12 United States Patent

Turski et al.

US008862737B2

US 8.862.737 B2
Oct. 14, 2014

(10) Patent No.:
45) Date of Patent:

(54) APPLICATION INTEGRATION OF
NETWORK DATA BASED ON RESOURCE
IDENTIFIERS

(75) Inventors: Andrzej Turski, Redmond, WA (US);

Matthew MacLaurin, Woodinville, WA
(US); Cezary Marcjan, Redmond, WA

(US)

(73) Microsoft Corporation, Redmond, WA

(US)

Assignee:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 367 days.

Notice:

(%)

(21) 12/822,823

(22)

Appl. No.:

Filed: Jun. 24, 2010

(65) Prior Publication Data

US 2011/0320603 Al Dec. 29, 2011

Int. CI.
GO6F 15/173

U.S. CL
USPC 709/226; 709/225; 709/229; 709/230

Field of Classification Search
USPC 709/226, 225, 229, 230

See application file for complete search history.

(1)

(52)

(2006.01)

5 P

(56) References Cited
U.S. PATENT DOCUMENTS

7,290,262 B2 10/2007 Blizniak et al.

7617458 B1 11/2009 Wassom, Jr. et al.
2006/0075069 Al1* 4/2006 Mohanetal. 709/218
2007/0124445 Al1* 5/2007 Harmnsetal. 709/223
2007/0157113 Al 7/2007 Bishop et al.
2007/0288858 Al* 12/2007 Perewraetal. 715/764
2008/0155110 Al1* 6/2008 MOITIS ..ooovvvvevvviiinnninnn, 709/230
2008/0313714 Al 12/2008 Fetterman et al.
2009/0144447 Al* 6/2009 Wittigetal. 709/245

{245 I /’246

2010/0049842 Al* 2/2010 Koskl ..coocoovvrviiiiinennnnnn, 709/223
2010/0058353 Al 3/2010 Turski
2011/0145299 Al* 6/2011 Zhouooevvvvvvnennnenn, 707/802

FOREIGN PATENT DOCUMENTS

WO 0190912 Al 11/2001
WO 2009094635 Al 7/2009
OTHER PUBLICATIONS

Brooks, David. “Custom Hyperlinks Using Asynchronous Pluggable
Protocols.” Sep. 19, 2006. Code Project ASPNET Web Develop-

ment, retrieved from http://www.codeproject.com/Articles/ 15634/

Custom-Hyperlinks-Using-Asynchronous-Pluggable-Pro.*

“Bkbrowser 1.1.3”, Retrieved at << http://mac.wareseeker.com/Net-
work-Communication/bkbrowser-1.1.3.zip/c40et8bf2 >>, Dec. 26,

2009, pp. 2.
(Continued)

Primary Examiner — Nicholas Taylor
(74) Attorney, Agent, or Firm — Dan Choi; Judy Yee; Micky
Minhas

(57) ABSTRACT

A resource identifier parser can derive information from
resource 1dentifiers that are provided to non-browser applica-
tion programs or the operating system, such as through the
desktop area of a windows-based user interface. The resource
identifier parser can understand the formatting of resource
identifiers of specific domains and can derive therefrom infor-
mation such as coordinates of a map page, the title of classi-
fied listings, and other like information. If the resource 1den-
tifier cannot be parsed, the identified data page can be
referenced to 1dentily services offered by the page, such as
data feed services, which can then be presented to the non-
browser application program or the operating system to
which the resource identifier was provided. As yet another
alternative, the domain can provide a customized resource
identifier parser to parse 1ts resource 1dentifiers. Such a cus-
tomized parser can be either downloadable and locally
executable or 1t can be a network service.

15 Claims, 3 Drawing Sheets

200

4’4

www. someplace.comisomepage&information-in-rescurce-identifier

IERCENRRTTPIVTURY [
e e
- e]
peL =,

242

Non-browser
appifcation

250

237

~ 220

232

-~ 151
Data pane

|~

[Data page header

Data page content

‘\x‘_____?__r

Resource

identifier
parser

180

US 8,862,737 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Best Facebook Desktop Applications for Windows”, Retrieved at <<
http://www.s1zzledcore.com/2009/09/10/best-facebook-desktop-ap-
plications-for-windows/ >>, Retrieved Date: Mar. 31, 2010, pp. 12.

Scott., “Windows Live Writer Gadget”, Retrieved at <<http://gallery.
live.com/liveltemDetail.aspx?11=b913ce6d-216a-4d08-869b-
65d9850320e4 >>, Version: 0.7.0.0 (BETA), Feb. 8, 2007, p. 1.

Hagge, Damian., “Dynamic Discovery and Invocation of Web Ser-
vices”, Retrieved at << http://www.lbm.com/developerworks/
webservices/library/ws-udax.html >>, Aug. 1, 2001, pp. 11.
International Search Report, Mailed Date: Feb. 17, 2012, Application
No. PCT/US2011/041373, Filed Date: Jun. 22, 2011, pp. 8. (MS#
329627.02).

Milne, et al., “Project “REED” Building Performance Simulation for
the Masses™, Retrieved at <<www.1bpsa.org/proceedings/BS1999/
BS99 A-16.pdf>>, Building Simulation, 6, 1999, Kyoto, Japan, pp.
137-144.

* cited by examiner

U.S. Patent Oct. 14, 2014 Sheet 1 of 3 US 8,862,737 B2

N (,121 N\

modules
138 Svystem bus
Browser — {}

NS

[3)

|

| \\ \

! \\Qi 191

l\k ! 4
System memory Computing device 100
| (ROM) 131 ~ 5
i BIOS 130 §
i 133 /120 i
| (RAM) 132 §
5 Operating 134 100 !
' spystenl’ng Central) / :
- rocessing uni :
i Resource 137 b 9 ;%r,? \Lg?% 5
' identifier parser interface
i Program 135

E Non-browser 139 171
: application = Non-removable Network -
5 non-volatile DS S
: = memory interface nieriace ;
- rogram - :
. t :
: data 136 \ 140 170 |
E _“_,_J-!.“”*jl J E
f 141 h General
. network
connection
Operatmg 144 |Program 145
system modules
180
Browser
Resource 148 Prggtraa T
identifier Non- 149
parser 1471\ | browser
application 146
Servet —m— ——————————————————— |
computing Data server application 150
'device ; N\
: Content Data || Data || Data <— 179
; page || page || page %
» 160 € TP 151 || 152 || 153 :

US 8,862,737 B2

Sheet 2 of 3

Oct. 14, 2014

U.S. Patent

091

~

/

JUSIU0Y)

MJOMIBN

ll.l-l._

iasled
JSIUSPI
80IN0sSoY

0S¢

uoneoldde
18SMOIG-LO

L3
Y
"

PR

w8

. oW i

......,m.u..:}...n.. .m

5 £

4, i

3

8 £

o -

e .."
-“-.-.r..-.-..r..r-".u.-..r".-.r.u.u.-..r-.fnu.. LR A L LR L e R L L F LR L L L .-.r.u.u.-..r"-..r."-u..-.rurn
: b by
[M

- M ——

M
M
H

i
WM
L B b it Eae i e e L L LA T Fa AN e

o
-
R '\-'.-x-'.}h

AOSMOJ

'\."‘
.
.
-
LI

e T T T T T T A S R T

H
o ;
: H
, :
H
;
H
;
H

e
R L L LT L P
.

e

[P T PP IO IS, TPICTTNE . e G e e e e

o \

b

e

e

__-lll-.

—

—
i
T

T g

0tz dopfseg

—

"

—

e

I-ll.-‘ll-‘

— L e

e
‘ll‘t.l

e
Jaynuapl-a0Jnosal-ui-uonewlojurgabedawos/wod aoe|dawos MMM
| B

dp e e g W e e e ey e W e e ek i e e e e ey e e el asibel ok B e e e e B sk e e ey e Wy e e e By e W e e e

F
iy
—mmr
-

oam=

U.S. Patent

Oct. 14, 2014 Sheet 3 of 3

300

NN

310

Resource identifier provided to
non-prowser application

— N0 —— Resource parser available? --

yes

Parse resource identifier and provide resulting information
to the application / desktor

Resource identifier provided to
desktop

US 8,862,737 B2

311

320

330

no ldentified page comprise services? -

yes

Reftrieve information about the services and provide it to
the application / desktop

340

350

NO

=—_TJomain of identifier provide customized parser

yes

Install customized parser (if locally installed)

Provide resource to customized parser (if network service)

360

370

application handle
provided info?

no orovided info’?

380

Ves

Application handles provided
information appropriately
Treat resource identifier as a hyperlink 209

Figure 3

yes

390

Default application for

Launch default application to
andle provided info. appropriatel

381

391

US 8,862,737 B2

1

APPLICATION INTEGRATION OF
NETWORK DATA BASED ON RESOURCE
IDENTIFIERS

BACKGROUND

For modern computing devices, including traditional per-
sonal computers, as well as personal digital assistants, cellu-
lar telephones, and the like, network communicational abili-
ties have become ubiquitous. Such ubiquity in network
communicational abilities enables modern computing
devices to spend an ever increasing amount of time being
communicationally coupled to one or more networks of com-
puting devices. Traditionally, resources provided by the com-
puting devices that are communicationally coupled to such
networks are identified and accessed by other computing
devices with reference to resource 1dentifiers. Resource 1den-
tifiers are typically comprised of alphanumeric characters
that uniquely 1dentity one or more resources accessible via a
network. Resource identifiers can often, not only 1dentity a
particular resource, but can also comprise programmatic
information that can be provided to one or more processes
executing on a remote computing device, that 1s being
accessed over a network, to enable that remote computing
device to obtain, filter, create or otherwise manipulate one or
more resources prior to their transmaission across the network.

Traditionally, network resources are accessed over a net-
work via one or more network browser application programs
executing on a client computing device that 1s accessing the
resources. Such network browser applications can copy net-
work resources to the computing device on which they are
executing, display information presented by such network
resources on display devices coupled to the computing
devices on which such browsers are executing, provide inter-
activity with network resources, and other like functionality.
For example, web browser application programs that are
capable of browsing the ubiquitous World Wide Web
(WWW) can display information in accordance with the
structure and formatting defined by a web page, can down-
load files and other objects, and can execute computer-ex-
ecutable instructions within the framework of the web
browser. Other, non-browser, applications have the capability
to act upon resources received from other computing devices
over a network, but such other non-browser application pro-
grams are typically designed to only accept specific types of
data and resources and may not comprise the tlexibility of
modern network browser application programs. Thus, on a
modern computing device, a user may spend a substantial
amount of time mteracting only with network browser appli-
cation programs to access resources available from other
computing devices over a network.

SUMMARY

In one embodiment, resource 1dentifiers can be parsed to
obtain parsed information therefrom that can be provided to
non-browser application programs to enable the functionality
of those application programs to be extended with informa-
tion associated with network-based resources without requir-
ing a browser application program to obtain such resources.

In another embodiment, resources and content identified
by a resource identifier can be obtained and examined for
information that can be utilized by a non-browser application
program and such information can be provide to the non-
browser application program.

In a further embodiment, a remote computing device can
provide a customized resource 1dentifier parser to provide for

10

15

20

25

30

35

40

45

50

55

60

65

2

the parsing of resource 1dentifiers whose structure may not be
known 1n advance. Information derived from the parsing per-
formed by such a customized parser can be provided to non-
browser application programs. The customized parser can be
a downloadable component, or 1t can be resource that can be
accessed over a network

In a still further embodiment, one or more resource i1den-
tifiers can be provided to a non-browser application program
and, upon such a provision, they can be parsed or the
resources 1dentified by them can be examined to provide such
non-browser application programs with utilizable informa-
tion beyond the mere characters of the resource 1dentifier. I
such attempts fail to identily information utilizable by the
non-browser application program to which such resource
identifiers were provided, the resource identifiers can be
treated 1n a traditional manner.

In a yet further embodiment, one or more resource 1denti-
fiers can be provided to a desktop user interface and, upon
such a provision, they can be parsed or the resources 1denti-
fied by them can be examined to 1dentify utilizable informa-
tion beyond the mere characters of the resource i1dentifier. A
default application program can then be mvoked to handle
such indentified utilizable information within the desktop
user mterface context.

This Summary 1s provided to introduce a selection of con-
cepts 1n a simplified form that are turther described below 1n
the Detailed Description. This Summary 1s not intended to
identily key features or essential features of the claimed sub-
ject matter, nor 1s 1t mtended to be used to limait the scope of
the claimed subject matter.

Additional features and advantages will be made apparent
from the following detailed description that proceeds with
reference to the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

The following detailed description may be best understood
when taken 1n conjunction with the accompanying drawings,
of which

FIG. 1 1s a block diagram of an exemplary computing
device with a resource 1dentifier parser;

FIG. 2 1s a block diagram of an exemplary operation of a
resource 1dentifier parser; and

FIG. 3 1s a flow diagram of an exemplary operation of a
resource 1dentifier parser.

DETAILED DESCRIPTION

The following description relates to a resource identifier
parser that can obtain information, utilizable by non-browser
applications programs, either from the alphanumeric charac-
ters that comprise a resource identifier, from the information
contained on, or associated with, a network resource 1denti-
fied by the resource 1dentifier, or via the utilization of cus-
tomized parsing capability that can be provided by a service
associated with the resources that are identified by the
resource 1dentifier. When a resource identifier 1s provided to
non-browser application programs, rather than having the
resource 1dentifier merely be treated as text, or a pointer to a
resource, the resource identifier parser can be utilized to
provide, to the non-browser application program, the utiliz-
able information obtained by the resource identifier parser. If
no utilizable information can be obtained, the resource 1den-
tifier can be treated 1n a traditional manner. Similarly, 1T a
resource 1dentifier 1s provided to a desktop user interface,
such as 1s typically generated by an operating system, the
resource 1dentifier parser can obtain utilizable information,

US 8,862,737 B2

3

and a default application program, or other executable com-
ponent, can be instantiated to handle such information, or
additional network-based content associated therewith.

While the below descriptions are directed to the implemen-
tation of the resource i1dentifier parser within the context of
specific, ubiquitous, resource identifiers, such as Uniform
Resource Locators (URLs), and ubiquitous networks, such as
the Internet, they are not so limited. In particular, the mecha-
nisms described are both resource i1dentifier and network
agnostic and can operate in a manner identical to that
described below on any resource i1dentifier and on any net-
work framework or topology. As such, references to URLs,
web pages, the Internet, and the like, are meant to be exem-
plary only and do not indicate any specific limitation of the
mechanisms described.

Although notrequired, the descriptions below will be in the
general context of computer-executable instructions, such as
program modules, being executed by one or more computing,
devices. More specifically, the descriptions will reference
acts and symbolic representations of operations that are per-
formed by one or more computing devices or peripherals,
unless indicated otherwise. As such, 1t will be understood that
such acts and operations, which are at times referred to as
being computer-executed, include the manipulation by a pro-
cessing unit of electrical signals representing data in a struc-
tured form. This manipulation transforms the data or main-
tains 1t at locations i memory, which reconfigures or
otherwise alters the operation of the computing device or
peripherals 1n a manner well understood by those skilled 1n
the art. The data structures, where data 1s maintained, are
physical locations that have particular properties defined by
the format of the data.

Generally, program modules include routines, programs,
objects, components, data structures, and the like that per-
form particular tasks or implement particular abstract data
types. Moreover, those skilled 1n the art will appreciate that
the computing devices need not be limited to conventional
personal computers, and mclude other computing configura-
tions, including hand-held devices, multi-processor systems,
microprocessor based or programmable consumer electron-
ics, network PCs, mimicomputers, mainirame computers, and
the like. Stmilarly, the computing devices need not be limited
to a stand-alone computing device, as the mechanisms may
also be practiced i1n distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted computing environment, program modules may be
located 1n both local and remote memory storage devices.

Turning to FIG. 1, an exemplary computing device 100 1s
shown. The exemplary computing device 100 can include, but
1s not limited to, one or more central processing units (CPUs)
120, a system memory 130, and a system bus 121 that couples
various system components imncluding the system memory to
the processing unit 120. The system bus 121 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using any
ol a vaniety of bus architectures. The exemplary computing
device 100 can optionally include graphics hardware, includ-
ing, but not limited to, a graphics hardware interface 190 and
a display device 191. Such graphics hardware, including the
graphics hardware interface 190 and a display device 191, can
be utilized to, not only display the below-described user inter-
face, but also, 1n some embodiments, to perform some or all of
the relevant computation and processing described below.

The computing device 100 also typically includes com-
puter readable media, which can include any available media
that can be accessed by computing device 100 and includes

5

10

15

20

25

30

35

40

45

50

55

60

65

4

both volatile and nonvolatile media and removable and non-
removable media. By way of example, and not limitation,
computer readable media may comprise computer storage
media and communication media. Computer storage media
includes media implemented 1n any method or technology for
storage ol mformation such as computer readable instruc-
tions, data structures, program modules or other data. Com-
puter storage media includes, but 1s not limited to, RAM,

ROM, EEPROM, flash memory or other memory technolo oy,
CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by the computing device 100.
Communication media typically embodies computer read-
able 1nstructions, data structures, program modules or other
data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. By way of example, and not limitation, communica-
tion media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,
RF, infrared and other wireless media. Combinations of the
any of the above should also be included within the scope of
computer readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computing device 100, such as dur-
ing start-up, 1s typically stored in ROM 131. RAM 132 typi-
cally contains data and/or program modules that are 1mme-
diately accessible to and/or presently being operated on by
processing unit 120. By way of example, and not limitation,
FIG. 1 illustrates operating system 134, other program mod-
ules 135, and program data 136.

A resource 1dentifier parser 137, whose operation will be
described in detail below, can be a component of the operating
system 134 or, alternatively, it can be a separate collection of
computer-executable 1nstructions that can be considered as
part of the program modules 135. As vet another alternative,
components of the operating system 134 and the program
modules 133 can operate in concert to perform the function-
ality attributed below to the resource 1dentifier parser 137. In
addition, the program modules 135 can comprise one or more
application programs, such as the network browser applica-
tion program 138, which can be comprised of computer-
executable instructions that can be executed by the central
processing unit 120 1n accordance with mechanisms well
known to those skilled 1n the art. The program modules 135
can also comprise one or more non-browser application pro-
grams, such as the non-browser application program 139.
Such non-browser application programs can be any applica-
tion program whose primary function i1s other than the
retrieval and presentation of information obtained from
remote networked servers, including, for example, content-
creation application programs, such as word processors and
spreadsheets, as well as photo-editing application programs,
visualization or rendering application programs, and even
more limited functionality application programs such as cus-
tomized weather applications, financial applications and the
like.

The computing device 100 may also include other remov-
able/non-removable, volatile/nonvolatile computer storage
media. By way of example only, FIG. 1 illustrates a hard disk
drive 141 that reads from or writes to non-removable, non-
volatile magnetic media. Other removable/non-removable,

US 8,862,737 B2

S

volatile/nonvolatile computer storage media that can be used
with the exemplary computing device include, but are not
limited to, magnetic tape cassettes, flash memory cards, digi-
tal versatile disks, digital video tape, solid state RAM, solid
state ROM, and the like. The hard disk drive 141 1s typically
connected to the system bus 121 through a non-removable
memory interface such as interface 140.

The drives and their associated computer storage media
discussed above and 1llustrated 1n FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computing device 100. In FIG.
1, for example, hard disk drive 141 1s illustrated as storing
operating system 144, other program modules 145, and pro-
gram data 146. Note that these components can either be the
same as or different from operating system 134, other pro-
gram modules 135 and program data 136. Operating system
144, other program modules 145 and program data 146 are
given diflerent numbers hereto illustrate that, at a minimum,
they are different copies. As such, the resource i1dentifier
parser 147 of the operating system 144, and the browser
application 148 and the non-browser application 149 of the
program modules 145, are likewise given different numbers
to 1llustrate that, at aminimum, they are different copies of the
resource 1dentifier parser 137, browser application 138 and
non-browser application 139, respectively.

Additionally, the computing device 100 can operate 1n a
networked environment using logical connections to one or
more remote computers. For simplicity of illustration, the
computing device 100 1s shown 1n FIG. 1 to be connected to
a network 180 that 1s not limited to any particular network or
networking protocols. The logical connection depicted in
FIG. 1 1s a general network connection 171 that can be a local
area network (LAN), a wide area network (WAN) or other
network. The computing device 100 1s connected to the gen-
eral network connection 171 through a network interface or
adapter 170 which 1s, in turn, connected to the system bus
121. In a networked environment, program modules depicted
relative to the computing device 100, or portions or periph-
erals thereof, may be stored in the memory of one or more
other computing devices that are communicatively coupled to
the computing device 100 through the general network con-
nection 171. It will be appreciated that the network connec-
tions shown are exemplary and other means of establishing a
communications link between computing devices may be
used.

The network 180 can have communicationally coupled to 1t
a server computing device 110 that, although not specifically
shown 1 FIG. 1, can comprise equivalent hardware as that
described above with reference to the exemplary computing
device 100, including, for example, a central processing unit,
a system bus, system memory, non-volatile storage, and a
network interface that can be equivalent to, respectively, the
central processing unit 120, the system bus 121, the system
memory 130, the hard disk drive 141, and the network inter-
face 170 that were described in detail above. The network
interface of the server computing device 110 can maintain a
communicational connection 172 to the network 180 that can
be analogous to the general network connection 171, main-
tained by the computing device 100.

In addition, unlike the exemplary computing device 100,
the server computing device 110 can comprise content 160
that can comprise data, information, or resources that the
server computing device 110 can provide to other computing
devices, such as the exemplary computing device 100, over
the network 180. For example, the content 160 can comprise
information that can be presented 1n a textual form, photo-
graphs, audio recordings, video content, downloadable com-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

puter-executable 1nstructions, downloadable computer read-
able-data, locally-executable computer-executable
instructions and other like content.

The server computing device 110 can further comprise a
data server application 150 whose computer-executable
instructions can be stored on a non-volatile storage of the
server computing device and can be executed, in the system
memory of the server computing device, by 1ts central pro-
cessing unit, in the same manner as the computer-executable
instructions stored on the hard disk drive 141, and executed in
the system memory 130, of the exemplary computing device
100, described 1n detail above. The data server application
150 can comprise one or more formatted pages of data, such
as the data pages 151, 152 and 153 that can present data, such
as obtained from the content 160, to an appropriate network
browser application program, such as the browser application
program 138 executing on the exemplary computing device
100, which can be communicationally coupled to the data
server application 150, and can retrieve any one of the data
pages 151, 152 at 153, via the network connections 171 and
172 that the exemplary computing device 100, and the server
computing device 110, respectively, maintain to the network
180.

In one embodiment, the datapages 151, 152 and 153 can be
web pages such as those of the World Wide Web (WWW). In
such an embodiment, the data pages 151, 152 and 153 can
present data utilizing the structured data presentation tech-
niques of the well-known HyperText Markup Language
(HTML). Siumilarly, the network 180, 1n such an embodiment,
can be the well known Internet, while the browser application
138 can be a web browser application program, and the data
server application 150 can be a web server application pro-
gram. In such an embodiment, the HTML coding employed to
define the data pages 151, 152 and 153 can reference, through
links, the content 160 such that the data pages 151, 152 and
153 themselves merely comprise the structure and definition
of a given web page, while much of the content can remain
stored apart from the data pages 1n the content 160. As will be
known by those skilled in the art, the exemplary computing
device 100 and, more specifically, the web browser 138 can
obtain the information of any one of the data pages 151, 152
and 153 and can present such information, such as via the
display device 191, in the form of a hypermedia web page.
Resource 1identifiers 1n the form of Universal Resource Loca-
tors (URLs) can be utilized by the web browser 138 to 1den-
tify specific ones of the data pages 151, 152 and 153, utilizing
techniques well known, and, indeed, ubiquitous, and the art.

Turming to FIG. 2, the system 200 shown therein 1llustrates
exemplary mechanisms by which the resource identifier
parser 137 can parse resource i1dentifiers and provide utiliz-
able information to non-browser application programs that
may otherwise have treated the resource identifier as nothing
more than a series of alphanumeric characters. As shown in
the system 200 of FIG. 2, a computing device 210 can present
a user interface 220. The computing device 210 can be 1n the
form of the exemplary computing device 100 described 1n
detail above and shown in FIG. 1. In such a case, the user
interface 220, presented by the computing device 210, can be
presented through graphical hardware, such as the graphics
hardware interface 190 and graphic display device 191,
shown 1n FIG. 1 and described above.

As will be recogmized by those skilled in the art, the user
interface 220 1llustrates a window-based user interface, such
as has become ubiquitous in modern computing devices,
whereby information and content 1s presented to the user
through windows, or defined graphical regions, that are under
the control of, and visually represent, a particular application

US 8,862,737 B2

7

program, or other set of executing computer-executable
instructions. The exemplary user interface 220 1llustrated 1n
FIG. 2 comprises a browser window 240, a non-browser
application window 250, and a desktop area 230. As will also
be recognized by those skilled 1n the art, window-based user
interfaces typically present their windows overlaid on a back-
ground commonly known as “the desktop” that can represent
a visual and storage area that 1s typically controlled by the
operating system providing the window-based user interface,
such as the operating system 134 shown 1n FIG. 1. Typically,
the desktop area 230 acts as a temporary storage areca where
users can save files that they desire short-term immediate
access to. Additionally, many modern operating systems
enable the desktop area 230 to comprise one or more applets,
widgets, or other collections of computer-executable 1nstruc-
tions whose functionality 1s somewhat limited and whose
display comprises only a small portion of the desktop area
230. For example, modern operating systems can enable a
weather widget to execute and present, at least visually, its
information, such as the current temperature and weather,
within a small defined area of the desktop area 230 that is not
percerved as a window, such as would be presented by a more
tully-featured application program.

In one embodiment, as 1llustrated 1n the system 200 of FIG.
2, a resource 1identifier, such as would typically be utilized by
the browser 138, and that 1s typically shown in the browser
window 240, can be copied from the browser to either a
non-browser application 139, controlling the non-browser
application window 250, or 1t can be copied to the operating
system 134, such as would control the desktop area 230. More
specifically, as shown 1n FIG. 2, the browser window 240 can
comprise an area within which a resource 1dentifier 241 can
be specified for directing the browser 138 to retrieve the
resources 1dentified by that resource 1dentifier 241. Addition-
ally, the resource 1identifier 241 displayed within such an area
1s typically the resource 1dentifier of the resources that are
being presented within the main portion of the browser win-
dow 240. One mechanism by which a user can copy the
resource 1dentifier from the browser 138 to other applications

or the operating system 134, would be to drag the resource
identifier 241 from the browser window 240 to a window
presented by a non-browser application, such as the non-
browser application window 250, or to the desktop 230. Such
an action 1s illustrated 1n the system 200 of FIG. 2 by showing
the cursor 242 selecting the resource 1dentifier 241 and then
dragging 1t, either to the non-browser application window
250, as represented by the ghost resource 1dentifier 251 and
ghost cursor 252, or to the desktop 230, as represented by the
ghost resource 1dentifier 231 and the ghost cursor 232. Alter-
natrve mechanisms for importing, or providing, a resource
identifier to non-browser application programs or the desk-
top, such as by copying and pasting, or through direct user
input entry, are equally applicable, and the dragging mecha-
nism was shown 1n FIG. 2 strictly due to ease of illustrative
presentation. For example, resource identifiers may be
obtained from hyperlinks within the body of the displayed
page, or from any page element with an attached hyperlink. In
such an example, page elements comprising resource 1denti-
fiers could, 1n the same manner as illustrated 1n FIG. 2, be
dragged, or otherwise copied and pasted, into a non-browser
program or the desktop 230. As another example, a resource
identifier can be obtained from email messages, textual or
multi-media documents, such as word processing documents,
and the like. Ultimately, the source from which the resource
identifiers are obtained 1s immaterial and orthogonal to the
descriptions provided below. As such, the descriptions pro-

10

15

20

25

30

35

40

45

50

55

60

65

8

vided below are equally applicable to, and are intended to
describe the handling of, any resource 1dentifier, 1rrespective
of 1ts source.

The resource identifier 241 shown 1n the system 200 of
FIG. 2 1llustrates a URL, such as would commonly be utilized
to 1dentily web pages, or other resources, on the WWW., As
indicated previously, although the description 1s presented
with reference to specific examples, such as the URL 241
shown 1n FIG. 2, the descriptions are not intended to be so
limited. As will be known by those skilled 1n the art, a URL
can comprise 1dentitying information 243 that can specily a
specific server, or domain of servers, on the WWW and spe-
cific web pages or other resources on those severs, and can
further comprise programmatic information 246 that can be
presented to such servers for further processing. For example,
the identitying information 245 can typically, in a URL, take
the form of an enumeration of a specific server, or domain,
and then subsequent enumerations of folders or directories of
increasing specificity, and, ultimately, an enumeration of a
specific web page or other resource, with each level being
delineated by a forward slash character. Similarly, the pro-
grammatic information 246 can typically be placed after the
identifying information 245, usually after an appropriate
character, such as a forward slash, a question mark, an amper-
sand, or a hash character, and can comprise information that
can be provided to computer-executable mstructions execut-
ing on a remote computing device that 1s hosting the web page
referenced by the identifying information 245.

The programmatic information 246 of a resource 1dentifier
241 1s typically formatted 1n a specific manner defined by the
domain to which such programmatic information 1s to be
presented. Thus, different domains can, and often do, utilize
different formatting for the programmatic information 246,
and deciphering the programmatic information can be per-
formed differently depending on the domain 1dentified by the
identifying information 245. For example, if the identifying
information 243 were to 1dentify a web page, from a specific
domain, that provides mapping services, the programmatic
information 246 can comprise, 1n a predetermined order and
format, an 1dentification of the coordinates of the map to be
displayed, the scale at which such a map 1s to be displayed.,
whether or not the map 1s to display topographic, or satellite
information, and other like input that the mapping service
provided by the identified web page can utilize to determine
what kind of map 1s to be generated for the resource 1dentifier
241. The exact manner 1n which the coordinates, scale, and
mapping options, for example, are encoded and presented in
the programmatic information 246, such as whether they are
encoded 1n ASCII text, whether they are separated by com-
mas, or semicolons, or other like characters, whether they are
identified with specific variables, such as through the use of
the equals sign, and what order each such element of infor-
mation 1s presented in, can be 1n accordance with the format-
ting utilized by the domain and expected by whatever com-
puter-executable instructions, or other services, are executing,
on the server computing device hosting the mapping web
page 1dentified by the resource 1dentifier 241.

Traditionally, as will be known by those skilled 1n the art,
the resource 1dentifier 241 can represent a set of data, such as
the HITML coding of a web page, or other such set of data
approprate for displaying the data page 151 1n the browser
window 240. In addition, however, server 260 may provide
turther services directed to providing data in a machine-
readable form, that can be used by non-browser applications.
For example, within the context of the ubiquitous WWW, a
server hosing a web page can also provide eXtensible Markup
Language (XML) data that can be utilized both by browser

US 8,862,737 B2

9

and non-browser application programs. In one embodiment,
the parsing of the resource 1dentifier comprises the retrieval of
the 1dentity of the such further resources, which, 1n turn, can
identily yet other data from the content 160, or yet further
services. Consequently, the descriptions below are also appli-
cable to mstances 1n which the resource 1dentifier parser 137
can 1teratively process succeeding levels of data and informa-
tion to be able to present, or enable the obtaining of, data that
was not present on the original data page, data that can be
organized 1n a different manner than that of the original data
page, or data that can be interacted with, such as by uploading,
or otherwise providing, new data.

In one embodiment, the resource 1dentifier parser 137 can
comprise an understanding of the formatting of the program-
matic information 246 associated with the resource 1dentifier
241 of at least some well-known domains on the network 180.
As such, the resource identifier parser 137 can parse the
resource 1dentifier 241, and extract information from the pro-
grammatic imformation 246 of the resource i1dentifier 241,
without having to communicate with a server identified by the
resource 1dentifier 241. The resource i1dentifier parser 137
can, thereby, enable non-browser application programs and
the operating system to utilize such extracted information and
provide associated services and feedback when those non-
browser application programs, or the operating system,
receive, as mput, a resource 1dentifier 241.

Traditionally, providing a resource identifier to a non-
browser application program would cause the non-browser
application to treat the resource i1dentifier as a textual string
or, at most, as a link, or even to simply 1gnore the resource
identifier altogether 11 the non-browser application was sim-
ply not capable of recerving such mput. Similarly, providing
a resource 1dentifier to an operating system, such as by pro-
viding 1t to the desktop being presented by such operating
system, would cause the operating system to create a link file
representing the resource 1dentifier, or potentially to invoke a
browser application to handle the resource 1dentifier.

However, since the resource 1identifier parser 137 can parse
the resource identifier, such as the resource identifier 241, and
extract therefrom information beyond merely the alphanu-
meric characters of the resource 1dentifier, non-browser appli-
cation programs and the operating system can provide greater
functionality when resource 1dentifiers are provided to them.
For purposes of the below description, the term “derivative
information” means any of the information that can be
extracted from a resource identifier, including information
that can be obtained from parsing the programmatic informa-
tion 246 that can be part of the resource identifier 241, as well
as any information that can be obtained from the resource
identified by the resource identifier, such as data feeds or
other like information. For example, 11 the non-browser appli-
cation window 250, shown in the system 200 FIG. 2, were a
spreadsheet provided by a spreadsheet application program,
the dragging of the resource identifier 241 to the non-browser
application window 250, as shown by the ghost resource
identifier 251, would generally result 1n the placement of the
alphanumeric characters of the resource identifier 241 into a
cell of the spreadsheet. In the illustrated embodiment of the
system 200 of FIG. 2, however, the programmatic informa-
tion 246 of the resource 1dentifier 241 can be parsed by the
resource 1dentifier parser 137, as indicated by the communi-
cation 270, and the resource 1dentifier parser 137 can derive,
from such programmatic information 246, derivative infor-
mation that may be natively usable by the spreadsheet appli-
cation generating the non-browser application window 230.

For example, 11 the resource 1dentifier 241 was the resource
identifier ol a web page comprising an auction listing or a

10

15

20

25

30

35

40

45

50

55

60

65

10

classified listing, the programmatic information 246 can
comprise the title assigned to such a listing, which can typi-
cally be a short description of the item being sold or auc-
tioned, as well as other information such as the end date and
time of the auction, or the date and time when the classified
listing was first listed. Derivative information, such as this
title and date information, can be provided by the resource
identifier parser 137 to the spreadsheet, as indicated by the
communication 282, and can then be incorporated by the
spreadsheet application program in a more meaningiul way.
For example, the title can be placed into one spreadsheet cell,
while the listing date, or expiration time can be placed 1nto
another, associated spreadsheet cell. The provision of such
derivative information, via the communication 282, by the
resource 1dentifier parser 137 to the spreadsheet application
can be either 1n place of the provision of the textual informa-
tion of the resource 1dentifier 241 1tself, or can be 1n addition
to, such that the spreadsheet application can include not only
the parsed information provided by the resource i1dentifier
parser 137, but could also include the resource 1dentifier 241
itsellf.

In one embodiment, the derivative information obtained by
the resource 1identifier parser 137 may not all be utilized by the
non-browser application program, or the desktop 230. For
example, 1f the resource 1dentifier 241 was the resource 1den-
tifier of a web page comprising a map, the programmatic
information 246 can comprise, as indicated previously, coor-
dinate information, scale information and display specifics,
such as whether the displayved map comprises topographic
features. The non-browser application that presents the non-
browser application window 250 and receives the communi-
cation 282 may not, however, be able to utilize all such deriva-
tive information. For example, the non-browser application
may be a weather application that can simply use the coordi-
nate dertvative information to obtain a zip code, or other such
geographic 1dentifier, and then present information 1n accor-
dance with that zip code. Thus, the mere provision of deriva-
tive information by the resource 1dentifier parser 137, such as
via the communication 282, does not require that the receiv-
ing application utilize all, or even any, of such information. In
one embodiment, a protocol can be established by which
specific application programs can register, or otherwise indi-
cate to the resource identifier parser 137, which types of
derivative information such application programs can mean-
ingtully process.

The derivative information obtained by the reference 1den-
tifier parser 137 can, 1n one embodiment, be provided to
non-browser application programs or the desktop 230 as a
rich object that can expose properties and methods which can
be accessed and utilized by the non-browser application pro-
grams or the desktop. For example, returning to the above
examples of map-based data pages, the coordinate informa-
tion can be exposed as a property, or a method can be exposed
that, when invoked, can provide such coordinate information.
Other examples, described further below, can comprise con-
tinuously updated dernivative information, or more complex
derivative information, such as that associated with network
services that can be associated with the resource 1dentifier. In
such cases, the derivative information can be accessed
through the calling of exposed methods and through the prop-
erties of the one or more objects, which can be exposed by the
resource 1dentifier parser 137 and can be changed 1n accor-
dance with the dernivative information obtained by the
resource 1dentifier parser.

As another example of obtaining derivative information
from a resource identifier, if the resource 1dentifier 241 were
dragged onto the desktop area 230, as 1llustrated in FIG. 2 by

US 8,862,737 B2

11

the ghostresource identifier 231, the resource identifier parser
1377 could, again, parse the resource 1dentifier 241 and derive,
such as from the programmatic information 246, derivative
information that can be meaningiully utilized by the operat-
ing system hosting desktop area 230. For example, 1t the
resource 1dentifier 241 was the resource 1dentifier of a web

page showing a map, the programmatic information 246 can,
as indicated previously, comprise the coordinates of the map,
the scale of the map, and other like information. Such deriva-
tive mformation could be provided to the operating system,
by the resource identifier parser 137, as illustrated by the
communication 281, and could be utilized by the operating
system to, for example, invoke a weather applet or widget that
could display the current temperature and weather at the
location of the coordinates extracted from the map resource
identifier. Thus, 1n such an example, the provision of a
resource 1dentifier to the desktop area 230 could result in the
placement ol a weather widget providing meaningtul infor-
mation regarding the area 1identified by the resource 1dentifier,
rather than simply a hyperlink or other file that 1s nothing
more than the resource 1dentifier itself.

One advantage to the parsing of a resource identifier 1s that
the resource 1dentifier parser 137 need not rely on any pro-
cessing, or provision of information, from a remote comput-
ing device, such as one whose resources may be identified by
the resource 1dentifier. Instead, the above described mecha-
nisms can be performed based only on the information
already present 1n the resource 1dentifier, and the capability of
the computer-executable 1nstructions of the resource 1denti-
fier parser 137 to meaningiully parse such information.

In another embodiment, however, the resource identifier
itself may not comprise suilicient information, such as suili-
cient programmatic information, that can be meaningiully
parsed and extracted by the resource 1dentifier parser 137. In
such an embodiment, the resource i1dentifier parser 137 can
communicate with one or more remote computing devices
whose resources are identified by the resource identifier to
determine 11 there 1s additional information associated with
the resource 1dentifier that can be provided to non-browser
application programs, or the operating system, as the deriva-
tive information.

As shown 1n the system 200 of FIG. 2, a resource 1dentifier,
such as the resource 1dentifier 241, can comprise identifying
information 245 that can 1identify a data page, such as the data
page 151, being hosted by a server computing device 260 to
which the client computing device 210 1s communicationally
coupled via the network 180. The data page 151 can comprise
a header 261, such as can be utilized to convey meaningiul
information regarding the data page 131 to a browser appli-
cation, such as the browser application 138, shown in FIG. 1,
and can further comprise content 262 that can provide the
formatting and structure of the presentation of information or
other resources from the content 160 within the context of the
data page 151. The resource 1dentifier parser 137 can, based
on the identifying information 245 of the resource identifier
241, obtain derivative immformation from the data page 151,
such as via communications between the client computing
device 210 and the server computing device 260 that are
directed over the network 180. Among the dervative infor-
mation that the resource identifier parser 137 can obtain can
be information from the header 261, as illustrated by the
communication 290 shown in the system 200 FIG. 2. Infor-
mation from the header 262, obtained by the resource 1denti-
fier parser 137, as 1llustrated by the communication 290, can
be provided by the resource identifier parser to the non-
browser application or the operating system, as 1llustrated by

10

15

20

25

30

35

40

45

50

55

60

65

12

the communications 282 and 281, respectively, instead of, or
in addition to, the resource 1dentifier 241.

Thus, for example, if the non-browser application pro-
gram, that presents the non-browser application window 250,
1s a photo viewing program, the resource identifier parser 137
can obtain information from the data page header 261 that can
specily a feed of photographs, such as can be provided by
photo-oriented network services, and the photo viewing pro-
gram can directly receive those photographs and display them
in the non-browser application window 250. Returning to the
specific embodiment of web pages, there exist, as will be
known by those skilled 1n the art, photo sharing websites
where users can subscribe to receive updates when any of
their 1dentified colleagues upload new photographs to the
website. Information regarding the user, such as the user’s
name, and, potentially, even an encoded password, can be part
of the programmatic information 246 that can be parsed from
the resource identifier 241 by the resource identifier parser
137. Utilizing such information, the resource identifier parser
137 can log onto such a photo sharing website as the user
identified by the programmatic information 246 of the
resource 1dentifier 241 and can obtain, such as from the
header 261, information regarding this automated provision
of colleagues’ photographs. Such information, or even the
photographs themselves, can then be provided by the
resource 1dentifier parser 137 to the photo viewing applica-
tion and can be displayed within the non-browser application
window 250. Thus, a photo viewing application that could not
even understand a resource 1dentifier, can now meaningfully
display photographs that can be represented by the resource
identifier 241 that can have been provided to the photo view-
ing application.

As another example, 1f the resource i1dentifier 241 was
provided to the desktop area 230, the header 261 could 1den-
tify one or more feeds of data, such as those in accordance
with known standards, such as the Really Simple Syndication
(RSS) standard. The resource 1identifier parser 137 can obtain
such dertvative information from the header 261 based upon
the identifying information 245 provided by the resource
identifier 241. The resource 1dentifier parser 137 can then
provide such dermvative mnformation to the operating system
which can, as an example, launch an RSS feed viewer applet,
or widget, to display the data feeds within a small area of the
desktop area 230 located close to where the user, for example,
dragged and dropped the resource identifier 241, as 1llustrated
by the ghost resource 1dentifier 231 shown in the system 200
FIG. 2. In one embodiment, the operating system can con-
sider the type or format of the derivative information being
provided by the resource 1dentifier parser 137 and can select
a default application, applet, widget, or other set of computer-
executable 1nstructions that are associated with that type or
format, and the operating system can then invoke those com-
puter-executable mstructions to handle that derivative infor-
mation. As a result, while the provision of derivative infor-
mation to non-browser application programs may be limited
by the capability of the specific non-browser application pro-
gram to which such information 1s provided, and to which the
user indicated the resource 1dentifier 241 should nitially be
provided, the provision of a resource identifier 241 to the
desktop area 230 1s not so limited since the operating system
can select from any of a number of collections of computer
executable-instructions to handle the derivative information
being provided by the resource 1dentifier parser 137.

Additionally, the parsing of a resource 1dentifier can enable
non-browser applications, or applications, widgets or applets
invoked by the operating system, to perform data “mashups”.
Returning to the above examples of a data feed, 1f the oper-

US 8,862,737 B2

13

ating system launched a data feed viewer applet, or widget, as
a result of the user dragging the resource identifier 241 to the
desktop area 230, as shown by the ghost resource 1dentifier
231, then the provision of a second resource identifier that
also 1dentifies a data page whose header comprises a refer-
ence to another data feed, the resource identifier parser 137
can provide derivative information comprising that subse-
quent data feed to the same data feed viewer applet. The data
teed viewer applet could then display, not only the data feed
associated with the first resource 1dentifier that the user pro-
vided to the desktop area 230, but can also display the data
teed associated with the subsequent resource 1dentifier. If the
data feeds were provided in chronological order, such that the
most recent data element recerved from the data feed was
presented at the top, the data feed viewer could intermix the
two data feeds such that their data elements were organized
according to an aggregate chronological order. In such a
manner a “mashup” of the data of the two data feeds could be
accomplished.

In yet another embodiment, a server computing device,
such as the server computing device 260, can provide a cus-
tomized parser 237 to parse resource i1dentifiers, such as the
resource 1dentifier 241, that identify resources available
through the server computing device 260. The customized
parser 237 can parse resource identifiers, such as the resource
identifier 241 by extracting information from the program-
matic information 246 of those resource identifiers, much 1n
the same way as described above with reference to resource
identifier parser 137. One diflerence, however, between the
resource 1dentifier parser 137 and the customized parser 237
can be that, because the customized parser 237 1s provided by
the domain generating the resource identifiers in the first
place, the customized parser 237 may be more appropriate for
the parsing of resource 1dentifiers that the resource 1dentifier
parser 137 may not know how to parse correctly.

To obtain the customized parser 237, the resource 1dentifier
parser 137 can utilize the identifying information 245 of the
resource identifier 241 to communicationally connect with
the data page 151 identified by such identifying information
241. Such a communicational connection can enable the
resource 1dentifier parser 137 to learn from the data page 151,
such as, for example, from the data page header 261, of the
existence of the customized parser 237. In one embodiment,
the customized parser 237 can be a downloadable collection
of computer-executable instructions that the resource 1denti-
fier 137 can download to the computing device 210. In such
an embodiment, an association between the customized
parser 237 and the domain of resource 1dentifiers with which
the customized parser 237 1s to be utilized can be retained,
such as 1n a registration database of the computing device
210, so that 1n the future, when the resource identifier parser
137 encounters a resource 1dentifier of a relevant domain, the
resource identifier parser 137 can invoke the customized
parser 237 to parse such a resource 1dentifier. Alternatively,
the customized parser 237 can simply be stored on the com-
puting device 210 and, in the future, when the resource 1den-
tifier parser 137 encounters a resource 1dentifier, 1t can merely
poll the customized parsers stored on the computing device
210 to determine which, 1f any, of those customized parsers
can parse the resource 1dentifier encountered.

In an alternative embodiment, the customized parser 237,
rather than being a downloadable set of computer-executable
instructions that are designed to execute on a client comput-
ing device, such as the computing device 210, can, instead, be
a network service to which a resource identifier can be pro-
vided, such as by the resource 1dentifier parser 137, and, in
return, parsed information from that resource identifier can be

10

15

20

25

30

35

40

45

50

55

60

65

14

provided. The resource 1dentifier parser 137 can then proceed
to provide such a parsed information to non-browser appli-
cation programs or the operating system, as described previ-
ously. In such an alternative embodiment, the data page
header 261 can provide information to the resource 1dentifier
parser 137 of the existence and location of a network service
providing such a customized parser 237, thereby enabling the
resource 1dentifier parser 137 to provide the resource 1denti-
fier, such as the resource identifier 241, to such a service and
receive therefrom the parsed information.

While the above mechanisms are applicable to the parsing
ol any type of resource 1dentifiers, and the obtaining there-
from, in the manner described, of any type of derivative
information, 1n one embodiment the resource 1dentifiers can
be resource 1dentifiers of a data page, such as the data page
151, that can be directed to a particular person. For example,
as will be known by those skilled 1n the art, social networking
has become increasingly popular and, 1n such a context, a
single data page, such as the data page 151, can cause the
display on a browser window, such as the browser window
240, of amyriad of information regarding one particular user,
such as, for example, the user’s name, age, interests, photos of
the user, messages from other users that have “befriended”
the user through the social networking service offered by, for
example, the server 260, the user’s upcoming appointments,
documents authored by the user, and other like information.
The result can be that, colloquially, the data page 151, and 1ts
assoclated resource identifier 241, become 1dentified with
that particular person. They, in essence, come to represent that
particular person, at least 1n a network context.

However, as will also be recognized by those skilled 1n the
art, in such a social networking context, the data that can
constitute a particular person, or, more specifically, the net-
work representation of that person, can be dynamaic, flmd, and
context dependent. For example, the messages provided by
that person’s social networking friends can continuously
change, as can the photos of that person, the documents they
authored, and other like content and information. Conse-
quently, 1n one embodiment, a resource 1dentifier, such as the
resource 1dentifier 241, that can identily a data page, such as
the data page 151, that can be a particular individual’s page,
such as 1n a social networking service provided by the server
computing device 260, can be parsed and that particular 1ndi-
vidual’s identifier, within the context of the social networking
service, can be obtained. Such an 1dentifier can then be uti-
lized as a key with which to access or obtain other informa-
tion, such as through services ofiered by the server computing
device 260 hosting the data page 151. Such other services can
provide access to the dynamic and tfluid information that can
comprise that specific person’s network profile including, for
example, providing access to the messages provided to such a
person by that person’s social networking friends, the photos
uploaded by, for, or on behalf of, that person, the documents
authored by that person, and other like dynamic information.
In particular, the parsing of a resource 1dentifier identifying a
data page associated with a particular person within the con-
text of a social network can provide access to information that
does not even exist yet. For example, the parsing of such a
resource 1dentifier can provide access to services that wall
deliver, at a future time, information associated with that
particular person that was created at that future time, such as
messages from Iriends, or new photographs. Consequently,
the resource 1dentifier parser 137 can enable a resource 1den-
tifier to become a umiversal representation of a particular
person. As such, depending on the context, the desktop or
non-browser applications can retrieve any relevant piece of
data associated with the person, provided that the data1s made

US 8,862,737 B2

15

available from the social networking service provided by the
server computing device 260 and permitted by relevant access
rules to be accessed using that person’s 1dentifier that can
have been obtamned from the resource identifier by the
resource 1dentifier parser 137.

Turning to FIG. 3, the flow diagram 300 shown therein
illustrates an exemplary series of steps, such as can be per-
tormed by the resource identifier parser 137 shown 1n FIGS.
1 and 2. Processing can be initiated, as shown in the tlow
diagram 300 of FIG. 3, either when a resource identifier 1s
provided to a non-browser application program, such as 1s
shown 1n step 310, or, alternatively, when the resource 1den-
tifier 1s provided to the desktop, such as 1s shown 1n step 311.
As the steps of the tlow diagram 300 are mostly applicable to
either case, the tlow diagram 300 has been illustrated such
that, for the steps that do differ, steps illustrated on the left-
hand side of the diagram correspond to the 1mitiation per-
formed at step 310, wherein the resource 1dentifier was pro-
vided to a non-browser application program, while the steps
illustrated on the right-hand side of the diagram correspond to
the 1mitiation performed at step 311, wherein the resource
identifier was provided to the desktop. Steps that span both
sides of the diagram are equally applicable irrespective of the
manner 1 which processing was initiated. Thus, as shown,
irrespective of whether the resource identifier was provided to
the non-browser application at step 310, or to the desktop at
step 311, processing can proceed with step 320, at which
point determination can be made as to whether a parser 1s
available for that type of resource 1dentifier, or, more specifi-
cally, whether the capability to parse such a resource identi-
fier has been provided for, either 1n the resource i1dentifier
parser 137, or through a customized parser 237, as shown in
FIG. 2.

As 1dicated previously, for customized parsers, such as
can be obtained at step 370, described 1n detail below, step
320 can comprise either a check of a registration database,
wherein the customized parser can be associated with
resource 1dentifiers of a specific domain, or, alternatively, a
polling of available customized parsers, 1n turn, to find one
that can parse the resource i1dentifier in question. If, at step
320, 1s determined that the parser 1s available for the resource
identifier provided, processing can proceed with step 330, at
which point the provided resource identifier can be parsed,
and the resulting parsed information can be provided to either
the non-browser application program, or the desktop,
depending on whether processing was 1mtiated by step 310,
or step 311, respectively. I, however, at step 320, 1t 15 deter-
mined that a parser 1s not available for the resource 1dentifier
provided, processing can proceed to step 340, at which point
an examination of the page 1dentified by the resource identi-
fier can be performed to determine 1f the identified page
identifies, or otherwise comprises any services, such as a data
teed or other like services. I, at step 340, 1t 1s determined that
the page 1dentified by the resource 1dentifier does comprise
services, processing can proceed with step 350 at which point
information about the services can be retrieved and provided
to the application, or desktop, 1n accordance with whichever
was provided the resource i1dentifier. Conversely, 11, at step
340, 1s determined that the page 1dentified by the resource
identifier does not comprise any services, processing can
proceed to step 360, at which point a determination can be
made as to whether the domain of the page 1dentified by the
resource i1dentifier offers any sort of customized resource
identifier parsers.

I, at step 360, it 1s determined that the domain of the page
identified by the resource i1dentifier does provide a custom-
1zed parser, processing can proceed with step 370, at which

10

15

20

25

30

35

40

45

50

55

60

65

16

point such a customized parser can be downloaded and
installed, 11 1t 1s offered as a set of downloadable and locally-
executable computer-executable instructions, or, alterna-
tively, 11 the customized parser 1s provided as a network
service, the resource 1dentifier recerved 1n steps 310 or 311
can be provided to the network service at step 370. Processing
can then return to step 320 and a determination, at step 320,
can again be made as to whether a parser 1s available for the
particular resource identifier provided. Since such a parser
can have been installed, or located, as a result of step 370, the
subsequent determination, at step 320, can result in a finding
that an appropriate parser does exist and processing can pro-
ceed with step 330, as described above. If, however, 1s deter-
mined, at step 360, that the domain of the page 1dentified by
the resource 1dentifier does not provide a customized parser,
processing can proceed to step 399, at which point the
resource 1dentifier that was provided eirther step 310, or step
311, can be treated as a resource identifier 1in a traditional
manner, such as by treating it as a hyperlink, a collection of
alphanumeric characters, or the like.

Once derivative mformation from the provided resource
identifier has been obtained, further processing can be per-
formed, although not necessarily by the resource i1dentifier
parser 137 that was shown 1n FIG. 2, to determine whether the
derivative information can be utilized by the non-browser
application program, or the desktop, depending on which 1t
received the resource 1dentifier at steps 310 and 311, respec-
tively. More specifically, as shown 1n the flow diagram 300 of
FIG. 3, and maintaining the convention described above, 1f
the resource 1dentifier was provided to a non-browser appli-
cation program at step 310, and derivative information was
obtained from the provided resource identifier, processing
can proceed with step 380, at which point a determination can
be made as to whether the application to which the resource
identifier was provided at step 310 can meaningiully accept
the dervative information. If it 1s determined, at step 380, that
such an application cannot meamngiully accept the dervative
information, then the application can treat the resource 1den-
tifier 1n a traditional manner, such as by treating it as a hyper-
link, a collection of alphanumeric characters, or the like, at
step 399. Alternatively, if, at step 380, it 1s determined the
application can meaningfully accept the denvative informa-
tion, then the application can proceed to do so at step 390.
Similarly, 1f the resource 1dentifier was provided to the desk-
top at step 311, and parsed information was obtained from the
provided resource identifier, processing can proceed with
step 381, at which point determination can be made as to
whether an application, applet, widget, or other collection of
computer-executable instructions, exists that can meaning-
tully accept the derivative information. If no such computer-
executable instructions are determined to exist at step 381,
processing can proceed with the operating system treating the
resource 1dentifier 1n a traditional manner at step 399. Con-
versely, 11 1t 1s determined, at step 381, that at least one set of
computer-executable instructions, however packaged, exists
that can meamngtully accept the dertvative information, then,
at step 391, that set of computer-executable mstructions can
be instantiated and the derivative information can be provided
to 1t.

As can be seen from the above descriptions, mechanisms
have been provided for the parsing of resource 1dentifiers to
obtain therefrom derivative information that can be more
meaningiully processed by non-browser application pro-
grams or the operating system. In view of the many possible
variations of the subject matter described herein, we claim as
our invention all such embodiments as may come within the
scope of the following claims and equivalents thereto.

US 8,862,737 B2

17

We claim:
1. One or more computer-readable memory comprising
computer-executable mnstructions for parsing resource 1den-
tifiers, the computer-executable instructions directed to steps
comprising:
intercepting, at a client computing device, a resource i1den-
tifier being provided to a non-browser application pro-
gram executing on the client computing device;

identifying, at the client computing device, 1n response to
the obtaining, a remote domain of a remote resource
identified by the resource 1dentifier;

obtaining, from the remote resource, information regard-

ing a customized parser associated with the remote
domain;

downloading the customized parser;

executing, at the client computing device, the customized

parser to parse the resource identifier to derve derivative
information therefrom and

presenting the derivative information to the non-browser

application program instead of the resource i1dentifier
that was being provided to the non-browser application
program.
2. The computer-readable memory of claim 1, comprising,
turther computer-executable instructions directed to steps
comprising;
obtaining, from the remote resource, mformation regard-
ing services associated with the remote resource;

wherein the dervative information comprises the obtained
information regarding the services associated with the
remote resource.

3. The computer-readable memory of claim 2, wherein the
remote resource represents a particular person, and wherein
turther the services associated with the remote resource com-
prise services providing dynamic information associated with
the particular person.

4. The computer-readable memory of claim 1, wherein the
computer-executable mnstructions directed to the utilizing the
customized parser comprise computer-executable instruc-
tions for providing the resource 1dentifier to a network ser-
vice, the network service being the customized parser.

5. The computer-readable memory of claim 1, comprising,
turther computer-executable instructions directed to steps
comprising;

treating the resource identifier as an alphanumeric string 1f

the non-browser application program to which the
derivative information 1s presented cannot handle the
derivative information.

6. The computer-readable memory of claim 1, wherein the
non-browser application program comprises a desktop pre-
sented by an operating system, comprising further computer-
executable instructions directed to steps comprising:

identifying a set ol computer-executable instructions that

can handle the derivative information;

instantiating the identified set of computer-executable

instructions; and

presenting the derivative information to the identified set of

computer-executable instructions.
7. A method of parsing resource identifiers, the method
comprising the steps of:
intercepting, at a client computing device, a resource i1den-
tifier being provided to a non-browser application pro-
gram executing on the client computing device;

identifying, at the client computing device, 1n response to
the obtaining, a remote domain of a remote resource
identified by the resource 1dentifier;

10

15

20

25

30

35

40

45

50

55

60

65

18

obtaining, from the remote resource, information regard-
ing a customized parser associated with the remote
domain;

downloading the customized parser;

executing, at the client computing device, the customized

parser to parse the resource identifier to derive derivative
information theretrom; and

presenting the derivative information to the non-browser

application program instead of the resource identifier
that was being provided to the non-browser application
program.
8. The method of claim 7, further comprising the steps of:
obtaining, from the remote resource, information regard-
ing services associated with the remote resource;

wherein the dervative mnformation comprises the obtained
information regarding the services associated with the
remote resource.

9. The method of claim 8, wherein the remote resource
represents a particular person, and wherein further the ser-
vices associated with the resource comprise services provid-
ing dynamic information associated with the particular per-
SOn.

10. The method of claim 7, wherein the step of utilizing the
customized parser comprises the steps of:

providing the resource i1dentifier to a network service, the

network service being the customized parser.

11. The method of claim 7, further comprising the steps of:

treating the resource 1dentifier as an alphanumeric string 1f

the non-browser application program to which the
derivative information 1s presented cannot handle the
derivative information.

12. The method of claim 7, wherein the non-browser appli-
cation program comprises a desktop presented by an operat-
ing system, the method further comprising the steps of:

identifying a set of computer-executable instructions that

can handle the derivative information;

instantiating the identified set of computer-executable

instructions; and

presenting the dervative information to the identified set of

computer-executable mnstructions.

13. A system for providing dernivative information to a
non-browser application program in place of a resource 1den-
tifier from which the derivative information was derived, the
system comprising;:

a client computing device remote from a domain, the client

computing device comprising: the non-browser applica-
tion program being provided a resource 1dentifier; and a
resource 1dentifier parser for: obtaining, from a remote
resource 1dentified by the resource i1dentifier, informa-
tion regarding a customized parser associated with the
domain; downloading the customized parser; parsing
the resource identifier with the customized parser to
derive derivative information therefrom and presenting
the derivative information to the non-browser applica-
tion program in place of the resource identifier that was
being provided to the non-browser application program;
and

a computing device that 1s part of the domain of the

resource 1dentifier, the computing device that 1s part of
the domain comprising the customized parser for utili-
zation by the resource identifier parser.

14. The system of claim 13, wherein the resource 1dentifier
parser provides the resource identifier to the customized
parser executing at the computing device that 1s part of the
domain and recerves therefrom the derivative information.

15. The system of claim 13, wherein the non-browser
application program comprises a desktop presented by an

US 8,862,737 B2
19

operating system of the client computing device, and wherein
turther the client computing device comprising computer-
executable 1nstructions directed to 1dentifying a set of com-
puter-executable instructions that can handle the derivative
information, mstantiating the identified set of computer-ex- 5
ecutable 1nstructions, and presenting the derivative informa-
tion to the 1dentified set of computer-executable instructions.

¥ ¥ e ¥ ¥

20

	Front Page
	Drawings
	Specification
	Claims

