12 United States Patent

Rishel et al.

US008849749B2

US 8,849,749 B2
Sep. 30, 2014

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)

(58)

LOAD BALANCING IN PARALLEL
DATABASE SYSTEMS USING
MULTI-REORDERING

William S. Rishel, Sunnyvale, CA (US);
Ryder B. Rishel, Mountain View, CA
(US); Derek A. Taylor, San Jose, CA
(US)

Inventors:

Assignee: Oracle International Corporation,

Redwood Shores, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 98 days.

Notice:

Appl. No.: 12/860,782

Filed: Aug. 20, 2010
Prior Publication Data
US 2011/0282832 Al Nov. 17, 2011

Related U.S. Application Data

Provisional application No. 61/334,693, filed on May
14, 2010.

Int. Cl.

GoOol 17/30 (2006.01)

GOoF 9/50 (2006.01)

U.S. CL

CPC GO6L 9/5083 (2013.01); GO6I' 17/30283
(2013.01); GO6F 17/30445 (2013.01)

LS PO e e 707/609

Field of Classification Search

None

See application file for complete search history.

100
N

101a 101b

DB DB
NODE NODE

(56) References Cited

U.S. PATENT DOCUMENTS

5,970,495 A * 10/1999 Baruetal.coceeviininnnn, 1/1

7,657,581 B2* 2/2010 Orenstein et al. 707/661

2006/0111110 A1* 5/2006 Schwarzetal. ... 455/439

2006/0241968 Al* 10/2006 Hollebeekcooeonn. 705/2

2007/0271570 Al* 112007 Brownetal. ... 718/105

2011/0246434 Al* 10/2011 Cheenathetal. 707/703
OTHER PUBLICATIONS

Ganesan et al., Online Balancing of Range-Partitioned Data With
Application to Peer-to-Peer Systems, Proceedings of the 30th VLDB

Conference, Toronto, Canada, 2004.

Scheurmann et al., “Data Partitioning and LLoad Balancing in Parallel
Disk System”, dated 1998, vol. 7, No. 1, 19 pages.

Vingralek et al., “SNOWBALL: Scalable Storage on Networks of
Workstations with Balanced L.oad”, vol. 6, No. 2, dated 1998, 39

pages.
Rao K. et al., “Load Balancing in Structured P2P Systems”, Interna-
tional Workshop on Peer-to-Peer Systems, dated 2003.

* cited by examiner

Primary Examiner — Bai1 D. Vu

(74) Attorney, Agent, or Firm — Hickman Palermo Truong
Becker Bingham Wong LLP

(57) ABSTRACT

Load balancing 1n a parallel database system 1s performed
using multi-reordering, 1n which a sequence of multiple pro-
cessors (two, three, or more) that have small average load (for
example, the smallest of any such sequence) 1s selected to
participate 1n load balancing. In the case of three adjacent
low-load processors, the load of all three 1s evenly distributed
over two of them, and the remaining processor becomes a free
processor. The free processor 1s moved adjacent to a high-
load processor, the load of which 1s then shared with the free
processor. Data 1s moved 1n a “transaction” so that the view of
data 1s always consistent. The database continues to service
requests Irom a former location while data undergoes a trans-
fer.

33 Claims, 6 Drawing Sheets

/-115n

MEMORY

119n M7n

CO-PROC.
(OPTIONAL)

DB [_~101n
vos NODE

103

U.S. Patent Sep. 30, 2014 Sheet 1 of 6 US 8,849,749 B2

115n

MEMORY

CO-PROC.

190 \ (OPTIONAL)

101a 101b RN e

DB DB DB 101n
NODE NODE eeos NODE

103

FIG. 1

U.S. Patent Sep. 30, 2014 Sheet 2 of 6 US 8,849,749 B2

Traditional Sharding

Address Address Address Address
Space k-1

INngexes, Indexes, Indexes, Indexes,
strings, strings, strings, strings,
Tx states, Ix states, Ix states, Ix states,
schema schema schema schema
catalog catalog catalog catalog

FIG. 2

U.S. Patent Sep. 30, 2014 Sheet 3 of 6 US 8,849,749 B2

GBG Operations

Va¥a¥%

NbrAdjust involving
partitions A and B

{
%
o

o
®
<
X
*

W W

X
X

2:2 ,
2%
Qb
XK
Y%

:I

3
XK
5
RS
02028
IRK
RS
2%

%
>

il

‘v

X
3»
8
S
X/

&

v,

K
%
>
<
'S
!
b

2
% P
9 4
9. 9. 9. &
99,904
RS

SIS
0.0.20. 94
S
1% % %%

FIG. 3B RS
R

Recorder involving
partitions A and C

U.S. Patent Sep. 30, 2014 Sheet 4 of 6 US 8,849,749 B2

Multi-Recorder Operation as Sequential Steps*

FIG. 4A

FIG. 4B

2020002020, HRHKKS
120 %0 % Yo X 0202 %%
002050205 Se%e% %%
be Y02 %% Yo% %%
EKHKRKK og0l030%%
1% 0% % 9000098

G Ol

(|e1o] Z@1) 108$982014
081 091 0vl 0C1 001 08

US 8,849,749 B2

09

Sheet Sof 6

Sep. 30, 2014

U.S. Patent

2g0|5) ———
g9 —-—-—
}snipy oN

000¢

00G¢E

0007

0057

1088982014 1ad peo a|dny

U.S. Patent Sep. 30, 2014 Sheet 6 of 6 US 8,849,749 B2

FIG. 6

US 8,849,749 B2

1

LOAD BALANCING IN PARALLEL
DATABASE SYSTEMS USING
MULTI-REORDERING

RELATED APPLICATIONS

This application claims the benefit of U.S. Application No.
61/334,693 entitled “Data Skew Management 1n DataScaler,”
filed May 14, 2010, incorporated herein by reference.

BACKGROUND

The present imnvention relates to load balancing in parallel
database systems.

Parallel database systems are known. Referring to FIG. 1,
a block diagram 1s shown of a portion of an exemplary data-
base system 100. The database system 100 shown 1s a parallel
database system having multiple database nodes 101a-101#
coupled to a communication medium 103 such as a bus,
backplane, network segment, etc.

A database node 1017 i1s illustrated 1n further detail. A
database processor 111z 1s coupled via a bus 112z to an
optional database co-processor 113#%. Both the database pro-
cessor 1117 and the optional database co-processor 113 are
coupled to memory 11357 via buses 117x, 1197, and may be
coupled to the same memory or to different memories. This
parallel database configuration 1s merely exemplary of vari-
ous confligurations may be used to implement a database node
ol a parallel database system.

Parallel database systems allow for parallelization. FIG. 2
shows parallelization using traditional (explicit) shards, as 1s
known 1n the art. With traditional shards, the database data
and the associated management data (including indexes,
strings, transaction state and schema catalog) are distributed
across some number of address spaces (20), shown as in FIG.
2 as k address spaces. Within each address space 1s a subset of
the database data (shown as data 0 through data k-1), as well
as the associated indexes, strings, transaction states and
schema catalog (22). Such parallelization may significantly
improve search time.

In a parallel database system such as those of FIG. 1 and
FIG. 2, data partitioning 1s often employed wherein tuples are
partitioned according to a key value with different nodes
being assigned tuples having key values within different
assigned ranges or assigning tuples to nodes based on a hash
of their key values. When the database 1s deployed using data
partitioning, the number of tuples stored will ideally be bal-
anced between the database nodes. In the course of database
operation, the number of tuples stored may become unbal-
anced between database nodes. Such imbalance is referred to
as data skew.

In parallel database systems data skew and execution skew
are two well known obstacles to optimal performance of
parallel database operations. Data skew occurs when tuples
are unevenly distributed across the nodes of a database which
can cause aggregate queries to perform only as good as the
highest loaded node. Execution skew occurs when a query
operation 1s imbalanced as 1t selects tuples from the nodes of
a database. The present application addresses the problem of
mimmizing data skew on a parallel system where tuples are
partitioned across the nodes according to a range partition
scheme. The approach described herein 1s a system for moni-
toring and rebalancing data across the nodes so as to achieve
an even distribution.

The context of the load balancing model described herein
will be assumed to apply to shared-nothing parallel database
architectures that partition data across nodes according to a

10

15

20

25

30

35

40

45

50

55

60

65

2

range partitioning scheme. The goal of a load balancing archi-
tecture 1s to evenly distribute data across all the nodes of a
database so that aggregate queries are executed with low
response times. While the present application describes an
approach for eliminating data skew, one could apply the same
techniques to minimize execution skew.

PRIOR ART REFERENCES

1. P. Ganesan, M. Bawa, and H. Garcia-Molina, Online Bal-

ancing of Range-Partitioned Data with Applications to
Peer-to-Peer Systems, Proceedings of International Con-
ference on Very Large Data Bases (VLDB), pages 444-

455, August 2004.

2. R. Vingralek, Y. Breitbart and G. Weikum, SNOWBALL:
Scalable Storage on Networks of Workstations with Bal-
anced L.oad, Distributed and Parallel Databases vol 6, no 2,
1998, pp. 117-156.

3. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp and I.

Stoica, Load Balancing in Structured P2P Systems, Inter-

national Workshop on Peer-to-Peer Systems, 2003.

4. P. Schevermann, GG. Weikum and P. Zabback, Data Parti-
tioning and Load Balancing in Parallel Disk Systems,
VLDB Journal vol 7, no 1, 1998, pp. 48-66.

The foregoing references are believed to be illustrative of
the state of the art. Various load balancing procedures have
been proposed to counter data skew. Many approaches are
targeted towards peer-to-peer systems which make use of
distributed hash tables (DHT) to address data [3], employ the
use of file striping to dynamically balance data across disks in
a shared-disk database [4], and take steps to minimize data
migration thrashing [2].

The load balancing approaches of greatest interest for pur-
poses of the present description are those which make use of
range partitioning in a shared-nothing parallel database. The
load balancing approach described by Ganesan, et al [1], 1s
referred to herein as the GBG procedure.

The GBG procedure relies on two principal operations to
perform load balancing, a nbrAdjust operation and a reorder
operation. In the nbrAdjust operation, illustrated 1n FIG. 3 A,
tuples are moved from a heavily-loaded node to a logically
adjacent more lightly-loaded node. Adjacency means that the
data partitions or record ranges assigned to the nodes are
adjacent. In the reorder operation, illustrated in FIG. 3B, a
lightly-loaded node 1s emptied by transferring its tuples to a
selected adjacent node, and the resulting empty node 1s logi-
cally moved so as to be adjacent to a more heavily-loaded
node. The load of the heavily loaded node 1s then split with its
new empty neighbor node. In brief, a node 1s “freed up” by
transierring its node load to its logically adjacent neighbors
(within the partition scheme) and then reassigning the “free”
node to be logically adjacent to the heavily loaded node so the
load can be redistributed between the overloaded node and
the freed node.

The GBG Procedure 1s performed in conjunction with
tuple 1nserts and tuple deletes. When a node’s load increases
beyond a threshold 1t attempts to perform a nbrAdjust opera-
tion with a lightly-loaded neighbor. If both neighbors have
high load, 1t attempts a global reorder operation with the
globally least-loaded node. I1 neither nbrAdjust nor reorder
can be performed successiully, then the system load 1s con-
sidered to be balanced. In the case of deletions, when a node’s
load drops below a threshold, it attempts to perform nbrAd-
just to relieve a neighbor. IT its neighbors do notrequire relief,
then 1t attempts to perform global reorder to relieve the high-
est-loaded node 1n the system.

US 8,849,749 B2

3

Despite the contributions of the GBG Procedure more
advantageous methods of load balancing are desired. Limita-
tions of the GBG Procedure include: (1) It uses the ratio of the
highest load and the smallest load for a measure of data
imbalance and its procedure seeks to minimize that ratio.
However such a ratio 1s not a suitable imbalance measure. (2)
The GBG procedure can lead to load balance thrashing,
where a neighbor node receving tuples due to rebalancing,
quickly passes a threshold and 1tself needs to be rebalanced
again. (3) Balancing operations are tightly coupled with the
database operations that trigger them. This means that bal-
ancing operations are not performed 1n parallel and therefore
Increase query response time.

SUMMARY

A load balancing procedure (hereatter called the Global
Balance procedure) 1s described that overcomes disadvan-
tages of the prior art 1n multiple respects. The overhead bur-
den of load balancing operations 1s dramatically reduced
while the balanced distribution states attained are markedly
superior to those of the prior art approaches. In addition there
1s remarkable consistency 1n the degree of load distribution
attained regardless of prior skew state. These and other impor-
tant improvements in load balancing performed per the Glo-
bal Balance procedure are described below. The goal of the
(Global Balance procedure 1s to enable the execution of global
aggregate queries, which require access to data on all nodes,
with low query response times.

DRAWING FIGURES

FIG. 1 1s a diagram of a portion of a parallel database
system

FI1G. 2 1s another diagram of a portion of a parallel database
system.

FIG. 3 including FIG. 3A and FIG. 3B i1s a diagram 1llus-
trating a known nbrAdjust operation and a known reorder
operation.

FI1G. 4 including FIG. 4A, FIG. 4B, FIG. 4C and FIG. 4D
1s a diagram 1illustrating a multi-reorder operation.

FI1G. 5 1s a diagram illustrating load balancing performance

FI1G. 6 1s a diagram 1llustrating the concurrent nature of the
(lobal Balance procedure.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
specific nomenclature may be set forth to provide a thorough
understanding of the various inventive concepts disclosed
herein. However, it will be apparent to one skilled in the art
that these specific details are not required 1n order to practice
the various mventive concepts disclosed herein.

Some portions of the detailed descriptions that follow may
be presented 1n terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
cifectively convey the substance of their work to others
skilled 1n the art. An procedure 1s here, and generally, con-
ceived to be a self-consistent sequence of serial and parallel
steps leading to a desired result. The steps are those requiring
manipulations of physical quantities.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as

10

15

20

25

30

35

40

45

50

55

60

65

4

apparent {from the following discussion, it 1s appreciated that
throughout the description, discussions utilizing terms such
as “processing’ or “computing’ or “calculating” or “deter-
mining” or “displaying™ or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories mto other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to apparatus for perform-
ing the operations herein. This apparatus may be specifically
constructed for the required purposes, or it may comprise a
general-purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (“ROMs”), random
access memories (“RAMs”), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
clectronic instructions, and each coupled to a computer sys-
tem bus.

The algorithms, processes, and methods presented herein
are not inherently related or restricted to any particular com-
puter or other apparatus. Various general-purpose systems
may be used with programs in accordance with the teachings
herein, or 1t may prove convenient to construct more special-
1zed apparatus to perform the required method steps. The
required structure for a variety of these systems will appear
from the description below. In addition, the present invention
1s not described with reference to any particular programming
language. It will be appreciated that a variety of programming
languages may be used to implement the teachings of the
invention as described herein.

DEFINITIONS

As used herein, a “relation” 1s either a database table or
index. A relation’s tuples are either the rows from a table or
the entries 1n an 1ndex.

A “partition node” 1s a node which 1s associated with a
unique partition boundary for a given relation. As used herein,
“node” refers to a partition node.

A “range partition scheme” 1s a method for distributing
relation tuples across a set of partition nodes using a sortable
attribute of a relation (the range attribute) to define partition
boundaries within the range, one partition for each node.
Tuples with a range attribute value that maps to the sub-range
ol a partition node are assigned to that node.

For a given relation and node, the “node load™ 1s the num-
ber of tuples of the relation that are stored on the node.

The “node load threshold” i1s the minimum node load
required before a node 1s considered for balancing.

For a relation R and the set P of nodes with a node load
greater than the mean system load and where p 1s the mean
system load, p, 1s a node 1n set P, and load(p,) 1s the load of
node p,, then the “system skew” 1s given by:

system skewz\/EF (load(p;)-1)*

The resulting value for system skew 1s a measure of the
degree to which the above-average loads collectively deviate
from the mean system load.

In order to determine whether a given system skew 1s
suificiently high to trigger a load balance operation a “system
skew threshold™ 1s defined as a percentage of the maximum

US 8,849,749 B2

S

capacity of a node. For example, if the node’s maximum
capacity 1s 10 million tuples and the system skew threshold 1s
20% then the system skew must be greater than or equal to 2
million before a load balancing operation will be triggered.

A “load balance operation™ alters defined partition bound-
aries and moves tuples between nodes according to the new
boundaries with the eflect of reducing the system skew for
highly loaded nodes.

The “load balance overhead™ 1s an estimate of the use of
system resources, including CPU, memory, and network
bandwidth that would be required to fulfill the load balance
operation which would otherwise be used for normal data-
base operations. The cost 1s determined by the number of
tuples that must move to a free node.

Features of the Global Balance Procedure

The following are salient features of the Global Balance
procedure as described herein:
Concurrent Operation

The Global Balance procedure 1s 1tself a parallel database
operation. The movement of data makes use of normal data-
base facilities and does not require that other operations are
blocked while data 1s moved. A load balance operation 1s
performed as a transaction and its effects are not visible to
other concurrent transactions until all of 1ts tuples have been
moved, the partition boundaries have been updated, and the
transaction has committed. Read requests for tuples that are
being moved to a new location are serviced from existing
versions residing at the old location. Write requests for tuples
that are being moved either abort, wait, or are forwarded to the
new location and are applied as part of the rebalance transac-
tion. One way forwarding 1s accomplished 1s through the use
of predicate locks. Once the partition boundaries have been
updated all reads and writes for the moved tuples are directed
at the new location.

Multiple Dimensions of Parallelism

The Global Balance procedure takes maximal advantage of
multiple nodes through parallel operation. The degree of par-
allelism 1increases as the number of nodes 1n the system
Increases.

Balancing operations occur for each relation indepen-
dently. Balance operations that occur on different relations do
not conflict and can be executed in parallel. Multiple inde-
pendent balance operations can occur on the same relation so
long as no two balance operations have any node in common
Data movement within a single balance operation occurs
across all affected nodes 1n parallel. These various dimen-
s1ons of parallelism may be observed with reference to FI1G. 6.
FIG. 6 1llustrates two relations, R and S, distributed across
various nodes of a database system. The relation S 1s distrib-
uted across nodes that include nodes B, C, D, and GG as well as
other nodes not shown. A portion of the relation S stored on
node B 1s designated as S ;. Portions of the relation S stored on
other nodes are designated in like fashion. The relation R 1s
distributed across nodes that include nodes A, B, C, E, F, G, J,
and P as well as other nodes not shown. A portion of the
relation R stored on node A 1s designated as R ,. Portions of
the relation R stored on other nodes are designated 1n like
fashion. In the example shown, nodes B, C and G store por-
tions of both relation S and relation R.

At an instant of time illustrated in FIG. 6, three rebalancing
operations are 1n progress. A {irst rebalancing operation
involves shifting load between S, S, and S, to allow a
portion of S, to be oftloaded to S,. A second rebalancing
operation involves shifting load between R ,, R; and R~ to
allow a portion of R, to be offloaded to R . A third rebalanc-
ing operation involves shifting load between R ., R~and R ; to
allow a portion of R ; to be offloaded to R . The second and

10

15

20

25

30

35

40

45

50

55

60

65

6

third rebalance operations are concurrent on relation R. Con-
current operations on the same relation are supported so long
as the participating nodes for each operation are mutually
exclusive. The rebalance operation on relation S does not
interfere with the concurrent rebalance operations for relation
R on common nodes B, C and G.

During the rebalancing operations, database clients (not
shown) may make database requests (e.g., insert, add, delete
requests) without those requests being blocked (request and
rebalancing concurrency). This concurrency may be achieved
as previously described. That 1s, a load balance operation 1s
performed as a transaction and its effects are not visible to
other concurrent transactions until all of 1ts tuples have been
moved, the partition boundaries have been updated, and the
transaction has committed. Read requests for tuples that are
being moved to a new location are serviced from existing
versions residing at the old location. Write requests for tuples
that are being moved are forwarded to the new location and
are applied as part of the rebalance transaction. One way
forwarding may be accomplished 1s through the use of predi-
cate locks. Once the partition boundaries have been updated
all reads and writes for the moved tuples are directed at the
new location.

Use of Idle Cycles

Data partitioning inherently means that there will always
be some 1mbalance 1n data distribution across nodes. Hence
there will always be some set of nodes which complete earlier
than other nodes during a parallel query because they have
fewer tuples to process. A significant advantage to the Global
Balance procedure 1s that 1t utilizes the cycles made available
by the early completion of a parallel query.

System Skew

The key factor affecting performance of queries 1n a par-
allel database 1s the node with the largest workload. Just as a
chain 1s only as strong as 1ts weakest link, a parallel query
execution 1s only as fast as 1ts slowest node. Therefore the
factor to be minimized 1s the size of the largest load. Since: a)
the largest load 1s what determines performance, and b) theo-
retical optimal performance 1s approached as the largest load
approaches the mean load. The system skew measure (defined
in the Definitions section) assesses the collective deviation
from the system load mean of all the loads that are greater
than the system load mean. The system skew measure 1s what
the Global Balance procedure uses to assess the degree of
system load imbalance.

Multiple Neighbor Redistribution

A key balancing method 1s to find a node with a low load,
move 1ts data to a neighbor, and then split the load of the
overly loaded node with the now “free” node. The term “free”
here means that since the node has unloaded all of its tuples to
a neighbor, 1t 1s no longer logically tied to its former adjacent
neighbors and so can be made a logically adjacent neighbor of
the highly loaded node.

A multi-reorder operation, i1llustrated 1n FIG. 4, refers to a
method that finds, instead of a single node with a low load, a
sequence of multiple adjacent nodes that have a small average
load of any such sequence. Depending on the combined load
of the nodes in the sequence, 1t may be possible to move the
combined load of the sequence onto a subset of the nodes 1n
the sequence with an average load of the nodes 1n the smaller
sequence low enough to free up the remaining nodes for use
in offloading high loads elsewhere.

For example, 1n the case of three adjacent low-load nodes
with the smallest average load, the load of all three might be
redistributed over two of them, the remaining node becoming
a free node, or 1f the combined load of the three nodes 1s small

US 8,849,749 B2

7

enough the load of all three could be moved to just one of
them, thus freeing up two nodes.
In FIG. 4A, partition E {ills past the threshold and triggers
a rebalance procedure. The succeeding steps of FIGS. 4B-4D
then occur in parallel. In FIG. 4B, partitions A, B, Cand D are
redistributed to leave B empty. In FIG. 4C, half of the data
from partition E 1s moved to B. In FI1G. 4D, partitions B, C and
D are reassigned to match new partition boundaries.
Overhead-Benefit Analysis of Candidate Operations

When load balancing 1s to be performed on a given node, a
set of candidate balance operations 1s 1dentified, and for each
candidate a projection of the resultant system skew (see Defi-
nitions section) should the candidate operation be performed
1s calculated. A load balance overhead (see Definitions sec-
tion) 1s also calculated for each candidate. Based on the
projected change 1n the load balance measure (benefit) and
the overhead 1n moving tuples to realize that state, the net
benefit for each of the projected operations 1s calculated,
which are then compared and the most favorable selected for
execution.
Description of the Procedure

1. Each node has access to partition statistics which include
an estimate of the number of tuples stored on each node
for every relation 1n the database. Based on this infor-
mation the system skew 1s calculated. If the calculated
system skew 1s less than or equal to the system skew
threshold, then no load balancing need be performed and
the task ends, else continue to the next step. The algo-
rithm does not depend on the partition statistics being
exactly correct, as an approximate estimate 1s adequate.
The algorithm does assume that the partition statistics as
seen by each individual node 1s eventually consistent.

2. At this step 1t 1s assumed that the system skew exceeds
the system skew threshold and a determination needs to
be made whether the node on which the task 1s runming
needs to be load balanced. If the load of the node 1s
greater than the load of all other nodes, based on the
partition statistics, then the node needs to be load bal-
anced, else the task ends.

3. A calculation 1s made to determine how many free nodes
will be needed to accommodate the tuples from this
loaded node: (load-mean load)+mean load) rounded
up=iree nodes needed. It 1s important to distribute the
loaded node’s tuples to an appropriate number of free
nodes to avoid load balance thrashing.

4. Using the partition statistics, a search 1s made for
sequences ol adjacent nodes with suiliciently low aver-
age load that if the combined load were redistributed
over a subset of the nodes 1n the sequence, then the
average load for the new (smaller) sequence would still
be below the average load of the system, and at the same
time yielding the largest number of {free nodes possible
from the sequence. I the number of free nodes yielded 1s
the same as the number required 1n step 3 above then the
sequence of adjacent nodes becomes a candidate
sequence. It 1s desirable to take the largest number of
free nodes while still leaving an average load for the new
sub-sequence that 1s less than the mean system load, as
otherwise load balance thrashing may occur. Hence 1t 1s
recommended to match the free nodes yielded from the
sequence with the number of free nodes required to load
balance the node on which the task 1s runming. There are
many methods to determine a candidate subset. For
example, a linear search for the least loaded candidate
sequence.

5. Once a set of candidate sequences 1s 1dentified, calculate
cach system skew that would result from balancing

10

15

20

25

30

35

40

45

50

55

60

65

8

using each sequence. Each computed system skew result
1s the projected benefit of performing the load balancing
operation with that candidate sequence.

6. The load balance overhead for each candidate sequence
1s computed. The candidate with the lowest ratio of
overhead to benefit 1s selected. In following steps the
nodes 1n the selected sequence are referred to as the
“target nodes”.

7. The task starts a transaction.

8. The task sends a network request to the target nodes to
lock them from any other concurrent balance operations.
It all targets cannot be locked, a different candidate
sequence 1s selected (steps 4-6 above) from the candi-
date set which do not include the targets that failed to
lock and tries again. If no targets can be successiully
locked, then the task aborts the current transaction and
unlocks any locked nodes. The recurring task wall
execute later and try again.

9. I the task successtully locks the target nodes, the task
sends to the target nodes the new partition boundaries.
The new partition boundaries will take effect after the
move operation 1s complete and the transaction com-
mits. The new partition boundaries communicate what
actions to take in order to complete the balance opera-
tion. Once the new boundaries have been communi-
cated, all nodes concurrently move their tuples to satisty
the new boundaries.

10. The task communicates the new partition boundaries to
all other nodes.

11. The task commits the transaction (which action also
unlocks the target node locks from step 8).

Benefits of the Global Balance Procedure

In examining the benefits of the Global Balance procedure,
the GBG methodology, believed to be representative of the
prior art, will be used as basis for comparison.

Since 1t 1s the node with the largest load that 1n many
respects serves as the “least common denominator’” 1n gating
performance of the system 1t 1s natural to use the ratio of the
largest load to the mean system load to characterize the ben-
efit yielded by a particular load balance procedure. In what
follows the ratio of largest load to mean system load will be
referred to as the load balance ratio attained by the algorithm.
A perfectly balanced system would yield a load balance ratio
of 1.

Simulation Results

Simulations were run comparing performance of the GBG
procedure and the Global Balance procedure. The data from
Table 1 represents the comparative load balancing results of

the two procedures. The number of nodes used for these
simulations was 192.

TABLE 1
Procedure GBG (Global GBG Global GBG Global
Total 50,000 50,000 100,000 100,000 150,000 130,000
Inserts
Largest 1,885 1,090 2,102 1,453 2,222 1,812
[Load
(tuples)
Mean 781 781 1,042 1,042 1,302 1,302
[Load
(tuples)
Ratio 2.41 1.40 2.02 1.39 1.71 1.39
Largest/
Avg

US 8,849,749 B2

9

Consistent Performance

The load balance ratios delivered by the Global Balance
procedure are very consistent, while there 1s considerable
variance 1n the load balance ratios from the GBG procedure
(the ratios for the baseline GBG procedure range from 1.71 to >
2.41 while for the Global Balance procedure the range 1s from
1.39 to 1.40). This relative stability of the Global Balance
procedure suggests a greater reliability and predictability,
which 1s very 1mpertant in building a commercial system
where the goal 1s optimal performance with minimal risk. 10
When predicting available storage capacity, minimizing risk
means using the largest load balance ratio that might poten-
tially occur. Not only 1s the largest ratio for the Global Bal-
ance procedure (1.40) much lower than that for the GBG
procedure (2.41) but the stability of the Global Balance pro- 1°
cedure’s ratios overall suggests a greater confidence 1n the
reliability of assuming 1.40 as a maximum load balance ratio
alter completing the Global Balance procedure.

Query Performance

The performance of the system, when measured by query 29
response time, 1s proportional to the largest node load. The
worst-case relative performance of the Global Balance pro-
cedure versus the GBG procedure 1s the ratio of the highest
load balance ratios obtained for the two algorithms, or 1.0-
(1.40+2.41)=0.42. That 1s, in the worst-case when using the 2>
(Global Balance procedure to balance a system one can expect
to reduce query response time up to 42% as compared to a
system using the GBG procedure.

However, 1n the case of calculating response time 1t can be
argued as more reasonable to use the expected average load 3Y
balance ratio of the algorithm rather than the worst-case load
balance ratio. Such an expected average 1s a ditficult number
to arrive at, but arough estimate based on averaging the values
in the data given above would be 1.94 for the GBG procedure,
and 1.38 for the Global Balance procedure. Based on these 32
ratios a system using the Global Balance procedure can be
expected to reduce query response time up to 29% as com-
pared to a system using the GBG procedure.

FIG. 5 shows a comparison between the node loads as
balanced by the GBG procedure and the Global Balance 4Y
procedure after inserting 300,000 tuples over 192 nodes.
Notice how the graph for the GBG procedure retains much of
the skew pattern of the unadjusted data, while the graph for
the Global Balance procedure does not. Also note how the
Global Balance procedure has moved data away from the %
high activity areas 1n the center of the graph. This 1s because
Global Balance does not rely heavily on redistributing tuples
to nodes that are already neighbors 1n the range, 1n contrast to
the GBG procedure which seeks first to move tuples from
over-loaded nodes to existing neighbor nodes. Since data >©
skew can be caused by nserts to “hot spots” in the range of the
partition, neighbors of highly loaded nodes are likely to
become highly loaded themselves thus requiring the same
tuples to be moved again, a form of load balance thrashing.
Available Data Capacity 23

In a partitioned database system, the available data capac-
ity 1s limited to the available capacity of the most loaded node.
Hence the data capacity of the system that can be reliably
predicted 1s the available capacity of the most loaded node
times the total number of nodes. If the system were optimally 69
balanced the highest load would equal the mean load and the
wasted capacity would be zero. Any difference, then, between
the mean load and the largest load corresponds to wasted
capacity, hence the “wasted capacity” 1s given by the formula:

65

(largest load—mean load)xnumber of nodes=wasted
capacity

10

This means that load imbalance results not only in reduced
performance but also reduced available capacity. Referring to
the simulation results Table 2 the projected wasted capacity

for each o GBG and Global Balance procedures 1s shown for
192 nodes:

TABLE 2

Procedure GBG (Global GBG Global GBG (Global

Largest 1,885 1,090 2,102 1,453 2,222 1,812
Load

(tuples)

Mean 781 781 1,042 1,042 1,302 1,302
Load

(tuples)

Wasted 211,968 59,328 203,520 78,912 176,640 97,920
Capacity

(tuples)

Wasted 3.6 1.0 2.6 1.0 1.8 1.0
Capacity

Ratio

relative to

Global

Balance

procedure

As shown 1 the table, the GBG procedure incurs wasted
capacities ranging ifrom 1.8 to 3.6 times that of the Global
Balance procedure. Wasted capacity 1s never desired, particu-
larly for an in-memory database system where memory 1s
much more expensive than disk.

Mimimal Load Balance Thrashing

Load balance thrashing occurs when balance operations
move the same tuples repeatedly in a short period of time,
causing unwanted communications costs. The discussion
under the Consistent Performance section above refers to this
issue 1n terms of tuples getting moved and then immediately
moved again 1f mnitially moved to a nearby location. As indi-
cated 1n that section the Global Balance procedure redistrib-
utes loads so as to avoid that particular kind of thrashing.

Another kind of thrashing that can occur 1s 1f a sequence of
adjacent nodes from which a free node 1s extracted results 1n
a new sub-sequence with an average load low enough that an
additional free node could still be extracted from the sequence
and still have a remaining sub-sequence with an average load
below the system load mean. This means that the nodes in the
new sub-sequence will need to have their tuples move again to
retrieve the additional free node. This form of thrashing can
be avoided 11 compression of a sequence of adjacent nodes to
extract Iree nodes 1s only performed as an extraction of all
possible free nodes such that the average load of the new
sub-sequence 1s below the system load mean. As indicted 1n
the Description of the Procedure section above, this 1s the
approach employed by the Global Balance procedure and 1s
another reason why Global Balance effectively minimizes
load balance thrashing.

Particular embodiments of the present disclosure can take
the form of an entirely hardware embodiment, an entirely
solftware embodiment or an embodiment contaiming both
hardware and software elements. In a particular embodiment,
the disclosed methods are implemented 1n software that 1s
embedded 1n a processor readable medium and executed by a
processor, which includes but 1s not limited to firmware,
resident software, microcode, etc.

Further, embodiments of the present disclosure can take the
form of a computer program product accessible from a com-
puter-usable or computer-readable medium providing pro-
gram code for use by or 1n connection with a computer or any
instruction execution system. For the purposes of this

US 8,849,749 B2

11

description, a computer-usable or computer-readable
medium can be any apparatus that can tangibly embody a
computer program and that can contain, store, communicate,
propagate, or transport the program for use by or in connec-
tion with the instruction execution system, apparatus, or
device.

In various embodiments, the medium can include an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system (or apparatus or device) or a propagation
medium. Examples of a computer-readable medium include a
semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk
and an optical disk. Current examples of optical disks include
compact disk—read only memory (CD-ROM), compact
disk—read/write (CD-R/W) and digital versatile disk (DVD).

A data processing system suitable for storing and/or
executing program code may include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code 1n order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the data processing system either directly or through inter-
vening 1/O controllers.

Network adapters may also be coupled to the data process-
ing system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems, and Ethernet cards are just a
tew of the currently available types of network adapters.

From the foregoing description, 1t will be understood that
the load balancing procedures described achieve more elfec-
tive load balancing and increased performance. Both capacity
and request processing time may be significantly improved.
Overhead 1s minimized by taking advantage of idle time of
database nodes.

It will be apparent to those of ordinary skill in the art that
the present invention can be embodied 1n other specific forms
without departing from the spirit or essential character
thereol. The foregoing description is therefore mtended to be
in all respects 1llustrative and not restrictive. The scope of the
invention 1s indicated by the appended claims, not by the
foregoing description, and all changes which come within the
meaning and range of equivalents thereof are itended to be
embraced therein.

What 1s claimed 1s:

1. A method ofload balancing 1n a parallel database system
comprising at least a plurality of database nodes, the method
comprising:

identifying a database node having an excessive load, the

excessive load being a load that 1s greater than loads on
other nodes of said plurality of nodes;

determining a threshold number of database nodes to

which to transfer load from said database node having an
excessive load;

identifying a group of database nodes having a first subset

ol database nodes having both at least said threshold
number of database nodes and a separate second subset
of database nodes such that when an entire load for a first
relation 1s transierred from the first subset of nodes to the
second subset of nodes an average load of said second

10

15

20

25

30

35

40

45

50

55

60

65

12

subset of nodes 1s less than an average load of the plu-
rality of database nodes; and

performing a load adjustment comprising transierring said

entire load for a first relation from said first subset of
database nodes to said second subset of database nodes
and transferring load for a second relation from said
database node having an excessive load to said first
subset of database nodes.

2. The method of claim 1, further comprising using a sys-
tem skew measure to determine whether or not to make said
load adjustment.

3. The method of claim 1, performing a load adjustment
turther comprising:

causing said first subset of database nodes to have zero or

low load for said first relation.
4. The method of claim 1, wherein performing a load
adjustment occurs while handling load balancing operations
on other relations on an overlapping set of database nodes.
5. The method of claim 1, wherein performing a load
adjustment occurs while handling load balancing operations
on a non-overlapping set ol database nodes.
6. The method of claim 1,
wherein performing a load adjustment includes moving
tuples of the first relation from the first subset of data-
base nodes to the second subset of database nodes:; and

wherein data movement for performing a load adjustment
occurs 1n parallel.

7. The method of claim 1, further comprising selecting the
at least one database node of the first subset of nodes that 1s
logically adjacent to the database node having an excessive
load.

8. The method of claim 1, wherein database nodes of the
group ol database nodes are logically adjacent to one another.

9. The method of claim 1, further comprising:

identifying a plurality of candidate groups of database

nodes having light loads;

evaluating the plurality of candidate groups of database

nodes; and

selecting one of the candidate groups of database nodes as

said group of database nodes to participate 1n load bal-
ancing.

10. The method of claim 1, further comprising:

computing a load imbalance measure based on a difference

between actual load and average load;

using the load imbalance measure to determine a database

node having an excessive load; and

using the load imbalance measure to determine the group

of database nodes having light loads.

11. The method of claim 7, turther comprising:

copying tuples from at least the database node having an

excessive load to the at least one database node; and
deleting from the database node having an excessive load
the tuples.

12. The method of claim 11, further comprising continuing
to service requests for nodes participating in rebalancing
during the rebalancing.

13. The method of claim 11, further comprising continuing
to service requests for a relation participating 1n rebalancing
during the rebalancing.

14. A method of load balancing 1n a parallel database
system comprising a plurality of database nodes, the method
comprising;

monitoring loads of database nodes by comparing a load of

cach database node with an average load of the database
nodes for a relation; and

when the load of a database node 1s excessive for that

relation, scheduling a load balancing operation taking

US 8,849,749 B2

13

into account any database nodes that are expected to be
idle during a scheduled time of the load balancing opera-
tion.
15. The method of claim 14, wherein database nodes
expected to be 1dle are selected preferentially to participate 1in
the load balancing operation.
16. The method of claim 14, turther comprising;:
identifying a group of database nodes having light loads
relative to the database node having an excessive load;

performing a load adjustment among the group of database
nodes so that at least one database node of the group has
zero or low load; and
performing a load adjustment between the database node
having an excessive load and the at least one database
node of the group, wherein both the database node hav-
ing an excessive load and the at least one database node
of the group have loads closer to an average load over
said group of database nodes.
17. A method of load balancing 1n a parallel database
system comprising a plurality of database nodes, the method
comprising;
computing a system skew based on an estimated number of
tuples stored on each node for a relation 1n the database;

determining that the system skew exceeds a system skew
threshold and a load of a node for a relation 1s greater
than a load of other nodes for the relation, according to
current partition boundaries of the relation;

calculating a number of free nodes needed to reduce the

system skew;

selecting a sequence of nodes that supplies at least the

calculated number of free nodes;

computing new partition boundaries for the relation based

on the selected sequence of nodes;

starting a transaction that transfers tuples of the relation

according to the new partition boundaries; and
committing the transaction.

18. A method of balancing a load 1n a parallel database
system having a plurality of database nodes, the method com-
prising:

detecting a system skew among partition nodes of a rela-

tion, the partition nodes being associated with partition
boundaries for the relation;

determining that the system skew exceeds a system skew

threshold; and
performing a rebalancing database transaction for the rela-
tion by altering the partition boundaries boundary to
form new partition boundaries and moving tuples of the
relation between nodes according to the new partition
boundaries to reduce the system skew among the parti-
tion nodes for the relation.
19. A non-transitory computer-readable medium compris-
ing instructions for load balancing a parallel database system
comprising a plurality of database nodes, said instructions
when executed by one or more computing devices, cause
performance of:
computing a system skew based on an estimated number of
tuples stored on each node for a relation 1n the database;

determining that the system skew exceeds a system skew
threshold and a load of a node for a relation 1s greater
than a load of other nodes for the relation, according to
current partition boundaries of the relation;

calculating a number of free nodes needed to reduce the

system skew;

selecting a sequence of nodes that supplies at least the

calculated number of free nodes;

computing new partition boundaries for the relation based

on the selected sequence of nodes;

5

10

15

20

25

30

35

40

45

50

55

60

65

14

starting a transaction that transfers tuples of the relation
according to the new partition boundaries; and
committing the transaction.

20. A non-transitory computer-readable medium compris-
ing 1nstructions for load balancing a parallel database system
comprising a plurality of database nodes, said instructions
when executed by one or more computing devices, cause
performance of:

detecting a system skew among partition nodes of a rela-

tion, the partition nodes being associated with partition
boundaries for the relation;

determiming that the system skew exceeds a system skew
threshold; and

performing a rebalancing database transaction for the rela-
tion by altering the partition boundaries boundary to
form new partition boundaries and moving tuples of the
relation between nodes according to the new partition
boundaries to reduce the system skew among the nodes
for the relation.

21. A non-transitory computer-readable medium compris-
ing 1nstructions for load balancing 1n a parallel database sys-
tem comprising at least a plurality of database nodes, said
instructions when executed by one or more computing
devices, cause performance of:

identifying a database node having an excessive load, the

excessive load being a load that 1s greater than loads on
other nodes of said plurality of nodes;

determiming a threshold number of database nodes to

which to transfer load from said database node having an
excessive load;

identifying a group of database nodes having a first subset

of database nodes having both at least said threshold
number of database nodes and a separate second subset
of database nodes such that when an entire load for a first
relation 1s transierred from the first subset ofnodes to the
second subset of nodes an average load of said second
subset of nodes 1s less than an average load of the plu-
rality of database nodes; and

performing a load adjustment comprising transferring said

entire load for a first relation from said first subset of
database nodes to said second subset of database nodes
and transferring load for a second relation from said
database node having an excessive load to said first
subset of database nodes.

22. The non-transitory computer-readable medium of
claim 21, the mstructions further comprising 1nstructions for
using a system skew measure to determine whether or not to
make said load adjustment.

23. The non-transitory computer-readable medium of
claim 21, said performing a load adjustment further compris-
ng:

causing said first subset of database nodes to have zero or

low load for said first relation.

24. The non-transitory computer-readable medium of
claim 21, the instructions turther comprising instructions for
performing a load adjustment while handling load balancing
operations on other relations on an overlapping set of data-
base nodes.

25. The non-transitory computer-readable medium of
claim 21, the mstructions further comprising 1nstructions for
performing a load adjustment while handling load balancing
operations on a non-overlapping set of database nodes.

26. The non-transitory computer-readable medium of
claim 21, said performing a load adjustment includes moving
tuples of the first relation from the first subset of database
nodes to the second subset of database nodes:; and

US 8,849,749 B2

15

wherein data movement for performing a load adjustment
occurs 1n parallel.

27. The non-transitory computer-readable medium of

claim 21, the instructions turther comprising instructions for

selecting the at least one database node of the first subset of >

nodes that 1s logically adjacent to the database node having an

excessive load.
28. The non-transitory computer-readable medium of

claim 21, wherein database nodes of the group of database
nodes are logically adjacent to one another.
29. The non-transitory computer-readable medium of
claim 21, the mstructions turther comprising instructions for:
identifying a plurality of candidate groups of database
nodes having light loads;

evaluating the plurality of candidate groups of database :

nodes; and
selecting one of the candidate groups of database nodes as
said group ol database nodes to participate in load bal-
ancing.
30. The non-transitory computer-readable medium o
claim 21, the instructions further comprising instructions for:

16

computing a load imbalance measure based on a difference

between actual load and average load;

using the load imbalance measure to determine a database

node having an excessive load; and

using the load imbalance measure to determine the group

of database nodes having light loads.

31. The non-transitory computer-readable medium of
claim 27, further comprising 1structions for:

copying tuples from at least the database node having an

excessive load to the at least one database node; and
deleting from the database node having an excessive load
the tuples.

32. The non-transitory computer-readable medium of
claim 31, further comprising instructions for continuing to
service requests for nodes participating 1n rebalancing during
the rebalancing.

33. The non-transitory computer-readable medium of
claim 31, further comprising instructions for continuing to
service requests for a relation participating in rebalancing

¢ 20 during the rebalancing.

G s x ex e

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,849,749 B2 Page 1 of 1
APPLICATION NO. . 12/360782

DATED . September 30, 2014

INVENTORC(S) . Rishel et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification
In column 3, line 34, delete “system” and insert -- system. --, therefor.

In column 3, line 42, delete “performance” and insert -- performance. --, therefor.

Signed and Sealed this
Twenty-eighth Day of April, 2015

Tecbatle 7 Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

