US008863151B2
12 United States Patent (10) Patent No.: US 8.863.151 B2
Schneider 45) Date of Patent: Oct. 14, 2014

(54) SECURING INTER-PROCESS (56) References Cited

COMMUNICATION
U.S. PATENT DOCUMENTS

(75) Inventor: James P. Schneider, Raleigh, NC (US) 4694396 A * 9/1987 Weisshaaretal. 719/314
4754395 A * 6/1988 Weisshaaretal. 719/313
(73) Assignee: Red Hat, Inc., Ra]eighj NC (IJS) 5,611,043 A * 3/1997 Ewvenetal 714/38
6,795,920 B1* 9/2004 Bachaetal. 713/168
| | o | 7,463,935 B1* 12/2008 Milleretal. ...oovvvvvvinn., 700/1
(*) Notice: Subject to any disclaimer, the term of this 7,774,846 B2* 82010 Rothmanetal. 726/24
patent 1s extended or adjusted under 35 7,921,227 B2 42011 Ban ...occccoeveveieiiieniannn, 709/250
U.S.C. 154(b) by 1082 days. 2004/0205770 Al* 10/2004 Zhang etal. ...ooooe........ 719/314
2005/0005306 A1* 1/2005 Kimetal. .oooovovvevevin.. 725/131
2005/0055701 A1* 3/2005 Stall ...ooooovovioeeeeei., 719/314
(21) Appl. No.: 11/893,444 2005/0114895 Al* 5/2005 Ismail et al. wvoovevvon.. 725/81
2005/0262159 A1* 11/2005 Everhartetal. 707/201
oy Filed: Aue. 15. 2007 2006/0129650 A1* 6/2006 Hoetal.c.ovvvevinnnl, 700/207
(22) File s 19 2006/0248600 AL* 11/2006 O°Neill woooovvooooo 726/29
2007/0014295 A1* 1/2007 Fernandes et al. 370/395.2
(65) Prior Publication Data 2007/0060366 Al* 3/2007 Morrowetal. 463/42
2008/0098475 Al* 4/2008 Girouardetal. 726/21
US 2009/0049454 Al Feb. 19, 2009 2009/0271863 Al* 10/2009 Govindavajhala etal. 726/23

(51) Imt.Cl. * cited by examiner

GO6l' 3/00 (2006.01) Primary Examiner — 1uan Dao
GoOol 15/16 (2006.01) (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
GO6l" 9/54 (2006.01)

(52) U.S.CL (37) ABSTRACT
CPC oo, GO6F 9/546 (2013.01) A request to post a message to a destination 1s intercepted in
USPC oo, 719/314: 719/313: 709/250 ~ an operating environment in which processes communicate

via message queues. Message content and requester informa-
tion associated with the request 1s evaluated to determine
whether the message 1s to be posted. The message 1s posted to
a message queue of the destination 11 the message 1s to be

(58) Field of Classification Search
CPC ... GO6F 9/546; GO6F 15/76; GO6F 2209/486;
GO6F 2209/548; GO6F 9/45533; GO6F 3/0635;
HO4L 12/5815; HO4M 3/53333; HO4M
3/53366 ~ Posted

See application file for complete search history. 18 Claims, 5 Drawing Sheets
(Start) 400
Intercept Request 'I;n Post Message To /

Destination 405

Yes Requestor =
Destination? 410

No

Destination
Have Administrative
Privileges? 41

Yes

Message
Qutside Documented
Range? 420

Yes

No

Lontex
of Destination Match No
Message?
425

Message
Include Inappropriate
Values?

Yes

,

Notify Requestor That Access
Post Message Tﬂ t{lessage Queve Of To Post Message To Destination
Destination 435 :
14 Is Denied 440

(End)

U.S. Patent Oct. 14, 2014

Requestor 105

Message Message

) Message Poster
b.

110

Sheet 1 of S

US 8,863,151 B2

100
/

).

Figure 1

Destination 11

Message
Queue 120

i

Mgssaée

Processor 125

US 8,863,151 B2

Sheet 2 of S

Oct. 14, 2014

U.S. Patent

GEZ J0SS300.14
abessan

0€Z @nand

abessa

22 uoneulsaq

144
18]s0d abessan

Z 9.1nD14

80¢ Jabeue| abessay

v

abessap

gl ¢ a101S v

A

R

abessay

o o

00z —

Gle Loum:,_m\,m

01 ¢ 40)dadiaju)

abessa abessa

G0OZc J01sanbay

obessap

Oju] Jolsanbay
‘abessa

1

‘abessay

OjU| JO}Sanbay

U.S. Patent Oct. 14, 2014 Sheet 3 of 5 US 8.863.151 B2

(" stat) 300
__ /

" Intercept Request To Post Message To

- Destination 305

Evaluate Message Content And
Requestor Information 310

o

Evaluate Security Context Of
i Destination 315

No

Post Message”? 320

Yes Terminate
riteria Satisfied? 32

Y _ Y
Post Message To Message

Queue Of Destination 325

Terminate Requestor 335

L v
Notify Requestor That Message
Could Not Be Posted 330

P -
Y

(End)

Figure 3

U.S. Patent

Yes

Oct. 14, 2014

_ Y
Intercept Request To Post Message To

Destination 405

Requestor =
Destination? 410

No

Destination
Have Administrative
Privileges? 415

NoO

Yes

Message Ves

Sheet 4 of S

US 8,863,151 B2

400

/

4

Outside Documented
Range? 420

No

of Destination Match No

Message?
425

Yes

Message
a9 Yes

Include Inappropriate
Values? 430

» NO

Y
Post Message To Message Queue Of

Destination 435

—— Y
Notify Requestor That Access

To Post Message To Destination

Is Denied 440

C E:xd)

Figure 4

U.S. Patent Oct. 14, 2014 Sheet 5 of 5 US 8.863.151 B2
500
502 VAN / 510
PROCESSOR
NN\
SROCESSING -~ VIDEO DISPLAY |
\ LOGIC
~—53
504 ! 512
MAIN MEMORY
N ALPHA-NUMERIC
SOFTWARE || 520 INPUT DEVICE
Nl |
506 514
CURSOR
STATIC MEMORY CONTROL
DEVICE
7,
=
D
508 516
NETWORK SIGNAL
INTERFACE <«4—»| GENERATION
DEVICE DEVICE
518
SECONDARY MEMORY
. MACHINE-ACCESSIBLE 531
590 STORAGE MEDIUM
522
N SOFTWARE

Figure 5

US 8,803,151 B2

1

SECURING INTER-PROCESS
COMMUNICATION

TECHNICAL FIELD

Embodiments of the present invention relate to mter-pro-
cess communication, and more specifically to securing inter-
process communication 1n operating environments in which
processes communicate using message queues.

BACKGROUND

In certain operating environments, processes communicate
with one another using message queues (e.g., to pass event
information). Almost all communication that occurs 1n such
operating environments 1s processed through one or more
message queues. One operating environment 1n which pro-
cesses communicate using message queues 1s the Microsoft
Windows® operating system. Wine (Wine 1s not an emula-
tor), and ReactOS® are additional examples of operating
environments 1n which message queues are used to pass mes-
sages.

FIG. 1 1llustrates a conventional operating environment
100, 1n which processes communicate using message queues.
The conventional operating environment 100 includes a
requestor 105, a message poster 110 and a destination 115.
The requestor 105 and destination 115 may each be processes
running in the conventional operating environment 100.

Requestor 105 may generate a message to be processed by
destination 115. The message may include a message number
and provided parameters. However, the message does not
include context information (e.g., the context in which the
message was created), or requestor mformation about the
process that created the message.

The message 1s sent to a message poster 110. The message
poster 110 receives the message, and posts 1t to a message
queue 120 of destination 115. Once other messages preceding
the recerved message in the message queue 120 are processed,
the message processor 1235 processes the received message.

One problem with the conventional operating environment
100 1s that none of the message poster 110, destination 115 or
message processor 125 authenticate messages back to their
source (requester 105). Therefore, the message processor 125
does not know where the message originated, or how 1t
arrived at the message queue 120.

Destination 115 may check message properties to make
sure that they include valid (e.g., possible) values. However,
many destinations 115 do not thoroughly check messages.
Therefore, 1t 1s possible for requestor 1035 to run arbitrary
code 1n the context of destination 115 by sending a message to
destination 115. Where the destination 113 1s a process run-
ning with administrative privileges (e.g., process run by
LOCAL SERVICE, by SYSTEM, by NETWORK SER-
VICE, etc.), an ability to run code in the context of destination
115 enables requestor 105 to crash the operating environ-
ment, to run arbitrary code with administrative privileges

(e.g., read/write privileges), or to perform other harmiul
activities.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying,
drawings and 1n which:

FI1G. 1 illustrates a conventional operating environment, in
which processes communicate using message queues;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 illustrates an exemplary operating environment, in
which embodiments of the present invention may operate;

FIG. 3 1llustrates a flow diagram of one embodiment for a
method of securing inter-process communication;

FIG. 4 illustrates a flow diagram of another embodiment
for a method of securing inter-process communication; and

FIG. 5 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system, in
accordance with one embodiment of the present invention.

DETAILED DESCRIPTION

Described herein 1s a method and apparatus for securing
inter-process communications. In one embodiment, a request
to post a message to a destination 1s intercepted. Message
content and requestor information associated with the request
may be evaluated to determine 11 one or more posting criteria
are satisfied, and whether the message 1s to be posted to a
message queue of the destination. The posting criteria may
ensure that nefarious processes or other undesirable pro-
cesses do not gain access to restricted data or privileges. The
requestor and the destination may be processes in an operat-
ing environment in which processes communicate via mes-
sage queues.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled 1n the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than i1n detail, 1n
order to avoid obscuring the present invention.

Some portions of the detailed description which follows
are presented 1n terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
clfectively convey the substance of theirr work to others
skilled 1n the art. An algorithm 1s here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne 1in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “processing’, “computing’, “generating’’, “performing”,
“displaying” or the like, refer to the actions and processes of
a computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(e.g., electronic) quantities within the computer system’s reg-
1sters and memories into other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage, transmission or
display devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or 1t may com-
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored 1n a computer read-

US 8,803,151 B2

3

able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMSs, mag-
netic or optical cards, or any type of media suitable for storing
clectronic instructions.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or 1t may prove
convenient to construct a more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear from the description
below. In addition, the present invention 1s not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.

A machine-readable medium includes any mechanism for
storing or transmitting information 1n a form readable by a
machine (e.g., a computer). For example, a machine-readable
medium 1ncludes a machine readable storage medium (e.g.,
read only memory (“ROM”), random access memory
(“RAM”), magnetic disk storage media, optical storage
media, flash memory devices, etc.), a machine readable trans-
mission medium (electrical, optical, acoustical or other form
ol propagated signals (e.g., carrier waves, infrared signals,
digital signals, etc.)), etc.

FIG. 2 illustrates an exemplary operating environment 100
in which embodiments of the present invention may operate.
The operating environment 100 may be an operating environ-
ment 1n which processes communicate by exchanging mes-
sages. A process may communicate with another process by
posting a message to a message queue of the other process. In
one embodiment, processes communicate with other pro-
cesses exclusively via message queues. In a further embodi-
ment, the operating environment 1s the Microsoit Windows®
operating system. Alternatively, the operating environment
may be the ReactOS® operating system or the Wine operat-
ing environment.

In one embodiment, the operating environment 200
includes a requestor 205, a message manager 208, a message
poster 220 and a destination 225. The requestor 2035 and the
destination 225 may be processes running in the operating
environment 200. In one embodiment, the requestor 205 and
destination 225 are window objects associated with a process
or processes. A window object 1s a data structure used to
manage windows and/or processes. Each process may have
multiple window objects, each of which may be represented
by a unique window handle. The operating environment 200
may include additional processes, each of which may also be
requesters 205 or destinations 225. Therefore, the operating,
environment 200 may include multiple requestors 205 and
multiple destinations 2235. Moreover, a single process may be
both a requestor 205 and a destination 225. This may occur,
for example, when a process posts a message to another
process, and receives a message from yet another process.
This may also occur 1f a process posts a message to itself.

In one embodiment, the operating environment 200 runs on
an individual computing device. In another embodiment, the
operating environment 200 1s part of a distributed computing
system, 1n which requester 2035 and destination 2235 may be
processes operating in different computing devices and/or
different operating environments 200.

Requestor 205 may generate a message directed to desti-
nation 225. The message may be an integer or any arbitrary
string, and may include one or more process parameters. In

10

15

20

25

30

35

40

45

50

55

60

65

4

one embodiment, requestor 205 then attempts to ivoke
(call), and then pass the message to, message poster 220.
Requestor 205 may invoke message poster 220 by calling a
dynamic link library (dll) or application programming inter-
face (API) for message poster 220. By mvoking message
poster 220, requestor 2035 may also automatically cause mes-
sage manager 208 to be ivoked. In another embodiment,
requestor 205 may invoke message manager 208, and then
send the message to message manager 208.

Message manager 208 may include a message interceptor
210, amessage evaluator 215 and a message store 218. Once
message manager 208 1s invoked (e.g., when message poster
220 1s invoked), message interceptor 210 may intercept and/
or receive a message from requestor 205. Message interceptor
210 may also receive requestor information along with the
message. In one embodiment, 1n which message manager 208
1s 1voked 1n the context of requestor 203, the requestor
information includes one or both of a process 1dentifier (pro-
cess I1D) and a thread identifier (thread ID) of the requestor
205. In another embodiment, 1n which requestor 2035 1s from
a remote operating device (e.g., a device other than a device
on which operating environment 200 1s running), requester
information includes one or both of a session 1dentifier (ses-
sion ID) and a user identifier (user ID) of the requestor 205.
Message interceptor 210 may then pass on the message and
requester information to message evaluator 215.

Message evaluator 215 may analyze the message, the
requester information (e.g., thread ID and process 1D) and
destination information (e.g., a window handle of destination
225, a thread ID and/or process ID associated with the win-
dow handle of destination 225, etc.) to determine whether to
pass the message on to message poster 220. Message evalu-
ator 215 may be a protected function to minimize security
risk. In one embodiment, message evaluator 215 1s a kernel
level module (or function), which may increase the difficulty
of deleting or modifying message evaluator 2135. Tampering
of message evaluator 2135 may thus be reduced or eliminated.

Message evaluator 215 may apply a number of message
posting rules (criteria) to determine whether to pass on a
message to the message poster 220. Message posting rules
may be arranged 1n a hierarchical fashion, such that a second
rule may only apply 1f a first rule 1s satisfied. Alternatively,
subsequent rules may only apply 1f a preceding rule fails to be
satisfied. Rules 1n the hierarchy may also include as part of
their defimition whether or not to execute successive rules. For
example, a firstrule may specity to execute a second rule 1f the
first rule 1s satisfied, and a third rule 1f the first rule 1s not
satisfied.

Optimally, message posting rules should enable message
evaluator 215 to determine whether to pass a message to
message poster 220 as quickly as possible, and with a mini-
mum amount of overhead (e.g., processor and/or memory
usage). Therelfore, rules that are quicker to process may be
applied before rules that are slower to process. Furthermore,
rules that filter out a large percentage of messages may be
applied before rules that filter out a small percentage of mes-
sages. Thus, for example, a first rule may pass on all messages
that are not directed to a destination 225 that has administra-
tive privileges. This rule may be processed without examining
process parameters ol the message, and without examiming
requestor information. Since most messages will not be
directed to a destination with administrative privileges, this
rule will also filter out a majority of messages. This may
minimize processor time used to analyze messages, and
increase message throughput. Additional message posting
rules are described with reference to FIG. 4 below.

US 8,803,151 B2

S

Referring to FIG. 2, based on application of the message
posting rules, message evaluator 215 may or may not pass on
the message to message poster 220. In one embodiment, 1
message evaluator 215 does not pass the message to the
message poster 220, it informs the requestor 205 that the
message could not be posted. In another embodiment, 11 the
message 1s not to be posted (passed on to message poster
220), and additional message posting rules are satisiied, the
requestor 205 1s terminated. The additional message posting,
rules may call to terminate the requestor 205 1f, for example,
the message 1s an undocumented message, the message
includes impermissible or impossible values, or the message
1s being posted i an 1nappropriate context. If the additional
message posting rules are satisfied, the requestor 205 may be
terminated by the message manager 208, or by a terminator
(not shown) invoked by the message manager 208.

In one embodiment, message evaluator 215 stores infor-
mation regarding the message, destination information and/
or requestor information in message store 218. In one
embodiment, such information is stored for messages that are
not passed on to message poster 220 (e.g., messages that fail
one or more message posting rules). Message store 218 may
be used to track refused messages (those not passed to mes-
sage poster 220), and monitor message activity of requester
205. In one embodiment, the message store 218 may also
include requestor restriction lists. The restriction lists may
restrict a particular requester 205 from posting messages to
destinations having administrative privileges. Alternatively,
the restriction lists may prevent a requester 205 from posting,
messages to any destination 225.

Once a message 15 passed to message poster 220, message
poster 220 posts the message to a message queue 225 of
destination 225. A message processor 233 of the destination
then processes the message. Before the message 1s processed,
destination 225 may examine the provided message param-
cters to ensure that the message has valid values. In one
embodiment, a message processor 235 of the destination 1s a
winproc (window procedure) of a Microsoft® Windows oper-
ating system process.

FIG. 3 1llustrates a flow diagram of one embodiment for a
method 300 of securing inter-process communication. The
method may be performed by processing logic that may com-
prise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (such as instructions
run on a processing device), or a combination thereof. In one
embodiment, method 300 1s performed by message manager
208 of FIG. 2.

Referring to FIG. 3, method 300 includes intercepting a
request to post a message to a message queue of a destination
process (block 305). The request may be intercepted from a
requestor process, and 1n one embodiment 1s intercepted from
a method invoked on a window object associated with a
requestor process. The message may have been generated by
an event of the requester process, or by other events 1n an
operating system (e.g., an event caused by a key press of a
keyboard or a click of a mouse). In one embodiment,
requestor mnformation 1s received along with the message.

At block 310, message content and requestor information
are evaluated. Evaluating the message content and requestor
information may include applying one or more message post-
ing rules (criteria) to the message content and requestor infor-
mation. At block 315, a security context (e.g., whether desti-
nation has administrative privileges) of the destination 1s
evaluated. Evaluating the security context of the destination
may include applying one or more additional message post-
ing rules. In one embodiment, the message content, requestor
information, and security context of the destination are evalu-

10

15

20

25

30

35

40

45

50

55

60

65

6

ated concurrently. Therefore, 1n some embodiments, block
310 and block 315 can be combined or performed 1n parallel.

At block 320, processing logic determines whether to
allow the message to be posted. This determination 1s made
based on the application of the message posting rules to the
message content, requestor information, and/or security con-
text of the destination, as described in blocks 310 and 315. In
one embodiment, 11 all message posting rules are satisfied, the
message will be posted. In another embodiment, 11 some of
the message posting rules are satisfied, the message will be
posted. If the message 1s to be posted, the method proceeds to
block 325 and the message 1s posted to amessage queue of the
destination. If the message 1s not to be posted, the message
proceeds to block 322.

At block 322, processing logic determines whether termi-
nation criteria have been satisfied. Examples of termination
criteria include an attempt to post an undocumented message,
an attempt to post a message with impermissible (1invalid or
impossible) parameters, or an attempt to post a message 1n an
iappropriate context. If some or all termination critena are
satisfied, the method proceeds to block 335, and the message
requestor 1s terminated. IT no termination criteria are satisiied
(or not enough termination criteria are satisfied), the method
proceeds to block 330, and the requester 1s notified that the
message could not be posted. Alternatively, 11 the message 1s
not to be posted, the method may end without sending any
notification to the requestor.

FIG. 4 1llustrates a flow diagram of another embodiment
for a method 400 of securing 1nter-process communication.
The method may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (such as mnstructions
run on a processing device), or a combination thereof. In one
embodiment, method 400 1s performed by message manager
208 of FIG. 2.

Referring to FIG. 4, method 400 includes intercepting a
request to post a message to a message queue of a destination
process (block 405). At block 410, the message 1s checked to
determine whether the requestor 1s the same as the destina-
tion. This may occur when a process posts messages to 1tself,
and may be determined without examining message contents
(e.g., process parameters). If the message 1s being sent to the
same process that generated it, the method proceeds to block
435. This allows all processes to post messages to themselves
regardless of the message content. If the message 1s not being
sent to the same process that generated 1t, the method pro-
ceeds to block 4135.

At block 415, processing logic determines whether the
destination has administrative privileges (e.g., ability to read/
write data, to start, stop or suspend a process as any user, etc).
Messages generally direct the execution of code 1n a context
of the destination. Therefore, a message may direct a desti-
nation having administrative privileges to execute code with
administrative privileges, though the code would not other-
wise be executed with administrative privileges. In contrast,
messages sent to destinations that do not have administrative
privileges cannot be granted administrative privileges. There-
fore, the message will not be able to damage critical system
components, crash system or subvert security of an operating
environment in which the destination 1s running if the mes-
sage 15 not directed to a destination with administrative privi-
leges. I the destination does not have administrative privi-
leges, the method proceeds to block 435. If the destination
does have administrative privileges, the method proceeds to
block 420.

At block 420, processing logic determines whether the
message 1s outside of a documented range. A list of expected

US 8,803,151 B2

7

values may be maintained. Messages that do not include a
value that 1s 1n the list may be assumed to be undesirable or
suspicious. Accordingly, if the message does not include val-
ues within the documented range, the method continues to
block 440. If the message does include values within the
documented range, the method proceeds to block 425.

At block 425, processing logic determines whether a con-
text of the destination matches the message. For example, 1
the message 1s a paint message (e.g., to display a fish), and the
destination does not have any visible windows, then the con-
text of the destination may not match the message. 1T the
context of the destination does not match the message, the
method proceeds to block 440. It the context of the destina-
tion does match the message, the method proceeds to block
430. Alternatively, 11 it cannot be determined whether the
context of the destination matches the message, the method
may proceed to block 430.

At block 430, processing logic determines whether the
message includes mappropriate (invalid or impossible) val-
ues. Inappropriate values are values that may not be properly
executed by the destination, examples of which include
invalid pointers, pointers to areas of memory that the
requester doesn’t have permission to access, icorrect butier
lengths or offsets, etc. Such inappropriate values may cause
the destination to crash, or cause other harmftul eflfects. If the
message includes mappropriate values, the method proceeds
to block 440. If the message does not include mappropriate
values, the method proceeds to block 435.

At block 435, the message 1s posted to a message queue of
the destination. In one embodiment, the message 1s passed to
a message poster that posts the message to the message queue
of the destination. At block 440, the requestor 1s notified that
the message could not be posted. Alternatively, the message
may simply not be posted without notifying the requestor.
The method then ends.

Method 400 has been described with a specific hierarchy of
message posting rules. However, other arrangements of mes-
sage posting rules may also be used. For example, block 415
and block 410 may apply 1n reverse order to what 1s shown.
Alternatively, one or more of the rules illustrated 1n blocks
410, 415, 420, 425 and 430 may not be used. Additional rules
not 1llustrated herein may also be applied. For example, arule
may be applied that will not allow requestors that do not
typically interact with a network to post network-related mes-
sages.

FIG. 5 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 500
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines 1n a LAN, an intranet, an extranet, or the Internet.
The machine may operate 1n the capacity of a server or a client
machine in client-server network environment, or as a peer
machine 1n a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set ol instructions (sequential or otherwise) that specily
actions to be taken by that machine. Further, while only a
single machine is 1llustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of istructions to
perform any one or more of the methodologies discussed
herein.

10

15

20

25

30

35

40

45

50

55

60

65

8

The exemplary computer system 500 includes a processing,
device (processor) 502, a main memory 304 (e.g., read-only

memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM) or
Rambus DRAM (RDRAM), etc.), a static memory 506 (e.g.,

flash memory, static random access memory (SRAM), etc.),
and a data storage device 518, which communicate with each
other via a bus 530.

Processor 502 represents one or more general-purpose pro-
cessing devices such as a microprocessor, central processing
unit, or the like. More particularly, the processor 302 may be
a complex instruction set computing (CISC) microprocessor,
reduced 1nstruction set computing (RISC) microprocessor,
very long mstruction word (VLIW) microprocessor, or a pro-
cessor 1mplementing other instruction sets or processors
implementing a combination of 1nstruction sets. The proces-
sor 502 may also be one or more special-purpose processing,
devices such as an application specific integrated circuit

(ASIC), a field programmable gate array (FPGA), a digital
signal processor (DSP), network processor, or the like. The
processor 502 1s configured to execute the processing logic
526 for performing the operations and steps discussed herein.

The computer system 500 may further include a network
interface device 508. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 516 (e.g., a
speaker).

The data storage device 518 may include a machine-acces-
sible storage medium 531 on which 1s stored one or more sets
of instructions (e.g., software 522) embodying any one or
more of the methodologies or functions described herein. The
soltware 522 may also reside, completely or at least partially,
within the main memory 504 and/or within the processor 502
during execution thereof by the computer system 500, the
main memory 504 and the processor 502 also constituting
machine-accessible storage media. The software 522 may
turther be transmitted or recerved over a network 520 via the
network interface device 508.

The machine-accessible storage medium 531 may also be
used to store data structure sets that define user 1dentifying
states and user preferences that define user profiles. Data
structure sets and user profiles may also be stored 1n other
sections ol computer system 500, such as static memory 306.

While the machine-accessible storage medium 331 1s
shown 1n an exemplary embodiment to be a single medium,
the term “machine-accessible storage medium” should be
taken to mclude a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of instructions.
The term “machine-accessible storage medium” shall also be
taken to include any medium that 1s capable of storing, encod-
ing or carrying a set of instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present invention. The term
“machine-accessible storage medium” shall accordingly be
taken to include, but not be limited to, solid-state memories,
optical and magnetic media, and carrier wave signals.

It 1s to be understood that the above description 1s intended
to be illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill 1n the art upon reading
and understanding the above description. The scope of the
invention should, therefore, be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled.

US 8,803,151 B2

What 1s claimed 1s:

1. A method, comprising;:

intercepting, by a processing device, a request from a

requesting process to post a message to a destination
process 1n an operating environment 1n which processes
communicate via message queues, wherein each desti-
nation process 1n the operating environment communi-
cates via a corresponding message queue;

determining whether the requesting process 1s a same as

the destination process in view of the message;

in response to a determination that the requesting process 1s

not the same as the destination process,

evaluating message content and requestor information
associated with the request to determine whether the
message 1s to be posted;

posting the message to a message queue of the destina-
tion process 1f the message 1s to be posted; and

if the message 1s not to be posted, and the message
satisfies additional critenia, causing the requesting
process to be terminated, wherein the additional cri-
teria comprise posting an undocumented message;
and

in response to a determination that the requesting process 1s

the same as the destination process, posting the message
to the message queue of the destination process.

2. The method of claim 1, wherein the evaluating 1s per-
formed by a kernel component of the operating environment,
wherein the requesting process and the destination process
reside on a same computing device, and wherein the destina-
tion process recerves the message directly from the message
queue of the destination process.

3. The method of claim 1, wherein the request to post the

message 1s made by a method mvoked on a first window
object, and wherein the destination process comprises a sec-
ond window object.

4. The method of claim 1, further comprising;

evaluating a security context of the destination process to

determine whether the message 1s to be posted.

5. The method of claim 1, further comprising:

if the message 1s to not be posted, notifying the requesting,

process that the requesting process does not have access
to post the message to the destination process.

6. The method of claim 1, further comprising;

if the message 1s not to be posted, storing the message and

the requestor information 1n a log.

7. The method of claim 1, wherein the additional criteria
comprise at least one of, posting the message with impossible
parameters, or posting the message 1n an 1appropriate con-
text.

8. A non-transitory machine-accessible medium compris-
ing structions that, when executed by a processing device,
cause the processing device to perform operations compris-
ng:

intercepting, by the processing device, a request from a

requesting process to post a message to a destination
process 1n an operating environment 1n which processes
communicate via message queues, wherein each desti-
nation process 1n the operating environment communi-
cates via a corresponding message queue;

determining whether the requesting process 1s a same as

the destination process in view of the message;

in response to a determination that the requesting process 1s

not the same as the destination process,

evaluating message content and requestor information
associated with the request to determine whether the
message 1s to be posted;

10

15

20

25

30

35

40

45

50

55

60

65

10

posting the message to a message queue of the destina-
tion process 1f the message 1s to be posted; and

if the message 1s not to be posted, and the message
satisfies additional criteria, causing the requesting
process to be terminated, wherein the additional cri-
teria comprise

posting the message with impossible parameters; and

in response to a determination that the requesting process 1s
the same as the destination process, posting the message
to the message queue of the destination process.

9. The non-transitory machine-accessible medium of claim

8, wherein the evaluating 1s performed by a kernel component
ol the operating environment, wherein the requesting process
and the destination process reside on a same computing
device, and wherein the destination process receives the mes-
sage directly from the message queue of the destination pro-
Cess.

10. The non-transitory machine-accessible medium of
claim 8, wherein the request to post the message 1s made by a
method mvoked on a first window object, and wherein the
destination process comprises a second window object.

11. The non-transitory machine-accessible medium of
claim 8, the operations further comprising;:

evaluating a security context of the destination process to
determine whether the message 1s to be posted.

12. The non-transitory machine-accessible medium of

claim 8, the operations further comprising:

11 the message 1s to not be posted, notitying the requesting,
process that the requesting process does not have access
to post the message to the destination.

13. The non-transitory machine-accessible medium of

claim 8, the operations further comprising:

11 the message 1s not to be posted, storing the message and
the requestor information 1n a log.

14. The non-transitory machine-accessible medium of
claim 8, wherein the additional criteria comprise at least one
of posting an undocumented message, or posting the message
1n an mappropriate context.

15. A computing device, comprising:

a memory to store message queues;

a processing device coupled to the memory;

a message interceptor, executable by the processing device,

to 1intercept a request from a requesting process to post a
message to a destination process 1n an operating envi-
ronment 1n which processes communicate via the mes-

sage queues, wherein each destination process 1n the
operating environment communicates via a correspond-
Ing message queue; and
a message evaluator, coupled with the message interceptor
and executable by the processing device to:
determine whether the requesting process 1s a same as
the destination process 1n view of the message;
1in response to a determination that the requesting pro-
cess 1s not the same as the destination process,
evaluate message content and requestor information
associated with the request to determine whether
the message 1s to be posted,
permit the message to be posted to a message queue of
the destination process 1f the message 1s to be
posted, and
11 the message 1s not to be posted, and the message
satisfies additional criteria, cause the requesting
process to be terminated, wherein the additional
criteria comprise posting the message 1n an 1ap-
propriate context; and

US 8,803,151 B2

11

in response to a determination that the requesting pro-
cess 1s the same as the destination process, post the
message to the message queue of the destination pro-
CEss.

16. The computing device of claim 15, wherein the mes-
sage evaluator 1s a kernel component of the operating envi-
ronment, and wherein the requesting process and the desti-
nation process reside on a same computing device.

17. The computing device of claim 5, further comprising:

a first window object having a method to post the message;

and

a second window object that corresponds to the destination

process, the second window object to recerve the mes-
sage and to place the message on the message queue.

18. The computing device of claim 15, wherein the mes-
sage evaluator 1s to evaluate a security context of the destina-
tion process to determine whether the message 1s to be posted.

Gx e * % s

10

15

12

	Front Page
	Drawings
	Specification
	Claims

