US008831026B2
a2y United States Patent (10) Patent No.: US 8.831.026 B2
Iyengar et al. 45) Date of Patent: Sep. 9, 2014
(54) METHOD AND APPARATUS FOR 6,628,610 Bl * 9/2003 Waclawsky et al. 370/229
6,658,453 B1* 12/2003 Dattatrtoocoovnveeen, 709/202
DYNAMICALLY SCHEDULING REQUESTS 657723211 B2 K 8/2004 Lu et al‘ ““““““““““““ 709/226
_ 6,807,156 B1* 10/2004 Veresetal. 370/252
(75) Inventors: Arun Kwangil Iyengar, Yorktown 6,862,624 B2* 3/2005 Colbyetal.cccoo..... 709/226
Heights, NY (US); Erich M. Nahum, 6,877,035 B2* 4/2005 Shahabuddin et al. 709/226
. R 6,968,389 Bl * 11/2005 Menditto et al. 709/233
gewaork, 1;1: (gs): Bianca Schroeder, 6978311 BL* 12/2005 Netzeretal. 709/232
ittsburgh, PA (US) 6,981,029 B1* 12/2005 Menditto et al. 709/217
_ _ _ _ 7,082,463 B1* 7/2006 Bradleyetal. 709/223
(73) Assignee: International Business Machines 7,140,016 B2* 11/2006 Milovanovic et al. 718/100
Corporation, Armonk, NY (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent 1s extended or adjusted under 35 n i Tesrek and Krrvsrtof 7 AT Adany
OI'ZCITI5KI1, 1.CSZCK dll ZYSZ10 ALWAINIICKI, Uzz2y dPLIVC
U.S.C. 154(b) by 3655 days. Request Distribution Algorithm for Cluster-based Web Systems, Pro-
_ ceedings of the Eleventh Euromidro Conference on Parallel, Distrib-
(21) Appl. No.: 10/304,516 uted and Network-Based Processing (Euro-PDP’03), IEEE 2003 .*
(22) Filed: Mar. 195 2004 (Continued)
(65) Prior Publication Data Primary Examiner — Luat Phung
IS 2005/0207439 A1 Sep. 22, 2005 (74) Attorney, Agent, or Firm — Preston J. Young; Ryan,
Mason & Lewis, LLP
(51) Int. CL
HO4L 12/54 (2013.01) (57) ABSTRACT
HO4L 29/08 (2006.01) Techniques are provided for dynamically scheduling requests
(52) U.S.CL in data processing systems in accordance with differentiated
CPC HO4L 67/322 (2013.01); HO4L 67/2809 service levels. In a first aspect of the invention, a technique for
(2013.01); HO4L 67/2814 (2013.01) processing a request to at least one server comprises the
USPC e, 370/428; 370/395.43 following steps. A request is received. Then, submission of
(58) Field of Classification Search the request to the at least one server 1s scheduled based on: (1)
USPC 370/428, 229, 232, 709/226, 232, 233; a quality-of-service (QoS) class assigned to a client from
718/100 which the request originated; (11) a response target associated
See application file for complete search history. with the QoS class; and (111) an estimated response time
associated with the at least one server. The technique may
(56) References Cited further comprise the step of withholding the request from

U.S. PATENT DOCUMENTS

submission to the at least one server when the request origi-
nated from a client assigned to a first QoS class to allow a
request that originated from a client assigned to a second QoS

[SERVER |

6,006,264 A * 12/1999 Colbyetal. 700/226 _ _
6112221 A * 82000 Benderetal. 718/107 class to meet a response target associated therewith.
6,430,156 B1* 82002 Parketal. 370/232
6,449,647 B1* 9/2002 Colbyetal. 700/226 235 Claims, 3 Drawing Sheets
“{’j SCHEDULING SYSTEM o |
: 2 : m
| REQUEST REQUEST QOS /D
INCOMING k CHARACTERISTICS — CLASSIFIER) TARGETS : M
REQUEST , T
. | USER HISTORY DATA RULES: RULES: | N
. REQUEST CHARACT. 0OS CLASS -l
I {|==> Qos cL4ss ~=> QOS TARGETS s
110 120 AL T
R
A
T
0
R

|
—| SCHEDULER < NN
. -

i,
|
|
|
I
|
i I 180-1
.
| 4 ™ SERVER 2
| 180-n
. "t 1802 | o0
| 7 i X
| 140 ._ SERVER n
I ____________
| 1601)
| DATABASE |_ 1
: 150 MONITOR |
. |

| 1 PERFORMANCE |
| MPL ADAPTOR | STATISTICS: |
| .

- THROUGHPUT |
' CURRENT MFL |
| - EXECUTION TIMES | |
i TARGET(S) fpiass i
L

US 8,831,026 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,257,634 B2* 8/2007 Colbyetal. 709/226
2002/0010798 Al* 1/2002 Ben-Shaul etal. 709/247
2002/0019843 Al* 2/2002 Kilhanetal. ... 709/102
2003/0120705 Al* 6/2003 Chenetal. 709/104
2004/0088418 Al* 5/2004 Iyeretal. 709/227
2004/0105393 Al* 6/2004 Ronnekeetal. 370/252
2004/0111506 Al* 6/2004 Kunduetal ... 709/223
2004/0162901 Al* 8/2004 Mangipudietal. 709/225
2004/0193472 Al* 9/2004 Ramakrishnan et al. 705/9
2004/0205752 Al* 10/2004 Chouetal.o 718/100
2004/0258003 Al* 12/2004 Kokotetal. 370/254
2004/0260951 Al* 12/2004 Madourcccooeeeereeen, 713/201
2005/0091344 Al* 4/2005 Chenetal. 709/219
2005/0198200 Al* 9/2005 Subramanian etal. 709/218
2005/0207439 Al* 9/2005 Iyengaretal. 370/428
2007/0115893 Al* 5/2007 Livetetal. 370/337

OTHER PUBLICATTONS

Ludwig, Heiko, Web Services QoS: External SLAs and Internal
Policies Or: How do we deliver what we promise?, Proceedings of the
Fourth International Conference on Web Information Systems Engi-

neering Workshops, IEEE 2004 .*

H-U. Heiss et al., “Adaptive Load Control in Transaction Processing
Systems,” Proceedings of the 17th International Conference on Very
Large Data Bases, Barcelona, pp. 47-54, Sep. 1991.

A. Moenkeberg et al., “Performance Evaluation of an Adaptive and
Robust Load Control Method for the Avoidance of Data-Contention
Thrashing,” Department of Computer Science Information Systems-
Databases, Proc. of the 18th VLDB Conference, Canada, pp. 432-
443, Aug. 1992.

A. Rhee et al., “The Oracle Database Resource Manager: Scheduling
CPU Resources at the Application Level,” High Performance Trans-
action Systems Workshop, 4 pages, 2001.

L. Eggert et al., “Application-Level Differentiated Services for Web

Servers,” USC Information Sciences Institute, vol. 2, pp. 1-12, Feb.
1999,

H. Chen et al., “Session-Based Overload Control in QoS-Aware Web
Servers,” IEEE Infocom, 9 pages, 2002.

X.Chen et al., “An Admission Control Scheme for Predictable Server
Response Time for Web Accesses,” Proceedings 10th World Wide
Web Conference, pp. 545-554, May 2001.

J. Carlstrom et al., “Application-Aware Admission Control and

Scheduling 1In Web Servers,” IEEE Proceedings of Infocom, New
York, 10 pages, Jun. 2002.

M.J. Carey et al., “Load Control for Locking: The ‘Half-and-Half”
Approach,” Proceedings of the 9th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 72-84,
Apr. 1990.

M. Aron et al., “Cluster Reserves: A Mechanism for Resource Man-
agement 1n Cluster-Based Network Servers,” Proc. ACM
SIGMETRICS, 12 pages, 2000,

U.S. Appl. No. 10/316,259, filed Dec. 10, 2002, A.N. Tantawi et al.
M. Kihl et al., “Admission Control Schemes Guaranteeing Customer
QoS in Commercial Web Sites,” Department of Communication Sys-
tems, Lund Institute of Technology, IFIP and IEEE Conference on
Network Control and Engineering (NETCON), Sweden, 12 pages,
Oct. 2002.

K-D. Kang et al., “Service Differentiation in Real-Time Main
Memory Databases,” Proceedings of the Fifth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing,
10 pages, 2002.

V. Kanodia et al, “Ensuring Latency Targets in Multiclass Web Serv-
ers,” IEEE Transactions on Parallel and Distributed Systems, vol. 14,
No. 1, pp. 84-93, Jan. 2003.

J. Huang et al., “On Using Priority Inheritance in Real-Time Data-
bases,” IEEE, pp. 210-221, 1991.

[.. Cherkasova et al., “Session-Based Admission Control: A Mecha-
nism for Peak LL.oad Management of Commercial Web Sites,” IEEE
Transactions on Computers, vol. 51, No. 6, pp. 669-685, Jun. 2002.
T.F. Abdelzaheretal., “User-Level QoS-Adaptive Resource Manage-
ment 1n Server End-Systems,” IEEE, pp. 678-685, 2003.

T.F. Abdelzaher et al., “Performance Guarantees for Web Server
End-Systems: A Control-Theoretical Approach,” IEEE Transactions
of Parallel and Distributed Systems, vol. 13, No. 1, pp. 80-96, Jan.
2002.

J1.D.C. Little, “A Proof for the Queuing Formula: L=AW,” Case Insti-
tute of Technology, Ohio, pp. 383-387, 1960.

* cited by examiner

US 8,831,026 B2

Sheet 1 of 3

Sep. 9, 2014

U.S. Patent

== -~ ————————-_-_-----nn-n—n—-—n-___-___ N ---- - 0-v-- - __,,,-—_____e—_— v/, T/ T =/ —_——_ |_
.H .UH@H OLH - |
1A0YVL
| SHWLL NOLLNDHEXA - . % Hszmau _
_ INdHONOYHL - _ . _
“ 'SOILSILVLS JOLIVAVY TdN _
" FONVINIOIIAd i |
_
| — — 0ST |
| JYOLINOW _
" ASVAVIVA i _
LT - __ . 091 _
]
U JHAUAS “ OF 1 “
_
| |
L T, _ “
i U-081 L. _
7 JAAMAS _ S |
N ﬂlw ——>——— ' L YA TNATHOS _
O ﬁ:OWﬁ _ "
L [ydAyas|«” 0 |e—— [| [[[| _
v | “
q | memmmm e |
L _ . _
0Z1 Ol
S | SLAOYVL SO0 <== SSV10 SO0 <== || (7 |
I | SSF'TD SO0 IIOVIVHD ISTNOTYH - |
N _ SHINA SHINY VIVA AJOLSIH dd5/(1 |
Loy | | 183N03Y
W | . SLADYVL AAIIISSVID SOILSIIALDOVIVHD [4——
a/ , SO0 1LSANOTA _ 1SN0 _ ININOONI
_
¥ _ N o ™
_ Ot] WALSAS ONI'TNAIHIS |
t _ -,

U.S. Patent Sep. 9, 2014 Sheet 2 of 3 US 8,831,026 B2

210 200
SCHEDULER W
INTERCEPTS

REQUEST

SCHEDULER
YES DISPATCHES
REQUEST TO

SERVER

4 OF REQUESTS AT
SERVER < CURRENT
TARGET
MPL?

240 NO
RECEIVE

INDICATION
THAT A REQUEST
COMPLETED AT
SERVER?

SCHEDULER

QUEUES REQUEST

DOES
COMPLETION
REDUCE # OF
REQUESTS AT
SERVER BELOW
CURRENT
MPL?

YES
270

SCHEDULER CHOOSES
REQUEST FROM QUEUE,
BASED ON QoS CLASSES,

AND DISPATCHES
REQUEST TO SERVER FI1G. 2

US 8,831,026 B2

Sheet 3 of 3

Sep. 9, 2014

U.S. Patent

05¢

Ovt

00t

HOVAIdLNI
AHOMLEAN

Ott

¢ "I

SHOIAHU O/1

0Ct

AJONHIN

Ol¢

JdOSSHOOdd

US 8,831,026 B2

1

METHOD AND APPARATUS FOR
DYNAMICALLY SCHEDULING REQUESTS

FIELD OF THE INVENTION

The present invention 1s related to data processing systems
and, more particularly, to techniques for dynamically sched-
uling requests of customers of data processing systems in
accordance with differentiated service levels.

BACKGROUND OF THE INVENTION

As 1s known, data processing systems may include data-
base systems and transactional processing systems. Such sys-
tems may be standalone systems or may be part of a distrib-
uted network such as the World Wide Web. In a distributed
network such as the World Wide Web, a user request 1s typi-
cally first processed at a server running the application with
which the user 1s interfacing, e.g., an application server, and
then processed at a server that controls storage of data that 1s
used to service the user request, €.g., a back-end server.

An 1mmportant aspect of the performance of a back-end
server ol a data processing system 1s the speed at which
requests are serviced. As a typical example for a back-end
server consider the database back end at a commercial web
site. For such a site, 1t 1s typically vital to provide short
response times to client requests. Moreover, the bottleneck in
processing customers’ requests 1s commonly the retrieval of
data from the database back end. Hence, the goal of offering
short response times to clients at commercial web sites often
reduces to the goal of providing short response times at the
back-end server.

Providing short response times to all requests at the back-
end server might not always be possible, since the server’s
resources are limited and might not be suificient to provide
optimal service to all requests. This problem 1s exacerbated
by the fact that server peak loads are often orders of magni-
tudes higher than average loads. Provisioning the system for
peak loads might therefore not be feasible, or simply too
wastetul, since under normal load conditions many resources
would go under-utilized.

In cases where 1t 1s not possible to provide optimal service
to all requests, 1t 1s typically important to provide fast service
at least to the most important requests coming into the site. In
the case of the database back end at a web site, important
requests could, for example, be those coming from customers
who have spent large amounts of money at this web site 1n the
past. Differences in the importance of requests can also arise
from that fact that, 1n addition to customer requests, a data-
base might run requests from inside the site such as, for
example, requests handling basic maintenance tasks. Cus-
tomer requests should generally have higher priority than
these background maintenance tasks. Finally, customer
requests might differ in their importance depending on the
type of the requests. As an example, requests that implement
customer orders might be more valuable to a commercial web
site than requests that just provide services for browsing the
site.

There are typically two ways of implementing functional-
ity for prioritizing requests. One 1s to implement request
priority by integrating the scheduler into the back-end server
software, the other one 1s to locate an external scheduler
between the application server and the back-end server.

Internal schedulers are integrated into the server code,
hence, obviously the implementation of the scheduling
mechanisms depends on the particular server software. More-
over, the most effective way of implementing priorities mnside

10

15

20

25

30

35

40

45

50

55

60

65

2

the server might also depend on other factors such as the
hardware and the operating system, or even the workload

running on the system. Another drawback of internal sched-
uling 1s 1ts high complexity. Many types of back-end servers,
¢.g., database systems, have been developed over a long
period of time and, as a result, include extremely complex
code. Integrating the scheduler into the server requires chang-
ing this complex code. Furthermore, this work will need to be
repeated for every new server soltware package.

External scheduling has several advantages such as
increased flexibility and portability. Previous approaches 1n
the area of back-end servers 1n the form of database servers
have employed external scheduling mostly in the form of
admission control with the goal of avoiding server overload.
The main 1dea 1s to erther directly monitor the degree of lock
contention, e.g., by keeping track of the average time a
request 1s blocked for locks, or to monitor response times of
requests or system throughput. Previous approaches in the
area of back-end servers 1n the form of web servers focus on
providing preferred service for high priority requests in the
form of faster response times, but do not offer efficient
mechanisms for achieving quality of service (QoS) goals such
as specific response time targets.

Thus, improved techniques are needed for scheduling
requests of customers of data processing systems.

SUMMARY OF THE INVENTION

The present invention provides techniques for dynamically
scheduling requests in data processing systems in accordance
with differentiated service levels.

In a first aspect of the invention, a technique for processing
a request to at least one server comprises the following steps.
A request 1s recerved. Then, submission of the request to the
at least one server 1s scheduled based on: (1) a quality-oi-
service (QoS) class assigned to a client from which the
request originated; (11) a response target associated with the
QoS class; and (111) an estimated response time associated
with the at least one server.

The techmque may further comprise the step of withhold-
ing the request from submission to the at least one server
when the request originated from a client assigned to a first
QoS class to allow a request that originated from a client
assigned to a second QoS class to meet a response target
associated therewith. The technique may also further com-
prise the steps of determining a throughput of the at least one
server, and reducing a request withhold rate to increase
throughput of the at least one server. Also, the technique may
turther comprise the steps of monitoring a throughput of the
at least one server, and varying a request withhold rate to
balance the throughput and request response times.

Further, the technique may further comprise the step of
assigning the response target to the QoS class. The step of
assigning the response target to the QoS class may further
comprise the step of assigning a response time target to the
QoS class. The step of assigning the response target to the
QoS class may further comprise the step ol assigning a
response percentile target to the QoS class.

Still further, the techmque may further comprise the step of
estimating the response time associated with the at least one
server based on one or more requests sent to the at least one
server within a given time period. The technique may also
turther comprise the step of assigning a target response time
to a plurality of QoS classes in which lower quality classes are
assigned larger response times than higher quality classes.
Also, the technique may further comprise the steps of deter-
mining dispatch times for requests from a difference between

US 8,831,026 B2

3

at least one predicted response time of the at least one server
and the target response time corresponding to the QoS class of
the request, and sending requests to the at least one server
based on dispatch times.

Yet further, a plurality of applications may be running on
the at least one server and requests may be routed to applica-
tions, such that the technique may further comprise the steps
ol estimating response times of applications based on one or
more requests sent to the applications within a time period,
and sending a request to an application whose estimated
response time 1s not greater than a target response time cor-
responding to the QoS class of the request. The technique may
turther comprise the step of varying a number of requests sent
to applications so that estimated response times of applica-
tions are not greater than target response times of QoS classes
corresponding to requests sent to the applications. The at least
one server may comprise a plurality of servers and each
application runs on a different one of the plurality of servers.

In a second aspect of the invention, apparatus for process-
ing a request to at least one server comprises a memory, and
at least one processor coupled to the memory and operative to
receive a request, and schedule submission of the request to
the at least one server based on: (1) a quality-of-service (QoS)
class assigned to a client from which the request originated;
(1) a response target associated with the QoS class; and (111)
an estimated response time associated with the at least one
server. The memory and the at least one processor may form
a scheduler that 1s external to the at least one server. The
scheduler may be a front-end scheduler and the at least one
server may be a back-end server.

In a third aspect of the invention, a technique for processing,
requests to at least one server comprises the following steps.
At least one client 1s assigned to a quality-of-service (QoS)
class from among at least two QoS classes. A response target
1s assigned to at least one QoS class. At least one response
time of the at least one server 1s estimated based on one or
more requests sent to the server within a given time period.
Requests associated with a first one of the at least two QoS
classes are withheld to allow requests associated with a sec-
ond one of the at least two QoS classes to meet 1ts response
target based on the at least one estimated response time. Such
a technique may be implemented in accordance with a sched-
uling service provided by a service provider.

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which 1s to be read 1n connection with the accompanying,
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram 1llustrating a request scheduling,
system 1n accordance with an embodiment of the present
invention;

FIG. 2 1s a flow diagram illustrating a methodology for
dynamically scheduling requests in accordance with an
embodiment of the present invention; and

FI1G. 3 1s a block diagram illustrating a computing system
with which embodiments of the present invention may be
implemented.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

L1
vy

ERRED

The present mvention will be illustratively explained
below 1n the context of back-end servers 1n a World Wide Web

implementation. However, it 1s to be understood that the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

present invention 1s not limited to such a data processing
environment. Rather, the mvention 1s more generally appli-
cable to any data processing environment in which it would be
desirable to provide eflicient servicing of user requests by
providing different classes of service for user requests.

As 1llustratively used herein, the term “client” may gener-
ally refer to one or more computing systems (e.g., personal
computer, personal digital assistant, cellphone, laptop, etc.)
capable of making a request to a server (e.g., by connecting to
a network to obtain data). A “client” may also occasionally
refer to the individual(s) using the computing system (this
will be clear from the circumstances). A “server” may gener-
ally refer to one or more computing systems capable of
responding to a client request (e.g., by generating and serving
content available on the network).

As will be 1llustratively explained below, the mmvention
provides techniques for scheduling requests at back-end serv-
ers 1n order to provide differentiated classes of quality of
service (QoS). The techmques are implemented 1n the form of
a scheduler external to the server. Such an implementation
obviates the need for any changes to the back-end server.

In an 1llustrative embodiment described herein, the follow-
ing four types of QoS service classes are provided.

(1) Type 1—Simple priorities: Each class 1s assigned a
priority. The scheduler gives preference to higher prior-
ity requests, without consideration of the performance
of lower priority requests.

(2) Type 2—Response time targets: Each class has a
“response time target” associated therewith. The sched-
uler ensures that the mean response time of the requests
in a class does not exceed the response time target of the
class.

(3) Type 3—Best eflort: Each class has either a response
time target associated therewith or 1s marked “best
cffort”” The scheduler ensures that the mean response
time of the requests in a class does not exceed the
response time target of the class. The performance of the
best effort classes 1s optimized within this constraint.

(4) Type 4—xth percentile target: Each class has an “xth
percentile target” associated therewith. The scheduler
ensures that the xth percentile of response times of the
requests 1n a class do not exceed this target.

Other types of classes are also possible within the spirit and

scope of the 1nvention.

Ensuring the QoS targets described above 1n a scheduler
external (such as a front-end scheduler) to the back end server
(s) poses the following challenges that the present invention
addresses. First, scheduling requests outside the back-end
server 1nvolves holding back requests outside the server. It 1s
typically critical to ensure that the resulting reduction 1n the
degree of concurrency at the back-end server(s) does not
resultin a loss of system throughput. Second, providing mean
response time targets typically requires predictable mean
response times at the back-end server. Third, the scheduler
typically needs to decide for each incoming request whether
to admit the request immediately or to hold 1t back (withhold
request). Moreover, the scheduler typically has to decide for
requests that are held back when and 1n which order to admat
them to the back-end server. Thus, the scheduler may control
(e.g., varies by increasing or decreasing) a request withhold
rate (e.g., a rate of requests withheld from submission to a
server) and thus the number of requests sent to a server so as
to, for example, balance server throughput and request
response times. It 1s also to be appreciated that a back-end
server may run one or more applications to which requests are
being routed. Further, each application may run on a different
Server.

US 8,831,026 B2

S

Referring mitially to FIG. 1, a block diagram 1illustrates a
request scheduling system 1n accordance with an embodi-
ment of the present invention. More particularly, request
scheduling system 100 comprises a request characteristics
estimator 110, a request classifier 120, a QoS target assign-
ment module 130, a scheduler 140, a multi-programming,
level (MPL) adaptor 150, and a database (DB) monitor 160.
Therequest scheduling system 100 1s accessible by an admin-
istrator 170, who may establish request service rules and set
QoS targets. Further, as shown in FIG. 1, the request sched-
uling system 100 1s positioned external to and in front of
back-end servers 180-1 through 180-7.

The following description will generally explain the func-
tions of each of the above-mentioned system components,
tollowed by a turther description of the two core components
ol the request scheduling system, namely, the scheduler and
the MPL adaptor.

The request characteristics estimator 110 estimates request
(e.g., query) statistics that are used by the scheduler 140.
Examples of such statistics may include expected service
time of request and resource usage. The request characteris-
tics estimator 110 uses data (e.g., history data) from the DB
monitor 160 as mput.

The request classifier 120 assigns the request to a QoS
class, e.g., this can be done based on one or more criteria
including but not limited to the following: user ID (adminis-
trator assigned 1dentifiers to classes), based on shopping his-
tory of client (money spent), and type of query: e.g.,
“browse,” “order,”’ etc.

The QoS target assignment module 130 keeps track of the
different QoS classes, 1.e., the types of each class (one of
types 1 to 4 listed above) and the corresponding parameters
tor the class (e.g., the target response time for a type 2 class).

The scheduler 140 maintains one or more queues. For a
given new request, the scheduler either assigns the request to
one of the queues, admits the request immediately to one of
the servers 180-1 through 180-7, or drops the request. The
scheduler makes this decision based on information from the
other components of the request scheduling system 100.
Upon completion of a request, the scheduler decides whether
to admit one or several requests waiting 1n one of the queues.
Again, this decision 1s based on information from the other
components of the request scheduling system 100. The sched-
uler 140 will be described in further detail below.

The MPL adaptor 150 adapts the target value for the MPL
to be maintained by the scheduler 140 to ensure that QoS
targets are achievable and that loss of throughput 1s kept at a
mimmum. The MPL adaptor 150 uses data from the DB
monitor 160 and the QoS target assignment module 130, and
provides data to the scheduler 140. The MPL adaptor will be
described in further detail below.

The DB monitor 160 keeps track of system statistics
needed by the other components, e.g., observed execution
times (based on query types), throughput, current MPL,
completion rate, and utilization of core resources, €.g. central
processing unit (CPU) at the server.

Thus, 1n this illustrative embodiment, the DB monitor 160
collects the statistics that the request characteristics estimator
110 uses. This could, for example, be the value of the items
purchased by a customer within the last month. A difference
between the data provided by the DB monitor 160 to the
request characteristics estimator 110 and the data provided by
the DB monitor 160 to scheduler 140 1s that the estimator 110
may typically use semantic data regarding transactions (e.g.,
customer information based on database data), while the
scheduler 140 may typically use data regarding the execution
characteristics (e.g., runtime) of a request.

10

15

20

25

30

35

40

45

50

55

60

65

6

Also, 1t 1s to be appreciated that the DB monitor 160
receives mput from the servers 180-1 through 180-7. This
allows the scheduler 140 to also be aware of responses (to
requests) going out from the servers.

As mentioned above, the core components of the request
scheduling system 100 are the scheduler 140 and the MPL
adaptor 150. A main function of the scheduler 1s to make
decisions on when to admit requests such that the QoS targets
of requests are satisfied. Note that the response time of a
request 1s made up of two components: (1) 1ts time spent
waiting until the scheduler admits it to the server, 1.e.,
“Twait;” and (11) the actual time at the server, 1.¢., “I'server.”

Hence, 1n order to provide QoS service classes of type 2
and type 4 (1.e., mean response time targets and xth percentile
targets), the scheduler preferably should have: (1) an estimate
for Tserver for each request, 1.e., “E[Tserver],”; and (11) a
guarantee that E[Tserver] 1s smaller than the QoS target asso-
ciated with the request. It 1s to be appreciated that condition
(11) 15 preferred since once a request 1s submitted to the server
the scheduler may no longer have control over the request,
therefore, E[Tserver] 1s a lower bound on the expected
response time ol a request.

Conditions (1) and (1) above are ensured by the MPL
adaptor as will be described in detail below, followed by a
description of how the scheduler dispatches requests to the
server 1n order to meet QoS goals.

A main function of the MPL adaptor 150 1s to maintain an
estimate of the maximum number of requests allowed at the
server at any time, such that QoS targets can be met by the
scheduler 140. This estimate 1s then given as a recommenda-
tion to the scheduler. We refer to the current estimate of the
recommended maximum number of requests in the following
description as the target multi-programming level (target
MPL) of the server.

The MPL adaptor 150 maintains the target MPL by peri-
odically monitoring the mean execution times of requests on
a per QoS class basis and adapting the current MPL target 1f
necessary. More particularly, the current MPL target i1s
reduced 1if, for a given monitoring interval, there 1s a QoS
class such that E[Tserver] for requests 1n this class exceeds
the QoS target of the class. If the deviation of E[Tserver] from
the QoS target 1s small (e.g., less than 10%), the current target
MPL 1s simply reduced by a small constant (e.g., between two
and four). If the deviation 1s more significant, the MPL adap-
tor 150 may apply a method based on Little’s Law (see J.
Little, “A Proof of the Theorem,” Operations Research,
9:383-387, 1961, the disclosure of which 1s incorporated by
reference herein) to update the MPL target. According to
Little’s Law, 1n any system, the response time of a job 1s
(linearly) mversely related to the average number of jobs 1n
the system. Hence, given the observed mean response time
and the observed number of requests at the server, one can
determine the target MPL necessary to achieve the target
response time. By way of example, 1f the observed Tserver 1s
two times the target value for Tserver, the MPL 1s reduced by
a factor of two.

While the above discussion focused only on the QoS goal
of type 2, mean response time targets, the same way of adapt-
ing the MPL can also be used for type 4 QoS goals, xth
percentile targets. Although Little’s Law does not necessarily
apply to response time percentiles, 1t may be used as a good
rule of thumb for systems whose internal scheduling policy 1s
close to generalized processor sharing (which 1s the case for
many system resources in today’s computer systems, €.g., the
CPU).

In addition to the observed mean response times, a second
equally important consideration 1n adjusting the MPL 1s the

US 8,831,026 B2

7

system throughput. Setting the MPL to too small values might
reduce the utilization of system resources at the server to a
degree that results 1n loss of system throughput. Thus, the
MPL adaptor 150 monaitors, 1n addition to response times, the
system throughput based on the request arrival rate in the
monitoring interval. If after reducing the MPL target, the
system throughput drops, even though the arrival rate stayed
the same or increased compared to previous monitoring inter-
vals, the MPL adaptor 150 increases the current MPL target
again.

Referring now to FI1G. 2, a flow diagram 1llustrates a meth-
odology for dynamically scheduling requests 1n accordance
with an embodiment of the present invention. It 1s to be
appreciated that, as 1llustratively shown, the scheduling meth-
odology 200 implemented by the scheduler 140 1s the same,
independent of the QoS type.

As shown, the scheduler intercepts requests submitted to
the back-end server (step 210). If the current number of
requests at the server 1s smaller than the current target MPL
(step 220), the request 1s immediately dispatched to the server
(step 230). If the current number of requests at the server 1s
equal to or greater than the current MPL target, the request 1s
queued 1n one of potentially many queues maintained by the
scheduler (step 240). Whenever a request completes at the
server (step 250), the scheduler checks whether this comple-
tion reduces the number of requests at the server below the
current MPL target (step 260). I1 so, a request 1s chosen from
a queue, based on the QoS classes of the requests in the
queue(s), and dispatched to the server (step 270). If no indi-
cation of request completion 1s received by the scheduler
(step 250) or the request completion does not reduce the
number of requests at the server below the current MPL target
(step 260), then the method 1iterates.

Below we describe 1n detail in which order requests are
dispatched from the queue(s) to the server based on the QoS
classes of the requests (step 270).

In the case of type 1 targets (simple priorities), the sched-
uler 140 simply keeps requests sorted by their priorities and
dispatches the first request in the queue. Since there are no
target response times or percentiles to take ito account for
the MPL adaptor 150, the MPL target will converge to a low
value that still yields an acceptable system throughput. That
1s, the performance of high priority requests will be optimized
within the restriction of not hurting system throughput.

In the case of type 2 targets (response time targets), upon its
arrival, each request 1s assigned a “dispatch deadline” which
1s a time (preferably the latest time) by which the request
should be dispatched to the system in order to meet its
response time goal. The dispatch deadline may be computed
by a variety of metrics, an exemplary one being (arrival
time)+(target response time)—(expected time at server). The
scheduler 140 keeps requests sorted by their dispatch dead-
lines. The scheduler will typically dispatch the request with
the lowest dispatch deadline first.

Next we consider a workload including not only type 2
requests, but also type 3 requests (best effort). Recall that in
this case, the goal 1s to achieve good performance for the type
3 requests without violating the response time targets of the
type 2 requests. The scheduler 140 does so by maintaining,
two queues. One that keeps type 2 requests sorted by their
dispatch deadlines and one that keeps the type 3 requests
sorted 1n First-Come-First-Serve (FCFS) order. When choos-
ing a request for dispatching, the scheduler first compares the
current time to the dispatch deadline of the first request in the
type 2 queue. If the dispatch deadline 1s met or already

10

15

20

25

30

35

40

45

50

55

60

65

8

exceeded, the first request 1n the type 2 queue 1s dispatched.
Otherwise, the first request from the type 3 queue 1s dis-
patched.

In the case of type 4 targets (xth percentile targets), per-
centile targets can be achieved 1n a similar manner as the
above-mentioned response time targets. One difference 1s that
instead of a formula such as (arrival time)+(target response
time)—(expected time at server), for type 4 requests a formula
such as (arrtval time)+(target for xth percentile)—(expected
time at server for xth percentile) may be used.

It 1s to be appreciated that, in addition to the above-men-
tioned core scheduling rules, one or more of other rules may
be included to improve throughput and system performance.
By way of example only, one or more of the following rules
may also be employed.

(1) Resource based admission. The resource usage (in
terms ol CPU cycles, I/O time, and lock wait time) of an
incoming request 1s estimated. The request 1s admitted
directly i1 either: (a) the request does not increase the
MPL beyond the current MPL limait; or (b) the request
uses mostly resources that have low utilization levels.

(2) Feasibility of response time targets. At times 1t might
not be feasible to meet all response time targets due to
unusually high system load. In this case, there are at least
two choices: (1) make all requests with response time
targets sulfer equally; or (11) try to stick to the most
stringent response time targets as long as possible and let
the other requests suffer (the argument behind the sec-
ond choice being that the requests with more stringent
response time targets have been assigned this stringent
target since they are more critical or important to the
system). The first choice 1s simply achieved by continu-
ing to serve requests from the queue by the order of their
dispatch deadlines. To achieve the second choice when
picking a request for dispatching, the scheduler first
identifies all requests whose dispatch deadlines are
already reached or passed. If the scheduler finds any
such requests, the scheduler picks the one with the low-
est response time target (which 1s notnecessarily the one
with the smallest dispatch deadline). I there are no such
requests, the scheduler picks the request with the short-
est dispatch deadline.

(3) Runtime based admission. The runtime of an incoming
priority request 1s estimated (e.g., by using data avail-
able from the database through a query optimizer).
Then, this estimate 1s used to admit requests 1n the
admission queue in SIJF (Shortest-Job-First) order
instead of FCFS (First-Come-First-Serve) order.

(4) Starvation Prevention. To prevent best effort requests
from waiting forever in the admission queue, one can set
a limit for the maximum tolerable wait time. Once a
best-efiort request has been 1n the admission queue for
the maximum wait time, the request 1s admaitted, even 1t
this could jeopardize the target response times for high
priority requests.

(5) Avoiding overload. The MPL adaptor can detect, in
addition to loss 1n throughput due to under-utilization of
resources, a loss 1n throughput due to over-utilization or
overload of resources. In this case, the MPL adaptor will
reduce the MPL.

A variation within the spirit and scope of the invention 1s to
have different applications running on the system which are
invoked to satisty requests. These different applications may
be, but are not necessarily, different invocations of the same
program. The 1dea is that a request can be satisfied by more
than one application. The system picks an appropriate appli-
cation to satisty a request based on the QoS requirements.

US 8,831,026 B2

9

Different applications may have different expected response
times. The expected response times for different applications
can be controlled by a number of factors, including but not
limited to the following:

1. The number of requests per unit time the scheduler sends
to an application.

2. Applications can run on different servers. Some appli-
cations may run on slower servers than others.

3. The system may include a plurality of servers 1n which
different numbers of applications run on different serv-
ers. A server with a large number of applications would
typically have slower response times than one running a
small number of applications.

The system monitors response times of different applica-
tions and satisfies QoS requirements based on the expected
response times ol applications. Similar techniques to those
described earlier are used for scheduling requests. A differ-
ence 1s that mstead of basing decisions on predicted server
response times, decisions are based on predicted application
response times.

It 1s to be further appreciated that a service provider could
provide aspects ol the present mvention in the following
illustrative way. Clients could be assigned to different QoS
classes, for example, as mentioned above, wherein one or
more target request response times would be assigned to each
class. The service provider could provide different options for
grouping clients into different QoS classes. One such method
would be for levels of service to be specified via service level
agreements (1.¢., formal or informal). The requests could then
be serviced 1n accordance with such characteristics as esti-
mated server response time and 1n accordance with request
withholding rules (e.g., quewing rules), as specified above.

Referring lastly to FIG. 3, a block diagram illustrates a
computing system with which embodiments of the present
invention may be implemented. More particularly, FIG. 3
illustrates an illustrative hardware implementation of a com-
puting system in accordance with which one or more compo-
nents/steps of a request scheduling system (e.g., components/
steps described in the context of FIGS. 1 and 2) may be
implemented, according to an embodiment of the present
invention. For example, an illustrative computing system
architecture such as that shown in FIG. 3 may be used 1n
implementing any and all client devices, servers, and compo-
nents of the scheduling system, etc., as mentioned above.

Further, it 1s to be understood that the individual compo-
nents/steps may be implemented on one such computer sys-
tem, or more preferably, on more than one such computer
system. In the case of an implementation on a distributed
computing system, the individual computer systems and/or
devices may be connected via a suitable network, e.g., the
Internet or World Wide Web. However, the system may be
realized via private or local networks. The mvention 1s not
limited to any particular network.

As shown, the computer system 300 may be implemented
in accordance with a processor 310, a memory 320, 1/O
devices 330, and a network 1nterface 340, coupled via a com-
puter bus 350 or alternate connection arrangement.

It 1s to be appreciated that the term “processor” as used
herein 1s intended to include any processing device, such as,
for example, one that includes a CPU (central processing
unit) and/or other processing circuitry. It 1s also to be under-
stood that the term “processor” may refer to more than one
processing device and that various elements associated with a
processing device may be shared by other processing devices.

The term “memory” as used herein 1s intended to include
memory associated with a processor or CPU, such as, for

10

15

20

25

30

35

40

45

50

55

60

65

10

example, RAM, ROM, a fixed memory device (e.g., hard
drive), a removable memory device (e.g., diskette), flash
memory, €ic.

In addition, the phrase “input/output devices” or “I/O
devices” as used herein 1s intended to include, for example,
one or more input devices (e.g., keyboard, mouse, etc.) for
entering data to the processing unit, and/or one or more output
devices (e.g., speaker, display, etc.) for presenting results
associated with the processing unit. For example, administra-
tor 170 (FIG. 1) may interface with the request scheduling
system via block 330.

Still further, the phrase “network interface” as used herein
1s intended to iclude, for example, one or more transcervers
to permit the computer system to communicate with another
computer system (e.g., client devices, application servers,
back-end servers, etc.) via an appropriate communications
protocol.

Accordingly, software components including instructions
or code for performing the methodologies described herein
may be stored in one or more of the associated memory
devices (e.g., ROM, fixed or removable memory) and, when
ready to be utilized, loaded in part or 1n whole (e.g., mto
RAM) and executed by a CPU.

Although illustrative embodiments of the present invention
have been described herein with reference to the accompany-
ing drawings, 1t 1s to be understood that the invention 1s not
limited to those precise embodiments, and that various other
changes and modifications may be made by one skilled 1n the
art without departing from the scope or spirit of the invention.

What 1s claimed 1s:

1. A method of processing a request to at least one server,
comprising the steps of:

a processor recerving the request; and

the processor determiming when to submit the request to

the at least one server based on: (1) a quality-of-service
(QoS) class assigned to a client from which the request
originated; (11) a response target associated with the QoS
class; and (111) an estimated response time associated
with the at least one server.

2. The method of claim 1, further comprising the step of
withholding the request from submission to the at least one
server when the request originated from a client assigned to a
first QoS class to allow a request that originated from a client
assigned to a second QoS class to meet a response target
associated therewith.

3. The method of claim 2, further comprising the steps of:
determining a throughput of the at least one server; and

reducing a request withhold rate to increase throughput of

the at least one server.

4. The method of claim 2, further comprising the steps of:

monitoring a throughput of the at least one server; and

varying a request withhold rate to balance the throughput
and request response times.

5. The method of claim 1, further comprising the step of
assigning the response target to the QoS class.

6. The method of claim S, wherein the step of assigning the
response target to the QoS class turther comprises the step of
assigning a response time target to the QoS class.

7. The method of claim 5, wherein the step of assigning the
response target to the QoS class turther comprises the step of
assigning a response percentile target to the QoS class.

8. The method of claim 1, further comprising the step of
estimating the response time associated with the at least one
server based on one or more requests sent to the at least one
server within a given time period.

9. The method of claim 1, further comprising the step of
assigning a target response time to a plurality of QoS classes

US 8,831,026 B2

11

in which lower quality classes are assigned larger response
times than higher quality classes.

10. The method of claim 1, further comprising the steps of:

determining dispatch times for requests from a difference

between at least one predicted response time of the at
least one server and the target response time correspond-
ing to the QoS class of the request; and

sending requests to the at least one server based on dispatch

times.

11. The method of claim 1, wherein a plurality of applica-
tions are runmng on the at least one server and requests are
routed to applications, further comprising the steps of:

estimating response times of applications based on one or

more requests sent to the applications within a time
period; and

sending a request to an application whose estimated

response time 1s not greater than a target response time
corresponding to the QoS class of the request.

12. The method of claim 11, further comprising the step of
varying a number ol requests sent to applications so that
estimated response times of applications are not greater than
target response times of QoS classes corresponding to
requests sent to the applications.

13. The method of claim 11, wherein the at least one server
comprises a plurality of servers and each application runs on
a different one of the plurality of servers.

14. Apparatus for processing a request to at least one server,
comprising:

a memory; and

at least one processor coupled to the memory and operative

to recerve a request, and determine when to submait the
request to the at least one server based on: (1) a quality-
of-service (QoS) class assigned to a client from which
the request originated; (11) a response target associated
with the QoS class; and (111) an estimated response time
associated with the at least one server:

wherein scheduling submission of the request to the at least

one server comprises determiming when to submit the
request to the at least one server.

15. The apparatus of claim 14, wherein the memory and the
at least one processor form a scheduler that 1s external to the
at least one server.

16. The apparatus of claim 15, wherein the scheduler 1s a
front-end scheduler and the at least one server 1s a back-end
SErver.

17. An article of manufacture for processing a request to at
least one server, comprising a computer readable medium
containing one or more programs which when executed
implement the steps of:

receiving the request; and

determining when to submit the request to the at least one

server based on: (1) a quality-of service (QoS) class
assigned to a client from which the request originated;
(11) a response target associated with the QoS class; and
(111) an estimated response time associated with the at
least one server.

18. A method of processing requests to at least one server,
comprising the steps of:

assigning at least one client to a quality-of-service (QoS)

class from among at least two QoS classes;

assigning a response target to at least one QoS class;

10

15

20

25

30

35

40

45

50

55

60

12

estimating at least one response time of the at least one
server based on one or more requests sent to the server
within a given time period; and

a processor withholding submission of requests associated
with a first one of the at least two QoS classes to allow
requests associated with a second one of the at least two
QoS classes to meet 1ts response target based on the at
least one estimated response time.

19. The method of claim 18, further comprising the steps

of:

determining a throughput of the at least one server; and

reducing a request withhold rate to increase throughput of
the at least one server.

20. The method of claim 18, further comprising the steps

of:

monitoring a throughput of the at least one server; and

varying a request withhold rate to balance the throughput
and request response times.

21. The method of claim 18, further comprising the steps

of:

determining dispatch times for requests from a difference
between at least one predicted response time of the at
least one server and the target response time correspond-
ing to the QoS class of the request; and

sending requests to the at least one server based on dispatch
times.

22. The method of claim 18, wherein a plurality of appli-
cations are running on the at least one server and requests are
routed to applications, further comprising the steps of:

estimating response times of applications based on one or
more requests sent to the applications within a time
period; and

sending a request to an application whose estimated
response time 1s not greater than a target response time
corresponding to the QoS class of the request.

23. The method of claim 22, further comprising the step of
varying a number ol requests sent to applications so that
estimated response times of applications are not greater than
target response times of QoS classes corresponding to
requests sent to the applications.

24. The method of claim 22, wherein the at least one server
comprises a plurality of servers and each application runs on
a different one of the plurality of servers.

25. A method of providing a scheduling service for
requests to at least one server, comprising the step of:

a service provider providing a scheduler comprising a pro-
cessor operative to: (1) assign at least one client to a
quality-of-service (QoS) class from among at least two
QoS classes; (11) assign a response target to at least one
QoS class; (111) estimate at least one response time of the
at least one server based on one or more requests sent to
the server within a given time period; and (1v) withhold

submission of requests associated with a first one of the
at least two QoS classes to allow requests associated
with a second one of the at least two QoS classes to meet
its response target based on the at least one estimated
response time.

	Front Page
	Drawings
	Specification
	Claims

