatial.

FIG. 6 1s an illustration of an information theoretic radar
channel model.

FIG. 7 1s an illustration of a target aspect field of view.

FIG. 8 15 a graphical illustration of baseline modal mutual
information (MMI) and cumulative mutual information (MI)

for BTR-70 & BMP2, cumulative MI of 0.4.
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FIG. 9 1s a graphical illustration of MMI and cumulative
MI for BTR-70 & BDRM; confuser case, cumulative MI of

0.2 Nats.
FIG. 10 1s a graphical 1llustration of MMI and cumulative
MI for BTR-70 with ground plane & BTR-70 without ground

plane; similar target case, cumulative MI of 10.5 Nats.

FI1G. 11 1s a graphical illustration of MMI and cumulative
MI for BTR-70 baseline & BTR-70 with the top 20 scattering
centers only, cumulative MI of 6 Nats.

FIG. 12A 1s a two dimensional image of T-72 tank, 0°
Az/15° El target aspect angle with fender scattering.

FIG. 12B 1s a two dimensional image of T-72 tank, 0°

Az/15° El target aspect angle without fender scattering.
FI1G. 13 1s a graphical illustration of MMI and cumulative
MI for T-72 tank with fender scattering and T-72 without

tender scattering, cumulative MI of 16 Nats.

FIG. 14A 1s a two dimensional image of T-72 tank, 0°
Az/15° El aspect angle with fuel barrel scattering.

FIG. 14B 1s a two dimensional image of T-72 tank, 0°
Az/15° El aspect angle without fuel barrel scattering.

FIG. 135 1s a graphical illustration of MMI and cumulative
MI for baseline 'T-72 scattering and baseline T-72 without fuel

barrel scattering, cumulative MI of 14 Nats.

FIG. 16A 1s a two dimensional image of T-72 tank, 0°
Az/15° El aspect angle with gun barrel scattering.

FIG. 16B 1s a two dimensional image of T-72 tank, 0°
Az/15° El aspect angle without gun barrel scattering.

FI1G. 17 1s a graphical illustration of MMI and cumulative
MI for baseline T-72 with gun barrel scattering and T-72
without gun barrel scattering, cumulative MI of 12 Nats.

FI1G. 18 1s a graphical illustration of MMI and cumulative
MI for baseline T-72 and T-72 without fenders, fuel barrel,
and gun barrel scattering, cumulative MI of 11 Nats.

FIG. 19 1s a graphical illustration of MMI versus mean
squared error for baseline BMP2 and BMP2 with additive
(Gaussian signal demonstrating dependence at significant lev-
els of added distortion.

FIG. 20 1s a tflowchart of an exemplary embodiment of a
method for comparing and assessing two databases contain-
ing radar information using MMI calculations.

FIG. 21 1s a flowchart of an exemplary embodiment of a
method for using a MMI information theoretic approach in an
automatic target recognition system to make real-time 1den-
tifications of targets 1n the field.

DETAILED DESCRIPTION OF THE INVENTION

Several existing published works are related (yet different)
to the present invention. J. C. Principe, D. Xu, Q. Zhao, J. W.
Fisher present a “learning theory” framework based on infor-
mation theoretic criteria 1 “Learning from Examples with
Information Theoretic Criteria,” Journal of VLSI Signal Pro-
cessing 26, 61-77, 2000. This and all other references are
herein incorporated by reference. D. R. Fuhrmann and G. San
Antonio, “Transmit Beamforming for MIMO Radar Systems
Using Partial Signal Correlation Proceedings of the 387 Asi-
lomar Conference on Signals, Systems, & Computers, Vol. 1,
295-299, November 2004, describes radars with a new archi-
tecture referred to as the MIMO (Multiple Input Multiple
Output) radar.

To a great extent the referenced work has either focused on
improving sensor and wavelform design for maximum target
information measurement or has attempted to develop an
information theoretic approach to performance prediction
and decision rule design. Much of the above referenced work
has focused on areas outside the validation and assessment of
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information associated with the random signature processes
within the radar target training database.

The present invention provides a multi-source hybrid radar
signature database for at least two radar signature processes
for use 1n training automatic target recognition algorithms
using the decision rule training by the hybrid signature set
automatically compared with the field measured target signa-
ture to provide automatic target recognition based upon a
calculation.

J. Malas, K. Pasala, “Information Theory Based Signature
Analysis,” Proceedings o1 2007 IEEE Aerospace Conierence,
March 2007, introduced the use of mutual information as a
similarity measure for use 1n radar signature database valida-
tion. One aspect of the present invention 1s the development
and demonstration of modal mutual information (MMI) as a
physics-based radar signature similarity measure compatible
within the automatic target recognition problem context.
Techniques are developed with the present invention to avoid
numerical instability 1ssues normally associated with the
computation of mutual information. “Numerical 1ssues”
include the reduction of singularities and complications
resulting from over represented (rank deficient) signature
processes causing false positives, false negatives, and incon-
clusive results, one of more of which may be eliminated with
the present invention.

The present invention provides a computationally stable
method for analyzing and comparing two radar signature
databases, one of which comprises synthetic radar signature
data and one of which comprises radar signature data gath-
ered by measurement under controlled conditions. Using
MMI, the disclosed method calculates total mutual informa-
tion between the two databases as a similarity measure for use
in radar signature database validation.

The present invention further includes a method of using
MMI as a classification method in an automatic target recog-
nition (ATR) system. The radar signature of a target 1n the
field 1s compared to a radar signature database, and using
MMLI, the target may be 1dentified.

MMI 1s a modal decomposition of the mutual information.
The choice of mutual information as a measure of signature
database similarity 1s based on several unique characteristics
of mutual information. Relative entropy 1s a measure of the
distance between two distributions. The relative entropy
D(p||lq) 1s a measure of the inefficiency of assuming that a
distribution 1s q when the true distribution 1s p.

MMI provides a mathematical computational approach
that avoids or surmounts the computational barriers of other
methods. Such barriers may include mfimity failures or cal-
culations that may result 1n more false positives, false nega-
tives, or indecisive results than obtainable with the present
ivention.

Mutual information 1s the relative entropy between the
jomt distribution 1(p,q) and the product of the respective
marginal distributions 1(p)-1(q). The mutual nformation
between p and g will be zero if, and, 1n one embodiment, only
if, pLg (p 1s statistically independent of q) and represents the
reduction 1n uncertainty in one random variable given the
knowledge of another. Mutual information 1s a measure of the
dependence between random variables and 1s a more general
(contains all the statistics) measure of similarity.

In contrast, a simple cross correlation involves only the
second order statistics of the variables under test. Mutual
information (via statistical dependence) can be used to deter-
mine the degree of common “information” within the physi-
cal scattering that 1s present in both of the random signature
Processes.
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While techniques including maximum likelithood tests
operate within the full dimensionality of the data, mutual
information operates within the “typical set” of the signature
subspace that 1s related the entropy of the signature processes.
Attributes of entropy-based methods and mutual information
offer the potential to measure similarity within this lower
dimensional space. The ability to relate one embodiment of
this generalized mutual information similarity measure
directly to Bayes error through an information theoretic sys-
tems theory 1s a significant strength of this approach.

In one embodiment of the present ivention, MMI 1s used
to compare two high range resolution signature random pro-

cesses X and Y. High range resolution signatures of complex
extended targets may be associated with complex random
processes that are circular Gaussian. Numerical computation
of mutual information with methods described 1n the prior art
can be unstable due to the singularities that exist when the

individual or joint correlation matrices of X and/or Y are rank
deficient or 1ll conditioned. The concept of MMI 1s introduced
to overcome these numerical problems and obtain a stable

computed value of mutual information between X and Y.
Using electromagnetic prediction codes, high range resolu-

t1on signature processes X and Y are computed for a number
of different target classes at a sampled range of aspect angles.

These experimental examples are designed to demonstrate
the implementation of MMI and more importantly, to dem-
onstrate that the strength of mutual information may be used
successiully to provide a multi-source signature database
taken from at least two different processes each comprising,
either a measurement radar process or computed modeling
process. The database includes measured radar data and mod-
cled synthetic radar data, which are compared using the
modal mutual information method disclosed herein. The
measured data 1s mathematically compared to the synthetic
modeled data and combined to create a hybrid signature set
using MMI. The hybrid signature set 1n one embodiment 1s
high resolution data and/or a combination of two high range
resolution signature processes. The hybrid signature set in
another embodiment includes both variants of similar targets
and dissimilar targets. A hybrid signature database may
include surrogate measured data (data generated from a radar
measurement device other than that being used to conduct the
automatic target recognition), measured data generated from
the radar measurement device being used to conduct the
automatic target recognition, modeled synthetic data, or any
combination thereof. The hybrid signature set 1s used to train
(or design) classification decision rules to automatically
evaluate the target signature formed from real time field mea-
surements to provide automatic target recognition based upon
a target classification calculation.

An automatic target recognition radar database validation
may include a first database associated with measured radar
data and a second database associated with synthetic data.
The second database may be compared with the first database
using modal mutual information calculations. The calcula-
tions of the cumulative mutual information for dissimilar
targets are well separated from a similar target throughout the
database, validating the synthetic database for automatic tar-
get recognition radar use. There are other uses for the particu-
lar application of modal mutual information calculations
where overcoming the mathematical barriers are needed to
reach reliable solutions.

The comparison signature process 1s preferably based on
the underlying common physical scattering information.
Modeled varnants of the actual target physical scattering are
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preferably used to form the cases for demonstrating mutual
information as a method for database validation 1n automatic
target recognition.

A random signature process may be formed through a
mapping of high range resolution signature to target azimuth/
clevation aspect angle locations distributed within a local
window about a center reference aspect angle to the target.
While not guaranteed one-to-one, the mapping to aspect
angle 1s suilicient to represent the support of the function.

A random signature process may also be formed through a
mapping to a fixed aspect angle and a range of frequency
sub-bands centered at a reference frequency. Unless other-
wise noted, the mapping used shall be to aspect angle.

Conventional classification methods for distinguishing
between two dissimilar targets rely on dominant and 1solated
geometric mechanisms that produce highly dissimilar signa-
ture features. Conventional classification methods are vulner-
able to false declarations of dissimilar targets based on the
limitations of this method. False declarations of dissimilar
targets can occur when 1solated geometric features are not
observable by radar measurement systems. It is desired to use
a similarity method for database validation that overcomes
this limitation. MMI 1s used a similarity measure because 1t
operates on the complete underlying common physical scat-
tering information and not on 1solated geometric physical
mechanisms.

When the two signature processes X and Y correspond to
two different target classes, the cumulative mutual informa-
tion 1s near zero, even when the targets appear to be a “close”
match and could be considered a “confuser” based on con-
ventional geometric or feature-based measures. A confuser
may include a false positive, a false negative, or an inconclu-
stve determination. The confusion may be in part because the
high range resolution signature processes of two different
target classes are independent, and the cumulative mutual
information between independent processes 1s zero, even
when they appear “close” by conventional measures.

When the signature processes correspond to the same tar-
get class, but with variations, the cumulative mutual informa-
tion remains high. This correlation 1s demonstrated by deter-
mining the MMI between the signature processes of a target
and its variants. The variants are obtained, for example, by
removing certain physical features from the original target. A
number of such variants are created. Cumulative mutual
information 1s consistently high between signatures corre-
sponding to targets with in-class variations. Cumulative
mutual information i1s consistently low between signatures
corresponding to targets with out-oi-class variations. Thus,
the modal mutual information calculations developed herein
may be used to determine 1f two signature processes, obtained
by two different methods (measured and synthetic, for
example) correspond to 1n-class or out-of-class targets.

The electromagnetic phenomenology of the signature pro-
cess together with the characteristics of the sensor may be
used to create a signal model for the high range resolution
signature. In the high frequency regime, the high range reso-
lution target signature may be approximated as a collection of
scattering centers valid over a limited aspect window and
frequency band.

These scattering centers may be considered to be localized
to a point and may represent a variety of scattering phenom-
ena ranging from specular reflection to diffraction phenom-
ena, including edge and tip diffraction. The fields radiated by
these point scatterers depend upon both temporal and spatial
frequencies (angular dependence). Because the radar 1llumi-
nating the target has finite bandwidth and 1s a one dimensional
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imaging system, the target 1s seen as a collection of contigu-
ous swaths of range, with each range swath corresponding to
a particular range. The extent of each range swath, range
resolution, depends upon the signal bandwidth. For a typical
extended target of interest, each range swath contains a num-
ber of scattering centers that can be widely spaced in cross-
range as shown in FIG. 1.

Referring now to the drawings, like reference numerals
may designate like or corresponding parts throughout the
several views. FI1G. 1 shows an aircrait 10, detecting a tank 11
to produce tank scattering 12 with range bins 13, a down-
range dimension 14, and a cross-range dimension 15.

The electromagnetic field obtained as a result of the inter-
terence of the scattered fields from the scattering centers
appears as the signal corresponding to the range bin 13 of the
high range resolution signature.

The high range resolution signature may be considered a
one dimensional 1mage of the reflectivity (or scattering) pro-
file of the target for a given look angle and bandwidth. Due to
finite bandwidth of a practical radar system, the point spread
function 1s not an 1mpulse function. As shown 1n FIG. 2, a
mainlobe 20 of finite width 21, length 22, and height 23 sets
a limit on the range resolution achievable, and sidelobes (not
shown). The mainlobe 20 and sidelobes have decreasing
amplitude 1n all directions from a peak 24.

Even when the scattering phenomenon i1s localized to a
specific range bin, this phenomenon will manifest as reflec-
tivity that 1s present 1n other range bins as well. Therefore
every point target at any specific range location will present
itself as collateral scattering phenomenon at other ranges. The
value of the retlectivity at the actual location 1s defined as a
“signal” and at all other locations as “noise.”

On an actual or non-scattering center approximated target,
this “noise” would comprise the effects of non-localized scat-
tering at any given time delay, as well as the windowed
side-lobe response of localized scattering.

Hence, at any given range location, the observed data 1s
comprised of a component due to the coherent interference of
all the mainlobe point-like target phenomenon present at that
location (the signal component) and a component that 1s the
sum total of the collateral contributions (side lobes) that occur
in range bins other than the range bin of interest. This latter
component may be referred to as noise and the observed data
in the i” range bin may be modeled as in Equation (Eq.) (1).

X, =SpN, ()

The signal component at any range bin 1s due 1n part to the
interference of the scattered fields from all the scattering
centers distributed in cross range over several wavelengths
and may be expressed as 1n Eq. (2).

N | (2)
V, = Z A, el
n=1

Here A and ¢, are the amplitude and modulo 27 phase of
the n” scatter in the i”” range bin respectively. ¢, is a function
of the look angle and frequency and may be modeled as a
random variable uniformly distributed between [0, 2m].
Given that 0, ~ and n, are the variance and the mean of the
amplitudes, it can be feadily shown that as N—00 both real
and 1maginary parts of V, are zero mean Gaussian random
variables with a variance given 1n Eq. (3).
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(3)

,  Nelog, +p3,)

a; = 5

The theoretical Gaussian shape of the real and imaginary
components of the signature (afforded by the central limait
theorem ) meets the criteria for parametric estimation and as
such, the Kolmogorov-Smirnov test (K-S test) 1s employed to
verily the Gaussian shape assumption. The K-S statistic indi-
cates the level of agreement between two continuous distri-
butions that are tully specified (location, scale and shape). At
one foot resolution, these test results indicate that there are
suificient numbers of scatterers contributing within each
range bin to validate the assumption that for electrically large
targets with many scattering sources extended in cross range,
the probability density functions (pdis) associated with the
real and 1imaginary signature data are in fact Gaussian and
zero mean. An example of the real and imaginary components
of the signal within a high range resolution range bin con-
forming to the Gaussian distribution 1s provided in FIGS. 3A
and 3B, which show the K-S test results of high range reso-
lution. The signature range bin illustrates the agreement
between the theoretical and simulated Gaussian cumulative
probability distributions.

Hence, given the appropriate bandwidth and target charac-
teristics outlined above, both the signal and noise components
of the signal 1n any range bin are assumed to be complex
Gaussian distributed random variables. The signal compo-
nent 1s obtained from the interference of the mainlobes of the
point spread functions and the noise components are obtained
from the sidelobes of the point spread functions. The high
range resolution signature vector may be modeled 1n the
vector version of Eq. (3) as shown 1n Eq. (4).

X=S+N

(4)

While the ease of analysis afforded by the Gaussian distri-
bution 1s helpful in developing concepts pictured below, all
results produced using continuous vector random variables
can be reproduced using discrete random variables.

The variation in signature phenomenology due to the
uncertainties 1n the aspect angle are captured in the signal
model 1llustrating that the high range resolution signature
may be viewed as a random process. All random processes
under analysis herein are assumed to be stationary. The cova-
riance matrix of the random process and its representation in
terms of eigenmodes are used in the following experimental
examples.

A small window of aspect angles, typically less than 5°x5°
in azimuth and elevation around a specified aspect, 1s experi-
mentally chosen for targets of interest at X-band frequencies
(8-12 GHz) 1n the following example. The targets are electri-
cally large with dimensions in range and cross-range of many
wavelengths. An ensemble of complex high range resolution

signatures, [XI] ,~, corresponding to a number of aspect
angles distributed in this window are used to estimate (unbi-
ased) the covariance matrix,

. 1 & .
¢ = s
(L—l);x" &

The factor (LL-1) can be changed to L for the maximum
Likelihood estimator of the Gaussian case. A spectral decom-
position of this covariance matrix may be expressed as given

in Eq. (5).




US 8,872,693 Bl

11

. o ; (5)
C:ZM '@’k '@’k
k=1

Here A\, and q, represent the eigenvalues and the corre-
sponding eigenvectors. M 1s the size of the correlation matrix
and equals the number of range bins. FIG. 4 shows the
eigenspectrum for such a window for the BTR-70 target (ar-
mored personnel carrier) i 2.5 Azx2.5 El degree spatial
sampling window; 100 signatures uniformly distributed 1n
Az/El, 1 foot. resolution. FIG. 4 suggests the possibility of a
decomposition of the signature space 1nto signal and noise
subspaces consistent with the signal model defined by Eq. (4).
The eigenspectrum for the BTR-70 ground target in FIG. 5
shows some of the eigenmodes associated with this decom-
position for the target in 2.5 Azx2.5 El degree spatial sam-
pling window. It may be noted that these eigenmodes form a
complete basis set for database validation.

Let X represent a signature vector random process corre-
sponding to a specified target 1 a 2.5°%2.5° aspect angle
window. Therefore,

X=/X, X, ... X3/]" (6)

In Eq. (6), X, 1=1, 2 . . . M are the random variables
representing the signals 1 the M range bins. Let X be

obtained using a computational process. Let ?Z[Yl, Y, ...
Y, ]’ be the signature random process corresponding to the
same target and aspect angle, but obtained by a different
method, for mstance by a controlled measurement process.
Validation of the database requires a comparison of the ran-

dom processes X and Y to determine how “close” or “differ-
ent” they are. Toward this end, the mutual information

between X and Y may be used as a measure of similarity
between them or lack thereof. The mutual information 1s
defined as given below 1 Eq. (7).

I(X;Y)=hX)-hX/Y) (7)

=WX)+hY)-h(X,Y)

In Eq. (7). h(f) and h(?) represent the differential entro-
pies of X and Y; h(f/ ?) 1s the conditional entropy and also
1s referred to as the equivocation of X grven Y; and h(?, ?)
1s the joint differential entropy of X and Y. The differential
entropy h(X) is defined in Eq. (8).

h(X)=E[-In A x)]=—[Ax )In(Ax Ndx (8)

In Eq. (8), f(X) is the probability density function of X.

h(Y) 1s expressed in units of Nats, which 1s a logarithmic unit
of information or entropy based on natural logarithms and
powers ol e rather than the powers of 2 associated with base

2 logarithms which define the bit.

The high range resolution signature 1s a complex, vector,
zero-mean (Gaussian process whose probability density func-
tion 1s grven by Egs. (9) and (10).
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06 ()

1
K= M |detC.|

(10)

and

— —H

0X)=X C'X

Cs ZE[(Y—M )(Y—u;")H] is the covariance matrix of X.
For this case, a closed form expression for the differential
entropy 1s easily obtained and i1s given by Eq. (11).

h(X)=M In(ex)+Inldet C3 (11)

Expressing the determinant ot C as

M
det(C.) = ]_[ AL
k=1

where A" are the eigenvalues of the covariance matrix C, h(

X) may be expressed as

M (12)
WX) = Z In(redd).
f=1

Similarly, h(Y) may be expressed as

oM (13)
WY) = Z [n(reX’)
=1

InEq.(13), A7, k=1, 2 ... M are the eigenvalues of the C .
Note that these expressions are for the complex signature

processes of X and Y. The jo1nt entropy h(ij ?) may also be

obtained by defining the vector U=[X; Y] and defining Eq.
(14), the covariance matrix (g :

G Gy (14)
(. =
vl e

| XY Yo

Eq. (14), Css is the cross-covariance between XandY.
Then h(i, ?) can be written as 1s shown 1 Eq. (15):

In

(15)

— —

2M
WX, Y)=hU) = Z In(reA?)
k=1

InEq. (15),A, %, k=1,2...,2M are the eigenvalues of C; .
The expression for the mutual information 1s given by Eq.

(16):




US 8,872,693 Bl

(16)

[m[ﬂw
— =1 k=1 /

[{X,Y)=In —
14

k=1

Eq. (18) for mutual information requires the computation
of the eigenvalues of C;, C;, and C. However, when C-

and C7 are rank deficient, there are numerical 1ssues that
should be dealt with caretully. It can be shown that for any

null eigenvalues of C and C, there are always correspond-

ing null eigenvalues of C3, resulting 1n the cancellation of
singularities. Numerically, however, the eigenvalues are
never exactly zero, leading to the subtraction of two large
numbers. Such a procedure 1s not recommended. The follow-
ing process computes mutual information 1n a way that avoids
any numerical difficulties and, 1n addition, provides signifi-
cant insight into comparing two signature processes as herein
claimed.

Let the two random processes X and Y be expressed in
terms of their components along a basis set of orthonormal
vectors. It 1s convenient to choose the eigenvectors of C or
(- as the basis. The choice ot eigenvectors from C7 or C5; 1s
a valid one when each covariance matrix 1s highly diagonal-
1zed and the e1genvalue sensitivity 1s low. This 1s articulated 1n
detail and the Gershgorn circle theorem. Another possible
choice 1s the basis set of vectors that sitmultaneously diago-

nalize both C and C. Here, the eigenvectors of C7, denoted
by q,, k=1, 2. M are chosen. In this case, the spectral

decomposition of C— 1s expressed in Eq. (17):

(17)

M

M JI"'A.H

= Z lkfi’kfi’k
k=1

In Eq. (17), A, k=1, 2 . . . M are the eigenvalues. The
eigenvectors of C; are a complete orthonormal set of basis

vectors. Thus, X and Y may be expressed in equation (18) as
Eq. (18):

LM, M - (18)
X:;SIR:;AI@,and Aw =57 X

M M
V=) Syu=) Aug.and Ay =47,

The random processes A ; and A, are zero-mean Gaussian
random processes and that 1n Eq. (19):

E( |Axk|2)zﬁxk2:}‘~; (19)

And 1n Eq. (20):

E(l4,;1°)=0,,7=vz (20)

While A, are the eigenvalues of C—, v,” are not the e1gen-
values of C; . This 1s a result of adopting the eigenmodes of

C— as the basis. The random vectors §xk and S % are referred

to as the kK modes of X and Y.

The mutual information of a sum of statistically indepen-
dent processes 1s equal to the sum of the mutual information
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of the corresponding processes. Thus, only the mutual infor-

mation of §x;c and §yk need be considered, as given by Eq.

(21):

I(Sais Sy ) = hSu) + h(S ) — A{Ssi Sy ) (21)

— h(ka) -+ h(gyf{) — h(gxyk)

— —

where Exy = [SI Y yk]

The covariance matrices for §ﬂ-{ and S % areotthe order M
and are given by Eq. (22) and (23):

(22)

~ ~H
Cr, = E|SuSy| = ElAN@ 4 = 4,4,

(23)

. _.H ~ ~H A ~H
C?k :E[SykSyk] :E(lﬂyklz) Q’qu :U:?{)qlf{q;i

Clearly both Cs, and (s, are rank one matrices with only
one non-zero eigenvalue and (M-1) zero eigenvalues. The

entropies h(g;k) and h(§yk) are given by:

h(?xk)zln(:me?u;)ﬂM— 1) singularities (corresponding
to the null eigenvalues of C7)

and

h(fﬁ)zln(neuf’ +(M-1) singularities (corresponding
to the null eigenvalues of C7)).

Presently, 1t will be shown that h(§xyk) has 2(M-1) singu-

larities corresponding to the 2(M-1) null eigenvalues of Css, .

The vector S

i may conveniently be expressed as 1s given
Eq. (24):

n E

_ Ak E}k | s (24)
— Axyk X é’k

In Eq. (24), Axyk [A A ]*, and @ indicates the Kro-

necker product. Then the covariance matrix C7+ 1s given in
Eqg. (25) as:

(25)

In Bq. (25), C>=E[A

values and eigenvectors of Cs;, may be obtained using math-
ematical methods known 1n the art.

ka xyk | 1s a 2x2 matrix. The e1gen-
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Smce Cr —C—:"® 1.9, where C; is a 2x2 matrix and

4,9, 1s an MXM matrix, there are 2M ei1genvalues and cor-
responding eigenvectors given by

a,~hE i=1,2andj=12... M
and
%.~0,x) @, i=1,2andj=1,2... M,

L'

A and 0, i=1,2 are the two eigenvalues and eigenvectors of
C— and €, and w,, 1=1, 2, .. . M are the M eigenvalues and
eigenvectors of q, q,”” respectively. However, noting that g,

;" is a rank one matrix, there is only one non-zero eigen-

value, &,=1 and (M- 1) zero eigenvalues. Thus, Csp, has two
non-zero eigenvalues A, and A, the two eigenvalues of C-,
and 2(M-1) null elgenvalues.

The differential entropy h(§xk, S ) may now be written as:

h(S o S =In(meh, ) +Hn(meh,)+2(M-1) singularities.
It may be noted that the logarithmic singularities are due to

the null eigenvalues. The mutual information I(§Ik; §yk) may
now be written as:

I(S . Styk) =In(meh;” )+(M-1) Slﬂgﬂlﬂ.ﬂtlEﬁS+lﬂ(ﬂ'ﬁ€U;{ )+
(M-1) singularities—In(m*eh,-h,)-2(M-1) sin-
oularities.

This mutual information for the k”” mode can be expressed
Eq. (26):

dsS

. piiva (26)
IS ;S},k):ln Kk

s

It can now be seen that the singularities of h(g)xk) and h(

§yk) are cancelled exactly by the singularities of h(_s}xkj E}yk)
as all the singularities are of the same order. With this com-
putational process all numerical difficulties due to singulari-
ties are eliminated.

The modal mutual information or MMI may then be
defined as the mutual information for all M modes. The (total)

information I(X, Y) 1s then the sum of the modal
mutual information of all M modes. The sum of the modal

mutual information of all M modes 1s the “cumulative mutual
information”.

It1s possible to get a simple closed form expressions for Ay
and A,. Consider Eq. (27):

mutual

C. = A o | " E(Ax]?) E(AuAY) (27)
s — ka x k — .
! T EAR A EllARIP]
G'ik éxyk "Uxk Oy ]
G Oxk O i r:ri,k ’
0.,z 18 the correlation between A ; and A* , and 0,0, 18

the product of the of standard deviations assocmted w1thA

and A_;. The modeled signature processes X and Y in equa-
tion (18) provide ordered pair data that can be directly applied
to compute 0,,, For this 2x2 matrix, the eigenvalues may be
readily determmed and are given by Eq. (28):
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. 02, + 0 1 1/2 (28)
A :[ : ;}"*] S102 4020 = 408 o (1= (Bl
The product A, A, may then be simplified to Eq. (29):
A ho=0,70,;7 (1=18,, ) =0 (1-18,, ). (29)
Finally, the MMI simplifies to the expression 1n Eq. (30):
I(S g Sy0==In [1-18,,,1°] (30)

Some special cases are of interest. When the Gaussian

Processes §xk and S « are highly correlated such that
0,1, the MMI tends to co. When these processes are
uncorrelated such that lo,_,I—0, the mutual information
tends to zero as well.

That 1s as it should be since uncorrelated Gaussian pro-
cesses are statistically independent and the mutual informa-
tion between independent processes 1s zero. Indeed, MMI
may be considered to be a sensitive indicator of statistical
independence and it 1s this fact that 1s of importance in using
mutual information for database validation within the context
of the target discrimination problem.

The evaluation of the similarity between the algorithm

training process X and the sensor measured Process Y may be
viewed within a systems model depicting the mnformation
flow through the signature sensing and processing compo-
nents of a radar system as shown in FIG. 6. FIG. 6 shows a
continuum relationship between a true state H of a target
under measurement and a decision state () of a matching
algorithm, which provides the matching decision rule. This
relationship 1s the basis for performance characterization.

The mutual information between Hand Q.I(H;Q), can be
related to the probability of error (for binary decision rules)
using Fano’s Inequality shown 1n Eq. (31).

H(H)-IH;Q)=H(P,) (31)

The operation H(p) 1s the discrete entropy of the respective
discrete random variable p. The data processing inequality

tells us that information in the Markov Chain H= Y=
Y = Q cannot be created; only lost 1n this channel. The 1njec-

tion of side information (training information) X in the Y

space does not atfect the Markov nature of H= Y=Y= Q.
Information losses within the channel can be attributed to
various sources including the signature measurement pro-
cess, signature signal processing, signature dimensionality
reduction-feature selection, decision rule application, and the

dissimilarity between a sensor-measured signature process Y
and a “training” signature process X . The information loss

associated with the dissimilarity between X and Y can be

expressed using the data processing imequality as shown 1n
Eq. (32):

I(H;Q)EI(H;%)EI(H;?)EI(H;H) (32)

For example, the mutual information between the target
state random variables H and the sensor measurement signa-

ture process Y is greater than the mutual information between
H and the target signature feature process (reduced dimen-

sionality from ?) Y and likewise I(H; Y ) is greater than I(H:;
Q). The losses 1incurred 1n the automatic target recognition
matching process associated with a dissimilarity between the

distribution of the training feature database X and the distri-

bution of the sensor measured signature feature process Y are
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captured within the difference between I(H: Y)-1(H;Y"). The
lower dimensional subspace of Y (Y") is formed through the

use of side information X to form the basis of Y as derived
above. Thus, the system performance loss associated with the >

dissimilarity between X and Y is characterized by the use of

the basis of X in the decomposition of the process Y.

The use of relative entropy directly to interpret the distance
10

between X and Y in terms of the measure I(H; Q) is com-
plicated by the fact that mutual information 1s not a “true”
distance between distributions since it 1s not symmetric and
does not satisfy the triangle mequality. Although relative
entropy (and thus mutual information) is not a metric, D(p||q)
does 1n some circumstances behave like the square of the
Euclidean distance and under these conditions convergence

in relative entropy implies convergence 1n the L., norm. Fur-
ther development of mutual information in this context as a

15

means to formally interpret (X ; Y ) in terms of I(H; Q) and 20
the loss on P 1s important and 1s the subject of ongoing efforts
by the authors.

The present invention demonstrates the strength of MMI as
a physics-based similarity measure 1n the context of the
unique automatic target recognition problem and within the 25
advantages afforded by the reduced dimensional feature
space of an eigen-decomposition.

It 1s desirable that the MMI, which 1s being used as the
measure of similarity, be high between the signatures of two
targets drawn from the same class but with some variations, 30
be they small or significant. At the same time 1t 1s desired that
the mutual information between the signatures of two targets
drawn from two different classes be low, even 1f these two
target classes are considered to be “confusers™ based on con-
ventional algorithms. Any measure of similarity should be 35
able to “1gnore” in-class variations of signatures of targets
drawn from the same class and have a high value, while at the
same time vyielding a low value for the signatures of two
targets drawn from different classes, even if the signatures
appear “close” by conventional classification algorithm mea- 40
sures. It 1s further desired that the “low™ and “high” values of
MMI be well separated so that a decision boundary between
these two values 1s easily determined. Well separated 1s pret-
erably by a factor of five (5) and in one embodiment of the
present invention an order of magnitude 1.e. a factor of ten 45
(10). The degree of statistical dependence between two target
signature processes will be a function of how similar the
statistics are as captured by the scintillation of the complete
physical scattering of each target. Targets that physically
present electrically similar scattering mechanisms will pro- 50
duce high degrees of dependence. Targets that physically
present electrically dissimilar scattering mechanisms will
produce low degrees of dependence. The results of a number
of numerical simulations and experiments demonstrate that
the MMI exhibaits this characteristic and meets these require- 55
ments.

The following examples and methods are presented as
illustrative of the present invention or methods of carrying out
the invention, and are not restrictive or limiting ol the scope of
the invention 1n any manner Table 1 below lists a number of 50
experiments arranged 1nto two categories. The first category
comprising experiments corresponding to case-1 and case-2
experiments considers the comparison of signatures of out-
of-class dissimilar targets.

The signature sets considered in Table 1 are obtained using 65
clectromagnetic prediction codes and were predicted at one
foot resolution. The targets include typical ground targets

18

designated as BMP2 (infantry combat vehicle), BDRM (ar-
mored ground vehicle), BTR-70 (armored personnel carrier),
and T-72 (main battle tank) and are taken to be on a perfect
clectrically conducting (PEC) ground plane (unless otherwise
stated) using vertical polarization. The signature sets are
taken over a 2.5°x2.5° azimuth/elevation window about the
target aspect angle of 2.5° azimuth and 17.5° elevation as
shown 1n FIG. 7.

Total mutual information 1s computed as the cumulative
sum of MMI. In the experiments below, all total mutual infor-
mation values provided are based on the sum of the MMI
associated with all the modes required to capture 98% of the
signature power 1n both target signature processes.

TABL.

L1

1

Summary of Experiments

EXPERIMENT HYPOTHESIS MI, Nats
1. “Dissimilar Out-of-Class Underlying target scattering 0.4
Targets source will generate independent

random signatures
2. ‘“Confuser’ Out-of-Class  Underlying target scattering 0.2
Targets source will generate independent

random signatures
3. Similar In-Class Underlying target scattering 10.5
Variation of Targets With source will generate dependent
Ground Plane Removed random signatures
4. Similar In-Class Underlying target scattering source 6
Variation of Targets will provide dependency with
Using Scattering Center in-class variation due to distributed
Decimation scattering source differences
5. Simuilar In-Class Underlying target scattering 11
Variation of Targets Using  source will provide dependency with
Removal of Persistent scattering source variation due to
Physical features significant geometry differences
6. Incremental Addition of  Underlying target scattering 8-20

Complex Gaussian Signal  structure will generate
dependent random signatures

EXAMPLE 1

BTR-70 Vs. BMP2 (Out-of-Class Variations)

Example 1, which corresponds to case-1 and case-2 of
Table 1, pertains to two targets (BTR-70 and BMP2) drawn
from two different target classes. The mutual information
between the signatures of dissimilar targets would be
expected to be low as these signatures would be statistically
independent. In FIG. 8, the MMI for the ‘out-of-class’ target
case vields consistently low mutual information across the
modes, and the total mutual information 1s also quite low at
approximately 0.4 Nats. Confirming expectations, this low
value of mutual information 1s consistent with the degree of
statistical independence to be expected when the signature
processes of two very dissimilar scattering sources (targets)
are compared.

In the case-2 experiment of Table 1, the previous experi-
ment 1s extended to conditions where current classification
algorithm approaches (those based on geometric measure)
indicate that the two targets drawn from two different classes
are ‘close’ and often are confused with one another. The
BTR-70 and the BRDM are known to be “confusers” in that
sense within the regions under evaluation here. FIG. 9 shows
the MMI and cumulative mutual information (MI) for BTR-
70 & BDRM 1n a confuser case with a cumulative MI 01 0.2
Nats. With the cumulative MI between the two target signa-
ture processes at approximately 0.2 Nats, the results in FIG. 9
show clearly that even for this “confuser” case, the low values
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of modal and cumulative MI 1ndicate a high degree of inde-
pendence that 1s consistent with scattering phenomena taking,
place on targets from different target classes. This require-
ment would be a challenging test for any measure of statistical
similarity. The modal mutual information measure achieves
this desirable result 1n part because 1t 1s a good indicator of
statistical independence between two random signature pro-
cesses. The degree of independence 1s related to how similar
the changing physical scattering (as a function of aspect
angle) 1s between each signature process. Thus the similarity
1s based on the level of agreement inherent 1n the statistics
captured by the scintillation of the complete physical scatter-
ing of each target and not on statistics based on a limited
feature representation.

EXAMPLE 2

BTR-70 (In-Class Variations)

Example 2 corresponds to case-3 and case-4 in Table 1.
Two targets from the same class are often similar but not
identical. The physical differences can be minor or quite
striking A number of experiments pertaining to the MMI and
cumulative MI of in-class targets with different degrees of

variations are considered. Case-3 of Table 1 corresponds to
the signatures of the BTR-70 with and without the PEC

ground plane representing a “minor” difference. For this case,
the mutual information 1s expected to be high and 1s so dem-

onstrated by the results shown 1n FIG. 10, with the cumulative
MI at 10.5 Nats. FIG. 10 shows MMI and cumulative MI for

BTR-70 with ground plane & BTR-70 without ground plane,
a similar target case.

The target signature may be considered to be the sum of
scattering from a collection of scattering centers. Variations in
target and signatures, ranging from “marginal” to “major,”
can be simulated by including or excluding chosen groups of
scattering centers. In-class variations are often the result of
certain physical features being removed from or added to a

basic target configuration. For example, fuel barrels may be
added to or removed from a tank, or a tank may have one of 1ts
parts obscured.

The uncertainty 1n computational signature processes may
result from reduced detail within the modeling and prediction
process. Analyzing the behavior of mutual information with
respect to reduced scatter representation 1s one way to study
this area. In the experiment corresponding to case-4 of Table
1, a number of scattering centers are decimated to test the
suitability of mutual information as a measure of similarity. A
tavorable result would indicate that small deviations or omis-
s1ons of small scattering detail would not impact the measure
of similarity. In this experiment, the MMI between the base-
line BTR-70 and a decimated version of the BTR-70 com-
prising the top 20 (amplitude ranking) scattering centers 1s
determined. The results shown 1n FIG. 11 indicate a cumula-
tive MI between the signature processes to be a high value of
approximately 6 Nats. Such a high value suggests that the
MMI, used here as a measure of similarity, still correctly
identifies the target with decimated scattering centers as an
in-class target, despite the loss of some detail. This robustness
with respect to the inevitable vanations 1n the signatures of
in-class targets 1s important 1n addressing 1ssues associated
with articulation and target configuration.

EXAMPLE 3

T-72 (In-Class Variations)

Example 3 corresponds to case-5 1n Table 1. In-class varia-
tions from the baseline geometry may be obtained by remov-
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ing certain physical features, and an etffort 1s made to ensure
that the scattering from these features 1s “persistent” over the

whole target aspect angle window. The T-72 tank 1s used as
the baseline target 1n the experiments designated as case-5 in
Table 1 with three specific geometry components 1dentified
for study. The geometry components identified are the for-
ward fenders, rear fuel barrels, and the gun barrel. The scat-
tering from the front fender 1s eliminated, and FIGS. 12A and
12B illustrate the two dimensional image of the T-72 tank
with and without the fender scattering. The reduction in
resolved signal power within the cells associated with this
geometry indicates the significant effect of eliminating the
tender scattering. The results of this first of these sub-experi-
ments are presented in FIG. 13 where the MMI 1s computed
for the T-72 with and without fender scattering. The cumula-
tive MI 1s computed as approximately 16 Nats, indicating a
high degree of similarity.

FIGS. 14 through 18 show similar results for the sub-
experiments ivolving the removal of the fuel barrel scatter-
ing i FIGS. 14A, 148, and 15, the gun barrel scattering 1n
FIGS. 16A, 16B, and 17, and the fender, fuel barrel, and gun
barrel scattering in FIG. 18. FIGS. 14A and 14B are two
dimensional 1mages of a T-72 tank with and without fuel
barrel scattering. The cumulative MI for the T-72 as shown 1n
FIG. 15 with and without fuel barrel scattering 1s approxi-
mately 14 Nats, indicating again a high degree of similarity.
FIGS. 16 A and 16B are two dimensional images of a T-72
tank with and without gun barrel scattering. The results ol this
third sub-experiment show the cumulative MI for the T-72
with and without gun barrel scattering to be 12 Nats, again
indicating a high degree of similarity. In the final sub-experi-
ment for case-5, all three physical features of the T-72 tank are
removed (fenders, fuel barrels and gun removed). In FI1G. 18,
the cumulative M1 for the baseline T-72 and the modified T-72
1s approximately 11 Nats (two dimensional images not
shown).

As shown by FIGS. 12 through 18, mutual information
used as a measure of similarity correctly 1dentifies the modi-
fied targets 1n all cases. Mutual information remains high for
a range of 1n-class variations and 1s close to zero for out-oi-
class targets, even when they appear “close” by conventional
measures that operate on 1solated geometric features. Further-
more, the mutual information remains high even when iso-
lated geometric features (geometry that 1s deemed important
in conventional statistical pattern recognition based discrimi-
nation methods) are removed.

EXAMPLE 4

BMP2 vs. BMP2 with Additive Gaussian Signals

Experiments conducted so far show that mutual informa-
tion remains high for arange of in-class variations and 1s close
to zero for out of class targets, even when they appear “close”
by other measures. It 1s natural to wonder 1f 1t 1s possible to
make so many changes 1n the baseline target that the modified
target could be considered a dissimilar target resulting 1n a
mutual information level close to zero. To test this notion and
starting with the signature process of a baseline target
(BMP2) a new signature process 1s obtained by the addition of
uncorrelated Gaussian signal. The mean squared error (MSE)
between the modified and baseline signatures serves as a
measure of “distortion.” Example 4 corresponds to this final
case, case-6, 1n Table 1. FIG. 19 shows the cumulative MI as
function of the mean squared error for baseline BMP2 and
BMP2 with additive Gaussian signals demonstrating depen-
dence at significant levels of added distortion. The salient
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teature of FIG. 19 1s that as MSE 1ncreases, to a level typlcal
of dissimilar targets, the mutual information levels off but
does not actually become zero. The reason for this behavior 1s
that irrespective of the amount of “distortion™ added to the
original signature, the modified signature never becomes an
independent process. Mutual information 1s zero only when
the two processes are mdependent. It 1s this property of
mutual information that leads to the desirable result of mutual
information being high for a rather wide range of in-class
variations, while remaining low for out-of-class variations.

The role of signature database validation 1s significant in
achieving realizable radar signature exploitation systems.
Developing similarity measures that operate within an auto-
matic target recognition systems framework 1s central to
building this technology. The research and key findings asso-
ciated with an information theoretic similarity measure to
provide a high range resolution signal model. The database in
one embodiment of the present invention includes measured
radar data and modeled synthetic data where the measured
data 1s compared to the synthetic data and 1s mathematically
combined to create a hybrid signature set using the above
computed MMI and/or cumulative mutual information. In
one embodiment of the present invention, the synthetic sig-
nature set includes both similar targets and dissimilar targets.
The hybrid signature set 1n one embodiment of the present
invention 1s automatically compared with the target signature
to provide automatic target recognition based upon the target
classification calculations.

Computationally stable techniques for computing MMI
are herein disclosed for use 1n radar and multi-radar signature
process database validation. Numerical experiments have
been conducted to validate the approach taken and to demon-
strate that mutual information comprising a sum total of MMI
may be used to determine 1f two signature processes corre-
spond to 1n-class or out-of-class targets.

Experimentally 1t was shown that modal information 1s
consistently high between signatures corresponding to targets
with 1n-class variations and consistently low (independent)
for out-oi-class target comparisons, including the ‘confuser’
case. While the full interpretation of mutual mmformation’s
ability to measure the common signature scattering informa-
tion has not been fully exploited, the mherent capability to
test for statistical independence has been demonstrated to be
uselul. The apparent ‘sharpness’ of the MMI as a measure of
statistical independence 1s compatible with efficient methods
of hypothesis testing and traiming, which will be needed to
tully realize the method 1n assessing a hybrid signature pro-
cess for use within an automatic target recognition system.

MMI provides an mmproved similarity measurement
method to test the suitability of databases for training within
a radar target 1dentification system. Other applications may
include radar integrated with an automatic target recognition
systems database. In addition to this, the characteristics of
mutual information have strong appeal in dealing with real
word artifacts of contemporary radar signature data. The abil-
ity of mutual information to determine the common informa-
tion between two signature processes even with the addition
of large levels of additive Gaussian signal shows great prom-
1se to operate 1n high interference and noise conditions, often
experienced 1n measured radar signature data. Potential solu-
tions to today’s troublesome 1ssues of uncertainty in signature
alignment and calibration faced by many feature based simi-
larity approaches may be better addressed with the process
herein disclosed.

Regardless of the dimensionality and the bandwidth of the
automatic target recognition signature process, this method of
statistical database comparison for signature processes within
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the one-dimensional (HRR signature format) domain may be
applied to signatures 1n higher dimensions and at higher reso-
lution (projecting to lower dimension and with reduced band-
width) 1n order to address 1ssues within the database area.
FIG. 20 1s a flowchart illustrating an exemplary embodi-
ment of a method of using MMI to compare and assess two
radar signature databases for use in training a radar target
recognition decision algorithm. One or more of the steps of
the method shown 1 FIG. 20 may be fully or partially per-
formed on practically any properly configured device, includ-
ing a computer, computer system, or programmable device,

¢.g., multi-user or single-user computers, desktop computers,
portable computers and devices, computers and computer
systems aboard aircrait and other vehicles, handheld devices,
network devices, mobile phones, etc., all of which will here-
inafter be referred to simply as a “computer.”

The method begins (Step 200) by providing a target library
containing targets drawn from a variety of different target
classes (Step 202). Multiple samples are gathered using spa-
tial (aspect angle) or frequency diverse sampling (Step 203).
Radar signature data i1s generated using two high range reso-

lution signature processes X and Y (Step 210a, 2104), fol-
lowed by compilation of the respective radar signature data
into two databases, Database 1 and Database 2 (Step 2154,
215b). The radar signature data may include measured radar
data developed from radar signatures gathered via a measure-
ment process from a variety of targets 1n a laboratory or other
controlled environment. The radar signature data may also be
synthetic radar data obtained from numerical simulations
and/or computational modeling performed on a geometry
model. In the embodiment of the method shown 1n FIG. 20,
Database 1 includes measured radar data, while Database 2
includes synthetic radar data. In another embodiment, each
database may include a mixture of measured radar data and
synthetic radar data.

Following generation of the radar signature data (Step
210a, 210b6), the database containing measured radar data
(Database 1 1n this example) and the database containing the
synthetic modeled radar data (Database 2 1n this example) are
prepared for comparison with each other. As described above,
a covariance matrix 1s estimated for each process (Step 220aq,
220b), followed by a spectral decomposition of the respective
covariance matrices (Step 225a, 225b). The two databases

generated by random signature processes X and Y are then
mathematically compared to each other using an information
theoretic method that computes an amount of cumulative
mutual information based on MMI (Step 230). As used
throughout, the terms “total mutual information” and “cumu-
lative mutual information” are synonymous with total or
cumulative MMI, all of which refer to the sum total of com-
mon information between the two databases.

Spectral common information diagnostics (Step 235) may
be used to evaluate similarity as a function of the degree of
significance (ranked on power) of each mode of the signature
process. This mode-by-mode comparison 1s useful 1n direct-

ing improvements in X and/or Y should this be necessary
(see STEP 290 described in more detail below). Computation
of cumulative mutual information comprising MMI avoids
one or more numerical instability 1ssues normally associated
with the computation of mutual imnformation. These 1ssues
may result in false positives, false negatives, and/or inconclu-
s1ve results.

After the amount of mutual information between the two
databases 1s calculated (Step 230), the suitability of using

signature processes X and Y together as a hybrid radar sig-
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nature database 1s evaluated by applying a set of suitability
criteria (Step 240). When the two signature processes X and

Y correspond to the same target class, the cumulative mutual
information 1s expected to be high. One or more the targets
may have ““in-class” variations. These in-class variations
from the baseline geometry may be minor, such as differences
in the terrain on which the target 1s located, or they may be
significant variations, such as the removal or addition of
physical features like fuel barrels. This high level of correla-
tion 1s demonstrated by determining the cumulative mutual
information between the signature processes of a target and
its variants.

When the two signature processes correspond to two dif-
ferent target classes, the cumulative mutual information 1s
expected to be near zero, even when “out-of-class” variations
cause the targets to appear to be a “close” match that could be
considered a “confuser” based on conventional geometric- or
feature-based measures. A confuser may include a false posi-
tive, a false negative, or an inconclusive determination. The
presently disclosed method 1s still able to differentiate
between confusers in part because the high range resolution
signature processes of two different target classes are inde-
pendent, and the cumulative mutual information between
independent processes 1s zero, even when they appear “close”
by conventional measures.

Referring to FIG. 20, the suitability criteria applied 1n Step
240 1nclude an assessment of the amount of mutual informa-
tion between the two processes. To be suitable for use
together, where the two signature processes correspond to
targets drawn from the same class 1.e. 1n-class targets, the
cumulative mutual information should be high. In one
embodiment of the method, the cumulative mutual informa-
fion 1s =5 Nats. In another embodiment, the cumulative
mutual information 1s at least about five times greater for
in-class targets as compared to out-oi-class targets. In another
embodiment, the cumulative mutual information 1s at least
about ten times greater for in-class targets as compared to
out-of-class targets. Where the two signature processes cor-
respond to targets drawn from two different classes 1.e. out-
of-class targets, the cumulative mutual information should be
low. In one embodiment, the cumulative mutual information
1s greater than zero but less than or equal to one.

Where the amount of mutual information indicates that the
two processes are suitable for use together (*“Yes™), a hybrnid
training database comprising a combination of signature pro-

cesses X and Y may be generated for use 1n training radar
target recognition decision algorithms (Step 243), and the
method 1s terminated (Step 248). The hybrid signature set in
one embodiment includes both similar targets and dissimilar
targets. The hybrid signature database may include surrogate
radar data, measured data, modeled data, or any combination
thereof.

Where the amount of mutual information between the two
processes fails to indicate suitability (“INo”), a decision 1s
made whether to continue the process (Step 250). If the deci-
s1on 1s made to discontinue the process (“No”), the method
terminates (Step 248). Alternatively, if the decision 1s made to
continue the process (“Yes™), the method may be restarted at
the target library (Step 202) following offline process
improvements to one or more failing targets or target classes

within X, Y, or both (Step 290). Measurement and/or mod-
cling process improvements may be required 1n the event that

the suitability criteria for hybridization of X, Y is not met.
Improvements to the measurement process may include
increased signal-t-noise ratio or an increase in the number of
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Bits within the analogue-to-digital converter. Several process
improvement methods are known for synthetic data and may
involve improvements to geometry models, increased geom-
etry representation, or other enhancements to modeling fidel-
ity. Likewise, several process improvement methods for mea-
sured data processes are known and may mvolve improved
measurement procedures such as increasing the signal-to-
noise ratio, mcreasing the number of Bits within the ana-
logue-to-digital converter, and/or reducing interference.

In addition to the use of MMI as a method to validate
multi-source radar signature databases for hybrid training, a
modal mutual information method may be used as part of a
tactical classifier to provide automatic target recognition
(ATR). Cumulative mutual information calculations may be
performed real time 1n a fielded radar system to compare a
measured signature process to a training process developed
from a hybrid signature database, which may be validated as
described above. The measured signature process derived
from the real-time target measurements 1s generated through
a mapping to a fixed measurement aspect angle to the target
and a range of frequency sub-bands centered at a center
reference transmit frequency. The hybrid signature process 1s
then automatically compared with a tactically measured tar-
get signature process to provide ATR based on cumulative
mutual information calculations.

Cumulative mutual information calculations for ATR are
based on the statistical dependence between the target under
measurement and the on-board target databases for each tar-
get class under comparison. In the case of conventional target
classification calculations techniques, a signature measured
under field conditions (which may be considered to be a
sample realization of a random process) 1s compared to the
signature random process corresponding to the different tar-
get classes of interest comprising a database. Unlike conven-
tional target classification calculations, the mutual informa-
tion-based target classification calculation involves the
comparison of two random signature processes. The mutual
information-based target classification method 1s a measure
of the dependence between random variables and 1s a more
general (contains all the statistics) measure of similarity 1n
that 1t contains all of the statistics, making 1t a more robust
measure ol comparison.

FIG. 21 1s a flowchart illustrating an exemplary method of
using modal mutual information calculations to provide auto-
matic recognition of a target in the field. The steps of the
method shown 1n FI1G. 21 may be tully or partially performed
on practically any properly configured device, including a
computer, computer system, or programmable device, e.g.,
multi-user or single-user computers, desktop computers, por-
table computers and devices, computers and computer sys-
tems aboard aircrait and other vehicles, handheld devices,
network devices, mobile phones, etc., all of which will here-
iafter be referred to simply as a “computer.”” The method
begins (Step 200), and a target 1s acquired (Step 255) by an
onboard radar system. In the next step, a real-time radar
measurement of the target 1s generated (Step 260). The real-
time radar measurement 1s generated by a mapping to a fixed
measurement aspect angle to a target and a range of frequency
sub-bands centered at a center reference transmit frequency.
A hybrid signature database containing a variety of radar
signatures 1s provided (Step 265). In one embodiment, the
hybrid signature database contains radar signature processes
validated using the methods described above.

The real-time radar measurement and the hybrid signature
database are then prepared for comparison with each other. A
covariance matrix 1s estimated for each process (Step 220aq,
220b), followed by a spectral decomposition of the respective
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covariance matrices (Step 2235a, 2255b), both as described
above. The amount of cumulative mutual information
between the real-time radar measurement and the hybrid sig-
nature database 1s calculated from the MMI as described
above (Step 230). Spectral common information diagnostics
(Step 235) are used to evaluate similarity as a function of the
degree of significance (ranked on power) of each mode of the
signature process. This mode-by-mode comparison 1s useful
in potential subsequent target acquisitions (see Step 2935
described in more detail below).

Based on the amount of cumulative mutual information,
the real-time radar measurement 1s compared to the hybrid
signature database and “matched” to one or more radar sig-
natures 1n the database (Step 270). Where the modal mutual
information calculation (Step 230) reveals in-class levels
(Step 275), the target may be 1dentified (Step 280), and the
process terminates (Step 248). In one embodiment of the
method, the cumulative mutual information calculated (Step
230) 1s =5 Nats, which 1s consistent with in-class declaration
levels.

Where the modal mutual information calculation (Step
230) reveals out-of-class levels (Step 285), the target cannot
be 1dentified. In one embodiment of the method, the amount
of cumulative mutual information calculated (Step 230) 1s
greater than zero but less than or equal to 1, which 1s consis-
tent with out-of-class declaration levels. A decision 1s then
made whether to continue the process (Step 292). It the deci-
s1on 1s made to discontinue the process (“No”’), the method
terminates (Step 248). If the decision 1s made to continue the
process (“Yes”), subsequent transmissions may be performed
without adaptation of the transmitted waveform, and the
method starts over again with target acquisition (Step 255). In
an alternative embodiment, an additional step (Step 2935) may
be performed prior to returning to the target acquisition step
(Step 255). Target acquisitions resulting in no declaration of
an 1n-class target may be scheduled for subsequent target
acquisitions and ATR calculations using the mutual informa-
tion method. Online adaptations to the transmitted wavetform
are possible prior to the subsequent acquisitions and mutual
information calculations. Online adaptations to the transmit-
ted wavetorm may include modifications to the center refer-
ence transmit frequency in order to generate a new scattering
response (a function of frequency) that may increase the
statistical dependence between the measured signature pro-
cess and the true target class within the hybrnid signature
database. This online adaptation may include a modification
of the center reference transmit frequency. Changes to the
center transmit frequency could improve the modal mutual
information calculation results, which may result 1n success-
tul 1dentification of the target.

Although specific embodiments have been described 1n
detail in the foregoing description and 1llustrated in the draw-
ings, various other embodiments, changes, and modifications
to the disclosed embodiment(s) will become apparent to those
skilled 1n the art. All such other embodiments, changes, and
modifications are intended to come within the spirit and scope
of the appended claims.

What 1s claimed 1s:

1. A method for assessing radar signature databases for use
in training a radar target recognition decision algorithm, the
method comprising the steps of:

generating radar signature data from at least three targets

using a first process and a second process, wherein the
radar signature data includes at least one of measured
radar data and synthetic radar data, and wherein the
targets comprise at least two different target classes, at
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least two targets being 1n a same target class and at least
one target being 1n a different target class;

producing a first radar signature database using the first

process and a second radar signature database using the
second process;

comparing the first radar signature database and the second

radar signature database using an information theoretic
method;
computing an amount of cumulative mutual information
between the first radar signature database and the second
radar signature database for targets comprising the same
target class and for targets comprising different target
classes, wherein the cumulative mutual information
comprises a sum ol modal mutual information, MMI,
derived from comparison of radar signature data from at
least two targets, whereby numerical instabilities often
incurred in computation of cumulative mutual informa-
tion are eliminated through incremental computation of
MMI; and

based on the amount of cumulative mutual information
between the first radar signature database and the second
radar signature database, determining whether the first
process and second process are suitable for use together
to generate a hybrid radar signature database for training
the radar target recognition decision algorithm.

2. The method of claim 1 wherein the targets comprising
the same target class include at least one target comprising at
least one 1n-class structural variation of at least one dominant
and 1solated geometric mechanism that 1s conventionally
critical to successiul classification of targets to the same
target class, wherein the 1n-class structural variation produces
conventional signature features that are dissimilar to the radar
signature data corresponding to the same target class.

3. The method of claim 2 wherein the amount of cumula-
tive mutual information 1s =5 Nats.

4. The method of claim 1 wherein at least one of the targets
comprising a different target class includes at least one target
comprising at least one out-of-class structural variation of at
least one dominant and 1solated geometric mechanism that 1s
conventionally critical to successtul classification of targets
to different target classes, wherein the out-of-class structural
variation produces conventional signature features that are
similar to the radar signature data corresponding to the dif-
ferent target class.

5. The method of claim 4 wherein the amount of cumula-
tive mutual information 1s <5 Nats.

6. The method of claim 4 wherein the amount of cumula-
tive mutual information 1s greater than zero and less than or
equal to one.

7. The method of claim 1 further comprising conducting,
oifline improvements to at least one target class.

8. The method of claim 1 wherein the first radar signature
database consists of measured radar data and wherein the
second radar signature database consists of synthetic radar
data.

9. A method of using cumulative modal mutual informa-
tion to i1dentify real-time target measurements using auto-
matic target recognition, the method comprising the steps of:

generating within an onboard radar system a {irst radar

signature process measurement derived from a real-time
target measurement, wherein the first radar signature
process measurement 1s generated through a mapping to
a fixed measurement aspect angle to a field target and a
range of frequency sub-bands centered at a center refer-
ence transmit frequency;

producing a second radar signature process dertved from a

hybrid signature database, wherein the hybrid signature
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database comprises a combination of radar signature
data derived from measured radar data and synthetic
radar data;

comparing the first radar signature process measurement
and the second radar signature process using an infor-
mation theoretic method;

computing in real-time an amount of cumulative mutual
information between the first radar signature process

measurement and the second radar signature process,
wherein the cumulative mutual information comprises a
sum of modal mutual information, MMI, derived {from
comparison of the first radar signature process measure-
ment and the second radar signature process, whereby
numerical 1nstabilities associated with computing
cumulative mutual information are eliminated through
incremental computation and combination of MMI; and
based on the amount of cumulative mutual information
between the first radar signature process measurement
and the second radar signature process, determining an
identity of the field target.
10. The method of claim 9 wherein the target comprises at
least one 1n-class structural variation of at least one dominant
and 1solated geometric mechanism that 1s conventionally
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critical to successiul classification of the target, wherein the
in-class structural variation produces signature features that
are dissimilar to the radar signature data corresponding to the
same target class.

11. The method of claim 10 wherein the amount of cumu-
lative mutual information 1s =5 Nats.

12. The method of claim 9 wherein the target comprises at
least one out-oi-class structural variation of at least one domi-
nant and 1solated geometric mechanism that 1s conventionally
critical to successiul classification of the target, wherein the
out-of-class structural variation produces signature features
that are similar to the radar signature data corresponding to
the different target class.

13. The method of claim 12 wherein the amount of cumu-
lative mutual information 1s <5 Nats.

14. The method of claim 12 wherein the amount of cumu-
lative mutual information 1s greater than zero and less than or
equal to one.

15. The method of claim 9 wherein the hybrid signature
database 1s validated using the method of claim 1.

16. The method of claim 9 further comprising conducting
online improvements to a transmission wavelorm.
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