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FACILITATING EXECUTION OF A
SELF-MODIFYING EXECUTABLE

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH AND DEVELOPMEN'T

This invention was made, 1n part, with government support
under contract number HR0O011-11-F-0002 awarded by the

Defense Advanced Research Project Agency (DARPA).
Accordingly, the United States Government may have certain
rights in the invention.

BACKGROUND

Verification of executable code refers to measurement of a
state of an executable prior to execution thereof and compari-
son of that state against an expected state 1n order to deter-
mine (1.e. verily) that they are the same. This type of verifi-
cation 1s currently used in various different technologies
including the Trusted Platform Module (based on a specifi-
cation promulgated by the Trusted Computing Group™), the
Trusted Execution Technology (offered by Intel Corporation,
Mountain View, Calif.) and other Hardware Dynamic Root of
Trust Measurement (H-DRTM) technologies, Basic Input/
Output Systems, the Unified Extensible Firmware Interface,
and various gaming applications, among other technologies.
The constant thread of each of these 1s that they measure the
state of software prior to execution, where all data 1s statically
initialized to a known state. In one example, the measurement
ol the pre-execution state generates a hash of a portion of the
code when the application, program or system 1s loaded.
Some executables are self-moditying, or dynamic, wherein
execution of mstruction(s) of the executable cause modifica-
tion to portion(s) of the executable 1tself. In these cases, once
the executable code has begun executing, the self-modifying
executable gains a ‘dynamic state’ where some values that
were known (pre-execution) may no longer be 1n the same
state. Verification of the dynamic state against the measured
pre-execution state 1s useless 1n this case, since the dynamic
state 1s almost guaranteed to be different from the pre-execu-
tion state.

BRIEF SUMMARY

Shortcomings of the prior art are overcome and additional
advantages are provided through the provision of a method to
facilitate trusted execution of a self-modifying executable.
The method includes, for instance, detecting, by a hypervisor
managing execution of a guest system on a processor, an
attempt by the guest system to access a data portion of the
seli-modilying executable during execution of the self-modi-
tying executable, the self-modifying executable comprising
the data portion for storing data to be accessed during execu-
tion of the self-modifying executable and an instruction por-
tion comprising instructions for execution of the self-modi-
tying executable; and retargeting, by the hypervisor, the
attempt to access the data portion to a separate portion of
memory space, separate from another portion ol memory
space 1n which the self-modifying executable 1s loaded for
execution.

In another aspect, a computer program product 1s provided
to facilitate trusted execution of a self-modilying executable.
The computer program product includes a computer readable
storage medium readable by a processor and storing instruc-
tions for execution by the processor to perform a method
which includes, for instance, detecting, by a hypervisor man-
aging execution of a guest system, an attempt by the guest
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system to access a data portion of the self-modifying execut-
able during execution of the self-modifying executable, the

seli-modifying executable comprising the data portion for
storing data to be accessed during execution of the seli-
modilying executable and an 1nstruction portion comprising
instructions for execution of the seli-moditying executable;
and retargeting, by the hypervisor, the attempt to access the
data portion to a separate portion of memory space, separate
from another portion of memory space in which the seli-
modifying executable 1s loaded for execution.

In yet another aspect, a computer system 1s provided to
facilitate trusted execution of a self-modifying executable.
The computer system includes a memory, and a processor 1n
communication with the memory, and the computer system 1s
configured to perform a method which includes, for instance,
detecting, by a hypervisor managing execution of a guest
system, an attempt by the guest system to access a data
portion of the self-modifying executable during execution of
the self-modifying executable, the self-modifying executable
comprising the data portion for storing data to be accessed
during execution of the self-modifying executable and an
instruction portion comprising instructions for execution of
the self-modifying executable; and retargeting, by the hyper-
visor, the attempt to access the data portion to a separate
portion of memory space, separate from another portion of
memory space 1 which the self-moditying executable 1s
loaded for execution.

Additional features and advantages are realized through
the concepts of one or more aspects of the present invention.
Other embodiments and aspects of the invention are
described 1n detail herein and are considered a part of the
claimed 1nvention.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more aspects of the present invention are particu-
larly pointed out and distinctly claimed as examples 1n the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of aspects of the
invention are apparent from the following detailed descrip-
tion taken 1n conjunction with the accompanying drawings in
which:

FIGS. 1A and 1B depict states of a self-modifying execut-
able before and alter commencement of execution thereof;

FIG. 2 depicts an example of a self-modifying executable
in a portable executable format;

FIG. 3 depicts an example of data access retargeting, in
accordance with one or more aspects of the present invention;

FIG. 4 depicts an example process to facilitate trusted
execution of a self-modifying executable, 1n accordance with
one or more aspects of the present invention;

FIG. § depicts an example computing environment in
which data access retargeting 1s provided;

FIG. 6 depicts example hardware architecture of a proces-
sor of the computing environment of FIG. §;

FIG. 7 depicts an example process for data access retarget-
ing in the computing environment of FIG. 5;

FIG. 8 depicts another example computing environment 1n
which data access retargeting 1s provided;

FIG. 9 depicts example architecture of a processor of the
computing environment of FIG. 8;

FIGS. 10A and 10B depict an example of data access
retargeting 1n the computing environment of FI1G. 8, 1n accor-
dance with one or more aspects of the present invention;

FIG. 11 depicts an example process for mnitiating execution
of a self-moditying executable, 1n accordance with one or
more aspects of the present invention;
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FIG. 12 depicts one example of processing by a measure-
ment loop thread to detect whether modification to a seli-
moditying executable has occurred, in accordance with one
or more aspects of the present invention; and

FIG. 13 depicts one embodiment of a computer program

product incorporating one or more aspects of the present
invention.

DETAILED DESCRIPTION

Measurement of the state of soitware prior to execution
thereol can be usetul for veritying that the software begins in
a sale state. For a self-modilying executable (also referred to
herein as a seli-moditying application, or dynamic applica-
tion/executable), the pre-execution measurement will almost
surely differ from a measurement taken after commencement
of (e.g., during) execution of the self-modilying executable.
FIGS. 1A and 1B depict the changing state of a self-modity-
ing executable before and after commencement of execution
thereol. FIG. 1A depicts the state of a seli-modifying execut-
able, present 1n memory, prior to commencement ol execu-
tion. Self-modifying executable 100 has an instruction por-
tion 102 interlaced with a data portion 104. Instruction
portion 102 includes mnstructions that, during execution of the
executable, are fetched and executed by a processor to per-
form the various functions of the self-modifying executable.
One such function may be to access data (1.e. read/write data
from/to) portion 104. Data accesses read from or write to
temporary variables, for instance, having values that change
during execution of self-modifying executable 100.

A measurement (e.g., hash in FIG. 1A) can be taken across
seli-modifying executable 100. The measurement waill
depend, 1n this example, on the data contained 1n instruction
portion 102 and data portion 104. In other examples, the hash
can be taken across a portion less than the entire executable,
such as across just the instruction portion 102. In some
instances, though not all, the instruction portion i1s most
important from a security standpoint, since outside nstruc-
tions might be injected into the self-modifying executable and
executed to perform malicious activity.

In FIG. 1A, data portion 104 1s uninitialized, null, zeroed,
or otherwise contains data that 1s subject to change during
execution of self-moditying executable 100. Thus, 1n FIG.
1B, which depicts the state of self-moditying executable 100
alter 1t has been running for a period of time after commenc-
ing execution, data portion 104 has been accessed and
dynamic data written into data portion 104. A measurement
(e.g., hash) taken across self-modifying executable 100 1n
FIG. 1B 1s virtually guaranteed (with any well-designed hash
algorithm) to differ from the 1nitial hash of FIG. 1A obtained
pre-execution. The initial hash from FIG. 1A therefore
becomes meaningless in terms of verifying the integrity of
self-moditying executable 100; a difference between the
hashes will be observed, yet it will not be known whether the
changes to the self-modifying executable were caused by
malicious activity or by the normal course of operation of the
self-modifying executable.

This 1s disadvantageous when 1t 1s desired to verity that the
seli-modifying executable has not been compromised after 1t
has begun executing. One example of such a compromise 1s a
modification to either the mnstruction portion or the data por-
tion (or both) to include an embedded security threat or soft-
ware bug. Itis desirable to detect when the mstruction portion
of a self-modilying executable (which is the operative portion
thereol) has been tampered with during execution of the
self-modifying executable, however, as noted, it 1s not pos-
sible to determine whether the state measurement (hash) after
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4

execution has begun differs from the pre-execution state mea-
surement due to malicious activity or the routine data
accesses made by the 1nstructions of the original executable.

Attempts have been made to address this problem. Some
have proposed that the executable be re-written to remove all
non-stack and non-heap based memory. That approach, how-
ever, 1s 1nfeasible for system level code. Another option 1s to
re-write the compiler (of the executable) and operating sys-
tem (on which the executable executes) to label all data ret-
erences 1n the executable, so that the labeled data references
can be disregarded when checksumming the executable. This
option, however, fails to address the problem with respect to
existing products. Lastly, others instead simply forego integ-
rity measurements altogether after execution has begun, on
the basis that meaningtul integrity measurements post-execu-
tion are not possible.

In one particular approach, used with applications that
execute from user space (as opposed to, for instance, kernel
space), the self-moditying executable 1s compiled and linked
in such a fashion that the data portion and instruction portion
(sometimes termed ‘code’ portion) reside on different pages
in memory. The Portable Executable (PE) format used by
some Windows®-based Operating System products (offered
by Microsoft Corp., Redmond, Wash. ) subscribes to this para-
digm. The PE format provides the application loader (some-
times termed “drniver loader”) with the requisite information
to load the executable mto memory, adjust any addresses
which may have been changed, and link 1n any shared librar-
1ies before execution. The PE format divides the binary into a
number of different sections, some for code (generally
labeled .text), some for data (.data) and other informational
sections.

An example of a seli-moditying executable 1n the portable
executable format 1s depicted i FIG. 2. Self-moditying
executable 200 includes a “.text’ section 202 which 1s mapped
as execute and read-only, for code, and a ‘.data’ section 204
which 1s mapped as no-execute and read-write, for data. Thus,
program code, 1.¢. mstructions, of executable 200 1s stored in
text section 202 which 1s made to be readable and executable
(but not writable), and data, including global variables, are
stored 1n .data section which 1s made to be readable and
writable but not executable (1.e. nstructions 1n .data section
are not able to be fetched and executed). With the self-modi-
tying executable 200 loaded into memory and the attributes of
the memory pages storing the executable having the above-
noted permissions, a write to the .text section will generate a
fault and the kernel will abort the process in order to prevent
corruption.

The PE format facilitates measurability of the self-modi-
tying executable during execution thereol because the oper-
ating system (OS) specifically splits out the dynamic portion
from the static portion of the executable. However, some
more privileged executables, such as boot-loaders, operating
system kernels, hypervisors, system management interrupt
handlers, firmware code, and non user-space applications, are
usually not compiled and linked as above, where the data and
instruction portions are separated. Instead, their data and code
portions are mtermixed (as seen 1n FIGS. 1A, 1B). As dis-
cussed above, once allowed to execute for a period of time,
measurement of these binaries to ensure code trustworthiness
1s not a viable option. What 1s needed 1s the ability to measure
an executable regardless of whether or not the dynamic and
static states are conveniently separated, and regardless of the
memory space i which the application 1s loaded for execu-
tion.

In order to facilitate understanding of various aspects of the
present mvention, a brief background 1s provided on some
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features of modern computer platform technologies. Modern
processors (e.g., CPUs) are able to provide each process
executing on the processor with a umique view of memory.
This feature, known as virtual memory, eases the operating
system’s task of 1solating different applications and provid-
ing each application with a similar view of memory. When a
virtual memory address 1s accessed by an application, the
processor uses a number of data structures and other facilities
to automatically translate the virtual memory address into a
physical memory address. As an example, the processor
includes a control register (e.g., CR3 register on the x86
instruction set architecture) to find a page directory and
optionally a page table, which holds the desired physical
memory address. In most modern operating systems, each
process 1s given 1ts own set of page translation structures
(paging structures) to map the ‘flat” memory view provided to
the computer system’s physical memory.

One or more translation lookaside butfers (TLBs, collec-
tively referred to as the TLB) act as a cache for these map-
pings/translations. Due to relatively high memory latency
compared to cache-access speed, page translation lookups are
expensive i terms of time. These operations are optimized by
caching the virtual to physical mappings 1n the TLB. While
logically the TLB store the translations for all accessed
addresses 1n the same area, the typical physical implementa-
tion splits the TLB into more than one hardware butler: one
for instruction addresses (“Instruction TLB”, “ITLB”, or
“I-TLB”) and one for data addresses (Data TLB, “DTLB”, or
“D-TLB”). This implementation detail allows the TLB to
point to different addresses for mstruction fetches as com-
pared to data accesses.

There has been past work that takes advantage of this
split-TLB nature for malicious purposes. Examples include,
for instance, the “Shadow Walker” rootkit (S. Sparks and .
Butler, “Shadow Walker: Raising the Bar for Rootkit Detec-
tion,” 1 Blackhat Japan, 2005) and other technology for
preventing self-veritying applications from detecting corrup-
tion (P. van Oorschot, A. Somayaji and G. Wurster, “Hard-

ware-assisted circumvention of self-hashing software tamper
resistance,” i IEEE TRANS. ON DEPENDABLE AND

SECURE COMPUITING, 2005). Shadow Walker 1s a memory
hiding rootkit designed to hide the presence of a kernel driver
through TLB splitting. When code 1s accessed as data, such as
by an anti-virus tool, Shadow Walker causes the D-TLB to
point toward an un-modified kernel region. When the target
section 1s executed (1.¢., accessed and retrieved for execution
by an instruction fetch), the I-TLB 1s filled with the address of
the malicious driver’s code, allowing the malicious code to
run as expected. A similar technique 1s used 1n the Oorschot
publication to prevent seli-hashing applications from detect-
ing the malicious modification of the application. When sepa-
rate TLBs point a unique address to different memory loca-
tions depending, for instance, on whether the address 1s being,
accessed by a data access or an mstruction access, the TLBs
are said to be desynchronized (“split”). TLBs can also be
desynchronized from the paging structure entries from which
the TL.Bs cache the address translations. For instance, when a
TLB contains a cached translation for a page that 1s marked 1n
a paging structure as no longer present in memory, the TLB 1s
said to be desynchronized from the paging structure. Typi-
cally, this form of desynchronization 1s not desired, though, as
described below, 1t can be leveraged to facilitate aspects of the
present invention.

Technology such as the above 1s not enough to address the
problems described previously with measuring a self-modi-
tying executable. For instance, a page fault handler hook
needs to know which pages from the critical application to
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desynchronize, and the self-moditying code will not execute,
unmodified, 1n an environment that has a desynchronized
TLB. Additionally, the above technology operates at the oper-
ating system level, failing to provide for kernel mode or real
mode TLB desynchronization because 1t cannot handle an
operating system’s running memory manager.

Additional discussion of how an operating system man-
ages the paging structures 1s now presented. While paging can
be used merely to 1solate processes, as described above, 1t can
also be used by most operating systems for memory manage-
ment, where pages of memory are paged-out when not in use.
The process of paging-out 1s well-known 1n the art. In general,
when the system 1s running low on physical memory (1.¢.,
“working memory” such as RAM), the operating system,
such as the memory manager thereof, determines one or more
memory pages that are being used least frequently and copies
their contents to a hard disk, or another, larger storage system.
The operating system then invalidates any translations point-
ing to that physical memory region by altering the paging
structures to note that region as paged-out. When a process
tries to access one of the imvalidated translations, the proces-
sor 1dentifies that region as being paged out and causes an
exception known as a page fault. A page fault handler of the
operating system may then copy the paged-out data from the
hard disk back into a free physical page in memory and update
the paging structures to reflect the new physical address. This
allows the application’s memory to be transparently moved to
and from the hard disk as needed without causing serious
interruption 1n program execution.

A page fault handler 1s written 1n such a way as to ensure
that the mn-memory paging structures and the TLB remain
synchronized. The x86 architecture (originally designed by
Intel Corporation, Santa Clara, Calif.) provides the INVLPG
instruction which invalidates an entry 1n the TLB, forcing the
processor to re-walk the paging structures next time that
address 1s requested, and pull the (updated) entry back into
the TLB. When the x86 processor’s control register (CR3) 1s
changed—most commonly during a process context
switch—all TLB entries are invalidated unless they are spe-
cifically marked as global. Global pages are most commonly
used for shared libraries and operating kerel functions
exported to user-land applications, and thus benefit from
remaining in the TLB across context switches.

In recent years, the use of virtual machines (VMs) has
gained momentum 1n various applications including data-
center consolidation. A hypervisor, also known as a virtual
machine momtor (VMM), allows multiple virtual machines,
perhaps each with 1ts own operating system executing
thereon, to run simultaneously on the same physical hardware
system. In this architecture, each virtual machine 1s 1solated
from the others and 1s provided a normal system environment
for execution. While some hypervisors require that changes
be made to a guest operating system to function properly (this
practice 1s known as para-virtualization), many hypervisors
leverage newer processor “extensions” to allow an unmodi-
fied operating system to run with only minor interactions
from the hypervisor. These extensions, termed virtual
machine extensions, or VMX, improve performance by
empowering the physical processor and chipset to perform
more of the 1solation and virtual machine memory manage-
ment 1n hardware, as opposed to software (the hypervisor).
VMX enables the hypervisor to set a number of different exat
conditions for each guest virtual machine which, when an exit
condition 1s met, will trigger a VM EXIT, returming control to
the hypervisor for handling the exit condition.

In most recent implementations of virtual machine exten-
s1ons, both Intel and Advanced Micro Devices (Sunnyvale,
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Calif.—another processor manufacturer), have released the
extended page table (EPT) and rapid virtualization indexing
(RVI) technologies, respectively. These technologies enable a
hypervisor to assume an even more limited role in the
memory management and isolation of each guest system.
EPT and RVI provide another layer of paging structures,
beyond those maintained by a memory manager of an oper-
ating system executing in a virtual machine. EPT and RV1 are
paging structures that enable translation of addresses that the
virtual machine operating system believes to be the correct
physical address (termed “guest-physical address™) to the
machine (actual) physical address. With EPT and RVI, the
physical processor can automatically translate a guest-physi-
cal address to a machine physical address 1n a fashion similar
to conventional paging, and provide a VM EXIT to the hyper-
visor. These translations can be stored in the TLB, and tagged
with each guest’s virtual machine processor ID (VPID) so
that the translations need not be flushed on every virtual
machine context switch.

Virtual machine extensions significantly aid a hypervisor
in running multiple virtual machines 1n an i1solated fashion
with relatively minor performance impacts. Aspects of the
present invention leverage this technology to provide a non-
intrusive method for maintaining the imtegrity of a self-modi-
tying executable. For instance, a page fault handler hook 1s
provided that facilitates TLB desynchronization and 1s made
to be compatible with, for instance, modern operating
system(s ) and/or hypervisor(s). Verification of the contents of
code executing 1n real-time 1s facilitated by retargeting data
access attempts to a separate portion of memory, separate
from the portion of memory 1n which the executable 1s loaded
for execution. In accordance with aspects of the present
invention, both low-privilege and high-privilege binaries
(such as a System Management Interrupt (SMI) handler writ-
ten by the BIOS) can be reliably measured to verity a root of
trust, for instance during a late launch process for Intel Cor-
poration’s Trusted Execution Technology (TX'T) trust mod-
ule.

Aspects of the present invention ensure that measurements
of a dynamic application by a measurement facility remain
meaningiul as data accesses are made to the dynamic appli-
cation to change the data portion thereof. In order to accom-
plish this goal, TLB splitting 1s leveraged for defensive pur-
poses. Aspects of the present invention “split” a target
executable mto two portions of memory space. For instance,
the target executable 1s loaded into memory and 1s the
“instruction copy’” to which istruction accesses are directed.
A duplicate of the target executable 1s created, with the dupli-
cate of the target being the “data copy™ to which data accesses
are directed. The executable, during execution thereof (1.e.
execution of instructions from the instruction copy) will
attempt to access the data portion of the target executable.
However, 1n accordance with aspects of the present invention,
the data accesses are 1nstead redirected to the data copy. The
target executable therefore remains static in memory, since
the data accesses (1.¢. data writes and reads) are directed to the
data copy 1n a separate portion of memory space.

FIG. 3 depicts an example of data access retargeting, in
accordance with one or more aspects of the present invention.
In FIG. 3, self-moditying application 300 includes an istruc-
tion portion 302 having one or more nstructions, and a data
portion 304 serving as a data butler to which data 1s read and
dynamically written. Instruction portion 302 and data portion
304 are not interlaced in the example of FIG. 3 but, 1n some
examples (such as 1s depicted 1n FIGS. 1A & 1B), they are
interlaced.

Also depicted in FIG. 3 1s duplicate application 300'.
Application 300' 1s a copy of application 300, and therefore
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includes instruction portion 302' and data portion 304", which
are simply copies of instruction portion 302 and data portion
304. Execution of application 300 proceeds with execution of
instructions from instruction portion 302. A data access
attempt 306 1s 1nitiated by an instruction of instruction por-
tion 302. The data access attempt 306 1s addressed (1in the
instruction) to data portion 304. However, instead of access
attempt 306 being directed to data portion 304, the data access
attempt 306 1s instead retargeted to a separate portion of
memory space, and more specifically, to the portion having
data bufier 304' of duplicate application 300'. Data portion
304 1s not changed by the execution of application 300; appli-
cation 300 remains static throughout execution thereolf. Peri-
odic measurement of some or all of application 300 should
therefore (barring any manipulation by external sources) pro-
duce a consistent hash across the time period during which the
application executes.

Thus, 1 accordance with one embodiment of the present
ivention, data access retargeting 1s provided as part of the
process to facilitate trusted execution of a self-modifying
executable. An overview of this process 1s provided with
reference to FIG. 4, which 1s followed by a description of
more detailed embodiments.

The process of FIG. 4 begins by setting the proper permis-
s1ons, 402, for accessing the portions of memory to which the
instruction accesses are to be directed (e.g., the target appli-
cation) and to which the data accesses are to be directed (e.g.,
the data copy). This includes setting permissions for the data
portion(s) and the instruction portion(s). More specifically,
the permissions for accessing the instruction portion (in the
instruction copy of the executable) are set to indicate execu-
tion access (€.g., mstruction fetch and execution) to that por-
tion 1s permitted, but data read or write access to that portion
1s not permitted, and the permissions for accessing the data
portion (in the data copy of the executable) are set to indicate
dataread and data write access to that portion 1s permitted, but
execution access to that portion is not permitted.

Next, an attempt to access the data portion 1s detected, 404.
The attempt 1s made by the executable and references an
address, for mstance, of the data portion of the instruction
copy of the executable. In one example, this attempt is
detected based on a page fault that indicates that the data
attempting to be accessed 1s not currently resident 1n working
memory space.

The data access attempt 1s retargeted, 406, to a separate
portion ol memory space (e.g., in which the data copy 1s
loaded), to avoid access and potential modification to the
instruction copy. Then, periodically 1n one example, at least a
portion of the self-modilying executable, such as the mnstruc-
tion portion of the target (instruction copy) executable, 1s
checked to detect whether modification thereto has occurred,
408. The retargeting ensures that the executable does not
modily on account of its execution the instruction copy from
which instructions are read. Instead, the working copy (data
copy) of the executable 1s modified. Modification to any part
ol the data copy to include a malicious instruction or data, for
instance, will fail to compromise the self-modilying execut-
able since the instructions for execution thereol are being
accessed from the static mstruction copy of the executable.

Embodiments of the present invention are implemented 1n
different ways depending on the subject computing environ-
ment. Typically, a processor on which the application
executes will include two relevant TLB structures—an I'TLB
(for caching instruction address translations) and a DTLB
(for caching data address translations). In one embodiment
(FIGS. 5-7), amodified or augmented page fault handler of an
operating system 1s provided for the retargeting. In this
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embodiment, the page fault interrupt descriptor table (IDT)
entry 1s hooked and the handler’s privileged position enables
it to desynchronize the ITLB from the DTLB for certain
memory pages. Another embodiment (FIGS. 8-10B) provides
hypervisor-based desynchronization of the two caches so that
the DTLB points to the data copy and the ITLB points to the
code copy.

FIG. 5 depicts an example computing environment in
which data access retargeting 1s provided. Data processing,
system 300 includes a processor 502, memory 504, and one or
more I/O communications interface components 312 (such as
network, graphics, and/or audio controller(s)). Memory 204
includes self-modifying executable 506 loaded for execution
by an operating system 508 also resident 1n memory 506.
Processor 502 comprises any appropriate hardware compo-
nent(s) capable of executing one or more 1nstructions from
memory 504, as 1s appreciated by those having ordinary skaill
in the art.

In one example, processor 502 1s based on Intel’s x86
architecture. FIG. 6 depicts the hardware architecture of one
example of an x86 processor. Processor 600 includes a bus
interface unit 602 for communicating data across an external
system bus 604. As an example, data 1s communicated to and
from physical memory, such as when instructions are fetched
from an application loaded for execution in the physical
memory, or when data accesses are made to the physical
memory. Trace cache 606 stores decoded instructions (de-
coded by 1nstruction decoder 608) to avoid repeated decoding
of the same 1nstruction by instruction decoder 608. One or
more caches 610 (such as L1, L2 and L3 caches familiar to
those having ordinary skill in the art) cache data and/or
instructions—typically the most used data/instructions—{tor
enabling immediate access by the processor. Store buifer 612
1s used for stores to system memory and/or caches 610 and
sometimes for optimizing the processor’s bus accesses.
Finally, one or more instruction TLBs (614) and one or more
data TLBs (616) are included for caching translations of
instruction addresses and data addresses, respectively. Fur-
ther information about the hardware architecture of an x86
processor 1s provided 1n “Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Combined Volumes: 1, 2ZA,
2B, 2C, 3A, 3B and 3C”, May 2012 (available at http://
download.intel.com/products/processor/manual/
325462.pdf), which 1s hereby incorporated herein by refer-
ence 1n 1ts entirety.

FI1G. 7 depicts an example process for data access retarget-
ing 1n the computing environment of FIG. 5. The process 1s
performed, 1n one example, by a shum provided just in front of
an operating systems’ page fault handler, so that the shim
takes priority 1n terms of handling a page fault over the oper-
ating system’s page fault handler. The shim provides TLB
desynchronization for a target application in order to target
istruction and data accesses to the appropriate portion of
memory space. For application other than the target applica-
tion, the shim will forward the exception to the operating
system’s handler for normal processing.

Initially, when the self-modifying executable 1s loaded,
separate data and instruction portions are split (for instance, a
duplicate copy of the loaded executable 1s created) and pro-
vided 1n separate pages of memory, and the pages are marked
as not present in the TLB. The page permissions indicate
immutable executable page(s) (IEP) for the instruction por-
tion (e.g., of the instruction copy) and writable data page(s)
(WDP) for the data portion to which data access are to be
retargeted (e.g., the data portion of the data copy).

As described above, when virtual memory 1s paged-out, an
indication 1s placed in a paging structure that marks the page
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as not being present i memory. When the application
attempts to access the non-present page, the operating system
will see that the page 1s not present (1.¢. paged-out) and a fault
1s raised to the operating system for handling the fault, 1.e. to
load the contents of the page back into memory. The process-
ing of the shim according to this embodiment will adjust the
paging structures to show the target page (one to which the
access attempt 1s to be directed) as paged-in and adjust the
physical address 1n the translation of the requested address to
point to the physical address of the IEP or WDP. Once the
paging structures have been updated, the translation can be
loaded into the proper TLB. The shim can then alter the
paging structures to once again show the target page as not
present and return control to the faulting application, without
invalidating the TLB entry (thereby desynchronizing the pag-
ing structures from the TLB).

The process of FIG. 7 begins upon detection of a page fault
702, alerting the shim of the data access attempt. The process
checks whether the control register (CR3) contains the pro-
cess ID of the target executable, 704, 1.¢. the self-modifying
executable for which data access retargeting 1s being per-
formed. Each executing process 1s 1dentified by its process
ID; the checking determines whether the page fault 1s due to
the application for which the desynchronization 1s being per-
formed. I not, the fault 1s forwarded as a normal page fault to
the operating system, 706. I the ID 1 CR3 1s the ID of the
target application, the process proceeds by checking whether
the page (for which the page fault was generated) 1s a page
that 1s being desynchronized, 708. In other words, 1t 1s deter-
mined whether the page for which the access 1s attempted by
the self-modilying executable 1s a page containing at least
some of the data portion of the executable or the 1nstruction
portion of the executable. If not, the fault 1s, as before, for-
warded as a normal page fault to the operating system, 706.

If the page 1s a target page, then at 710, 1t 1s determined
whether the faulting address 1s an instruction address or a data
address by comparing the contents of the exception return
address (EIP) register and the CR2 control register to deter-
mine whether the contents are equal. If so, then an adjustment
1s made to the paging structure(s) to show the target page as
paged-1in; a physical address translated, 1n an entry 1n a paging
structure, from a virtual address 1s adjusted to point to the
physical address of the IEP (instruction copy); and the
instruction TLB 1s loaded with the translation pointing to the
physical address of the code (instruction) page, 712.

If instead at 710, 1t 1s determined that the contents of the
EIP register and the CR2 control register are not equal, then
an adjustment 1s made to a paging structure(s) to show the
target page as paged-in; a physical address translated, 1n an
entry 1n a paging structure, from a virtual address 1s adjusted
to point to the physical address of the WDP (data copy); and
the data TLB 1s loaded with the translation pointing to the
physical address of the data page, 714.

In one example, the TLB 1s loaded with the proper trans-
lation simply by the shim accessing the first byte 1n the page
for data accesses, or by temporarily overwriting the first byte
of the page with the return instruction (0xC3) and CALLI1ng
that page before restoring the correct first byte. These actions
load the TLB (DTLB or ITLB) with the correct translation,
aiter which time the shim can then re-alter the paging struc-
ture(s) to once again show the target page as not present,
without mvalidating the TLB entry (and thus desynchroniz-
ing the paging structures from the TLB).

Returning to the process of FI1G. 7, the page fault contain-
ing the error code and other information about the fault 1s then
popped from the fault stack or other queue of faults awaiting
handling, and the interrupt return instruction 1s 1ssued to
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return from the interrupt-handler procedure back to the appli-
cation, 716, bypassing the operating system’s page fault han-
dler.

The above process can be used for TLB desynchronization
to split memory page accesses for arbitrary kernel and user-
mode pages with little or no noticeable performance over-
head. This approach 1s feasible for many practical use cases,
including veritying the integrity of running kernel and Sys-
tem Management Interrupt (SMI) handlers, as examples.

In a further embodiment, the processor architecture imcor-
porates a change 1n the TLB architecture to add a shared TLB
(“S-TLB or STLB”) (an example of such an architecture 1s the
Core™ 17 series of processors offered by Intel Corporation).
The STLB functions as a shared level-2 cache for both the
data and instruction TLBs. When either of the I-TLB or
D-TLB 1s full, the least-recently-used translation 1s evicted
and replaced with a new translation. In these newer processor
architectures, the evicted translation 1s moved to the S-TLB 1n
the case that it will be needed again shortly, where 1t can
rapidly be replaced without re-walking the paging structures.
The newer TLB architecture 1s designed for improved perfor-
mance, however 1t violates the separation between the I'TLB
and DTLB relied upon by the process above. In a system with
no S-TLB, when the CPU faults due to a missing TLB entry,
it will request that the page fault handler (PFH) to fill 1n the
correct value. With the S-TLB, the faulting TLB (I or D) will
check the S-TLB first, and use that value instead of faulting to
the PFH to get the desynchromized value.

To address this, a VMX hypervisor 1s implemented for
incorporation into a virtual machine computing environment.
FIG. 8 depicts such an example computing environment 1n
which data access retargeting i1s provided. Computing envi-
ronment 800 includes, for instance, one or more virtual
machines 804, one or more central processors 806, at least
one host 808 (e.g., a control program, such as a hypervisor),
and an mput/output subsystem 810, each of which 1is
described below. In this example, the virtual machines and
host are included 1n memory.

The virtual machine support of computing environment
800 provides the ability to operate large numbers of virtual
machines, each capable of hosting a guest system, for
instance a guest operating system 812, such as a Windows®-
based operating system offered by Microsoit Corporation,
Redmond, Wash. Each virtual machine 804 1s capable of
functioning as a separate system. That 1s, each wvirtual
machine can be independently reset, host a disparate guest
operating system, and operate with different programs. An
operating system or application program running in a virtual
machine appears to have access to a full and complete system,
but 1n reality, only a portion of it 1s available.

The physical resources of the computing environment 800
(e.g., CPUs, memory, I/O devices, etc.) are owned by host
808, and the shared physical resources are dispatched by the
host to the guest systems, as needed, to meet their processing,
demands. The interactions between the guest systems and the
physical shared machine resources are controlled by the host,
since the large number of guests typically, though not always,
precludes the host from simply partitioning and assigning the
hardware resources to the configured guests.

Central processors 806 are physical processor resources
that are assignable to a virtual machine. For istance, virtual
machine 804 represents all or a share of a physical processor
resource 806 that may be dynamically allocated to the virtual
machine. Virtual machines 804 are managed by host 808, and
thus host 808 manages execution of the guest systems 1nclud-
ing application executed within/by the guest systems. As
examples, the host may be implemented as Type-1 (native),
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running directly on host hardware, such as on processors 806,
or may implemented as Type-2 (hosted), running within a
host operating system executing on the machine.

Input/output subsystem 810 directs the flow of information
between devices and main storage. It 1s coupled to the com-
puting environment 800, 1n that 1t can be part of the comput-
ing environment or separate therefrom. The I/O subsystem
relieves the central processors of the task of communicating
directly with the I/0 devices coupled to the computing envi-
ronment and permits data processing to proceed concurrently
with I/0 processing.

In one embodiment, the host and processor hardware/firm-
ware interact with each other 1n a controlled cooperative
manner 1n order to process guest operating system operations
without requiring transier of control from/to the guest oper-
ating system and the host. Guest operations can be executed
directly without host intervention, 1n some mstances, wherein
guest structions and interruptions are processed directly,
until a condition requiring host attention arises.

As used herein, firmware includes the hardware-level
instructions and/or data structures used 1n implementation of
higher level machine code. In one embodiment, 1t includes,
for instance, proprietary code that includes trusted software
specific to the underlying hardware and controls operating
system access to the system hardware.

FIG. 9 depicts an example architecture of a processor of the
computing environment of FIG. 8. The processor architecture
of FIG. 9 implements the revised TLB architecture discussed
above 1n which a shared TLB 1s added. An example of the
processor architecture of FIG. 9 1s the Nehalem architecture
offered by Intel Corporation.

In FIG. 9, processor 900 includes an instruction decoder
and front end component 902 1 communication with an
out-of-order execution engine 904. Out-of-order execution
engine monitors upcoming instructions and (potentially)
reorders them to best optimize the use of the processor’s
processing pipeline, while maintaining data integrity. Instruc-
tion decoder and front end component 1s 1n communication
with mstruction TLB 910 for caching instruction address
translations for cached instructions of imstruction cache 912.
Out-of-order execution engine 904 1s in communication with
data TLB 906 for caching data address translations. Level-1
(908), level-2 (916) and level-3 (918) caches provide data
and/or struction caching. As described earlier, shared TLB
914 1s an upper-level cache (with respect to the ITLB 910 and
DTLB 906), caching both data and instruction translations
that are evicted from I'TLB 910 and DTLB 906.

In embodiments 1n which the processor includes an STLB,
such as 1n the example processor of FIG. 9, virtual machine
extension functionality i1s leveraged, which also enables
bypass of the guest operating system memory manager(s).
Because the hypervisor executes on the processor at a higher
privilege level than do the guest systems, including operating
system(s) running on the guest systems, memory manage-
ment at the hypervisor level enables manipulation of memory
and paging structures without the guest systems being aware
that such manipulations occur.

Embodiments presented below are described with refer-
ence to Intel Corporation’s VMX technology, though 1t will
be appreciated by those having ordinary skill 1n the art that
principles disclosed herein apply analogously to other virtu-
alization technologies.

The hypervisor (808 of FIG. 8), in one example, supports
Intel’s Extended Page-Table (EPT) and Virtual Processor
Identifiers (VPID) mechanisms. EPT supports the virtualiza-
tion of physical memory by ftreating guest-referenced
memory addresses (which would otherwise be considered
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physical addresses) as guest-physical addresses, and translat-
ing the guest-physical addresses into physical (actual)
addresses by way of EPT paging structures. EPT paging
structures can point the guest-physical addresses to the 1den-
tical machine physical addresses (an identity map). The EPT's
enable the processor and the memory management system 1n
the hardware to perform almost all the memory management
for supporting multiple guest systems. By the identity map,
the guest system assumes that 1ts access 1s made to the guest-
physical address, however the accesses, unbeknownst to the
guest system, are actually directed via EPT to an actual physi-
cal address of the machine.

EPT provides the hypervisor with more granular access
controls over guest access to each page, permitting read-only,
execute-only and read/write paging permissions. The proces-
sor TLBs can also cache EPT translations. If the TLB 1s
primed with split entries, each having different permissions,
the TLB would not merge these mto the S-TLB, since other-
wise 1t would violate the security of the EPT permissions. So,
for instance, the I-TLLB will not load entries from the S-TLB
which have no execute permissions and the D-TLB will not
load entries which have no read/write permission. To prevent
the TLB entries from being invalidated, Intel’s VPID 1s sup-
ported i the hypervisor. VPID 1s Intel’s extended cache

architecture that enables VMX transitions to occur without
having to flush the TLBs.

The combination of the EPT and VPID technologies per-
mits a guest operating system to manage memory as if the
hypervisor were not present. It also can be leveraged by the
hypervisor to mark certain physical addresses as non-present
in EPT without the operating system’s memory manager
becoming aware of the modification. With the inclusion of
EPT and VPID support into the hypervisor, the paging out
process can be done 1n the EPT structures and retargeting can
be moved to the virtual machine exit (VMEXIT) handler for
handling an EPT fault, which occurs when a requested page 1s
not present or when permissions for the page do not match the
access type being requested.

The hypervisor does not prime the TLB 1tself, however.
With VPID technology, the TLB entries are tagged with (and
only accessible to) the idenfifier of the priming virtual
machine, or 0 in the case of the hypervisor. Therefore, in
accordance with an aspect of the present invention, the hyper-
visor modifies the paging structures upon the EPT fault, and
sets a guest trap flag, e.g., in the EFLAGS register, which
causes the processor to trap after the virtual machine executes
the 1nstruction that performs the data or instruction access.
The hypervisor 1s then configured to VM EXIT on the trap
exception. A trap tlag handler 1n the hypervisor then disables
the trap tlag and resets the EPT paging structures to non-
present, leaving the TLB primed with the cached VPID-
tagged paging structure entry, thus allowing access of the
same type (either data or instruction) as was 1nitially
requested for the page, but resulting in another trap to the EPT
handler 1 an access of the other type 1s requested.

Data access retargeting is thereby provided 1n a computing,
environment incorporating a hypervisor and one or more
virtual machines. FIGS. 10A and 10B depict an example of
data access retargeting, 1 accordance with one or more
aspects of the present invention.

Initially, as before, some preparation 1s performed with
respect to the EPT entries for the portions of memory that
include the instruction and data portions for access by the
seli-moditying executable. The hypervisor (or shim thereot)
marks the data pages (those that include the separate portion
of memory space to which the data access attempts are to be
directed) in the EPTs as read and write only (and unable to
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execute) and marks the instruction pages (those that include
the portion of memory space to which the 1nstruction access
attempts are targeted) execute only (and not read/write). The
TLB caches the EPT translations (guest-physical address to
physical address) but does not merge old cached translations
into the STLB, since the conflict of the permissions, 1f
merged, would be a security vulnerability. Additionally, since
the hypervisor does not prime the TLB for the guest system
that executes the self-modilying executable, the hypervisor
marks in the EPT the target pages as being not present in
memory. Again, this 1s allowed without causing complica-
tions for the guest operating system’s memory manager
because the hypervisor executes at a higher privilege level
than the guest system. Marking the pages not present causes
the guest system to pull into the TLB the appropriate EPT
entry having the appropriate permissions which are set by the
hypervisor.

Referring to FIG. 10A, a fault, 1n this case an EPT VM
EXIT, occurs, 1002. An EPT VM EXIT 1s similar to a page
fault by the guest system to the hypervisor, and occurs when
the page to which access 1s attempted 1s not present, or when
permissions for the requested page do not match the access
type being requested. The fault 1s caused, 1n one example, by
the guest system attempting to perform an operation, such as
a fetch of a next instruction for execution, or to execute an
instruction that causes a data access.

In any case, the hypervisor detects the fault as an attempt to
access a data portion or an instruction portion of the seli-
modifying executable. The process then determines whether
a thrash 1s detected, 1004 (a thrash i1s explained below).
Assuming no thrash 1s detected, the process determines
whether the access type 1s a data access to the data portion of
the self-modilying executable, 1006. In one example, the
access type 1s determined based on an indication 1n a field
included 1n guest system exit information that 1s provided to
the hypervisor upon a guest exit.

If the access type 1s not a data access, the access 15 an
istruction access—an attempt to access and execute an
instruction from the mstruction portion of the self-moditying
executable. In this case, the EPT entry 1s set to point to the
appropriate code memory page, 1008. If instead at 1006 1t 1s
determined that the access type 1s a data access to the data
portion of the self-modifying executable, the EPT 1s set to
point to the appropriate data page, 1010, 1.e. the page in the
separate memory space which has the data portion to which
the access 1s to be retargeted, such as the data portion of a copy
of the self-modifying executable. In either case, setting the
EPT to point to the appropriate page includes, 1n one example,
moditying an entry in the EPT to indicate the appropnate
page, and more specifically, modifying the machine physical
address, imndicated in the EPT entry and translated from the
guest-physical address (the address referenced by the guest
system) to indicate the machine address of the appropriate
memory page to which the access attempt 1s to be directed.

After the EPT 1s set to point to the appropriate page (1010
or 1008), a trap flag 1s set (e.g., in the EFLAGS register) and
resumption of execution of the guest system 1s mitiated, 1012,
for instance by way of a VMRESUME command. Setting the
trap flag will imitiate a trap of the guest system back to the
hypervisor after performance of the operation, for instance
performance of the operation to access the data or instruction
portion, which caused the VM EXIT (1002) to occur. By
setting the trap flag, the guest system will trap to the hyper-
visor for trap handling described below with reference to FIG.
10B.

Returning to 1004, 1n some cases a thrash 1s detected after
a VM EXIT (1002). Thrashing occurs when at least some of
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the memory space holding the instruction portion and at least
some of the memory space holding the data portion are
included within a memory page being accessed. When both
data and instructions of the application are on a same page, the
TLB fetch/update behavior 1s to replace the entities in the
S-TLB rather than to allow two disparate entries for the same
page to be used.

Based on the thrash condition, the EPT 1s set to point to the
data page and the instruction that the guest system 1s attempt-
ing to execute 1s copied to the data page at an appropriate
location 1n the separate portion of memory space. Addition-
ally, the permissions are set on the page to indicate data read,
data write, and 1nstruction execution access 1s permitted. Pro-
cessing then continues to 1012 where, as before, the trap flag
1s set and resumption of guest system execution 1s initiated.

The fault handling processing of FIG. 10A sets the trap flag
alter setting up the EPT to point to the appropnate data page.
The trap causes a trap, 1n one example, only after the opera-
tion attempting to be performed (which caused the fault) 1s
performed, which 1s the typical situation. However, 1n a thrash
condition, the thrashing prevents the guest system from per-
forming the operation 1n the first place. For instance, 1t the
operation 1s an instruction access, the mnstruction i1s never
accessed as long as the thrashing continues. Thus, 1n one
example, the thrashing 1s detected by determining whether
two sequential EPT VM EXITS occur without a trap VM
EXIT.

Performance of the operation that initiated the access
attempt will perform the access to the data portion or the
instruction portion. Thereafter, the set trap tlag will cause a
trap VM EXIT to a trap handler of the hypervisor (the pro-
vided shim 1n one embodiment), which performs the process-
ing of FI1G. 10B. First, 1f a thrash condition 1s present, 1016,
then the permissions 1n the EPT entry indicating data read,
data write, and 1nstruction access are cleared (to imndicate no
data read, data write, or instruction access 1s permitted) and
the cached version of the paging structure entry is flushed
from the TLB, 1018. Flushmg the TLB of the cached entry 1s
performed to clear the permissions on the page to maintain the
secure nature of the memory space having the data copy.

If at 1016 a thrash condition 1s not present, then the per-
missions 1n the EPT entry indicating data read/write access
(but not instruction access) or indicating instruction access
(but not data read/write access) for the appropriate memory
page are cleared, 1020. However, in this case, the cached
entry 1n the TLB 1s not flushed, so that the TLB remains
primed with the desynchronized entry.

Next, the trap flag 1s cleared and resumption of execution of
the guest system 1s itiated (e.g., by a VM RESUME com-
mand) (1022). As long as the cached entry remains non-
evicted from the TLB, the TLB has the appropriate address
entry and permissions to permit continued instruction (or
data) access to the appropriate page, so long as the access type
remains the same.

In this manner, appropriate data and instruction execution
access targeting 1s provided wherein a hypervisor will setup
an EPT entry with an appropriate physical address and access
permissions to which the data or instruction access attempt 1s
to be directed. Then, a guest system will cache the entry and
complete the access to the appropriate portion of memory
space, which occurs when performing an operation such as
executing an mstruction to perform the data access, or fetch-
ing the next mstruction for execution. Alter performance of
the operation, a trap to the hypervisor enables the hypervisor
to reset the permissions on the EPT entry. The cached entry
remains 1n the TLB so long as the same type of access by the
guest system 1s performed. In the case of a thrash condition,
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permission for accessing the appropriate memory page tem-
porarily enables access and execution of the next instruction
for execution from the data page, and the trap handler subse-
quently removes these temporary permissions, causing, in
essence, single-stepping through these thrash points.

In some environments, when a dynamic application
executes, the physical pages of the data copy of the applica-
tion would change. This can be caused, for instance, by the
operating system marking all code pages (even 1f they are
marked as writable) as read-only, and performing, when
modifications are detected, a copy-on-write (COW) opera-
tion. This optimization, incorporated into some Windows®
operating systems, allows the operating system to run mul-
tiple instances of the same application without wasting
memory on duplicate, rarely changing code pages. In order to
detect this remapping of the application’s pages, the hyper-
visor could be configured to walk the operating system’s
paging structures with each process/context switch (e.g., each
time the CR3 register 1s changed), and 1f the physical
addresses 1n the paging structures are difierent for the target
application, the hypervisor could update its list of pages to
split. Due to this feature, the read-only executable copy 1s kept
unchanged, and the data copy which was made 1s removed
and replaced with the operating system copy-on-write ver-
S101.

By the above, data accesses by a selt-modifying executable
during execution thereof to 1ts own data portion are retargeted
to a separate portion of memory space, separate from the
portion of memory space i which the application 1s loaded
for execution. The retargeting of these data accesses prevents
the self-modifying executable from modifying the memory
space 1 which it 1s loaded, thus allowing it to remain static
(notwithstanding any outside modification). The retargeting
facilitates meaningiful measurement of the self-modifying
executable for ensuring the integrity of some or all of the
application.

In one example, a measurement thread 1s mnitiated upon the
initiation of application execution. The measurement thread
can periodically measure (i.e. checksum or hash) some or all
ol the application 1n order to determine whether modification
to the application has occurred. This 1s described and depicted
with reference to FIGS. 11 and 12.

FIG. 11 depicts an example process for imtiating execution
ol a self-modifying executable, 1n accordance with one or
more aspects of the present invention. The process begins by
determining whether the application attempting to be initi-
ated comprises a target application (i.e. one for which peri-
odic measurement 1s desired), 1102. If not, the process pro-
ceeds to 1108 which begins application execution. However,
il the application 1s a target application for which periodic
measurement 1s desired, then the application 1s duplicated to
desynchronize the code portion from the data portions that
will be accessed during execution of the application, 1104.
For instance, the application 1s copied to a separate portion of
memory space, separate from the memory space in which the
application 1s loaded for execution, and one or more paging
structures are setup such that attempts to access the instruc-
tion portion of the application are targeted to the memory
space 1 which the application 1s loaded, but attempts to
access the data portion of the application are retargeted to a
data portion of the duplicate application in the separate por-
tion ol memory space. A measurement loop thread 1s
spawned, 1106, an example processing of which 1s described
and depicted with respect to FIG. 12, and the process proceed
to 1108 which begins application execution.

FIG. 12 depicts one example of processing by a measure-
ment loop thread to detect whether modification to the seli-
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modifying executable has occurred, in accordance with one
or more aspects of the present invention. Initially, and 1n one
example just before execution of the application begins, a
checksum (hash) of the immutable code copy (1.e. the seli-
moditying executable, rather than 1ts duplicate data copy), 1s
determined and saved as an expected checksum, 1202. The
expected checksum or hash i1s considered to represent the
original, secure state of the application. In some embodi-
ments, the entire immutable code copy 1s checksummed,
while 1n others, only a portion of the immutable code copy 1s
checksummed. For instance, 1f 1t 1s possible to checksum only
the instruction portion of the immutable code copy, then the
expected checksum could be taken across only this portion of
the application.

Processing proceeds to 1204 where it 1s determined
whether the application 1s running. If not, measurement 1s
finished and the process exits 1206. 11 the application 1s run-
ning, then the immutable code copy (or the portion thereof, 1T
the expected checksum was taken across only the portion
thereol) 1s checksummed, the checksum 1s compared to the
expected checksum, 1208, and it 1s determined whether the
checksums match, 1210. If this checking indicates that the
checksums match, 1t indicates that the immutable code copy
(or the portion thereot) has not been modified. Since execu-
tion of the program proceeds from the instructions of the
immutable code copy, determining that this immutable code
copy has not been modified provides assurance that the
execution 1s proceeding consistent with the original state of
the application, rather than, for instance, some modified state
that was modified to include malicious code or other security
compromise.

If the checksums match, the process sleeps 1212 for an
amount of time before returning to 1204 and repeating the
above. The amount of time which the thread sleeps 1s fully
customizable. Ideally, 1t will be a short enough period of time
that an attacker could not modity the immutable code copy,
execute an instruction therefrom, and reset the immutable
code copy, all before the thread awakens to repeat the check-
ing. In one example, the sleep period could be one-tenth of a
second without causing a significant performance impact, but
providing near immediate indication of an attack (see 1214
below). Alternatively, the amount of time could be greater or
lesser than one-tenth of a second, and/or could be made to
dynamically change during the running of the thread.

If the checksums do not match, then this indicates that the
immutable code copy (or portion thereol) was modified,
resulting 1 the mismatching checksums. The thread, upon
detecting this mismatch, 1ssues a fault or halts execution of
the seli-moditying executable, 1214. Additionally or alterna-
tively, various other actions could be performed by the thread
upon detecting a mismatch, depending on how an adminis-
trator of the computing environment wishes to handle modi-
fication to the immutable code copy.

In addition to the above, the portion of the hypervisor
responsible for the retargeting 1n FIGS. 10A and 10B (the
shim), can 1itself include data and 1nstruction portions that can
be measured periodically to ensure that the shim has not been
subjugated. In one example, the shim 1s measureable by
another piece of hardware or software, or 1s self-measureable.
Self-measureable means that the shim can measure 1ts own
instruction portion to ensure that modification thereto has not
occurred. For example, one or more instructions of the
instruction portion of the shim can execute to perform the
checking of the instruction portion of the shim. Measurability
of the shim 1s important from a trusted computing perspec-
tive. Though the shim, through 1ts data access retargeting,
facilitates meaningful measurement of the self-modifying
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executable as described above, 1t should itself be measure-
able, by a hardware root of trust for instance, to provide a
more complete assurance of the entire system.

Measurement information on both the self-modifying
executable and the shim can be presented to an administrator
on a configurable interval, such as several times per second, to
provide notification that neither the dynamic application nor
the retargeting mechamsm has been subjugated. In one
example, the shim performs the measurement of the dynamic
application and performs self-measurement on an instruction
portion of itself, and provides indications to the administrator
or a hardware root of trust as to the integrity of both the
dynamic application and the shim.

Described herein 1s a fault handler and hypervisor con-
structed for splitting and appropriately targeting data and
instruction accesses for an application, regardless of whether
the application executes from user space or a more privileged
memory space (such as kernel space). The performance
impact of the retargeting 1s typically minimal (<2% over-
head), and the advantages of transparently enabling periodic
measurement of a dynamic executable saves costs and capa-
bilities for greatly improving the trustworthiness of a com-
puter system and self-modifying executables executing
thereon.

Those having ordinary skill 1n the art will recognize that
aspects of the present invention may be embodied in one or
more systems, one or more methods and/or one or more
computer program products. In some embodiments, aspects
of the present invention may be embodied entirely 1n hard-
ware, entirely 1n software (for mstance 1 firmware, resident
soltware, micro-code, etc.), or 1n a combination of software
and hardware aspects that may all generally be referred to
herein as a “system” and include circuit(s) and/or module(s).

In some embodiments, aspects of the present mvention
may take the form of a computer program product embodied
in one or more computer readable medium(s). The one or
more computer readable medium(s) may have embodied
thereon computer readable program code. Various computer
readable medium(s) or combinations thereof may be utilized.
For instance, the computer readable medium(s) may com-
prise a computer readable storage medium, examples of
which include (but are not limited to) one or more electronic,
magnetic, optical, or semiconductor systems, apparatuses, or
devices, or any suitable combination of the foregoing.
Example computer readable storage medium(s) include, for
instance: an electrical connection having one or more wires, a
portable computer diskette, a hard disk or mass-storage
device, a random access memory (RAM), read-only memory
(ROM), and/or erasable-programmable read-only memory
such as EPROM or Flash memory, an optical fiber, a portable
compact disc read-only memory (CD-ROM), an optical stor-
age device, a magnetic storage device (including a tape
device), or any suitable combination of the above. A computer
readable storage medium 1s defined to comprise a tangible
medium that can contain or store program code for use by or
in connection with an mstruction execution system, appara-
tus, or device, such as a processor. The program code stored
in/on the computer readable medium therefore produces an
article of manufacture (such as a “computer program prod-
uct”) mcluding program code.

Referring now to FIG. 13, in one example, a computer
program product 1300 includes, for instance, one or more
computer readable media 1302 to store computer readable
program code means or logic 1304 thereon to provide and
facilitate one or more aspects of the present invention.

Program code contained or stored in/on a computer read-
able medium can be obtained and executed by a data process-
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ing system (computer, computer system, etc. mcluding a
component thereol) and/or other devices to cause the data
processing system, component thereof, and/or other device to
behave/function 1n a particular manner. The program code
can be transmitted using any appropriate medium, including
(but not limited to) wireless, wireline, optical fiber, and/or
radio-frequency. Program code for carrying out operations to
perform, achieve, or facilitate aspects of the present invention
may be written in one or more programming languages. In
some embodiments, the programming language(s) include
object-oriented and/or procedural programming languages
such as C, C++, C#, Java, etc. Program code may execute
entirely on the user’s computer, entirely remote from the
user’s computer, or a combination of partly on the user’s
computer and partly on a remote computer. In some embodi-
ments, a user’s computer and a remote computer are 1n com-
munication via a network such as a local area network (LAN)
or a wide area network (WAN), and/or via an external com-
puter (for example, through the Internet using an Internet
Service Provider).

In one example, program code includes one or more pro-
gram 1nstructions obtained for execution by one or more
processors. Computer program instructions may be provided
to one or more processors of, €.g., one or more data process-
ing system, to produce a machine, such that the program
instructions, when executed by the one or more processors,
perform, achieve, or facilitate aspects of the present inven-
tion, such as actions or functions described in flowcharts
and/or block diagrams described herein. Thus, each block, or
combinations of blocks, of the flowchart illustrations and/or
block diagrams depicted and described herein can be imple-
mented, in some embodiments, by computer program instruc-
tions.

The flowcharts and block diagrams depicted and described
with reference to the Figures 1llustrate the architecture, func-
tionality, and operation of possible embodiments of systems,
methods and/or computer program products according to
aspects of the present invention. These tlowchart 1llustrations
and/or block diagrams could, therefore, be of methods, appa-
ratuses (systems), and/or computer program products accord-
ing to aspects of the present invention.

In some embodiments, as noted above, each block 1n a
flowchart or block diagram may represent a module, segment,
or portion of code, which comprises one or more executable
instructions for implementing the specified behaviors and/or
logical functions of the block. Those having ordinary skill 1n
the art will appreciate that behaviors/functions specified or
performed by a block may occur 1n a different order than
depicted and/or described, or may occur simultaneous to, or
partially/wholly concurrent with, one or more other blocks.
Two blocks shown 1n succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed 1n the reverse order. Additionally, each block of the
block diagrams and/or flowchart illustrations, and combina-
tions of blocks 1n the block diagrams and/or flowchart 1llus-
trations, can be implemented wholly by special-purpose
hardware-based systems, or in combination with computer
instructions, that perform the behaviors/functions specified
by a block or entire block diagram or flowchart.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not mtended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
turther understood that the terms “comprise” (and any form of
comprise, such as “comprises” and “comprising”), “have”
(and any form of have, such as “has” and “having”), “include”

10

15

20

25

30

35

40

45

50

55

60

65

20

(and any form of include, such as “includes™ and “includ-
ing”’), and “contain” (and any form contain, such as “con-
tains” and “containing”) are open-ended linking verbs. As a
result, a method or device that “comprises™, “has”, “includes’
or “contains” one or more steps or elements possesses those
one or more steps or elements, but 1s not limited to possessing
only those one or more steps or elements. Likewise, a step of
a method or an element of a device that “comprises”, “has”,
“includes™ or “contains’ one or more features possesses those
one or more features, but 1s not limited to possessing only
those one or more features. Furthermore, a device or structure
that 1s configured 1n a certain way 1s configured 1n at least that
way, but may also be configured 1n ways that are not listed.

The description of the present invention has been presented
for purposes of illustration and description, but 1s not
intended to be exhaustive or limited to the invention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the invention. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention and the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiment with various modifications
as are suited to the particular use contemplated.

What 1s claimed 1s:

1. A method to facilitate trusted execution of a self-modi-
tying executable, the method comprising:

detecting, by a hypervisor managing execution of a guest

system on a processor, an attempt by the guest system to
access a data portion of the self-modifying executable
during execution of the self-modifying executable, the
self-modifying executable comprising the data portion
for storing data to be accessed during execution of the
self-modifying executable and an instruction portion
comprising instructions for execution of the self-modi-
tying executable; and

retargeting, by the hypervisor, the attempt to access the

data portion to a separate portion of memory space,
separate from another portion of memory space in which
the self-modifying executable 1s loaded for execution.

2. The method of claim 1, wherein the retargeting com-
prises modifying, by the hypervisor, an entry 1n a paging
structure to indicate a memory page that includes at least a
portion of the separate portion of memory space, wherein the
retargeting directs the attempt to access the data portion to the
memory page.

3. The method of claim 2, wherein the paging structure
comprises a page table, wherein the entry comprises a
machine physical address translated from a guest physical
address, and wherein the modifying modifies the machine
physical address to indicate an address of the memory page to
which the attempt 1s directed.

4. The method of claim 1, wherein the separate portion of
memory space 1s included 1n at least one memory page, and
wherein the method further comprises, prior to the detecting,
indicating by the hypervisor in a paging structure permissions
for accessing, by the guest system during execution of the
self-modilying executable, each memory page of the at least
one memory page, wherein the permissions for a memory
page of the at least one memory page indicate data read and
data write access, but not instruction access by the guest
system.

5. The method of claim 4, wherein the attempt to access the
data portion 1s detected based on an attempt to perform an
operation by the guest system, wherein execution of the guest
system 1s halted based on the attempt to perform the opera-
tion, and wherein the retargeting comprises:

b
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setting a trap flag to initiate a trap of the guest system to the
hypervisor after performance of the operation by the
guest system;
determining, by the hypervisor, a memory page of the at
least one memory page to which the access attempt is to
be targeted, and performing a modification to an entry in
the paging structure to indicate the determined memory
page to which the access attempt 1s to be targeted;
initiating resumption of execution of the guest system,
wherein the guest system performs the operation and
wherein the access to the data portion 1s targeted to the
determined memory page based on the modification to
the entry 1n the paging structure; and

based on detecting the trap of the guest system to the

hypervisor aiter performance of the operation, clearing
at least one permission of the permissions 1ndicated 1n
the paging structure for accessing, by the guest system,
the memory page, and unsetting the trap flag.

6. The method of claim 5, wherein the operation comprises
execution of an instruction, wherein thrashing occurs based
on at least some of the separate portion of memory space and
at least some of the another portion of memory space being
included 1n the determined memory page, wherein the hyper-
visor detects the occurrence of thrashing, and wherein, based
on detecting the occurrence of thrashing, the retargeting fur-
ther comprises:

setting the permissions indicated 1n the paging structure for

accessing, by the guest system, the memory page to
indicate data read access, data write access, and 1nstruc-
tion access by the guest system;

copying the mstruction to a location in the separate portion

of memory space included 1n the determined memory
page, wherein the 1nstruction 1s executed from the loca-
tion 1n the separate portion of memory space included in
the determined memory page; and

based on detecting the trap of the guest system to the

hypervisor after execution of the instruction, flushing a
processor bufler entry caching the entry of the paging
structure.

7. The method of claim 1, further comprising:

detecting, by the hypervisor, an attempt by the guest sys-

tem to access the mstruction portion of the self-modity-
ing executable during execution of the self-modifying
executable; and

targeting, by the hypervisor, the attempt to access the

istruction portion to the another portion of memory
space, 1n which the self-modifying executable 1s loaded
for execution.
8. The method of claim 1, wherein the hypervisor executes
on the processor at a higher privilege than the guest system
executes on the processor.
9. The method of claim 1, wherein the method further
comprises checking, during execution of the self-moditying
executable, the struction portion of the self-modifying
executable to detect whether modification to the instruction
portion has occurred, wherein the checking comprises:
generating a hash of at least a portion of the instruction
portion of the self-modifying executable loaded for
execution 1n the another portion of memory space; and

determining whether the generated hash matches an
expected hash generated prior to commencement of
execution of the self-modifying executable, wherein a
mismatch between the generated hash and the expected
hash indicates that modification to the instruction por-
tion has occurred.

10. The method of claim 1, wherein the hypervisor com-
prises a shim for performing the retargeting, wherein the shim
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comprises separate data and 1nstruction portions to facilitate
checking of the instruction portion of the shim to detect
whether modification to the instruction portion of the shim
has occurred, and wherein the shim provides self-checking, in
which one or more 1nstructions of the instruction portion of
the shim execute to perform the checking of the instruction
portion of the shim.
11. A computer program product to facilitate trusted execu-
tion of a self-moditying executable, the computer program
product comprising:
a non-transitory computer readable storage medium read-
able by a processor and storing instructions for execu-
tion by the processor to perform a method comprising;
detecting, by a hypervisor managing execution of a
guest system, an attempt by the guest system to access
a data portion of the self-moditying executable during
execution of the self-moditying executable, the seli-
moditying executable comprising the data portion for
storing data to be accessed during execution of the
seli-modifying executable and an instruction portion
comprising instructions for execution of the seli-
modilying executable; and

retargeting, by the hypervisor, the attempt to access the
data portion to a separate portion of memory space,
separate from another portion of memory space in
which the self-modifying executable 1s loaded for
execution.

12. The computer program product of claim 11, wherein
the retargeting comprises modifying, by the hypervisor, an
entry 1n a paging structure to indicate a memory page that
includes at least a portion of the separate portion of memory
space, wherein the retargeting directs the attempt to access
the data portion to the memory page.

13. The computer program product of claim 11, wherein
the separate portion of memory space 1s included 1n at least
one memory page, and wherein the method further com-
prises, prior to the detecting, indicating by the hypervisor in a
paging structure permissions for accessing, by the guest sys-
tem during execution of the self-modifying executable, each
memory page of the at least one memory page, wherein the
permissions for a memory page of the at least one memory
page indicate data read and data write access, but not instruc-
tion access by the guest system.

14. The computer program product of claim 13, wherein
the attempt to access the data portion 1s detected based on an
attempt to perform an operation by the guest system, wherein
execution of the guest system 1s halted based on the attempt to
perform the operation, and wherein the retargeting com-
Prises:

setting a trap flag to initiate a trap of the guest system to the
hypervisor after performance of the operation by the
guest system;

determining, by the hypervisor, a memory page of the at
least one memory page to which the access attempt 1s to
be targeted, and performing a modification to an entry 1n
the paging structure to indicate the determined memory
page to which the access attempt 1s to be targeted;

imitiating resumption of execution of the guest system,
wherein the guest system performs the operation and
wherein the access to the data portion 1s targeted to the
determined memory page based on the modification to
the entry 1n the paging structure; and

based on detecting the trap of the guest system to the
hypervisor after performance of the operation, clearing
at least one permission of the permissions indicated 1n
the paging structure for accessing, by the guest system,
the memory page, and unsetting the trap tlag.
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15. The computer program product of claim 11, wherein
the hypervisor executes on the processor at a higher privilege
than the guest system executes on the processor.
16. The computer program product of claim 11, wherein
the method further comprises checking, during execution of
the self-modilying executable, the mnstruction portion of the
seli-modifying executable to detect whether modification to
the mstruction portion has occurred, wherein the checking
COmMprises:
generating a hash of at least a portion of the instruction
portion of the self-modifying executable loaded for
execution 1n the another portion of memory space; and

determining whether the generated hash matches an
expected hash generated prior to commencement of
execution of the self-moditying executable, wherein a
mismatch between the generated hash and the expected
hash indicates that modification to the instruction por-
tion has occurred.

17. A computer system to facilitate trusted execution of a
self-moditying executable, the computer system comprising:

a memory; and

a processor 1 communication with the memory, wherein

the computer system 1s configured to perform a method

comprising;

detecting, by a hypervisor managing execution of a
guest system, an attempt by the guest system to access
a data portion of the self-moditying executable during
execution of the self-moditying executable, the seli-
moditying executable comprising the data portion for
storing data to be accessed during execution of the
self-moditying executable and an instruction portion
comprising 1nstructions for execution of the seli-
modifying executable; and

retargeting, by the hypervisor, the attempt to access the
data portion to a separate portion of memory space,
separate from another portion of memory space in
which the self-moditying executable 1s loaded for
execution.

18. The computer system of claim 17, wherein the retar-
geting comprises modifying, by the hypervisor, an entry 1n a
paging structure to indicate a memory page that includes at
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least a portion of the separate portion of memory space,
wherein the retargeting directs the attempt to access the data
portion to the memory page.
19. The computer system of claim 17, wherein:
the separate portion of memory space 1s included 1n at least
one memory page, wherein the method further com-
prises, prior to the detecting, indicating by the hypervi-
SOr 1n a paging structure permissions for accessing, by
the guest system during execution of the self-modifying
executable, each memory page of the at least one
memory page, wherein the permissions for a memory
page of the at least one memory page indicate data read
and data write access, but not instruction execution
access by the guest system;
the attempt to access the data portion 1s detected based on
an attempt to perform an operation by the guest system,
wherein execution of the guest system 1s halted based on
the attempt to perform the operation; and
wherein the retargeting comprises:
setting a trap tlag to 1nitiate a trap of the guest system to
the hypervisor after performance of the operation by
the guest system;
determining, by the hypervisor, a memory page of the at
least one memory page to which the access attempt 1s
to be targeted, and performing a modification to an
entry 1n the paging structure to indicate the deter-
mined memory page to which the access attempt 1s to
be targeted;
initiating resumption of execution of the guest system,
wherein the guest system performs the operation and
wherein the access to the data portion 1s targeted to the
determined memory page based on the modification
to the entry 1n the paging structure; and
based on detecting the trap of the guest system to the
hypervisor after performance of the operation, clear-
ing at least one permission of the permissions indi-
cated 1n the paging structure for accessing, by the
guest system, the memory page, and unsetting the trap
flag.
20. The computer system of claim 17, wherein the hyper-
visor executes on the processor at a higher privilege than the
guest system executes on the processor.
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