US008850265B2
a2 United States Patent (10) Patent No.: US 8.850,265 B2
He et al. 45) Date of Patent: Sep. 30, 2014
(54) PROCESSING TEST CASES FOR (56) References Cited
APPLICATIONS TO BE TESTED
U.S. PATENT DOCUMENTS
(75) Inventors: Le He, Beijing (CN); Zhong J. Li, 205705 A % 0/1008 Whic 14738 |
‘ 805, itten .oooovevviiiniinn, .
Bejing (CN); Yong G. Pan, Betjing 7,039,912 B1* 5/2006 Mouldenetal. 718/100
(CN); Chunhua Tian, Beijjing (CN); Rui 8,347,267 B2* 1/2013 Givonietal. 717/124
Xiong Tian, Beljing (CN); Qing Bo 2003/0167422 Al* 9/2003 Morrison etal. 714/38
Wang, Beijing (CN); Jun Zhu, Beijing 2006/0174162 Al* 8/2006 Varadarajanetal. 714/38
(CN) 2010/0131928 Al* 5/2010 Parthasarathyetal. 717/126
20;0/0180260 A * 7/20;0 Chikkadevaiah etal. 717/125
(73) Assignee: International Business Machines 2011/0035629 A1* 2011 Nojlerotal. - 714/38.14
Corporation, Armonk, NY (US) 2011/0055634 Al 3/2011 Huang
2013/0275946 Al* 10/2013 Pustovitetal. 717/124
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 236 days.
CN 101655817 2/2010
_ CN 101814055 8/2010
(21) Appl. No.: 13/435,807 JP 2009245383 10/2009
(22) Filed: Mar. 30, 2012 * cited by examiner
(65) Prior Publication Data Primary Examiner — Nadeem Igbal
US 2012/0254660 Al Oct. 4,, 2012 (74) Afff)?’ﬁ@ij Agé‘?ﬁf} or Firm — Tutunjian & Bit@tt(}j PC,,
Gail Zarick
30 Foreign Application Priority Data
(G0) SHAPP Y (57) ABSTRACT
Mar. 30,J 2011 (CN) 2011 1 0085746 The presen‘[inven‘[ion disc]oses q me‘[hod and Sys‘[em for
processing test cases for applications to be tested. The method
° ol includes evaluating two applications to be tested; obtaimn
(51) Int.Cl includ luating, pplicati b d; obtaining
GOoF 11/00 (2006.01) test cases for the two applications to be tested and determin-
GO6F 11/36 (2006.01) ing resources and execution times needed by the test cases for
(52) U.S. Cl. the two applications to be tested. According to the compat-
CPC G06F 11/3688 (2013 Ol) lblllty relationship between the tWwWo applications to be testedj
LS P et e eean e 714/28 and the resources and execution times needed by the test cases
(58) Field of Classification Search for the two applications to be tested, the test cases for the two
CPC GOO6F 11/3688; GO6F 11/3664; GO6F applications to be tested are clustered to a virtual machine

11/3672; GO6F 11/3616; GO6F 11/3428;
GO6F 11/3684

USPC e 714/1-57
See application file for complete search history.

S110 Evaluate |

applications to be
tested

5120 Determine
resources and execution
times required by
test cases

instance to test the test cases for the two applications to be
tested on the virtual machine 1nstance.

21 Claims, 7 Drawing Sheets

100

S130 Cluster the test
cases into VM

instances

U.S. Patent Sep. 30, 2014 Sheet 1 of 7 US 8,850,265 B2

5110 Evaluate 100
applications to be
tested
S130 Cluster the test
cases into VM
instances]
S$120 Determine

resources and execution
times required by
test cases

Fig.1

Memory A

(MB) ﬂ\ y
[.

/ Time (second)
210 220 230

A A T ye—F

Fig.2

U.S. Patent Sep. 30, 2014 Sheet 2 of 7 US 8,850,265 B2

Capacity Capacity
Requirementl] Requirementl]
CPU: 1.6G CPU: 0.7G

K |Memor},d] 1.4G ‘ Memoryll 1.75G
0 days 4 days
Fig.3 (Prior Art)
Al A2
Capacity 12 Capacity
Requirementl] Requirementll
cRU: 218 | smal | CR LS
Memoryl] 2.6G ; @ N Memory: 1.69G
S days 2 days

Fig.4

U.S. Patent Sep. 30, 2014 Sheet 3 of 7 US 8,850,265 B2

S110
Evaluate applications

to be tested

5120

: S130
Determine resources

Cluster the test cases
info VM Instances

and execution times
required by test cases

S125
Group the test cases

Fig.5

600
610
Evaluator
630
Clustering device
620

Determinator

Fig.0

U.S. Patent Sep. 30, 2014 Sheet 4 of 7 US 8,850,265 B2

610 Evaluator 700
620 | |
Determinator 630 Clustering device

625
Grouping
device

Fig.7

U.S. Patent Sep. 30, 2014 Sheet 5 of 7 US 8.850,265 B2

% 800

812~ COMPUTER SYSTEM/SERVER 828 i
/
830 MEMORY 834 |
h o/
RAM <
816 . STORAGE
N SYSTEM
PROCESSING CACHE — — | |
UNIT 840

I
]
22 842 | UJ

818 ~_
824 899
\] 820
/0 B I
DISPLAY [* 1™ INTERFACE(S) NETWORK ADAPTER

—

814
N

EXTERNAL 800
DEVICE(S)

Fig.8

U.S. Patent Sep. 30, 2014 Sheet 6 of 7 US 8,850,265 B2

Fig.9

U.S. Patent Sep. 30, 2014 Sheet 7 of 7 US 8.850,265 B2

Data
Analytics
Processing / /

/ /Transaction /" Mobile
Processing / /

' Deskto;:s/ .

Jevelopment
and

_- \ S "Classroom
7 and Lifecycle Education /7
| Managemen&r__. Delivery / |

Navigation - |

etermg and / .Iannmg and /
Prlcmgff_; Fulflllmen/

g :H||“|| e et sl ek et vk prrrber [e . _ iy L [ETSFIFIITAIn | ; "y .

Y /Resource
/ Prowsmnlng _'

Virtual Servers irtua Virtual Virtual Virtual Clients
Storage Networks Applications A
'IBM ' L /

i xSeries® |IBM® Networkmg Network Database
/ Mainframes) cmtigture Systems BladeCenter St“"age Apgllcatm Software /

/'“H Servers ® Systems erver

_. Software _ |
i Hardware and Software

1060

Fig.10

US 8,850,265 B2

1

PROCESSING TEST CASES FOR
APPLICATIONS TO BE TESTED

TECHNICAL FIELD

Embodiments of the present invention relate to information
technology, and more specifically, to a method and system for
processing test cases for applications to be tested.

BACKGROUND

Information technology (IT) architecture of an enterprise 1s
very complex, and 1t might contain hundreds of applications
that are coupled to one another 1n a very complex way. In this
circumstance, performing test on applications becomes a
challenging task. Testing 1s one of the largest money and time
consumers 1n a software development budget. 30% to 50% of
servers are dedicated for testing, and most test servers run at
utilization of less than 10%. Therefore, 1t will waste large
amounts of resources.

There are already some companies providing Cloud test
environments to users. When users have to perform test, they
may use corresponding test environments of these companies
SO as to save resources.

Nowadays, a common way of applying Cloud test environ-
ments 1s to allocate respective applications to different virtual
machine (VM) instances that have corresponding configura-
tions, according to separate original hardware and software
configurations needed for testing applications. In such a way,
capacity planning 1s avoided; however, a tremendous waste
may be caused as original hardware and soitware configura-
tions may not be well planned and the capacity exceeds the
demand.

SUMMARY

Therefore, there 1s a need for a solution which overcomes
the foregoing problems, for processing test cases for applica-
tions to be tested.

According to one aspect of the present invention, there 1s a
method for processing test cases for applications to be tested,
the method comprising: evaluating at least two applications to
be tested 1n order to determine a compatibility relationship
between the at least two applications to be tested; obtaining
test cases for the at least two applications to be tested and
determining resources and execution times needed by the test
cases for the at least two applications to be tested; according
to the compatibility relationship between the at least two
applications to be tested, and the resources and execution
times needed by the test cases for the at least two applications
to be tested, clustering the test cases for the at least two
applications to be tested to at least one virtual machine
instance to test the test cases for the at least two applications
to be tested on the at least one virtual machine 1nstance.

According to a second aspect of the present invention, there
1s a system for processing test cases for applications to be
tested, the system comprising: an evaluator configured to
evaluate at least two applications to be tested to determine a
compatibility relationship between the at least two applica-
tions to be tested; a determinator configured to obtain test
cases lor the at least two applications to be tested and deter-
mine resources and execution times needed by the test cases
for the at least two applications to be tested; a clustering
device configured to, according to the compatibility relation-
ship between the at least two applications to be tested, and the
resources and execution times needed by the test cases for the
at least two applications to be tested, cluster the test cases for

10

15

20

25

30

35

40

45

50

55

60

65

2

the at least two applications to be tested to at least one virtual
machine instance to test the test cases for the at least two
applications to be tested on the at least one virtual machine
instance.

According to various embodiments of the present mven-
tion, test cases for at least two applications to be tested that are
allocated to different virtual machine 1nstances according to
the prior art can be allocated to the same virtual machine

instance whose performance meets requirements. Therefore,
the utilization of virtual machine 1nstances can be improved.

BRIEF DESCRIPTION OF THE DRAWINGS

As the present invention i1s comprehended more thor-
oughly, other objects and effects of the present invention will
become more apparent and easier to understand from the
following description with reference to the accompanying
drawings, wherein:

FIG. 1 1llustrates a tlowchart of a method for processing
test cases for applications to be tested according to an
embodiment of the present invention;

FIG. 2 schematically illustrates determined memory con-
sumption situations of a test case;

FIG. 3 1illustrates circumstances 1 which test cases for
applications to be tested Al and A2 are allocated to VM
istances according to the prior art;

FIG. 4 illustrates circumstances in which test cases for
applications to be tested Al and A2 are allocated to VM
instances according to embodiments of the present invention;

FIG. 5 1llustrates a flowchart of a method for processing
test cases for applications to be tested according to another
embodiment of the present invention;

FIG. 6 illustrates a block diagram of a system for process-
ing test cases for applications to be tested according to an
embodiment of the present invention;

FIG. 7 1llustrates a block diagram of a system for process-
ing test cases for applications to be tested according to
another embodiment of the present invention;

FIG. 8 1llustrates a Cloud computing node according to an
embodiment of the present invention;

FIG. 9 illustrates a Cloud computing environment accord-
ing to an embodiment of the present invention; and

FIG. 10 illustrates abstraction model layers according to an
embodiment of the present invention.

Like numerals represent the same, similar or correspond-
ing features or functions throughout the figures.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Embodiments of the present invention will be described 1n
detail below with reference to the figures.
The flowcharts and block diagrams 1n the figures 1llustrate
architectures, functions and operations achievable by the sys-
tem, methods and computer program products in accordance
with various embodiments of the present invention. In this
regard, each block in the flowcharts or block diagrams may
represent a module, a program segment, or a part of code,
which contains one or more executable instructions for imple-
menting specified logic Tunctions. It should be noted that in
some alternative implementations, functions indicated 1n the
blocks may occur in an order differing from the order as
indicated 1n the figures. For example, two blocks shown con-
secutively may 1n fact be performed substantially 1n parallel
or n an mversed order sometimes, which depends on the
functions mvolved. It should also be noted that each block and

a combination of blocks 1n the block diagrams or flowchart

US 8,850,265 B2

3

may be implemented by a dedicated, hardware-based system
for performing specified functions or operations, or by a
combination of dedicated hardware and computer instruc-
tions.

In one embodiment of the present invention, according to a
compatibility relationship between at least two applications
to be tested and resources and execution times needed by test
cases for the at least two applications to be tested, the test
cases for the at least two applications to be tested are clustered
to at least one virtual machine (VM) instance so as to be tested
on the at least one VM 1nstance.

According to one embodiment of the present invention,
possible waste of VM instance utilization caused by the act of
allocating to different VM instances test cases for a plurality
of applications to be tested that may reside on one VM
instance 1s eliminated.

FIG. 1 illustrates a flowchart of a method for processing
test cases for applications to be tested according to one
embodiment of the present invention. As 1llustrated 1n FI1G. 1,
the method 100 comprises: step S110 of evaluating at least
two applications to be tested to determine a compatibility
relationship between the at least two applications to be tested;
step S120 of obtaiming test cases for the at least two applica-
tions to be tested and determining resources and execution
times needed by the test cases for the at least two applications
to be tested; and step S130 of according to the compatibility
relationship between the at least two applications to be tested
and the resources and execution times needed by the test cases
for the at least two applications to be tested, clustering the test
cases for the at least two applications to be tested to at least
one VM 1nstance so as to test the test cases for the at least two
applications to be tested on the at least one VM 1instance.

In one embodiment, the compatibility relationship
between the at least two applications to be tested comprises
one ol a hardware compatibility relationship and a software
compatibility relationship.

The hardware compatibility relationship refers to whether
hardware needed by one application to be tested 1s compatible
with hardware needed by another to-be-tested application.

According to one embodiment of the present invention, a
hardware compatibility relationship between two applica-
tions to be tested 1s determined based on whether types of
hardware needed by the two applications to be tested are
identical.

When the types of hardware needed by the two applications
to be tested are 1dentical, 1t 1s determined that the hardware
compatibility relationship between the two applications to be
tested 1s compatible.

When the types of hardware needed by the two applications
to be tested are different, 1t 1s determined that the hardware
compatibility relationship between the two applications to be
tested 1s incompatible.

For example, 11 one application to be tested needs a CPU,
Memory, a Hard Disk, and a Switch, while the other one needs
a CPU, Memory, a Hard Disk, and a Network Card, since
types of hardware needed by the two applications to be tested
are different, it 1s determined that a hardware compatibility
relationship between the two applications to be tested 1s
incompatible.

According to one embodiment of the present invention, a
hardware compatibility relationship between two applica-
tions to be tested may be determined further based on whether
the existence of different types of hardware will affect the
execution of the two applications to be tested or not.

In the event that types of hardware needed by one applica-
tion to be tested differ from types of hardware needed by the
other one, 11 the existence of different types of hardware will

10

15

20

25

30

35

40

45

50

55

60

65

4

not affect the execution of the two applications to be tested, 1t
1s determined that a hardware compatibility relationship
between the two applications to be tested 1s compatible; 1 the
existence of different types of hardware will affect the execu-
tion of the two applications to be tested, it 1s determined that
a hardware compatibility relationship between the two appli-
cations to be tested 1s incompatible.

For example, 11 one application to be tested needs a CPU,
Memory, a Hard Disk, and a Switch, while the other one needs
a CPU, Memory, a Hard Disk, and a Network Card, and 11 the
existence of the Network Card and the Switch will not affect
the execution of these two applications to be tested, 1t 1s
determined that a hardware compatibility relationship
between the two applications to be tested 1s compatible; 1t the
existence of the Network Card and the Switch will atfect the
execution of these two applications to be tested, 1t 1s deter-
mined that a hardware compatibility relationship between the
two applications to be tested 1s incompatible.

Of course, those skilled in the art would appreciate that
there may exist other rules for determining a hardware com-
patibility relationship between two applications to be tested.

For example, 1n one embodiment of the present invention,
a hardware compatibility relationship between two applica-
tions to be tested may be determined further based on whether
specific hardware needed by the two applications to be tested
1s 1dentical.

In the event that types of hardware needed by one applica-
tion to be tested are the same as types of hardware needed by
the other one, 11 specific hardware needed by one application
to be tested 1s the same as specific hardware needed by the
other one, for example, both of the two applications to be
tested need DDR2 (double data rate) Memory, it 1s deter-
mined that a hardware compatibility relationship between
these two applications to be tested 1s compatible; 1f specific
hardware needed by one application to be tested 1s different
from specific hardware needed by the other one, for example,
one application to be tested needs DDR2 Memory while the
other one needs DDR3 Memory, 1t 1s determined that a hard-
ware compatibility relationship between these two applica-
tions to be tested 1s incompatible.

The software compatibility relationship refers to whether
soltware needed by one application to be tested 1s compatible
with software needed by another to-be-tested application.

According to one embodiment of the present invention, a
soltware compatibility relationship between two applications
to be tested 1s determined based on whether types of software
needed by the two applications to be tested are 1dentical.

When the types of software needed by the two applications
to be tested are different, it 1s determined that the software
compatibility relationship between the two applications to be
tested 1s incompatible.

When the types of software needed by the two applications
to be tested are 1dentical, 1t 1s determined that the software
compatibility relationship between the two applications to be
tested 1s compatible.

For example, 1f one application to be tested needs the
following software: Operating System, Web Server, Data-
base, and Compiling Tool; while the other to-be-tested appli-
cation needs the following software: Operating System, Web
Server, Database, and Compiling Tool, it 1s determined that a
soltware compatibility relationship between the two applica-
tions to be tested 1s compatible, since types of software
needed by the two applications to be tested are 1dentical.

In one embodiment of the present invention, a software
compatibility relationship between two applications to be
tested 1s determined further based on whether specific soft-
ware needed by the two applications to be tested 1s 1dentical.

US 8,850,265 B2

S

In the event that types of software needed by one applica-
tion to be tested are the same as types of software needed by
the other one, 11 specific soltware needed by one application
to be tested 1s the same as specific software needed by the
other one, for example, both of the two applications to be
tested need Windows® Operating System, Tomcat® Web
Server, Oracle® Database, and NET® Compiling Tool, it 1s
determined that a software compatibility relationship
between these two applications to be tested 1s compatible. I
specific software needed by one application to be tested 1s
different from specific software needed by the other one, for
example, one application to be tested needs Windows® Oper-
ating System, Tomcat® Web Server, Oracle® Database, and
NET® Compiling Tool, while the other one needs Linux
Operating System, Tomcat® Web Server, Oracle® Database,
and .NET® Compiling Tool, it 1s determined that a software
compatibility relationship between these two applications to
be tested 1s incompatible.

In one embodiment of the present invention, a software
compatibility relationship between two applications to be
tested 1s determined further based on whether versions of
specific software needed by the two applications to be tested
are compatible.

Inthe even that specific software needed by one application
to be tested 1s the same as specific software needed by the
other one, i the version of the specific soltware needed by one
application to be tested 1s compatible with the version of the
specific soltware needed by the other one, 1.e., a higher ver-
sion of the specific software includes functions of a lower
version of the specific software, for example, one application
to be tested needs Windows® 7 Operating System, Tomcat®
7.0 Web Server, Oracle® 10 g Database, and NET® 4 Com-
piling Tool, while the other needs Windows® XP Operating,
System, Tomcat® 7.0 Web Server, Oracle® 10 g Database,
and NET® 4 Compiling Tool, and Windows® 7 Operating
System 1s compatible with Windows® XP Operating System,
1.e., Windows® 7 Operating System includes functions of
Windows® XP Operating System, then it 1s determined that a
soltware compatibility relationship between these two appli-
cations to be tested 1s compatible. I the version of specific
soltware needed by one application to be tested 1s incompat-
ible with the version of specific software needed by the other
one, 1.€., a higher version of specific software does not include
some functions of a lower version of the specific software,
then 1t 1s determined that a software compatibility relation-
ship between these two applications to be tested 1s incompat-
ible.

According to one embodiment of the present invention, a
soltware compatibility relationship between two applications
to be tested 1s determined further based on whether configu-
rations of the two applications to be tested contlict.

Examples of whether configurations of two applications to
be tested contlict comprise whether port number configura-
tions of the two to-be-tested applications contlict.

For example, when both of the two applications to be tested
use a default 8443 port number, a configuration contlict
OCCUrs.

If configurations of two applications to be tested contlict, 1t
1s determined that a software compatibility relationship
between the two applications to be tested 1s incompatible.

If configurations of two applications to be tested do not
contlict, 1t 1s determined that a soitware compatibility rela-
tionship between the two applications to be tested 1s compat-
ible.

In one embodiment of the present invention, a software
compatibility relationship between two applications to be

10

15

20

25

30

35

40

45

50

55

60

65

6

tested 1s determined further based on whether a configuration
of at least one of the two applications to be tested can be

modified.

In the event that configurations of two applications to be
tested conftlict, 11 the configuration of at least one of the two
applications to be tested can be modified, then 1t 1s determined
that a software compatibility relationship between the two
applications to be tested 1s compatible. If the configuration of
neither of the two applications to be tested can be modified, 1t
1s determined that a software compatibility relationship
between the two applications to be tested 1s incompatible.

Of course, those skilled 1n the art would appreciate that
there may exist other rules for determining a software com-
patibility relationship between two applications to be tested.

For example, 1n one embodiment of the present invention,
a soltware compatibility relationship between two applica-
tions to be tested 1s determined further based on whether the
existence of different types of software will affect the execu-
tion of the two applications to be tested or not.

In the event that types of software needed by one applica-
tion to be tested differ from types of software needed by the
other one, 11 the existence of different types of soltware will
not atfect the execution of the two applications to be tested, 1t
1s determined that a software compatibility relationship
between the two applications to be tested 1s compatible. If the
existence of different types of software will affect the execu-
tion of the two applications to be tested, it 1s determined that
a soltware compatibility relationship between the two appli-
cations to be tested 1s incompatible.

In one embodiment of the present invention, a software
compatibility relationship between two applications to be
tested 1s determined further based on whether the existence of
different specific software will atffect the execution of the two
applications to be tested or not.

In the event that specific software needed by one applica-
tion to be tested differ from specific software needed by the
other one, 1 the existence of different specific software will
not affect the execution of the two applications to be tested, 1t
1s determined that a software compatibility relationship
between the two applications to be tested 1s compatible. If the
existence of different specific software will affect the execu-
tion of the two applications to be tested, it 1s determined that
a soltware compatibility relationship between the two appli-
cations to be tested 1s incompatible.

Generally, an application has a document describing its
hardware and software requirements, and the hardware and
soltware requirements may be obtained by reading the docu-
ment with a program.

In addition, whether configurations of each application 1n
accordance with a certain application configuration frame-
work conflict may be determined by analyzing configuration
files of each application.

Compatibility relationships among a plurality of applica-
tions to be tested may be stored 1n an application compatibil-
ity relationship matrix.

There may be two application compatibility relationship

matrices, one of which 1s for hardware and the other of which
1s Tor software.

A hardware compatibility relationship matrix (M™")
records compatibility relationships of each hardware require-
ment 1item between each pair of applications to be tested.

Table 1 shows an example of M*".

US 8,850,265 B2

7
TABLE 1
Al A2 A3
Al X (1, 0) (0, 1)
A2 X (0,0)
A3 X

In this example, there are three applications to be tested Al,
A2, A3, and each of them has two hardware requirement
items. Element (1, 0) of [Al, A2] represents that the first
hardware requirement 1tem of Al and A2 1s compatible but
the second hardware requirement item of A1 and A2 1s incom-
patible. Element (0, 1) of [Al, A3] represents that the first
hardware requirement 1tem of A1 and A3 1s incompatible but
the second hardware requirement 1item of Al and A3 1s com-
patible. Element (0, 0) of [A2, A3] represents that the first
hardware requirement 1tem of A2 and A3 1s incompatible and
the second hardware requirement 1tem of A2 and A3 1s also
incompatible.

A software compatibility relationship matrix (M>
records compatibility relationships of each software require-
ment 1tem between each pair of applications to be tested. As
M=% 1s similar to M™", it is not detailed here.

Returming to step S120, JProfiler® may be used to deter-
mine resources and execution times needed by the test cases
for the at least two applications to be tested in one embodi-
ment.

In one embodiment, resources needed by test cases for
applications to be tested may comprise one or more of CPU,
Memory, and Storage. Of course, those skilled 1n the art
would appreciate that resources needed by test cases for
applications to be tested are not limited to the above three and
may comprise other resources, such as bandwidth, etc.

FIG. 2 schematically 1llustrates determined memory con-
sumption situations of a test case. In FIG. 2, the horizontal
coordinate denotes time, and the vertical coordinate denotes
consumed memory. In FIG. 2, numeral 210 denotes baseline
memory consumption, 1.€., the amount of consumed memory
for running an application without running a test case,
numeral 220 denotes peak memory consumption, and
numeral 230 denotes stable memory consumption.

Those skilled 1n the art would appreciate that the deter-
mined CPU consumption situations and storage space con-
sumption situations of a test case are similar to the memory
consumption situations as described in FIG. 2.

In one embodiment of the present invention, test cases for
at least two applications to be tested may be clustered to at
least one VM 1nstance based on peak resource consumption,
stable resource consumption, or an average thereof.

In one embodiment of the present invention, test cases with
matching needed resources and execution times among test
cases for applications to be tested, whose compatibility rela-
tionship 1s compatible among at least two applications to be
tested, are clustered to at least one VM 1nstance.

Matching mentioned here means that the sum of resources
needed by respective test cases matches resources provided
by a VM stance. For example, the sum of resources needed
by respective test cases 1s equal to or less than resources
provided by a VM instance, and execution times of respective
test cases are equal to or approximate to execution times of
non-matching test cases, so that the utilization of a VM
instance may be improved.

Table 2 shows determined CPU and memory resources and
runtime consumed by test cases T1, T2 of to-be-tested appli-
cationAl, test cases T'1 and T2 of to-be-tested application A2,

")

10

15

20

25

30

35

40

45

50

55

60

65

8

and by baseline of the applications to be tested Al and A2
(1.e., running the applications to be tested A1 and A2 without
running a test case).

TABLE 2
Test
Applications Cases/Basellne CPU (Hz) Memory (Bit) Runtime
Al Baseline 0.5G 05G
T1 0.1G 0.4 G 2 Days
T2 1G 055G 5 Days
A2 Baseline 0.3G 0.6 G
T1 0.3G 1G 4 Days
T2 0.1G 0.15G 2 Days

As shown 1n Table 2, the baseline of the to-be-tested appli-
cation Al consumes 0.5 G of CPU and S00M of Memory; the
test case 11 of the to-be-tested application Al consumes 0.1
G of CPU and 400M of Memory and needs to run for 2 days;
the test case T2 of the to-be-tested application Al consumes 1
G of CPU and S00M of Memory and needs to run for 5 days.
The baseline of the to-be-tested application A2 consumes 0.3
G of CPU and 600M of Memory; the test case T1 of the
to-be-tested application A2 consumes 0.3 Gof CPUand 1 G
of Memory and needs to run for 4 days; the test case 12 of the
to-be-tested application A2 consumes 0.1 G of CPU and
150M of Memory and needs to run for 2 days.

Tables 3A-3C show resources provided by corresponding,
VM 1nstances.

TABLE 3A
Level CPU (Hz) Memory (Bit) Storage (Bit)
Small 1G 1.7G 160 G
Large 4G 7.5G 850 G
XL 8 G 15G 1690 G
TABLE 3B
Level CPU (Hz) Memory (Bit) Storage (Bit)
XL 6.5G 17.1 G 420 G
Dbl XL 13G 342G 850 G
Qud XL 26 G 684 G 1690 G
TABLE 3C
Level CPU (Hz) Memory (Bit) Storage (Bit)
Medium 5@ 1.7G 350G
XL 20@G 7 1690 G

Table 3A 1s aimed at a standard VM 1nstance, Table 3B 1s
aimed at a high-memory VM 1nstance, and Table 3C 1s aimed
at a high-CPU 1nstance.

As shown 1n Table 3A, resources provided by a standard
small VM 1nstance are 1 G CPU, 1.7 G Memory, and 160 G
Storage; resources provided by a standard large VM 1nstance
are 4 G CPU, 7.5 G Memory, and 850 G Storage; resources
provided by a standard extra large VM 1nstance are 8 G CPU,
15 G Memory, and 1690 G Storage.

As shown 1n Table 3B, resources provided by a high-
memory extra large VM 1nstance are 6.5 G CPU, 17.1 G
Memory, and 420 G Storage; resources provided by a high-
memory double extra large VM 1nstance are 13 G CPU, 34.2
G Memory, and 850 G Storage; resources provided by a

US 8,850,265 B2

9

high-memory quadruple extra large VM 1nstance are 26 G
CPU, 68.4 G Memory, and 1690 G Storage.

As shown in Table 3C, resources provided by a high-CPU
medium VM 1nstance are 5 G CPU, 1.7 G Memory, and 350
G Storage; resources provided by a high-CPU extra large VM
istance are 20 G CPU, 7 G Memory, and 1690 G Storage.

Furthermore, suppose that 1t 1s evaluated that both a hard-
ware compatibility relationship and a software compatibility
relationship between the applications to be tested A1 and A2

are compatible.

FI1G. 3 1llustrates a circumstance 1n which test cases for the
applications to be tested Al and A2 are allocated to VM
instances according to the prior art.

In the prior art, test cases for Al are allocated to one VM
instance for 5 days, and test cases for A2 are allocated to
another VM 1nstance for 4 days.

For the to-be-tested application Al, according to Table 2, a
total CPU resource demand1s 0.5 G+0.1 G+1 G=1.6 G, and a
total memory resource demand 1s 0.5 G+0.4 G+0.5 G=1 .4 G;
for the to-be-tested application A2, a total CPU resource
demand 1s 0.3 G+0.3 G+0.1 G=0.7 G, and a total memory
resource demand 15 0.6 G+1 G+0.15 G=1.75 G. Hence, test
cases for the applications to be tested A1 and A2 are allocated
to a standard large VM 1nstance respectively according to
resources provided by VM instances as shown in Tables
3A-3C.

FI1G. 4 1llustrates a circumstance in which test cases for the
applications to be tested Al and A2 are allocated to VM
instances according to embodiments of the present invention.

In one embodiment, according to resources provided by
VM 1nstances as shown 1n Tables 3A-3C, and to resource
consumption and runtime of the test cases T1, T2 of the
to-be-tested application Al, the test cases T1 and T2 of the
to-be-tested application A2, and the baseline of the applica-
tions to be tested A1l and A2 as shown 1n Table 2, as well as
based on the assumption that both a hardware compatibility
relationship and a software compatibility relationship
between the applications to be tested A1 and A2 are compat-
ible, the test case T2 of the to-be-tested application Al and the
test case T'1 of the to-be-tested application A2 are allocated to
the standard large VM instance shown 1n Table 3 A for 5 days,
and the test case T1 of the to-be-tested application Al and the
test case T2 of the to-be-tested application A2 are allocated to
the standard small VM instance shown in Table 3 A for 2 days.

Compared with the prior art of respectively allocating test
cases Tor the applications to be tested Al and A2 to standard
large VM 1nstances for 5 days and 4 days, allocating the test
case 12 of the to-be-tested application Al and the test case T'1
of the to-be-tested application A2 to a standard large VM
instance for 5 days and allocating the test case T1 of the
to-be-tested application Al and the test case T2 of the to-be-
tested application A2 to a standard small VM 1nstance for 2
days according to embodiments of the present invention can
significantly increase the utilization of VM, that 1s, from
occupying two standard large VM 1nstances for 5 days and 4
days to occupying one standard large VM 1nstance for 5 days
and one standard small VM 1nstance for 2 days.

FIG. 5 illustrates a flowchart of a method for processing
test cases for applications to be tested according to another
embodiment of the present invention. Compared with the
method 100 for processing test cases for applications to be
tested according to one embodiment of the present invention
as 1llustrated 1n FI1G. 1, the method 500 further comprises step
S125. At step S125, test cases are grouped based on a certain
rule (e.g., based on function); that is, test cases that perform
the same function are grouped together. In addition, test cases

10

15

20

25

30

35

40

45

50

55

60

65

10

for the applications to be tested are clustered to at least one
VM 1nstance at the test case group granularity at step S130.

For example, regarding an online store, test cases may be
grouped 1nto a user management test case group, a stock
management test case group, a purchase test case group, a pay
test case group, a customer service test case group, a shipping,
test case group, etc. Test cases 1n a test case group are sequen-
tially executed on a VM 1nstance. To this end, resource con-
sumption and execution times of all test cases 1n a test case
group need to be added up to obtain resource consumption
and an execution time of such test case group.

FIG. 6 1llustrates a block diagram of a system for process-
ing test cases for applications to be tested according to one
embodiment of the present invention.

As 1llustrated i FIG. 6, the system 600 comprises: an
evaluator 610 configured to evaluate at least two applications
to be tested to determine a compatibility relationship between
the at least two applications to be tested; a determinator 620
configured to obtain test cases for the at least two applications
to be tested and determine resources and execution times
needed by the test cases for the at least two applications to be
tested; and a clustering device 630 configured to cluster,
according to the compatibility relationship between the at
least two applications to be tested and the resources and
execution times needed by the test cases for the at least two
applications to be tested, the test cases for the at least two
applications to be tested to at least one VM 1nstance so as to
test the test cases for the at least two applications to be tested
on the at least one VM 1instance.

The compatibility relationship between the at least two
applications to be tested comprises one of a hardware com-
patibility relationship and a software compatibility relation-
ship.

The hardware compatibility relationship refers to whether
hardware needed by one application to be tested 1s compatible
with hardware needed by another to-be-tested application.

According to one embodiment of the present invention, the
evaluator 610 determines a hardware compatibility relation-
ship between two applications to be tested based on whether
types of hardware needed by the two applications to be tested
are 1dentical.

When the types of hardware needed by the two applications
to be tested are 1dentical, 1t 1s determined that the hardware
compatibility relationship between the two applications to be
tested 1s compatible.

When the types of hardware needed by the two applications
to be tested are different, 1t 1s determined that the hardware
compatibility relationship between the two applications to be
tested 1s incompatible.

According to one embodiment of the present invention, the
evaluator 610 may further determine a hardware compatibil-
ity relationship between two applications to be tested based
on whether the existence of different types of hardware will
aifect the execution of the two applications to be tested or not.

In the event that types of hardware needed by one applica-
tion to be tested differ from types of hardware needed by the
other one, 11 the existence of different types of hardware will
not affect the execution of the two applications to be tested, 1t
1s determined that a hardware compatibility relationship
between the two applications to be tested 1s compatible. If the
existence of different types of hardware will affect the execu-
tion of the two applications to be tested, it 1s determined that
a hardware compatibility relationship between the two appli-
cations to be tested 1s incompatible.

In one embodiment of the present invention, the evaluator
610 may turther determine a hardware compatibility relation-

US 8,850,265 B2

11

ship between two applications to be tested based on whether
specific hardware needed by the two applications to be tested
1s 1dentical.

In the event that types of hardware needed by one applica-
tion to be tested are the same as types of hardware needed by
the other one, 11 specific hardware needed by one application
to be tested 1s the same as specific hardware needed by the
other one, 1t 1s determined that the hardware compatibility
relationship between these two applications to be tested 1s
compatible. If specific hardware needed by one application to
be tested 1s different from specific hardware needed by the
other one, 1t 1s determined that the hardware compatibility
relationship between these two applications to be tested 1s
incompatible.

The software compatibility relationship refers to whether
software needed by one application to be tested 1s compatible
with software needed by another to-be-tested application.

According to one embodiment of the present invention, the
evaluator 610 determines a software compatibility relation-
ship between two applications to be tested based on whether
types of software needed by the two applications to be tested
are 1dentical.

When the types of software needed by the two applications
to be tested are different, it 1s determined that the software
compatibility relationship between the two applications to be
tested 1s incompatible.

When the types of software needed by the two applications
to be tested are 1dentical, 1t 1s determined that the software
compatibility relationship between the two applications to be
tested 1s compatible.

In one embodiment of the present invention, the evaluator
610 further determines a software compatibility relationship
between two applications to be tested based on whether spe-
cific software needed by the two applications to be tested 1s
identical.

In the event that types of software needed by one applica-
tion to be tested are the same as types of software needed by
the other one, 11 specific software needed by one application
to be tested 1s the same as specific software needed by the
other one, 1t 1s determined that the soitware compatibility
relationship between these two applications to be tested 1s
compatible. I specific software needed by one application to
be tested 1s different from specific software needed by the
other one, 1t 1s determined that the software compatibility
relationship between these two applications to be tested 1s
incompatible.

In one embodiment of the present invention, the evaluator
610 further determines a software compatibility relationship
between two applications to be tested based on whether ver-
s10ms of specific soltware needed by the two applications to be
tested are compatible.

Inthe even that specific software needed by one application
to be tested 1s 1dentical to specific software needed by the
other one, 11 a version of specific software needed by one
application to be tested 1s compatible with a version of spe-
cific software needed by the other one, 1.e., a higher version of
specific software includes functions of a lower version of the
specific software, then it 1s determined that the software com-
patibility relationship between these two applications to be
tested 1s compatible. If a version of specific software needed
by one application to be tested 1s incompatible with a version
of specific software needed by the other one, 1.e., a higher
version of specific software does not include some functions
ol a lower version of the specific software, then 1t 1s deter-
mined that the software compatibility relationship between
these two applications to be tested 1s incompatible.

10

15

20

25

30

35

40

45

50

55

60

65

12

According to one embodiment of the present invention, the
evaluator 610 further determines a software compatibility
relationship between two applications to be tested based on
whether configurations of the two applications to be tested
contlict.

If configurations of two applications to be tested contlict, it
1s determined that the software compatibility relationship
between the two applications to be tested 1s incompatible.

If configurations of two applications to be tested do not
contlict, 1t 1s determined that the software compatibility rela-
tionship between the two applications to be tested 1s compat-

ible.

In one embodiment of the present invention, the evaluator
610 further determines a software compatibility relationship
between two applications to be tested based on whether a
configuration of at least one of the two applications to be
tested can be modified.

In the event that configurations of two applications to be
tested conflict, 11 the configuration of at least one of the two
applications to be tested can be modified, then 1t 1s determined
that the software compatibility relationship between the two
applications to be tested 1s compatible; 1f the configuration of
neither of the two applications to be tested can be modified, 1t
1s determined that the software compatibility relationship
between the two applications to be tested 1s incompatible.

In one embodiment of the present invention, the evaluator
610 further determines a software compatibility relationship
between two applications to be tested based on whether the
existence of diflerent types of software will affect the execu-
tion of the two applications to be tested or not.

In the event that types of software needed by one applica-
tion to be tested difiers from types of soitware needed by the
other one, 11 the existence of different types of software will
not affect the execution of the two applications to be tested, 1t
1s determined that the software compatibility relationship
between the two applications to be tested 1s compatible. If the
existence of diflerent types of software will affect the execu-
tion of the two applications to be tested, 1t 1s determined that
the software compatibility relationship between the two
applications to be tested 1s incompatible.

In one embodiment of the present invention, the evaluator
610 further determines a software compatibility relationship
between two applications to be tested based on whether the
existence of different specific software will affect the execu-
tion of the two applications to be tested or not.

In the event that specific software needed by one applica-
tion to be tested differs from specific software needed by the
other one, 1 the existence of different specific software will
not affect the execution of the two applications to be tested, 1t
1s determined that the software compatibility relationship
between the two applications to be tested 1s compatible. If the
existence of different specific software will affect the execu-
tion of the two applications to be tested, 1t 1s determined that
the software compatibility relationship between the two
applications to be tested 1s incompatible.

Resources needed by each test case of each application to
be tested comprise at least one or more of CPU, Memory, and
Storage.

Of course, those skilled in the art would appreciate that
resources needed by each test case of each application to be
tested are not limited to the above three and may comprise
other resources, such as bandwidth, etc.

In one embodiment of the present invention, the clustering,
device 630 clusters to at least one VM instance test cases with
matching needed resources and execution times among test

US 8,850,265 B2

13

cases for applications to be tested, whose compatibility rela-
tionship 1s compatible among at least two applications to be
tested.

Matching mentioned here means that the sum of resources
needed by respective test cases matches resources provided
by a VM stance. For example, the sum of resources needed
by respective test cases 1s equal to or less than resources
provided by a VM instance, and execution times of respective
test cases are equal to or approximate to execution times of
non-matching test cases, so that the utilization of a VM
instance may be improved.

FI1G. 7 illustrates a block diagram of a system for process-
ing test cases for applications to be tested according to
another embodiment of the present invention. Compared with
the system 600 for processing test cases for applications to be
tested according to one embodiment of the present invention
as illustrated i FIG. 6, the system 700 further comprises a
grouping device 625. The grouping device 623 groups test
cases based on a certain rule (e.g., based on function), 1.e.,
grouping together test cases that perform the same function.
In addition, the clustering device 630 clusters test cases for
the applications to be tested to one or more VM 1nstances at
the test case group granularity.

Embodiments of the present mmvention may be imple-
mented 1n a Cloud environment. However, 1t 1s to be under-
stood that although this disclosure includes a detailed
description on cloud computing, implementation of the tech-
nical solutions recited herein are not limited to a cloud com-
puting environment. Rather, embodiments of the present
invention are capable of being implemented in conjunction
with any other type of computing environment now known or
later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
1idly provisioned and released with minimal management
elfort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: cloud computing capabilities are
available over a network and accessed through standard
mechanisms that promote use of cloud by heterogeneous thin
or thick client platforms (e.g., mobile phones, laptops, and
PDASs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense of location independence 1n that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specity location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: computing resources can be rapidly and
clastically provisioned, 1 some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To
the consumer, the computing resources available for provi-
sioning often appear to be unlimited and can be obtained 1n
any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability

10

15

20

25

30

35

40

45

50

55

60

65

14

at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer 1s to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer 1s to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer 1s able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure 1s operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or olf-premises.

Community cloud: the cloud infrastructure 1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or oil-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrnd cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting traffic sharing technology for
load-balancing between clouds).

A cloud computing environment 1s service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing 1s an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 8, a schematic of an example of a
cloud computing node 1s shown. Cloud computing node 800
1s only one example of a suitable cloud computing node and
1s not intended to suggest any limitation as to the scope of use
or functionality of embodiments of the mvention described
herein. Regardless, cloud computing node 800 1s capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 800, there 1s a computer system/
server 812, which 1s operational with numerous other general

US 8,850,265 B2

15

purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 812 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicom-
puter systems, mainirame computer systems, and distributed
cloud computing environments that include any of the above
systems or devices, and the like.

Computer system/server 812 may be described 1n the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 812 may be
practiced in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located 1n both local and remote computer system storage
media including memory storage devices.

As shown 1n FIG. 8, computer system/server 812 1n cloud
computing node 800 1s shown in the form of a general-pur-
pose computing device. The components of computer sys-
tem/server 812 may include, but are not limited to, one or
more processors or processing units 816, a system memory
828, and a bus 818 that couples various system components
including system memory 828 and processing units 816.

Bus 818 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
a peripheral bus, an accelerated graphics port, and a processor
or local bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 812 typically includes a variety of
computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
812, and 1t includes both volatile and non-volatile media,
removable and non-removable media.

System memory 828 can include computer system read-
able media 1n the form of volatile memory, such as random
access memory (RAM) 830 and/or cache memory 832. Com-
puter system/server 812 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, storage system 834 can
be provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a “hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each drive can be con-
nected to bus 818 by one or more data media interfaces. As
will be further depicted and described below, memory 828
may include at least one program producthaving a set (e.g., at
least one) of program modules that are configured to carry out
the functions of embodiments of the invention.

Program/utility 840, having a set (at least one) of program
modules 842, may be stored 1n memory 828, such program
modules 842 are by way of example, but not limited to, an

10

15

20

25

30

35

40

45

50

55

60

65

16

operating system, one or more application programs, other
program modules, and program data. Each of the operating
system, one or more application programs, other program
modules, and program data or some combination thereof,
may include an implementation of a networking environ-
ment. Program modules 842 generally carry out the functions
and/or methodologies of embodiments of the ivention as
described herein.

Computer system/server 812 may also communicate with
one or more external devices 814 such as a keyboard, a
pointing device, a display 824, etc.; one or more devices that
cnable a user to interact with computer system/server 812;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 812 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/O) interfaces 822. Still yet, com-
puter system/server 812 can communicate with one or more
networks such as a local area network (LAN), a wide area
network (WAN), and/or a public network (e.g., the Internet)
via network adapter 820. As depicted, network adapter 820
communicates with the other components of computer sys-
tem/server 812 via bus 818. It should be understood that
although not shown, other hardware and/or software modules
could be used 1n conjunction with computer system/server
812. Examples, include, but are not limited to: microcode,
device drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, €etc.

Retferring now to FI1G. 9, 1llustrative cloud computing envi-
ronment 900 1s depicted. As shown, cloud computing envi-
ronment 900 comprises one or more cloud computing nodes
800 with which local computing devices used by cloud con-
sumers, such as, for example, personal digital assistant (PDA)
or cellular telephone 954 A, desktop computer 954B, laptop
computer 954C, and/or automobile computer system 954N
may communicate. Nodes 800 may communicate with one
another. Nodes 800 may be grouped (not shown) physically
or virtually, 1n one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove, or
a combination thereol. This allows cloud computing environ-
ment 900 to offer infrastructure, platforms and/or software as
services for which a cloud consumer can request without the
need to maintain resources on a local computing device. It 1s
understood that the types of computing devices 954 A-N
shown 1n FIG. 9 are intended to be illustrative only and that
computing nodes 800 and cloud computing environment 900
can communicate with any type of computerized device over
any type ol network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 10, a set of functional abstraction
layers provided by cloud computing environment 900 (FIG.
9) 1s shown. It should be understood 1n advance that the
components, layers, and functions shown i FIG. 10 are
intended to be 1llustrative only and embodiments of the mnven-
tion are not limited thereto. As depicted, the following layers
and corresponding functions are provided:

Hardware and software layer 1060 includes hardware and
soltware components. Examples of hardware components
include mainframes, 1 one example IBM®
zSeries®systems; RISC (Reduced Instruction Set Computer)
architecture based servers, in one example IBM® pSeries®
systems; IBM® xSeries® systems; IBM® BladeCenter®
systems; storage devices; networks and networking compo-
nents. Examples of software components include network
application server soltware, 1n one example IBM® Web-
Sphere® application server software; and database software,

in one example IBM® DB2® database software. (IBM,

US 8,850,265 B2

17

zSeries, pSeries, XSeries, BladeCenter, WebSphere, and DB2
are trademarks of International Business Machines Corpora-
tion registered 1n many jurisdictions worldwide).

Virtualization layer 1062 provides an abstraction layer
from which the following examples of virtual entities may be
provided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 1064 may provide the
functions described below: Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment (including the application testing of
the present invention); Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or mvoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that needed service levels are met. Service Level Agreement
(SLA) planning and fulfillment provides pre-arrangement
for, and procurement of, cloud computing resources for
which a future requirement 1s anticipated 1n accordance with
an SLA.

Workloads layer 1066 provides examples of functionality
tor which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; solftware
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and mobile desktop, etc.

It should be noted that to facilitate easier understanding of
the present invention, the foregoing description omits some
more detailed technical details that are well known to those
skilled 1n the art and might be indispensable to the implemen-
tation of the present invention.

Those skilled 1n the art would further appreciate that the
present invention 1s not limited to the steps described above
but also includes a combination of the above-described steps,
rearrangements of the sequence, etc. The ultimate scope of
the present invention 1s defined by the appended claims.

The specification of the present mvention has been pre-
sented for purposes of illustration and description, and 1s not
intended to be exhaustive or to limit the invention to the form
as disclosed. Many modifications and variations will be
apparent to those of ordinary skill 1n the art. Those skilled 1n
the art would further appreciate that the method and means in
embodiments of the present invention may be implemented as
software, hardware, firmware, or a combination thereof. In a
preferred embodiment, the present invention 1s implemented
as software, imncluding but not limited to, firmware, resident
soltware, micro-code, etc. The present mvention may be
implemented as a computer program product, which contains
program code stored on a computer-readable medium and
performing, when executed by a computer, the method
described 1n embodiments of the present invention. For the
purpose ol description, a computer-usable or computer-read-
able medium may be any tangible means that can contain,
store, communicate, propagate, or transport the program for
use by or 1n connection with an instruction execution system,
apparatus, or device.

The medium may be an electric, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or, appara-

10

15

20

25

30

35

40

45

50

55

60

65

18

tus or device), or propagation medium. Examples of the com-
puter-readable medium would include the following: a
semiconductor or solid state storage device, a magnetic tape,
a portable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a hard disk, and an
optical disk. Examples of current optical disk include a com-
pact disk read-only memory (CD-ROM), compact disk-read/
write (CR-R/W), and DVD.

Theretfore, the embodiments were chosen and described 1in
order to best explain the principles of the mnvention and the
practical application thereot, and to enable others of ordinary
skill 1n the art to understand that all modifications and alter-
ations made without departing from the spirit of the present
invention fall mto the protection scope of the present mven-
tion as defined 1n the appended claims.

What 1s claimed 1s:

1. A method of processing test cases for applications to be
tested, the method comprising:

evaluating at least two applications to be tested to deter-

mine a compatibility relationship between the at least
two applications to be tested;

obtaining test cases for the at least two applications to be

tested and determining resources and execution times
needed by the test cases for the at least two applications
to be tested; and

according to the compatibility relationship between the at

least two applications to be tested, and the resources and
execution times needed by the test cases for the at least
two applications to be tested, clustering the test cases for
the at least two applications to be tested to at least one
virtual machine instance to process the test cases for the
at least two applications to be tested on the at least one
virtual machine 1nstance.

2. The method according to claim 1, wherein the compat-
ibility relationship between the at least two applications to be
tested comprises at least one of a hardware compatibility
relationship and a software compatibility relationship.

3. The method according to claim 2, wherein the hardware
compatibility relationship between the two applications to be
tested 1s determined based on whether types of hardware
needed by the two applications to be tested are 1dentical.

4. The method according to claim 2, wherein the software
compatibility relationship between the two applications to be
tested 1s determined based on whether types of software
needed by the two applications to be tested are 1dentical.

5. The method according to claim 4, wherein the software
compatibility relationship between the two applications to be
tested 1s determined further based on whether specific soft-
ware needed by the two applications to be tested 1s 1dentical.

6. The method according to claim 3, wherein the software
compatibility relationship between the two applications to be
tested 1s determined further based on whether versions of
specific soltware needed by the two applications to be tested
are compatible.

7. The method according to claim 6, wherein the software
compatibility relationship between the two applications to be
tested 1s determined further based on whether configurations
of the two applications to be tested contlict.

8. The method according to claim 7, wherein the software
compatibility relationship between the two applications to be
tested 1s determined further based on whether a configuration
of at least one of the two applications to be tested 1s modifi-
able.

9. The method according to claim 1, further comprising
grouping the test cases for the at least two applications to be
tested based on a certain rule, and wherein the clustering the
test cases for the at least two applications to be tested to at

US 8,850,265 B2

19

least one virtual machine instance comprises clustering the
test cases for the at least two applications to be tested to at
least one virtual machine instance at a granularity of the test
case group.

10. The method according to claim 1, wherein test cases
with matching needed resources and execution times among,
test cases for applications to be tested, whose compatibility
relationship 1s compatible among the at least two applications
to be tested, are clustered to the at least one virtual machine

instance.
11. A system for processing test cases for applications to be
tested, the system comprising:
an evaluator configured to evaluate, using a processor, at
least two applications to be tested to determine a com-

patibility relationship between the at least two applica-
tions to be tested;

a determinator configured to obtain test cases for the at
least two applications to be tested and determine
resources and execution times needed by the test cases
for the at least two applications to be tested; and

a clustering device configured to, according to the compat-
ibility relationship between the at least two applications
to be tested, and the resources and execution times
needed by the test cases for the at least two applications
to be tested, cluster the test cases for the at least two
applications to be tested to at least one virtual machine
instance to test process the test cases for the at least two
applications to be tested on the at least one virtual
machine instance.

12. The system according to claim 11, wherein the com-
patibility relationship between the at least two applications to
be tested comprises at least one of a hardware compatibility
relationship and a software compatibility relationship.

13. The system according to claim 12, wherein the evalu-
ator determines the hardware compatibility relationship
between the two applications to be tested based on whether
types of hardware needed by the two applications to be tested
are 1dentical.

14. The system according to claim 12, wherein the evalu-
ator determines the software compatibility relationship
between the two applications to be tested based on whether
types of software needed by the two applications to be tested
are 1dentical.

15. The system according to claim 14, wherein the evalu-
ator further determines the solftware compatibility relation-
ship between the two applications to be tested based on
whether specific software needed by the two applications to
be tested 1s 1dentical.

10

15

20

25

30

35

40

45

20

16. The system according to claim 15, wherein the evalu-
ator further determines the soitware compatibility relation-
ship between the two applications to be tested based on
whether versions of specific software needed by the two
applications to be tested are compatible.

17. The system according to claim 16, wherein the evalu-
ator further determines the soitware compatibility relation-
ship between the two applications to be tested based on
whether configurations of the two applications to be tested
contlict.

18. The system according to claim 17, wherein the evalu-
ator further determines the soitware compatibility relation-
ship between the two applications to be tested based on
whether a configuration of at least one of the two applications
to be tested can be modified.

19. The system according to claim 11, further comprising;:

a grouping device configured to group the test cases for the

at least two applications to be tested based on a certain
rule, and wherein the clustering device clusters the test
cases for the at least two applications to be tested to at
least one virtual machine instance at a granularity of the
test case group.

20. The system according to claim 11, wherein the cluster-
ing device clusters to the at least one virtual machine instance
test cases with matching needed resources and execution
times among test cases for applications to be tested, whose
compatibility relationship 1s compatible among the at least
two applications to be tested.

21. A non-transitory computer readable storage medium
comprising a computer readable program for processing test
cases for applications to be tested, wherein the computer
readable program when executed on a computer causes the
computer to perform the steps of:

cvaluating at least two applications to be tested to deter-

mine a compatibility relationship between the at least
two applications to be tested;

obtaining test cases for the at least two applications to be

tested and determining resources and execution times
needed by the test cases for the at least two applications
to be tested; and

according to the compatibility relationship between the at

least two applications to be tested, and the resources and
execution times needed by the test cases for the at least
two applications to be tested, clustering the test cases for
the at least two applications to be tested to at least one
virtual machine instance to process the test cases for the
at least two applications to be tested on the at least one
virtual machine 1nstance.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

