12 United States Patent

George

US008856151B2

(10) Patent No.: US 8,856,151 B2

(54) OUTPUT FIELD MAPPING OF USER
DEFINED FUNCTIONS IN DATABASES

(75)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

(58)

(56)

Inventor: Muthian George, Fremont, CA (US)

Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 195 days.

Appl. No.: 13/249,482

Filed: Sep. 30, 2011

US 2012/0191732 Al

Prior Publication Data

Jul. 26, 2012

Related U.S. Application Data

Continuation-in-part of application No. PCT/US2011/
022437, filed on Jan. 25, 2011.

Int. CI.
GO6F 17/30

U.S. CL

(2006.01)

CPC GO6F 17730592 (2013.01)
USPC e 7077755, 717/140

Field of Classification Search

USPC e e 70°7/755
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,742,800 A

6,067,542 A *
0,385,604 Bl
0,421,665 Bl
6,473,750 Bl
0,775,682 Bl
7,383,234 B2

4/1998
5/2000
5/2002
7/2002
10/2002
8/2004
6/2008

Reiner et al.

Carino, Jr. 707/999.004
Bakalash et al.

Brye et al.

Petculescu et al.

Ballamkonda et al.
Iyer et al.

MEMORY
— 62
QUERY COMPLIER

PROCESSING
ENGINE

45) Date of Patent: Oct. 7, 2014
7,836,066 B2* 11/2010 Changetal. 707/760
7,840,545 B2 11/2010 Hacigumus et al.

8,082,273 B2 12/2011 Brown et al.
8,538,954 B2 9/2013 George

2003/0037048 Al 2/2003 Kabra et al.

2005/0177579 Al 8/2005 Blakeley et al.
2006/0010159 Al 1/2006 Mirchandani et al.
2006/0020620 Al1* 1/2006 Iyeretal. 707/102
2006/0136415 Al 6/2006 Ramsey et al.
(Continued)

FOREIGN PATENT DOCUMENTS

EP 0455447 A3 4/1991
EP 0459683 A3 12/1991
OTHER PUBLICATIONS

Data-Continuous SOL Process Model, Oiming Chen and Meichun
Hsu, HP Labs Palo Alto, California, USA Hewlett Packard Co, R.
Meersman and Z. Tari (Eds.): OTM 2008, Part I, LNCS 5331, pp.
175-192,2008. © Springer-Verlag Berlin Heidelberg 2008.

(Continued)

Primary Examiner — Rehana Perveen
Assistant Examiner — Tiflany Thuy Bui

(57) ABSTRACT

Systems and apparatuses are provided for analytical data
processing. A system 1ncludes a processor and a non-transi-
tory computer readable medium, comprising machine read-
able instructions executable by the processor. The instruc-
tions include a query compiler to 1dentify a call to a user
defined function and an output expression defining an output
field for the user defined function within a query and generate
an output table object for the user defined function. The
generated output table object contains the defined output
field. The 1nstructions further include a processing engine to
execute the user defined function and populate the output field
in rows 1nto the output table object with the output of the user
defined function.

13 Claims, 2 Drawing Sheets

[—5{]

_54- 52

PROCESSOR

56

COMMUNICATIONS
INTERFACE

A

QUERY QUERY
PARSER OPTIMIZER
i 578 i f—TB
UDF METADATA

CLASS

TYPES
— FUNCTION
74 LIBRARY

US 8,856,151 B2
Page 2

(56)

2006/0218123
2009/0112799
2009/0150907

201
201
201
201
201
201
201
201
201
201
201

0/0023471
0/0036801
0/0241646
0/0250572
1/0040773
1/0047172
1/0161356
2/0005190
2/0110001
2/0130963
3/0031139

AN G A A AN AN A

* % % %

References Cited

9/2006
4/2009
6/2009
1/201
2/201
9/201
9/201
2/2011
2/2011
6/201]
1/201
5/201
5/201
1/201

oo oo

2 2 2

U.S. PATENT DOCUMENTS

Chowdhuri et al.

Barsness etal. 707/3
Aharonietal. 719/318
Baldwinetal. 706/47
Purvalietal. ..o, 707/2
Friedman et al.

Chen et al.

Danesi et al.

Chen et al.

de Castro Alves et al.
Faerberetal. 707/718
Young

Luoetal.c.ccoovvnini, 707/693
Chenetal.c.....cooo.. 707/802

OTHER PUBLICATIONS

Extend UDF Technology for Integrated Analytics, Oiming Chen,
Meichun Hsu, and Rui Liu, HP Labs, Palo Alto, California, USA and
HP Labs, Beijing China, T.B. Pedersen, M.K. Mohania, and AM.
Tjoa (Eds.): DaWaK 2009, LNCS 5691, pp. 256-270, 2009. ©

Springer-Verlag Berlin Heidelberg 2009.

Pal, S. et al.; “Xml Best Practices for Microsoft SQL Server 2005”;
Microsoit SQL Server; Apr. 2007; 23 pages.

PCT, “Notification of Transmittal of the International Search Report
and the Written Opinion of the International Searching Authority, or
the Declaration”; cited in PCT/US2011/022437;, mailed Sep. 19,
2011; 9 pages.

Purich, Oracle CEP COL Language Reference, 11 g Release 1 (11.

1.1), May 2009, pp. 10-1 to 1 0-6; http://docs.oracle.com/cd/
E16764_01 /doc.1111 /e12048/funcusr htm#CJAGIB DA.

* cited by examiner

U.S. Patent Oct. 7, 2014 Sheet 1 of 2 US 8,856,151 B2

/—10

MEMORY -14- 12
22 24
QUERY DATABASE PROCESSOR
COMPILER ENGINE
16
8 26 COMMUNICATIONS
DATABASE INTERFACE
TABLE
FIG. 1
‘/— 50

52

PROCESSOR

PROCESSING o6
ENGINE

QUERY QUERY COMMUNICATIONS

MEMORY

62
QUERY COMPLIER

PARSER OPTIMIZER INTERFACE

78 66
UDE METADATA
cuss
FUNCTION TABLE
4 | IBRARY

FIG. 2

U.S. Patent Oct. 7, 2014 Sheet 2 of 2 US 8,856,151 B2

100
y 4

102

IDENTIFY A CALL TO A FIRST USER DEFINED FUNCTION AND A
DEFINED SET OF OUTPUT FIELDS

104

GENERATE AN OUTPUT OBJECT FOR THE USER DEFINED
FUNCTION INCLUDING THE DEFINED SET OF OUTPUT FIELDS

108

EXECUTE THE USER DEFINED FUNCTION TO POPULATE THE
SET OF OUTPUT FIELDS IN THE OUTPUT OBJECT

FIG. 3
-200-
206 208 210
SYSTEM MEMORY MEMORY
MEMORY DEVICE DEVICE
216
202 DISPLAY
BUS 218

INPUT
204 DEVICE

PROCESSING

COMMUNICATION
UNIT

INTERFACE 514

FIG. 4

US 8,856,151 B2

1

OUTPUT FIELD MAPPING OF USER
DEFINED FUNCTIONS IN DATABASES

RELATED APPLICATIONS

The present invention claims priority from and 1s a Con-

tinuation-in-Part of PCT/US11/22437 filed on 25 Jan. 2011,
which 1s herein incorporated by reference.

TECHNICAL FIELD

This 1nvention relates to analytic data processing 1n data-
bases and other information processing systems, and more
particularly, to the use of output field mapping in user defined
functions.

BACKGROUND

Analytical data processing systems consume tables of data
which are typically linked together by relationships 1n data-
bases that simplity the storage of data and make quernies of the
data more efficient. A standardized query language, such as
the Structured Query Language (SQL), can be used for cre-
ating and operating relational databases. Analytic data pro-
cessing involving statistical and other numerical procedures
1s the application of computer technology to solve problems
in business and industry. The science of analytics 1s con-
cerned with extracting usetful properties of data using com-
putable functions, generally from large databases. Analytics
therefore bridges the disciplines of computer science, statis-
tics, and mathematics.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 11llustrates an example of an analytic data processing,
system 1n which user defined functions (UDF) utilize explicit
output mapping.

FIG. 2 illustrates one example of the integration of user
defined functions (UDF) into a database system with explicit
output mapping.

FI1G. 3 illustrates one method for executing a query with a
user defined function.

FIG. 4 1s a schematic block diagram 1llustrating an exem-
plary system ol hardware components capable of implement-
ing examples of the systems and methods for user defined
function integration disclosed in FIGS. 1-3.

DETAILED DESCRIPTION

Many databases have the framework for processing a lim-
ited number of in-built analytic functions. Unfortunately,
real-world analytical problems using data from databases go
beyond the analytic functions natively supported mn data-
bases, and datasets 1n databases that require intensive analyti-
cal processing often end up using third party analytical pack-
ages for analytical processing. In situations where the
datasets are large, they are often retained outside the data-
bases due to the limited analytical capabilities available in
databases. These packages require data to be retrieved from
databases, persisted outside the database, and reformatted
betfore processing. Since these approaches move data away
from the secure database tables to a location associated with
the analytical processes, the result 1s a replication of same
large raw data sets 1n different formats in multiple locations,
with the accompanying security and data governance risks for
confidential data. Further, this approach results 1n excessive
manpower cost, licensing costs for analytics processing, and

10

15

20

25

30

35

40

45

50

55

60

65

2

hardware cost for data retrieval, management, and storage.
The complexity in processing results 1n significant latency,
making i1t impractical for real-time analytics.

User defined functions are varied in nature and can include
general statistical and numerical computations that are com-
monly used across diflerent applications as well as specialty
analytics that apply to vertical markets. In order to integrate
user defined functions 1nto a database engine, the systems and
methods described below standardize the syntax and usage of
user defined functions 1 a query. This standardized syntax
allows for the explicit mapping of output fields while execut-
ing the user defined function. Further, by explicitly mapping
the output fields of the user defined functions, the systems and
methods allow for the return of multiple output fields 1n a
single call to the user defined function. Integrating user
defined functions 1nto a database engine 1n this manner sig-
nificantly reduces the analytical application processing time,
thus, allowing the results to reflect the truth of the data uni-
verse at the time of performing the analytics.

FIG. 1 1llustrates an example of an analytical data process-
ing system 10 in which user defined functions (UDF) use
explicit output field mapping. For example, the system 10 of
FIG. 1 can represent a database system, a data warechouse, a
data mart, an in-memory database, a standalone OLAP
engine, a business intelligence report generation system, a
data mining system, or a federated query processing system.
The system 10 includes a processor 12 and a memory 14
connected to a communications itertace 16. It will be appre-
ciated that the communication interface 16 can include any
appropriate hardware and machine readable instructions for
receiving database queries from an associated query source
(not shown) and returning the results of the queries to the
query client. Accordingly, the communications interface 16
can include any or all of a bus or similar data connection
within a computer system or a wired or wireless network
adapter. The memory 14 can include any appropriate standard
storage devices suitable for use with computer systems, such
as magnetic and optical storage media.

The device memory 14 can include a query compiler 22, a
processing engine 24 to compile and execute queries on data
tables 26, and a user defined function (UDF) 28. The query
complier 22 can utilize any appropriate query language, for
example, structured query language (SQL) or multidimen-
sional expression (MDX) language. In one implementation,
the user defined function 28 1s stored as one of a shared object
or a dynamic link library and dynamically loaded into the
database system. The query compiler 22 identifies a call to the
user defined function 28 with a list of put, output and
parameter expressions associated with the function. The
query compiler 22 retrieves the input, output and parameter
metadata from the user defined function 28 and validates and
resolves the lists of mput, output and parameter field expres-
s1ons 1n the call to the user defined function in the query. It
will be appreciated that not every function will have an input,
for example, table-valued user defined functions do not have
input field arguments. When output fields are not specified in
a call to the user defined function, default output fields
defined 1n the metadata of the user defined function can be
used for mapping the output table object. It will further be
appreciated that the list of output field expressions in a call to
the user defined function can represent a proper subset (1.€.,
less than all) of the output fields associated with the user
defined function. In a call to the user defined function, the
output fields can be mapped in any order irrespective of the
order 1n which they are mapped 1n the output metadata of the
user defined function. The database engine 24 starts the
execution process to the user defined function by composing

US 8,856,151 B2

3

input and output table and parameter objects from the argu-
ments 1n the user defined function call 1n the query and pro-
ceeds to execute the function using input rows set in the mput
table object. When result rows are produced from the user
defined function 1n the output table object, they are retrieved
by the database engine 24.

To facilitate the generation of the mput and output table
objects, the user defined function 28 exposes input, output
and parameter metadata fields to the query compiler 22 and
the processing engine 24. In the illustrated implementation,
the output field metadata of the user defined function can
include at least an output field name, a description of the
output field, an associated data type for each field, and an
indicator to indicate 11 the field 1s used as a default field for
output. When a call to the user defined function does not
explicitly map output field expressions, the default output
fields marked in the output metadata of the user defined
function are used for composing the output table object. The
metadata can further include a defined class type, various
parameters for customizing the function to a particular appli-
cation and other processing instructions for the user defined
function 28. In one instance, the exposed metadata can further
include an application programming interface (API) compris-
ing rules for validating and resolving input, output and
parameter arguments within the call to the user defined func-
tion. It will be appreciated, however, that for the majority of
user defined functions, a generalized API function pointer in
the metadata will validate and resolve arguments unless the
user defined function requires special handling for resolving
input, output and parameter arguments. When a special vali-
dation and resolution function 1s needed for a user defined
tunction, the developer builds one and makes 1t available for
use 1n the metadata of the user defined function as a function
pointer. The user defined function metadata also 1includes a
second function pointer to construct a processing object
instance for the user defined function.

Allowing for output mapping in user defined functions, 1n
the manner described herein, provides a number of advan-
tages. For example, explicitly mapping the output fields helps
the compiler to organize all the output fields together into an
output table object. Composing the output into an output table
object 1s important to generalize processing of user defined
functions, particularly the ones that return multiple rows of
output with multiple fields. Sitmilarly, the mnput field expres-
s10ns are composed 1nto an 1input table object and one or more
input rows can be loaded into the mput table object for pro-
cessing the user defined function. Structuring mput and out-
put field expressions separately makes it easier to compose
input and output table objects, simplifying the integration of
user defined functions 1nto the SQL compiler.

Further, explicit output mapping allows for multiple output
fields to be returned from a function. By mtroducing a gen-
eralized output field mapping model into the query process-
ing framework, the illustrated system 10 allows for the inte-
gration of a variety of analytical functions. Mapping a
selected list of output fields from the total list of output fields
from the user defined function also allows for selecting only
the required output fields for client application 1nto the pro-
jection list. So, the full complement of output fields for a
given set of mput fields can be implemented efficiently 1n a
user defined function with the ability to pick and choose only
the required output fields for client applications. This, gener-
ally speaking, avoids the need for implementing many func-
tion variants with the same mput data fields only for the
purpose of generating different sets of output fields. There-
tore, user defined functions can be implemented efficiently

10

15

20

25

30

35

40

45

50

55

60

65

4

with appropriate intermediate computations only to serve the
output requested by the client application. This reduces com-
putational cost.

Further, the ability to map the output fields 1n any order fits
seamlessly 1nto the projection order of fields in SQL queries.
This also helps in nested UDF processing in queries where the
output fields from the inner UDF's are composed 1n the order
the input fields are required in the outer UDF. Modeling input,
output and parameter fields as distinct syntactic elements for
expressing all the class types of UDFs 1n queries makes
queries readable, understandable and enables expressing
complex analytical processing easier 1n queries. In general,
these approaches elevate SQL queries to process complex
analytical application processing with the help of analytical
user defined functions.

FIG. 2 illustrates one example of the integration of an
analytical processing system into a database system 30, such
that user defined functions (UDF) utilize explicit output map-
ping. The system 50 includes a processor 52 and a memory 54
connected to a communications intertace 56. It will be appre-
ciated that the communication interface 56 can comprise any
appropriate hardware and machine readable instructions for
receiving database queries from an associated query source
(not shown) and returning the results of the queries to the
query source. Accordingly, the communications interface 56
can include any or all of a bus or similar data connection
within a computer system or a wired or wireless network
adapter. The memory 54 can include any appropriate standard
storage devices associated with computer systems, such as
magnetic and optical storage media.

The device memory 54 can include a query complier 62
and a database query execution engine 64 to compile and
execute queries on a database table 66. The query complier 62
includes a query parser 72 that identifies a call to a user
defined function and any input, output, and parameter field
expressions that may be available 1n the call to the user
defined function. To this end, the query parser 72 processes a
call to a user defined function 1n a database query using a
standardized user defined function syntax to distinctly map
input, output, and parameter field expressions to appropriate
objects. For expressions in UDF inputs, the processing engine
64 cvaluates the expressions and passes the evaluated values
for the respective UDF 1nput fields. For expressions in UDF
output fields, the compiler 62 separates the expressions from
the UDF output fields. The compiler 62 sets up a unique list of
output fields for the UDF to process so that all the UDF output
expressions can be computed from them. The processing
engine 64 retrieves the values from the UDF output fields and
evaluates the output expressions for each output row.

It will be appreciated that the basic syntax for all user
defined functions, regardless of their associated class type,
can be standardized, such that they are parsed 1n a similar
manner at the query parser 72. In this syntax, input arguments
consist of fields or expressions composed from fields from the
SQL query table that can be composed into an input table
object, output arguments consist of output fields or expres-
sions composed using output field metadata from the user
defined function that can be composed 1nto an output table
object, and parameter arguments are provided 1n the form of

key/value pairs, where the key 1s the name of the parameter
field metadata of the user defined function and the values for

the field represented by the key can be composed into a
parameter object. One example of the standardized syntax for
expressing a user defined function 1 a query can include an
expression such as:

US 8,856,151 B2

S

Expression List>]) [OUTPUT
[[WITH] PARAMETER

<UDF name> ([<Input
(<Output Expression List>)
(<key=valueExpression>|: . ..])]

In the above user defined function expression, items within
brackets are optional, 1tems within parentheses are manda-
tory, and items given within chevrons (< >) are replaced with
appropriate expressions. The names of the user defined func-
tions are unique and case-insensitive when used in a call to the
user defined function 1n a query. The user defined functions
support variable input and output fields. A variable field 1s
defined as a field that represents a minimum number of fields,
usually zero or one, defined 1n the metadata and a maximum
number of variant fields generated from a parameter provided
in a call to the user defined function.

For most of the applications, variable fields supporting a
mimimum of either zero or one field defined 1n the metadata 1s
sufficient. However, the minimum of number variants in the
metadata other than zero or one 1s possible. When a variable
field with minimum variable count 1s set to zero, a call to the
user defined function can provide zero count for the field to
climinate the field for use in the user defined function. For
example, 1n least-squares computations, when there 1s no
continuous mndependent trait to fit 1n an equation, the number
of continuous traits for the model 1s set to zero. However, 11
there are many continuous traits i1n the least-squares model,
any number of such continuous traits can be used at the time
of calling the least-squares user defined function to fit the
model. Similarly, when a variable field 1s defined to have a
minimum of one variant count, a call to the user defined
function must provide at least one variant field for use 1n the
user defined function. For example, 1n a least-squares user
defined function, the minimum number of discrete factor
traits can be set to one. This allows for computing at least
one-way analysis of variance computation. However, there
can be any number of discrete factor traits in least-squares
equations at the time of calling the user defined function. This
ensures that a least-squares computation cannot be called
with zero discrete factor traits. A user defined function with
either zero or one as the variable count in the metadata can
provide any number of maximum count for the variable field.

The various expression lists can comprise a series of
comma separated 1items. The mput expression list, 1f present,
can 1include columns or expressions composed using columns
from query table. A mapping for the output fields of the user
defined function 1s provided using the keyword OUTPUT,
with the output expression list comprising of one or more
output fields or expressions composed from output fields.
Output fields are field names from the user defined function
output metadata or field position identifiers using “$#” syn-
tax, where $ represents a special character and # represents an
ordinal number of the output field lett to right starting from
one. When the output 1s not explicitly mapped 1n a query,
default output fields defined 1n the output metadata of the user
defined function can be returned. When output fields are
represented by “* as in OUTPUT(*), all the output fields
from the user defined function are returned. Parameters are
given following keywords WITH PARAMETER and
“key=valueExpression” separated by a colon character
within parentheses when a user defined function requires
parameters. In the key/value expression of a parameter, the
“key” 1s the field name of the parameter ficld metadata 1n the
user defined function. The “valueExpression™ 1s a constant or
an expression that evaluates to a constant while invoking the
user defined function. Parameter expressions are evaluated to
a constant value 1n the processing engine 64 before the param-
eter object 1s composed for the user defined function. The
parameters defined 1n the expression can be dates, time, time-

10

15

20

25

30

35

40

45

50

55

60

65

6

stamps, integers, decimal values (double values), character
strings, or comma separated array constants formed from one
of these data types.

To allow for flexibility 1n later reference to the output fields
within the query, each expression in the list of output expres-
sions can be renamed with a user defined name using the
following syntax:

<output ficld expression> [AS] <user defined alias output
name>

In the above expression, 1tems within chevrons (< >) are
substituted with query specific expressions and the AS speci-
fication within the brackets 1s optional. This 1s similar to
renaming the output expressions 1n query projection list ito
meaningiul application specific alias names. The SQL com-
piler parses the above specification and renames the result of
the expression with the user defined output alias field name.
This 1s particularly important when the UDF output fields,
ordinal numbers, or expressions composed using them need
to be renamed into application specific meaningiul alias
names. When UDF output fields are defined 1n terms of ordi-
nal numbers or when output field names collide with output
field names from other user defined functions or query col-
umns, renaming them with unique alias names across the
query makes them usable 1n other places 1n the query.

In a query, the UDF output fields can be expressed as names
from the UDF output field metadata or output field ordinal
numbers. The ordinal number of an output field 1s expressed
using the special character $ and a number following it staring
from one. For example, $1 represents the first output field and
$2 represents the second output field in the order output fields
are defined 1n the output metadata. If there are ten output
fields for a user defined function, $1 represents the first output
field, $10 represents the last output field and the rest of the
output fields fall 1n between in the incremental order of the
number following $. Output ordinal numbers are given as a
shortcut to representing output field names. The output field
ordinal numbers are used only 1n the output expressions of
UDFs. For each UDF, the ordinal number starts from $1 and,
therefore, in a query there could be many $1 fields across
many UDFs each of which 1s significant only within 1ts own
UDF output expression. Ordinal numbers cannot be used
outside the UDF output expressions. If they need to be used
outside the UDF expression, they have to be renamed by an
alias name. Output field names mapped from user defined
functions can be used by name in a query when the names are
unique across a query. When output field names collide with
field names 1n a query or output field names from other user
defined functions, they have to be mapped to unique alias
names for use in other parts of a query. Output fields can be
selected 1n any order by using either the output field name or
the ordinal number. It will be noted that the ordinal numbers
for a query are fixed for an 1nstance of a call to the user defined
function and sequential and, therefore, irrespective of the
position in the output mapping, the ordinal number will rep-
resent the same output field.

All or a subset of the output fields from the UDFs can be
selected according to the application requirement in any
desired order within the output expression in a call to the user
defined function. Position independent output mapping is
important for nested UDF queries where the inner UDF out-
put fields are mapped to match the order of the mput fields
required for the outer UDF. Selection of only the required
output fields allows the UDF's to implement all the possible
output fields for a given set ol input fields and leave the choice
ol output usage to the query user according to application
requirement. This feature essentially avoids unnecessary
implementations of the same UDF having the same input

US 8,856,151 B2

7

fields, but varying only 1n output fields for ditferent applica-
tion needs. Also, smart UDFs process only the requested
output ficlds from the query to save computation cost. In
many UDFs, a mimmum set of mtermediate computation
values are required for generating a variety of output fields.
For example, the statistical computations for a single measure
data field such as average, standard deviation, variation, stan-
dard error and coellicient of varniation require sum, sum of
squares and count for computing all the values. Therefore,
clubbing together the computations of common outputs from
input arguments and selecting only the required output in the
query saves computation cost and avoids the proliferation of
a number of UDF implementations with the same basic inter-
mediate computation cost.

Input and output fields are marked as fixed or variable types
in the mput and output metadata of each user defined func-
tion. It will be appreciated that a given user defined function
requires a standard order and number of inputs, as defined in
the 1nput metadata for the function. Each mput field 1n the
metadata of a user defined function 1s referenced by a corre-
sponding 1nput argument field or fields 1n the query. Specifi-
cally, fixed fields 1n the metadata of a user defined function
will have only one corresponding mnput argument field and
variable mput fields can have a minimum, generally of zero or
one fields, and a maximum number of variants in consecutive
order of mnput argument fields i a call to the user defined
function in the query. Input and output fields can have fixed or
undefined data types within the metadata. When the data type
of an mput field 1s undefined, the field obtains 1ts data type
from the data type of the corresponding input field argument
in the query. The query input argument field defines 11 the field
has a null value or not. Nullability 1s the property of a data
field to indicate 11 the field must have value when 1t 1s being set
to not nullable and need not have value or value being
unknown when 1t 1s set to being nullable. Therefore, UDF
implementations have to consider the possibility of null val-
ues 1n query input argument, perform appropriate processing,
and generate appropriate output field values. For fields having
a fixed data type, data from the mput query argument field 1s
converted to the required mput field data type of the user
defined function at runtime when the data type does not match
and the data type promotion 1s valid.

When the data type 1s undefined 1n an output field, 1t 1s set
to depend upon a specific input field for resolution. An unde-
fined fixed output field 1s set to depend upon a fixed 1mput
field. Setting an undefined output field to depend on a variable
input field 1s an error. An undefined variable output field can
be set to depend upon either a fixed or vaniable mput field.
When the undefined variable output field 1s set to depend
upon a fixed mput field, all the variants of the output field
generated 1n a call to the user defined function obtain the data
type from the fixed input argument field. When the undefined
data type of an output variable field 1s set to depend upon a
variable input field, the vanants generated from the input and
output fields must match in number 1 a call to the user
defined function and the data type of the output generated
fields are resolved from the corresponding input variant argu-
ments. At the query complier 62, undefined output fields are
resolved from the iput fields using the rules described above.
The metadata can also include default output fields, which are
returned when a query does not explicitly map output fields.

When there 1s only a single mput vanable field for a user
defined function, 1t 1s resolved at the query compiler from the
input arguments 1n the query. Specifically, a repetition num-
ber for the variable field can be computationally determined
as the difference between the total number of mput field
arguments and the number of fixed mput fields defined 1n the

[

10

15

20

25

30

35

40

45

50

55

60

65

8

user defined function metadata. When there are multiple input
or output variable fields, integer value parameter fields can be
used to provide the repetition number, with each variable field
having a corresponding parameter field. When the query 1s
processed, the value from the parameter field 1s used for
validating and resolving the repetition number for the vari-
able input and output fields. The names for the variable input
and output fields can be generated serially by extending the
base name of the variable field with a number incrementally
starting from one. For example, 11 the base name of a variable
field 1s ‘foo’ and the variant count 1s three, fields with variant
field names ‘fool’, ‘foo2’ and ‘fo03’ are generated. Output
mapping can use these generated names for variable fields.
The fixed data type of all the vaniable mput and output fields
1s used for all the variant fields generated. The undefined data
type ol the variable mput field 1s resolved by the data type of
the corresponding input field arguments 1n the query. A gen-
cral purpose function supplied with the system can be used to
validate mput and output fields and resolve their data types
and lengths at the query compiler 62 when an explicit valida-
tion and resolution function 1s not supplied by the user defined
function as a function pointer in the metadata.

I1 there are vaniable fields in the input and the output, their
repetition count 1s determined using a standard set of logical
rules. Note that, 1n general, for each variable field, the mini-
mum repletion count is set to either zero or one. When there
1s one variable field that has a minimum repetition count set as
zero, the total number of 1input argument fields to a call to the
user defined function can be one less than the total number of
input fields in the metadata indicating that the variable field 1s
omitted from the mput argument list of fields. I there 1s only
one variable field in the mput, the number of variants for the
variable field 1s computed as the number of 1input field argu-
ments 1n the UDF minus the number of fixed input fields in the
metadata. If there are more than one input variant fields for a
UDVF, each variable field must be set to depend upon an integer
parameter field. It will be appreciated that, even 11 there 1s
only one variable field, a corresponding parameter field can
be given. In the query, each such parameter field 1s given an
integer value for resolving the respective dependent variable
input or output field. One integer parameter field can be used
in many variable input and output fields for variant count
resolution when all the fields require the same repetition
number. Output variable fields can be set to depend upon an
input variable field for the generation of variants or an integer
parameter field. At query compile time, based on either the
resolution of put variable fields or the value from the sup-
porting integer parameter field, the number of repetition vari-
ants 1n the variable output field 1s resolved.

Repetition variants from the variable fields are generated
contiguously starting from the position of the field in the
metadata. For example, if there are five output fields for a
UDF with two variable fields at position two and four with
repetition counts two and three respectively, the total output
fields generated, along with their ordinal numbers in paren-
theses, would be:

1. FieldA ($1)

2. FieldB1 ($2), FieldB2 ($3)

3. FieldC ($4)

4. FieldD1 ($5), FieldD2 ($6), FieldD3 ($7)

E ($8)

5. Field.

It will be appreciated that for a user defined function call,
the ordinal numbers are fixed at runtime and using the ordinal
number all or a subset of output fields can be selected 1n the
output field mapping. For the same user defined function 1n
the same query or 1n another query, there can be calls with a
different repetition count for the second and fourth variable

US 8,856,151 B2

9

fields. In such cases, the ordinal number for each call will
reflect the repetition count given and will be different from the
mapping shown above.

For the above UDF, the query can retrieve all the output
fields with OUTPUT(*) mapping which results in the output
of all the fields 1n the order given above. Given the above list
of output fields for the query, the query can use either the field
names or the ordinal numbers to select the required output
fields. For UDFs with variable fields, the variable field names
and the ordinal numbers of the fields vary according to the
repetition count of each variable field at query compilation
time. When UDF output fields are mapped with the ordinal
number of output fields, the resolution and validation utility
function resolves the ordinal numbers 1nto appropriate output
field names.

In one implementation, the user defined functions are built
in a UDF library 74, for example, as shared objects or
dynamic link libraries, and loaded into the database engine.
As described previously, each user defined function exposes a
self-describing UDF metadata 76 that can be retrieved by the
query complier 62. The metadata object of a UDF 1s a self
contained and describing object. It contains the function
pointers for the UDF processing factory constructor, and the
validation and resolution utility function. It has the arrays of
input, output and parameter fields. The UDF metadata object
has the UDF name, UDF description, class type, and an
indicator to denote 11 the UDF requires all the mput records
together or one row at a time while processing.

The UDF metadata 76 can include output field names,
descriptions of each output field, data type, an indicator to
denote 11 the field 1s a vaniable field, variable field resolving
parameter field name, size of field, null indicator, resolving
input metadata field name and an i1ndicator to denote 1t the
output field 1s returned as a default field when the query does
not map output fields. When a variable field 1s set, 1t 1s set with
a minimum variant number of zero or one. Thus, a field can be
represented with three constant values, minus one indicating,
that 1t 1s a fixed field, zero indicating that 1t 1s a variable field
with minimum variant count of zero and one indicating that it
1s a variable field with a minimum count of one variant field.
If a user defined function requires, the mimmum variant count
ol a vanable field in the metadata can be set to any number
beyond one for which there 1s no restriction. There 1s no upper
limit to the variant count which 1s application defined at the
time of a call to the user defined function. If the field 1s a
variable field, a resolving integer parameter ficld name can be
set. If the parameter field 1s empty for an output variable field,
an associated resolving input variable field name from the
input field metadata can be used to provide the resolution. If
there 1s only one mput variable field, then the integer param-
eter name on which 1t depends can be omitted. Any such input
field 1s resolved either by an integer parameter field or by
computation when there 1s only one variable input field. Out-
put vaniable fields must have to be set to depend upon a
parameter or mput variable field for resolution of vanant
count even 1f there 1s only one output variable field for a user
defined function.

The data type of afield can be set to one of a valid data types
or set to an undefined type. I1 the data type of the output field
1s set as undefined, the output field can inherit the data type
associated with its resolving mnput field name and 1ts corre-
sponding 1nput argument field. When the output field 1s unde-
fined, the output field 1s set to depend upon an mput metadata
field, referred to as the resolving input metadata field. When
the data type of the resolving input field metadata 1s unde-
fined, the input metadata field gets first defined at the time of
query compilation with the mput argument field from the

10

15

20

25

30

35

40

45

50

55

60

65

10

query table field which, 1n turn, resolves the dependent output
field. In such a case, the si1ze of the field and the null indicator
are also inherited from the input argument field 1n the query.

Through the default output indicator in the output field, the
metadata for each UDF designates a list of fields as default
output fields. For example, these default fields can be selected
by a UDF developer based on the general usage of the analytic
function represented by the UDF. When UDFs 1n queries do
not explicitly map output fields, the default fields are returned
from the UDF 1n the order of their occurrence in the UDF
output metadata. When queries map UDF output fields
explicitly, the default output fields are 1gnored. Query appli-
cations can explicitly include the detault fields 1n the output
mapping ol the UDF call without any restriction.

The query complier 62 accesses the metadata fields for
query resolution and validation. The input and output fields
can be either fixed or vanable fields. Each fixed field repre-
sents only one field during execution of the query, while each
variable field can represent a minimum of zero or one 1n the
metadata, and a maximum number of fields defined 1n the call
to the user defined function during execution. When input and
output fields are marked as variable, they can be marked for a
repetition count starting from a minimum of zero or one 1n the
metadata. Each variable field can have any repetition count as
the upper limit 1n a call to the user defined function. When a
variable field 1s marked to start with a minimum number of
zero count, a parameter field can supply a repetition count of
zero just to let the user defined function to i1gnore the field
completely. However, when a variable field 1s set with a
minimum repetition count of one, there must be at least one
input argument field for the field at the time of processing the
query. If there 1s only one 1input variable field and i1t 1s marked
to have a mimimum repetition count of zero or one, 1t can be
deduced without an integer parameter specification at the
time of compilation and validated for the minimum count of
repetition number. It will be appreciated that variable fields
can occur at any input or output field position, and there can
be multiple variable fields in 1nput and output. The repetition
count of a variable field for a given instance of the function
can be provided, for example, as an integer parameter expres-
sion. Parameter fields that are used for resolving variable
input and output fields are always of integer data type. Con-
stant parameter expressions of scalar or array values of inte-
ger, double, date, time, time-stamp and character data types
can also be defined for data processing requirements 1n the
user defined function 1itself.

Function imput fields of a user defined function are
extracted from query fields, and composed as an input table
object. Similarly, output fields can be determined from the list
of mapped output fields or default output fields when output
fields are not explicitly mapped for the user defined function
and composed 1nto an output table object. The query compiler
62 structures these input and output fields 1nto self-describing
table objects with field names, data types and data size to
standardize processing of all user defined function class
types. Table objects are capable of handling one record or
multiple records simultaneously. Each table object has its
own metadata to describe each field of the rows 1n the table
object 1n terms of 1ts field name, data type, data length, and
indicator showing 1f the field 1s null. Table objects also have
the ability to store and retrieve rows of data based on row
number. They are capable of handling large row sets with the
ability to manage memory overtlow into disk files.

Each output field has a unique name within a UDF, speci-
fied 1n the UDF output field metadata. There 1s one UDF
output field metadata object for each output field, such that for
N output fields for a UDF, there are N output field metadata

US 8,856,151 B2

11

objects 1n an array. Similarly, there are arrays of mput and
parameter field metadata objects. Input, output and parameter
metadata arrays are packaged together 1n a UDF metadata
object along with additional information. The UDF metadata
object 1s built by the UDF developer as an immutable static
object and compiled along with the UDF processing code.
The UDF processing code consists of an implementation of a
UDF 1interface class, a factory constructor function to create
an 1nstance of the UDF processing object and, optionally, a
utility function for validating and resolving the UDF call
specification 1n a query at query compile time. In most of the
cases, a general purpose utility function 1s suificient for the
validation and resolution of UDF specification 1n a query.
UDF specific validation and resolution utility functions are
built only for special validation and resolution requirements.

The listing of fields 1n the output expression allows the
output of a user defined function to be mapped to a list of
fields provided within the output metadata. When the number
of output fields 1n the query 1s less than the number of output
fields from the user defined function, the user defined func-
tion returns only the fields that are mapped i1n the query.
Output fields can be mapped in any order 1n queries, using
either the field name or field position identifier. When output
fields, both fixed and variable, are mapped using position
identifiers, the validation and resolution function substitutes
output field position identifiers with output field names and
sets data type and size in the output table object at query
compile time.

Changing the order and mapping of output fields 1s particu-
larly useful for nested user defined function processing, to
allow an inner user defined function to return the fields in the
order and number the outer user defined function requires 1ts
input argument fields. In the projection list, output field map-
pings {rom user defined functions are merged with the rest of
the fields 1n the projection list 1n the order 1n which they are
mapped. When multiple user defined functions occur 1n a
query, projection fields are mapped similarly to queries with
multiple OLAP functions.

The metadata 76 for each user defined function can also
include an associated class type for each function out of a
plurality of function class types 78 to assist 1n the optimiza-
tion of the query. The user defined function class types implic-
itly set the rules for analytical data processing in the database
engine along with the cardinality of their output results. For
example, user defined functions belonging to some class
types will be processed 1n OLAP windows, whereas such
processing 1s mappropriate for other class types of functions.
Unlike mbuilt functions that return only one output field, all
the user defined function class types may return one or mul-
tiple output fields.

A query optimizer 80 establishes a plan for executing the
received query, including calls to any user defined functions
in the query. The query optimizer 80 retrieves metadata
describing the associated class types of the user defined tunc-
tions, and uses the associated class type of each user defined
function to determine 1f the number of rows 1n the output of
the function 1s known or determinate and if the output to the
function 1s unknown or indeterminate. For class types having
known outputs, the query optimizer 80 can proceed normally.
Functions having indeterminate outputs are handled as part of
an alternative optimization process, in which the potential
impact of a function having a large number of output rows 1s
mitigated. Each of the data objects extracted by the query
parser 72 and the query plan developed at the query optimizer
80 are provided to the database engine 64 to execute the
query, including the user defined function.

10

15

20

25

30

35

40

45

50

55

60

65

12

The database engine 64 uses the extracted query plan
objects including the user defined function objects to execute
the query plan to provide a query result, and returns the query
result to the query source via the communications intertace
56. During runtime, data are loaded into the imput table object
according to the requirements of the user defined function
class type. With the mput and output table objects as argu-
ments, the data processing API of the user defined function 1s

called to process data. The user defined function emits output
into the output table object which is retrieved each time the
processing function 1s called. In case there 1s no 1mput, as in
the case of table-valued user defined tunctions, the processing
function 1s called with an empty input table object until all the
output rows are retrieved.

One example of an analytic function that can be 1mple-
mented in the database system using variable input and output
fields 1s a multiple regression user defined function. It will be
appreciated that in a multiple regression analysis, the number
of independent variables varies according to the regression
model fitted which 1s illustrated 1n the example below.
Accordingly, a user defined function to perform this function
will have variable output fields for beta coetlicients and aver-
ages for independent variables, with the size of these variable
fields being defined by a parameter value representing the
number of independent variables in the desired model. The
user defined function, for example, can be implemented as an
aggregate class type of user defined function because it
returns only one output row for N 1nput rows processed.

An example query using a specific mstantiation of the
general multiple regression function 1s presented below. For
example, the query could be used for studying how three
independent expenses are alfecting the dependent sales fig-
ures using sales and cost database tables, for example, data for
ten years, with four quarters each, at each region and city in
cach country:

SELECT country,
MultipleRegression(salesDollarValue, salespersonTrainingCost,
advertizementCampaignCost, couponPromotionCost)
OUTPUT(countObservations, alphalntercept,
betal AS betaSalespersonTrainingCost,
beta2 AS betaAdvertizementCampaignCost,
beta3d AS betaCouponPromotionCost,
avgIndependentl AS avgSalespersonTramingCost,
avgIndependent2 AS avgAdvertizementCampaignCost,
avgIndependent3 AS avgCouponPromotionCost,

avgDependent AS avgSalesDollarValue)
WITH PARAMETER(COUNT__INDEPENDENT__VAR=3)

FROM salesAndCost
GROUP BY country;

In the above example, the first input field 1s the dependent
field which 1s a fixed field. The second mput field 1s the
starting point for the independent fields, which 1s marked as a
variable field with a minimum count of one, giving the user
defined function two input field 1n the metadata. A first output
field 1s the alpha intercept, ‘alphalntercept’ and a second
output 1s the average of the dependent variable, ‘avgDepen-
dent,” each of which are fixed fields. A third output field,
‘countObservations,’ 1s a fixed field representing the number
of observations. A fourth field, marked as a variable field, 1s
named ‘beta’ and represents the beta coellicients produced by
the regression analysis. A fifth field, also marked as a variable
field, 1s named ‘avglndependent’ and represents the average
values of the independent variables.

Note that the fourth field can be repeated until all the beta
co-elficient fields are mapped 1n a call to the user defined
function. As described previously, the names of the fields are

US 8,856,151 B2

13

generated by appending an integer starting from one. Thus, 1n
the following example, there are three beta co-efficient fields
with field names betal, beta2 and beta3 that are generated
from the variable field base name ‘beta’. The fifth field,
avglndependent starts only after all the beta fields are mapped
and repeats similarly with a number appended to 1t starting
from one. Using the output field names or the ordinal number,
output fields can be mapped in any order 1n a query.

The user defined function requires one 1nteger parameter
field namely COUNT_INDEPENDENT_VAR. The valida-
tion and resolution function looks for the parameter keyword
or field name 1n the parameter object to decide which multiple
regression model to fit. In case the parameter field 1s not given
in the parameter object specification, since there 1s only one
input variable field for the user defined function, the valida-
tion and resolution API function computes the correct repeti-
tion number from the total number of mput argument fields.
There are two variable output fields and they require resolu-
tion and validation. The output variable fields are resolved in
the absence of the integer parameter field only when the
output variable fields are set to depend upon the single input
variable field. In the multiple regression user defined func-
tion, ‘beta’ and avglndependent variable fields are set to
depend upon the second 1mput field namely the independent
field. In this example given, the model specifies three 1nde-
pendent variables and, therefore, three output fields each for
‘beta’ and ‘avglndependent” are generated. Note that, i the
metadata, the variable output fields, beta and avglndepen-
dent, are marked for dependency resolution from the second
input variable field. If the query does not map the ‘avglnde-
pendent’ output field from independent-variables or any other
field, the user defined function understands it from the fields
requested by the user query 1n the output table object and does
not project results for them.

The 1llustrated database system makes 1t possible to model
complex analytic applications, including statistical applica-
tions, 1n SQL queries. Since the user defined function devel-
oper knows the class type, input, output and parameter of a
user defined function, the UDF metadata 1s built as part of the
user defined function for dynamic detection and validation of
syntax and semantics of i1ts usage at query compile time.
There could be additional metadata captured in the database
for managing user defined functions, such as user defined
function usage and installation privileges that are indepen-
dent of the metadata for the user defined function. The use of
the parameter field allows for user defined functions general
enough to allow processing of many analytical application
models by varying only parameters i queries. Statistical
applications such as multiple regression, least-squares, mul-
tivariate analytics and frequency distribution can be 1mple-
mented with different statistical models depending upon the
requirements of a given analysis simply by changing the
integer parameter field value i the query. Accordingly,
parameterization makes 1t easier to represent complex ana-
lytical models 1n simple key/value pair of parameters.

The system 50 further provides the ability to map only the
required output fields in any order from user defined functions
makes 1t easier to have nested user defined function queries
where inner user defined functions return outputs required for
the 1input of outer user defined functions. This helps 1n build-
ing complex applications 1n parts and composed by nesting 1n
queries according to application requirement. The tight inte-
gration of user defined functions mto SQL brings analytic
application processing closer to the data, resulting 1n data
security and less mobility of data across systems. It also
makes 1t more eflicient to build user defined functions 1n a
programming language, such as C++, efficiently for serving,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

vertical applications through SQL. With table-valued user
defined functions available for use 1n the FROM clause of
queries for collecting data from external sources in conjunc-
tion with the analytic user defined functions, users will find
many analytic applications easier to model and process using
data from internal and external sources 1n a SQL database.

FIG. 3 1llustrates one method 100 for executing a query. At
102, a call to a user defined function 1s 1dentified 1n a struc-
tured query language (SQL) query by a query compiler, along
with a defined set of output fields. It will be appreciated that
the set of output fields mapped in a call to the user defined
function can be a proper subset of the available output fields
for the function, and that the fields can be provided 1n any
desired order. At 104, an output i1s generated for the user
defined function that includes the defined set of output fields.
It will be appreciated that the output table object can contain
multiple output fields representing output fields defined for
the user defined function, where the defined output field can
be fixed and vanable output fields. At 106, the user defined
function 1s executed in a database engine to populate the
defined set of output fields 1n the output table object. The
outputtable object can then be returned to the query processor
to make the output fields available for further use within the
query.

FIG. 4 1s a schematic block diagram 1llustrating an exem-
plary system 200 of hardware components capable of imple-
menting the example systems and methods for user defined
function integration disclosed 1n FIGS. 1-3. The system 200
can include various systems and subsystems. The system 200
can be a personal computer, a laptop computer, a workstation,
a computer system, an appliance, an application-specific inte-
grated circuit (ASIC), a server, a server blade center, a server
farm, or any other appropriate processing component.

The system 200 can include a system bus 202, a processing,
unit 204, a system memory 206, memory devices 208 and
210, a communication interface 212 (e.g., a network inter-
face), a commumnication link 214, a display 216 (e.g., a video
screen), and an 1nput device 218 (e.g., a keyboard and/or a
mouse). The system bus 202 can be 1n communication with
the processing unit 204 and the system memory 206. The
additional memory devices 208 and 210, such as a hard disk
drive, server, stand alone database, or other non-volatile
memory, can also be 1n communication with the system bus
202. The system bus 202 operably interconnects the process-
ing unit 204, the memory devices 206-210, the communica-
tion 1nterface 212, the display 216, and the mput device 218.
In some examples, the system bus 202 also operably inter-
connects an additional port (not shown), such as a universal
serial bus (USB) port.

The processing unit 204 can be a computing device and can
include an application-specific integrated circuit (ASIC). The
processing unit 204 executes a set of instructions to 1mple-
ment the operations of examples disclosed herein. The pro-
cessing unit can include a processing core.

The additional memory devices 206, 208 and 210 can store
data, programs, instructions, database queries 1n text or com-
piled form, and any other information that can be needed to
operate a computer. The memories 206, 208 and 210 can be
implemented as computer-readable media (integrated or
removable) such as a memory card, disk drive, compact disk
(CD), or server accessible over a network. In certain
examples, the memories 206, 208 and 210 can comprise text,
images, video, and/or audio.

Additionally, the memory devices 208 and 210 can serve as
databases or data storage. Additionally or alternatively, the
system 200 can access an external data source or query source

US 8,856,151 B2

15

through the communication interface 212, which can com-
municate with the system bus 202 and the communication
link 214.
In operation, the system 200 can be used to implement a
database system that executes user defined functions within
or outside of an online analytics processing (OLAP) frame-
work 1n response to an appropriate query. The queries can be
formatted in accordance with various query database proto-
cols, including SQL. Computer executable logic for imple-
menting user defined functions in accordance with certain
examples such as the real-time analytics system resides on
one or more of the system memory 206, and the memory
devices 208, 210. The processing unit 204 executes one or
more computer executable instructions originating from the
system memory 206 and the memory devices 208 and 210.
The term “computer readable medium™ as used herein refers
to a medium that participates in providing instructions to the
processing unit 204 for execution.
What have been described above are examples of the
present ivention. It 1s, of course, not possible to describe
every concetvable combination of components or methodolo-
gies for the purpose of describing the present invention, but
one of ordinary skill in the art will recognize that many further
combinations and permutations of the present invention are
possible. Accordingly, the present mvention 1s intended to
embrace all such alterations, modifications, and variations
that fall within the scope of the appended claims.
What 1s claimed 1s:
1. An analytical data processing system comprising;:
at least one processor;
a non-transitory computer readable medium, comprising
machine readable instructions that when executed cause
the at least one processor to:
identify, by a query compiler, a call to a user defined
function, the call being 1n a query and including at
least one output expression defining output fields for
the user defined function, the user defined function
having metadata exposed to the query compiler and to
a processing engine that executes the user defined
function, the metadata indicating properties of the
defined output fields, and the metadata comprising a
function pointer for a validation and resolution of the
defined output fields in the call to the user defined
function;

generate, by the query compiler, an output table object
for the user defined function, the generated output
table object containing the defined output fields; and

execute the user defined function to populate the defined
output fields 1n a row of data in the output table object.

2. The analytical data processing system of claim 1, the
user defined function having a plurality of associated output
field metadata 1n a sequence, the at least one output field
expression being composed by one of output field names from
fixed output fields, generated field names from variable out-
put fields, and ordinal numbers derived from the output field
metadata sequence.

3. The analytical data processing system of claim 1, the
metadata indicating a field name, an associated data type, and
a data size of a given defined output field from the defined
output fields.

4. The analytical data processing system of claim 3, the
metadata indicating that the associated data type of the given
defined output field 1s undefined, the associated data type
being set to depend on an 1nput field such that the instructions
upon execution derives a data type of the given defined output
field from the 1nput field on which the given defined output
field 1s set to depend 1n the call to the user defined function.

10

15

20

25

30

35

40

45

50

55

60

65

16

5. The analytical data processing system of claim 1, the
metadata defining a plurality of output fields associated with
the user defined function 1n a first order, and the at least one
output expression in the call to the user defined function
defining a set of output fields from the plurality of output
fields 1n a second order, the second order being ditlerent from
the first order.
6. The analytical data processing system of claim 1, the at
least one output expression in the call to the user defined
function defining a set of output fields, the defined set of
output fields being a proper subset of a plurality of output
fields associated with the user defined function.
7. The analytical data processing system of claim 1, the at
least one output expression comprising a user defined alias
name for a given defined output field, such that the output
table object has the user defined alias name for use in other
parts of the query.
8. The analytical data processing system of claim 1,
wherein the user defined function 1s executed when executing
the query.
9. An analytical data processing system comprising;
at least one processor;
a non-transitory computer readable medium, comprising,
machine readable 1nstructions that when executed cause
the at least one processor to:
identily, by a query compiler, a call to a user defined
function, the call being 1n a query and including at
least one output expression defining output fields for
the user defined function, the user defined function
having metadata exposed to the query compiler and to
a processing engine that executes the user defined
function, the metadata indicating properties of the
defined output fields, and the metadata indicating a
plurality of default output fields associated with the
user defined function:

generate, by the query compiler, an output table object
for the user defined function, the generated output
table object containing the defined output fields;

execute the user defined function to populate the defined

output fields 1n a row of data in the output table object;
and

return the default output fields when a call of the user
defined function 1s without any output expression
defining output fields for the user defined function.

10. An analytical data processing system comprising:

at least one processor;

a non-transitory computer readable medium, comprising,
machine readable 1nstructions that when executed cause
the at least one processor to:
identily, by a query compiler, a call to a user defined

tfunction, the call being 1n a query and including at
least one output expression defining output fields for
the user defined function, the user defined function
having metadata exposed to the query compiler and to
a processing engine that executes the user defined
function, the metadata indicating properties of the
defined output fields, the metadata of the user defined
function comprising output metadata fields indicating
whether each defined output field 1s a fixed field,
representing a single field in the output table object, or
a variable field, representing zero, one, or multiple
fields, whereimn a minimum number of fields repre-
sented by the variable field 1s defined 1n the metadata;
generate, by the query compiler, an output table object
for the user defined function, the generated output
table object containing the defined output fields; and

US 8,856,151 B2

17

execute the user defined function to populate the defined
output fields 1n a row of data in the output table object.
11. The analytical data processing system of claim 10,
wherein for a given defined output field that 1s a variable field,
the instructions when executed causing the at least one pro-
cessor to:
derive an integer value from one of an integer parameter
field and a variable input field on which the given defined

output field 1s set to depend, and

generate anumber of variant fields represented by the given
defined output field in the output table object equal to the
integer value.
12. A non-transitory computer readable medium, compris-
ing machine readable 1instructions that when executed cause a
system 1ncluding a processor to:
identify a call to a user defined function having exposed
metadata that defines a plurality of output fields having
a first order;

generate at least one output expression providing a set of
output fields from the plurality of output fields, the at
least one expression included 1n a query, and the at least
one output expression providing the output fields of the
set 1n a second order different from the first order, the
user defined function representing an inner user defined
function of a nested processing arrangement, the second
order representing an order in which the set of output
fields 1s 1nput into an output user defined function of the
nested processing arrangement;

10

15

20

25

18

generate an output table object for the user defined func-
tion, the generated output table object containing the set
of output fields; and

execute the user defined function to populate the set of
output fields 1n a row of the output table object provided
as an output of the user defined function.

13. A method comprising:

identifying, by a query compiler executing in a system
including a processor, a call to a user defined function,
the call including at least one output expression defining
a set of output fields that 1s a subset of a plurality of
output fields defined by metadata of the user defined
function, the call being within a query, wherein the meta-
data specifies a first order of the plurality of output fields,
and wherein the at least one output expression specifies
a second order of the output ficlds in the set of output
fields different from the first order;

generating, by the query compiler, an output table object
for the user defined function, the generated output table
object containing the defined set of output fields;

executing the user defined function to populate the set of
output fields 1n the output table object with an output of
the user defined function; and

outputting the plurality of output fields defined by the
metadata i response to a call to the user defined function
not including any output expression defining a set of
output fields.

	Front Page
	Drawings
	Specification
	Claims

