US008826080B2
a2y United States Patent (10) Patent No.: US 8.826,080 B2
Righi et al. 45) Date of Patent: Sep. 2, 2014
(54) METHODS AND SYSTEMS FOR PREBOOT g, jg?ag?g Ei . égggé IL\T_OH | s
,, ,, mametal. ...l
DATA VERIFICATION H2040 H * 8/2002 Reisercccoeeeviiiiinnnnnnnn, 701/12
6,651,188 B2 11/2003 Hardi t al.
(75) Tnventors: Luigi P. Righi, Laguna Hills, CA (US); 7024581 B1* 42006 Wangetal. ... 71472
Timothy S. Wickham, Huntington 7,146,525 B2 12/2006 Han et al.
Beach, CA (US), Mark A. Talbot, 7,451,304 B2 11/2008 Chang et al.
Huntington Beach, CA (US); Gregory 7,558,949 B2* 7/2009 Inadaetal. 713/2
M. Wellbrook, Long Beach, CA (US); (Continued)
Charlie C. Wang, Huntington Beach,
CA (US); Oscar Mireles, La Mirada, FOREIGN PATENT DOCUMENTS
CA (US); Michael D. Rubin, Leander,
TX (US) EP 0939367 A2 9/1999
EP 0939367 A3 9/1999
(73) Assignee: The Boeing Company, Chicago, IL OTHER PUBLICATIONS
(US)

Extended European Search Report for Application No. 12178371.6-

(*) Notice: Subject to any disclaimer, the term of this 1243; Nov. 15, 2012; 7 pages.

patent 1s extended or adjusted under 35 _ _ o
U.S.C. 154(b) by 172 days. Primary Examiner — Kaminm Patel

(74) Attorney, Agent, or Firm — Armstrong Teadale LLP

(21) Appl. No.: 13/193,718
(57) ABSTRACT

A method for validating the data defining an executable pro-
gram prior to loading of the data for program execution 1s

(22) Filed: Jul. 29, 2011

(65) Prior Publication Data described. The method includes calculating a verification
US 2013/0031413 Al Jan. 31, 2013 number for the data within a primary data storage area, the
data defining an executable program, comparing the calcu-
(51) Int. Cl. lated verification number with a stored number, executing the
Gool’ 11/00 (2006.01) program within the primary data storage area 11 the verifica-
(52) U.S. CL. tion number matches the stored number, calculating a verifi-
USPC oo, 714/36; 713/2 cation number for the data within a secondary data storage
(58) Field of Classification Search area, the data within the secondary data storage area defining
USPC e, 714/36 the same executable program as that within the primary data
See application file for complete search history. storage area, 1f the verification number and the stored number
do not match, comparing the calculated verification number
(56) References Cited for the data within the secondary data storage area with the
stored number, causing the program to be executed 1f the
U.S. PATENT DOCUMENTS verification number for the data within the secondary data
$370347 A * 1/1995 Armald of 4l 220/ storage area and the gtored number match, anq iqdicating a
5703043 A /1998 Noll o failure 11 the verification number for the data within the sec-
5.835.695 A 11/1998 Noll ondary data storage area and stored number do not match.
5,987,605 A 11/1999 Hill et al.
6,061,788 A * 5/2000 Reynaudetal. 713/2 16 Claims, 4 Drawing Sheets

CALOULATE VERIFICATION NUMBER. |-— 12 10
FOR PRIMARY DATA STORAGE AREA /

!

COMPARE CALCULATED L~ 14
VERIFICATION NUMBER TO STORED
NUMBER

RIFICATION
NUMBER AND

L O

EXECUTE PROGRAM
STORED IN PRIMARY DATA
STORAGE AREA

CALCULATE VERIFICATION NUMBER. | ~_~20
FOR SECONDARY DATA STORAGE
AREA

'

COMPARE SECONDARY STORAGE | ~.-22
AREA VERIFICATION NUMBER TG
STORED NUMBER

0 SECONDAR
ERIFICATION NUMBER™, YES
ND STORED NUMBE ' * 26

EXECUTE PROGRAM
STORED IN SECONDARY
DATA STORAGE AREA

I -
UNIT FATLURE R S ...
[~ "COPY PROGRAM FROM

! ! SECONDARY DATA
-] STORAGE AREA TO
! PRIMARY DATA STORAGE
AREA

I
L-

US 8,826,080 B2

Page 2
(56) References Cited 2009/0063834 Al 3/2009 Huang et al.
2009/0144535 Al 6/2009 Lin et al.
U.S. PATENT DOCUMENTS 2009/0158024 Al 6/2009 Hung et al.
2009/0158025 Al 6/2009 Hung et al.

7,650,556 B2 1/2010 T.ee 2009/0276617 Al* 11/2009 Grell etal.cceevveniinnnn. 713/2

7,669,048 B2 7/2010 Frank et al. 2010/0023741 Al* L2010 Wang ..., 713/2

7,689,861 Bl * 3/2010 Wangetal. ...ococon....... 714/6.12 2010/0082963 Al 4/2010 Lietal.

7.783.877 B2 /2010 1Iu 2010/0235646 Al* 92010 Fuetal.cc.cooeeiinini, 713/186

7,818,556 B2 10/2010 Iima 2010/0268967 Al™* 10/2010 Sendacccoeeiii 713/193

7,966,486 B2 6/2011 Huang et al. 2011/0093741 Al 4/2011 Liang et al.

8,356,206 B2 1/2013 Koestercooovvvvvvivnnnnnn, 714/15 2011/0219458 Al* 9/2011 Labarreetal. 726/26
2006/0047944 Al1* 3/2006 Kilian-Kehr 713/2 2011/0289280 Al* 11/2011 Kosekietal. 711/154
2007/0130452 A1* 6/2007 Mulrcoooeeeviiiiiiiiiiinnnnn, 713/1 2012/0159256 Al1* 6/2012 Havewalaetal. 714/37
2008/0052506 Al 2/2008 Iima et al.

2008/0086629 Al* 4/2008 Dellowcooviiviiiiinnn, 713/2 * cited by examiner

U.S. Patent Sep. 2, 2014 Sheet 1 of 4 US 8,826,080 B2

CALCULATE VERIFICATION NUMBER |—~_-12

FOR PRIMARY DATA STORAGE AREA // 10

COMPARE CALCULATED ~14

VERIFICATION NUMBER TO STORED
NUMBER

YES

NUMBER AND
STORED NUMBER
MATCH?

L

EXECUTE PROGRAM
STORED IN PRIMARY DATA
STORAGE AREA

CALCULATE VERIFICATION NUMBER | ~_-20

FOR SECONDARY DATA STORAGE
AREA

COMPARE SECONDARY STORAGE | ~_-22
AREA VERIFICATION NUMBER TO
STORED NUMBER

24

DO SECONDAR
ERIFICATION NUMBER
AND STORED NUMBER
MATCH?

YES

+ 20
EXECUTE PROGRAM

STORED IN SECONDARY
DATA STORAGE AREA

____________ ! ~30

COPY PROGRAM FROM
SECONDARY DATA

— = STORAGE AREA TO

PRIMARY DATA STORAGE

/—28

UNIT FAILURE

—————————————————— -

U.S. Patent Sep. 2, 2014 Sheet 2 of 4 US 8,826,080 B2

L~130

12

0

~100
PROCESSOR
110

BOOT ROM
(BIOS) 104

102

FIG. 2

U.S. Patent Sep. 2, 2014 Sheet 3 of 4 US 8,826,080 B2

304 306 308

PROCESSOR MEMORY PERSISTENT
UNIT STORAGE
S

COMMUNICATIONS| [INPUT/OUTPUT| [DISPLAY
UNIT UNIT

310) 312) 314)

COMPUTER
320 —_ / READABLE MEDIA

MACHINE CODE

318

316

FIG. 3

U.S. Patent

Sep. 2, 2014 Sheet 4 of 4

Data Verification function (Primary Address)
Calculate Verification Number
Compare to Stored Number
Does Number Compare (Yes/No) store result

'

~402

US 8,826,080 B2

400

Data Verification function (Secondary Address) 404
Calculate Verification Number
Compare to Stored Number
Does Number Compare (Yes/No) store result
Data Verification function (n Address) 406
Calculate Verification Number =
Compare to Stored Number
Does Number Compare (Yes/No) store result
|
422
HO 420 424
Did Primary Secondary _ No Did n No | Unit failure
Address Data Address Data Address Data and/or Failure
Compare? Compare? Annunciation
/432
440 ves 430 Execute
| Copy Data fromn |[[] | Address
Did n Address into Primary Data from
Address Data Address Data ™ and Secondary Address Good Data
Compare? Compare? o e source
Copy Data from Good Execute
Yes —= Data Source into |||, | Address
414 YeS 442 Failed Data Source ||| |Data from
. N Good Data
Did n \ Source
Address Data O -
Compare? Copy Data from Good Execute 444
—1 Data Source into Address
Failed Data Source Data from
Yeo L450 Good Data
Y 4 416 Copy Data from Good source
Execute Address Data Source into | _4¢p 452
Data from Good Failed Data Source

Data Source

* /-462

Execute Address
Data from Good
Data Source

FIG. 4

US 8,826,080 B2

1

METHODS AND SYSTEMS FOR PREBOOT
DATA VERIFICATION

BACKGROUND

The field of the disclosure relates generally to the startup of
computer-based systems that incorporate a BIOS (basic
input/output system) that initiates execution of one or more
programs, and more particularly to methods and systems that
incorporate preboot data verification for such programs.

Generally, when power 1s first applied to a computer sys-
tem, a startup program is run that i1s stored in non-volatile
memory. Such a startup program may be referred to as boot
firmware, and 1s colloquially referred to as a BIOS program.

The BIOS program 1s executed in computer systems that
range from a standard personal computer to an embedded
system that 1s deployed as a piece of avionics (e.g., an avion-
ics unit or “black box™) 1n an aircratt.

Execution of a BIOS program 1s useful to detect and 1den-
tily system components that are communicatively coupled to
the processing device on which the BIOS 1s being executed.
For example, computer hard drives, displays, and external
memory devices are 1identified and addressed through execu-
tion of the BIOS such that software drivers for such devices
may be loaded upon the BIOS turning operation over to an
operating system. In some applications, the BIOS may
include software that mitiates a built 1 test (BIT) to be run;
thereby determining that the hard drives, displays, etc. are at
least partially operating. That 1s, the processor 1s able to
communicate with the device. Eventually the BIOS execution
1s complete, with a portion of the BIOS instructions causing
the operating system, or in the case of an aircraft system, the
operational flight program (OFP), associated with the device
to begin 1ts operations.

In such systems, the BIOS operates to initiate execution of
the operating system or OFP. However, the BIOS does not
include any instructions that allow it to verity the content of
the operating system or OFP. As such, 1f the operating sys-
tems, OFP, or any other application 1s corrupted, operation of
the particular system may be compromised, or 1t will not
operate at all.

In the aircrait avionics example, problems during execu-
tion of the OFP from the BIOS or boot ROM are a cause of
false remove and replace actions. For example, if the device
does not execute the OFP properly, the avionics device 1s
removed and replaced, with the removed device being sent to
a maintenance depot. Oftentimes, the problem with the
removed device as described cannot be duplicated or 1t 1s
determined that the OFP 1s corrupted. As such, the repair
consists of the OFP being reloaded, retested, and returned to
service.

BRIEF DESCRIPTION

In one aspect, a method for validating data defining an
executable program prior to loading of the data for program
execution 1s provided. The method includes calculating a
verification number for the data within a primary data storage
area, the data defining an executable program, comparing the
calculated verification number with a stored number, execut-
ing the program within the primary data storage area 1t the
verification number matches the stored number, calculating a
verification number for the data defining the same executable
program as that within the primary data storage area within a

10

15

20

25

30

35

40

45

50

55

60

65

2

secondary data storage area. If the verification number and
stored number do not match, comparing the calculated veri-
fication number for the data within the secondary data storage
arca with the stored number, causing the program to be
executed 1f the verification number for the data within the
secondary data storage area and the stored number match, and
indicating a failure 1f the verification number for the data
within the secondary data storage area and stored number do
not match.

In another aspect, a device 1s provided that includes a
processing unit, a boot ROM from which a basic input/output
system 1s executed by the processing unit, a primary data
storage area configured to store an 1mage of an executable
application associated with the device, and at least one sec-
ondary data storage area configured to store at least one
additional 1mage of the executable application associated
with the device. The device 1s programmed to calculate a
separate verification number for the image stored within the
primary data storage area and each image stored within at
least one secondary data storage area, compare the calculated
separate verification number for each image with a stored
number 1n the boot ROM, copy the image from one of the
primary and secondary data storage areas where the calcu-
lated verification number for the image matches the stored
number to any primary or secondary data storage area where
the calculated separate verification number for the image did
not match the stored number, and execute the program
defined by the stored image from one of the primary and
secondary data storage areas.

In still another aspect, one or more computer-readable
storage media having computer-executable instructions
embodied thereon are provided. At least a portion of the
storage media includes data representing a checksum associ-
ated with an executable application. When executed by at
least one processor, the computer-executable instructions
cause at least one processor to calculate a separate verification
number for data within a plurality of data storage areas, the
data within each data storage area defining the same execut-
able program, compare the calculated separate verification
number for each of the plurality of data storage areas with a
stored number, copy the data from one of the plurality of data
storage areas where the calculated separate verification num-
ber matches the stored number to any of the plurality of data
storage areas where the calculated verification number did
not match the stored number, and execute the program
defined by the stored data from one of the plurality of data
storage areas.

In yet another aspect, a method for execution of a program
from a memory source 1s provided. The method includes
calculating a separate verification number for data within a
plurality of data storage areas, the data within each data
storage area defining the same executable program, compar-
ing the calculated separate verification number for each of the
data storage areas with a stored number, copying the data
from one of the plurality of data storage areas where the
calculated separate verification number matched the stored
number to any of the plurality of data storage areas where the
calculated separate verification number did not match the
stored number, and executing the program defined by stored

data from one of the plurality of data storage areas.

The features, functions, and advantages that have been
discussed can be achieved independently in various embodi-
ments or may be combined in yet other embodiments further
details of which can be seen with reference to the following
description and drawings.

US 8,826,080 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flowchart of a verification process.

FIG. 2 1s a diagram of a processing system 1llustrating
multiple 1mages ol an application within various memory
areas.

FIG. 3 1s a diagram of a data processing system.

FI1G. 4 1s a flowchart illustrating an alternative implemen-
tation of a verification process.

DETAILED DESCRIPTION

The described embodiments are directed to the validation
of data (e.g., operating system files, applications, and other
information needed to mitialize a computer system, including
for example critical system files, kernel files, configuration
files, etc.) that are stored in, for example a non-volatile
memory, before that data 1s loaded for execution. In the exem-
plary embodiment, if the validation test fails (e.g., a check-
sum test fails), a secondary source of the same data may be
utilized. I the secondary source of data passes the validation
test, the data 1s loaded from the memory associated with the
secondary source and executed. In certain embodiments, the
validated copy of data in the secondary source might over-
write the data that could not be validated in the primary
memory. As memory devices continue to increase 1n capacity
and reduce 1n physical size, 1t 1s possible to envision three,
four, five, and up to n sources of data, which would allow for
multiple attempts at loading applications for execution before
an indication of a failure would occur. Such embodiments
also provide an ability to overwrite any corrupt files with valid
files from the other sources thereby providing a “self repair”
functionality.

As described herein, additional instructions are added to a
basic mput/output system (BIOS). The instructions cause a
verification of data that constitutes, for example, the contents
ol an operating system, an application and other stored infor-
mation to imitialize a system, to be performed. In a simple
example, mnstructions executed 1n the BIOS cause a checksum
to be calculated for the operational tlight program (OFP) of an
avionics unit stored in a non-volatile memory, intended to be
executed by the avionics unit or “black box”. The BIOS
turther verifies that the calculated checksum 1s equal to a
stored checksum for the OFP, the checksum stored, for
example, 1n a memory associated with the BIOS.

As further explained with respect to FIG. 1, if the check-
sums are equal, the BIOS allows and/or causes the OFP to be
run. If the checksums are not equal, the BIOS moves on to
another memory location where another instance of the OFP
1s stored, causes the checksum to be calculated, and verified
against the stored checksum. The process can be repeated for
multiple mirror 1images of the OFP, until an 1image with a
verifiable checksum 1s found, at which point that image can
then be executed or transterred into a memory from which 1t
1s able to be executed. Further the image of the OFP that
passes the checksum verification test may be copied 1nto the
memory locations at which the checksum could not be veri-
fied, presumably generating verifiable copies of the OFP that
can be run in future boot ups of the system. In this embodi-
ment, the boot ROM {from which the BIOS 1s executed 1s
configured with the locations (in memory) of the secondary
(tertiary, etc.) sources of data.

The above described concepts are more easily visualized
using the tlowchart 10 of FIG. 1. While the actual sequence
may be executed 1n anumber of ways, all are consistent in that
one or more secondary sources of data are accessible by a
processing function for loading, execution, and replacement

10

15

20

25

30

35

40

45

50

55

60

65

4

of primary sources of data. Referring to flowchart 10, a veri-
fication number for a primary data storage area 1s calculated
12 and the calculated verification number 1s compared 14 to a
stored number such as a checksum. If the verification number
and stored number match 16, the program stored in the pri-
mary data storage area 1s loaded and executed 18.

I1 the verification number and stored number do not match
16, a vernification number for a secondary data storage area,
which should include an exact copy of the data that should
have been 1n the primary data storage area, 1s calculated 20.
The venification number calculated 20 for the secondary data
storage area 1s compared 22 to the stored number. If the
verification number and stored number associated with the
secondary data storage area match 24, the program stored 1n
the secondary data storage area 1s executed 26.

If the verification number and stored number associated
with the secondary data storage area do not match 24, 1t can be
assumed that the unit has failed 28. Execution of the program
from the secondary data storage area can be accomplished 1n
a number of ways. The program may be executed 26 directly
from the secondary data storage area, or the data from the
secondary data storage areca may be copied 30 to the primary
data storage area such that 1t might be executed from the
primary data storage area. Alternatively, the program may be
executed from the secondary data storage area and then cop-
ied 30 over into the primary storage area as a self-repair
function once the program 1s loaded. In another embodiment,
the program stored in the secondary data storage area 1s
loaded into a memory from which the program can be
executed.

In the simplest example associated with FIG. 1, should the
data verification function (comparison between calculated
and stored numbers) pass with regard to a primary memory
location, the program at such memory location 1s executed 18.
However, those skilled in the art will understand that the
process 1llustrated by FIG. 1 need not be limited to two data
storage areas. It 1s contemplated that in certain applications
that the data verification function will be performed with
respect to n data storage areas.

Particularly, calculation of a verification number may
include calculating a value such as a checksum. FIG. 2 1llus-
trates that the primary data storage area, secondary data stor-
age area, tertiary data storages area and so on may be embod-

ied i multiple ways. In FIG. 2, a processor 100 1s coupled to
a boot ROM device 102 in which a BIOS 1s stored. A portion

ol the boot ROM device 102 stores a checksum 104 for an
application (or multiple checksums for multiple applications)
to be executed by processor 100. Memory 110 contains the
primary 1image 112 of the application to be executed. As
described herein, the device incorporating processor 100,
boot ROM 102 and memory 110 may be configured to include
multiple memory devices, for example memory devices 120
and 130. As shown 1n the example of FIG. 2, memory device
120 1s configured with two mmages (122 and 124) of the
application to be executed and memory device 130 1s config-
ured a single image 132 of the application to be executed.

In the example of memory device 120, the data storage
areas may be separate partitions in a single memory device. In
another example, the data storage areas may be embodied as
physically separate memory devices (e.g., a hard drive, sili-
con memory devices, a CD-ROM, a flash drive, a thumb
drive, etc.). In still another example, the data storage areas
may be embodied as physically separate devices of the same
type (e.g., memory devices on separate circuit boards). Again,
a multitude of physical memory device embodiments and
configuration combinations may be utilized to achieve the
functionality described herein.

US 8,826,080 B2

S

Further, the embodiments are not limited to operational
flight programs. Data to be validated may include an operat-
ing system, applications, and/or other information needed to
initialize a system that 1s stored 1n a memory. In the embodi-
ments, the data stored 1n a memory 1s validated (verified)
betore 1t 1s loaded for execution or before the BIOS transiers
control of the system to an operating system. I1 the validation
fails, a secondary source of such data 1s utilized, assuming 1t
also passes a verification test.

In addition, data from one of the secondary data sources

can be loaded from memory and copied over to the primary
data memory. For example, and referring again to FIG. 2, 1f
image 112 1s the primary image and the verification calcu-
lated for 1mage 112 does not match the checksum 104 stored
in the boot ROM 102, and image 132 does match the check-
sum stored 1mn boot ROM 102, the boot ROM 102 may be
configured to include mstructions that would copy the image
132 into memory 110, overwriting the image 112, which for
purposes of describing the embodiments, may be considered
as having been corrupted.
In certain applications, for example, the above described
aircraft avionics system, the multiple copies of the software
and data needed for operation 1n various different locations
results 1 a system that has a high degree of redundancy
allowing for the automatic correction of 1ssues that would
prevent boot-up and ultimately system operation. In the case
where there 1s an operator, the function i1s automated and
saves time.

In one embodiment, technical effects of the methods, sys-
tems, and computer-readable media described herein include
at least one of: (a) veritying that the data making up an
executable program within the data storage area of a device 1s
as expected via, for example, a checksum of such data being
equal to a stored checksum (b) executing the program asso-
ciated with the data storage device 1 the verification test
passes, (¢) attempting to verily that the data making up the
executable program within a different data storage area of a
device 1s as expected via, for example, a checksum of such
data being equal to a stored checksum, (d) executing the
program Ifrom the different data storage device if the verifi-
cation test passes, and (e) potentially copying the program
from the different data storage area to the original data storage
area such that the device can execute the program from the
original data storage area at a later time.

Turning now to FIG. 3, a more detailed diagram of a data
processing system 1s depicted in accordance with an illustra-
tive embodiment. In this illustrative example, data processing,
system 300 1includes commumnications fabric 302, which pro-
vides communications between processor unit 304, memory
306, persistent storage 308, communications unit 310, mnput/
output (I/O) unit 312, and display 314. In various embodi-
ments, system 300 i1s representative of a general purpose
personal computer or an aircrait avionics unit.

Processor unit 304 serves to execute mstructions for soft-
ware that may be loaded into memory 306. Processor unit 304
may be a set of one or more processors or may be a multi-core
processor, depending on the particular implementation. Fur-
ther, processor unit 304 may be implemented using one or
more heterogeneous processor systems 1n which a variety of
different types of processors are present on a single chip. As
another illustrative example, processor unit 304 may be a
symmetric multi-processor system containing multiple pro-
cessors of the same type.

Memory 306 and persistent storage 308 are examples of
various storage devices within which an image (or images) of
an application, such as an OFP, may be stored. As used herein,
a storage device or memory 1s any piece of hardware that 1s

[

10

15

20

25

30

35

40

45

50

55

60

65

6

capable of storing information either on a temporary basis or
a permanent basis. Memory 306, 1n these examples, may be,
for example, without limitation, a random access memory
(RAM) or any other suitable volatile or non-volatile silicon-
based memory device. A portion of memory 306 may be
configured as a boot ROM device as described 1n the preced-
ing paragraphs. Persistent storage 308 may take various
forms depending on the particular implementation. For
example, without limitation, persistent storage 308 may con-
tain one or more components or devices. For example, per-
sistent storage 308 may be a hard drive, a flash memory, a
rewritable optical disk, a rewritable magnetic tape, or some
combination of the above. The media used by persistent stor-
age 308 also may be removable. For example, without limi-
tation, a removable hard drive may be used for persistent
storage 308.

Communications unit 310, 1n these examples, provides for
communications with other data processing systems or
devices. In these examples, communications unit 310 1s a
network interface card (NIC). Communications unit 310 may
provide communications through the use of either or both
physical and wireless communication links.

Input/output unit 312 allows for input and output of data
with other devices that may be connected to data processing
system 300. For example, without limitation, input/output
unit 312 may provide a connection for user input through a
keyboard and mouse. Further, input/output unit 312 may send
output to a printer. Display 314 provides a mechanism to
display information to a user.

Instructions for the operating system and applications, or
programs are located on persistent storage 308. These instruc-
tions may be loaded mto memory 306 for execution by pro-
cessor unit 304. The processes of the different embodiments
may be performed by processor unit 304 using computer
implemented 1nstructions, which may be located i a
memory, such as memory 306. These instructions are referred
to as machine code, which may be read and executed by a
processor 1n processor unit 304. The machine code 1n the
different embodiments may be embodied on different physi-
cal or tangible computer readable media, such as memory 306
or persistent storage 308.

Alternatively or 1n addition, machine code 316 1s located 1n
a functional form on computer readable media 318 that i1s
selectively removable and may be loaded onto or transferred
to data processing system 300 for execution by processor unit
304. Machine code 316 and computer readable media 318
form a computer program product 320 1n these examples. In
one example, computer readable media 318 may be 1n a
tangible form, such as, for example, an optical or magnetic
disc that 1s mserted or placed into a drive or other device that
1s part of persistent storage 308 for transier onto a storage
device, such as a hard drive that 1s part of persistent storage
308. In a tangible form, computer readable media 318 also
may take the form of a persistent storage, such as a hard drive,
a thumb drive, or a flash memory that 1s connected to data
processing system 300. The tangible form of computer read-
able media 318 is also referred to as computer recordable
storage media. In some instances, computer readable media
318 may not be removable.

Alternatively, machine code 316 may be transierred to data
processing system 300 from computer readable media 318
through a communications link to communications unmt 310
and/or through a connection to put/output unit 312. The
communications link and/or the connection may be physical
or wireless 1n the 1llustrative examples. The computer read-

US 8,826,080 B2

7

able media also may take the form of non-tangible media,
such as communications links or wireless transmissions con-
taining the machine code.

In some 1illustrative embodiments, machine code 316 may
be downloaded over a network to persistent storage 308 from
another device or data processing system for use within data
processing system 300. For instance, machine code stored in
a computer readable storage medium 1n a data processing
server may be downloaded over a network from the server to
data processing system 300. The data processing server pro-
viding machine code 316 may be a host computer, a client
computer, or some other device capable of storing and trans-
mitting machine code 316.

The different components illustrated for data processing
system 300 are not meant to provide architectural limitations
to the manner in which different embodiments may be imple-
mented. The different illustrative embodiments may be
implemented 1n a data processing system ncluding compo-
nents 1 addition to or 1n place of those 1llustrated for data
processing system 300. Other components shown in FIG. 3
can be varied from the illustrative examples shown.

As one example, a storage device in data processing system
300 1s any hardware apparatus that may store data. Memory
306, persistent storage 308 and computer readable media 318
are examples of storage devices 1n a tangible form.

In another example, a bus system may be used to 1imple-
ment communications fabric 302 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using any
suitable type of architecture that provides for a transfer of data
between different components or devices attached to the bus
system. Additionally, a communications unit may include one
or more devices used to transmit and receive data, such as a
modem or a network adapter. Further, a memory may be, for
example, without limitation, memory 306 or a cache such as
that found via an 1nterface to an external memory or memory
controller that may be accessed via communications fabric
302.

FI1G. 4 1s a tflowchart 400 illustrating an alternative imple-
mentation of a verification process. The above described
embodiments described a process where a system calculates
checksums of program storage areas until a program storage
arca with an appropriate checksum 1s found, whereupon the
program 1s executed from that storage area. Flowchart 400
illustrates a process where all of the program storage areas are
verified, even though the first program storage arca may have
passed the checksum test. By veritying the contents of all the
program storage areas, the scenario 1s avoided where program
storage areas 2 through n are corrupted, but such corruption
goes undetected because program storage area 1 has always
passed the verification test. If the corruption of program stor-
age areas 2 through n go undetected, should program storage
area 1 ever not pass the verification test, the unit incorporating
the program storage areas 1 through n would unnecessarily be
rendered 1noperable.

Referring now to flowchart 400, a data verification function
for a primary address (program storage area 1) 1s performed
402. Specifically, a verification number 1s calculated, com-
pared to a stored number, and a result of the comparison 1s
stored, similar to that described 1n the preceding paragraphs.
The data verification function 1s performed 404 for a second-
ary address (program storage area 2), with the result stored, as
well as performed 406 for the remainder of the n addresses
(program storage areas n), with the results stored.

In one scenario, all of the program storage areas pass the
verification testing. Specifically, 1t 1s verified that the com-
parison 410 at the primary address passed, that the compari-

10

15

20

25

30

35

40

45

50

55

60

65

8

son 412 at the secondary address passed, and that the com-
parison 414 at the n addresses passed, at which point the
program 1s executed 416 from the primary address.

In another scenario, many or all of the program storage
areas do not pass the verification testing. Specifically, when 1t
1s verified that the comparison 410 at the primary address did
not pass, that the comparison 420 at the secondary address did
not pass, and that the comparison 422 at one or more of the n
addresses did not pass, the program 1s eventually executed
432 from one of the n addresses where the verification test
eventually passed, 1f any. If none of the n addresses pass, a
umt faillure 424 occurs and may be annunciated (e.g.,
reported). However, 11 the comparison 422 at one of the n
addresses does pass, the data from that program storage area
1s copied 430 into the primary program area, the secondary
program storage area, and any of the n program storage areas
where the comparison did not pass. Then, the program 1s
executed 432 from either the primary program storage area,
secondary program storage area or one of the n program
storage areas where the comparison did pass.

In the scenario where the comparison 410 at the primary
address did not pass, the comparison 420 at the secondary
address did pass, but at least one of the comparisons 440 at
one or more of the n addresses did not pass, data from the
secondary program storage area 1s copied 442 into the pri-
mary program storage area and any of the nth program storage
areas where the comparison did not pass, and the program 1s
eventually executed 444 either from the primary program
storage area, secondary program storage area or one of the n
program storage areas.

Similarly, in the scenario where the comparison 410 at the
primary address did not pass, the comparison 420 at the
secondary address did pass, and all of the comparisons 440 at
the n addresses did pass, data from one of the secondary
program storage area or the n program storage areas 1s copied
450 1nto the primary program storage area, and the program 1s
eventually executed 452 either from the primary program
storage area, secondary program storage area or one of the n
program storage areas.

Finally, in the scenario where the comparison 410 at the
primary address did pass, the comparison 412 at the second-
ary address did pass, and at least one of the comparisons 414
at the n addresses did not pass, data from one of the primary
program storage area or the secondary program storage area1s
copied 460 into the n program storage areas where the com-
parison 414 did not pass, and the program i1s eventually
executed 462 either from the primary program storage area,
the secondary program storage area or one of the n program
storage areas.

The above described method and system configurations are
operable for assured execution of a program even though the
primary storage location for that program may become cor-
rupted. Previously, and especially 1in the tightly constrained
spaces and weights associated with aircraft avionics systems,
physical space for additional memory simply was not avail-
able for storage of “extra” program images. However, as
memory devices continue to reduce in physical size, while
also growing 1n storage capacity, the configurations described
herein have become feasible. The embodiments allow for a
reduction in the removal occurrences of units from aircratt for
repair, since the umits, at least at a certain level, are self
repairing, through the copying of a confirmed “good™ appli-
cation 1image 1nto the memory space where a potentially cor-
rupted 1image of the program has been stored.

As used herein, an element or step recited in the singular
and proceeded with the word “a” or “an” should be under-
stood as not excluding plural elements or steps unless such

US 8,826,080 B2

9

exclusion 1s explicitly recited. Furthermore, references to
“one embodiment” of the present invention or the “exemplary
embodiment” are not intended to be interpreted as excluding
the existence of additional embodiments that also incorporate
the recited features.

The description of the different advantageous embodi-
ments has been presented for purposes of illustration and
description, and 1s not intended to be exhaustive or limited to
the embodiments 1n the form disclosed. Many modifications
and variations will be apparent to those of ordinary skill in the
art. Further, different advantageous embodiments may pro-
vide different advantages as compared to other advantageous
embodiments. The embodiment or embodiments selected are
chosen and described 1n order to best explain the principles of
the embodiments, the practical application, and to enable
others of ordinary skill in the art to understand the disclosure
for various embodiments with various modifications as are
suited to the particular use contemplated.

This written description uses examples to disclose various
embodiments, which include the best mode, to enable any
person skilled in the art to practice those embodiments,
including making and using any devices or systems and per-
forming any incorporated methods. The patentable scope 1s
defined by the claims, and may include other examples that
occur to those skilled 1n the art. Such other examples are
intended to be within the scope of the claims if they have
structural elements that do not differ from the literal language
of the claims, or 1f they include equivalent structural elements
with msubstantial differences from the literal languages of
the claims.

What 1s claimed 1s:

1. A method for validating data defining an executable
program prior to loading of the data for program execution,
the method comprising:

calculating a verification number for the data within a

primary data storage area, the data defining an execut-
able program;

comparing the calculated verification number with a stored

number;

determining that the verification number does not match

the stored number;

based on the determination that the verification number

does not match the stored number, calculating a second
verification number for data within a secondary data
storage area, the data within the secondary data storage
area defining the same executable program as that within
the primary data storage area;

comparing the calculated second verification number for

the data within the secondary data storage area with the
stored number;

determining that the calculated second verification number

and the stored number match:;

based on the determination that the calculated second veri-

fication number and the stored number match:
overwriting the data within the primary data storage area

with the data within the secondary data storage; and
causing the program to be executed.

2. The method according to claim 1 further comprising
copying the data within the secondary storage areca into the
primary storage area.

3. The method according to claim 1 wherein calculating a
verification number for the data comprises calculating a
checksum of an operational tlight program for an aircraft
avionics device.

4. The method according to claim 1 wherein calculating a
verification number for the data comprises executing mnstruc-

10

15

20

25

30

35

40

45

50

55

60

65

10

tions within a boot read-only memory (ROM) device to cal-
culate a checksum of the data defining the executable pro-
gram.

5. The method according to claim 1 wherein comparing the
calculated second verification number for the data within the
secondary data storage area with a stored number comprises
comparing the calculated second verification number with a
number stored in a memory associated with a basic mnput/
output system.

6. A device comprising;:

a boot read-only memory (ROM) from which a basic input/

output system 1s executed by a processing unit;
a primary data storage area configured to store an 1image of
an executable application associated with the device;
and
at least one secondary data storage area configured to store
an additional 1image of the executable application asso-
ciated with the device; and
a processor programmed to:
calculate a venfication number for the image stored
within the primary data storage area;

compare the calculated verification number for the
image stored within the primary data storage area
with a stored number 1n the boot ROM;

determine that the verification number for the image
stored within the primary data storage area does not
match the stored number;

based on the determination that the verification number
for the 1image stored within the primary data storage
area does not match the stored number, calculate a
second verification number for the additional 1image
within the at least one secondary data storage area,
data corresponding to the additional image within the
at least one secondary data storage area defining the
same executable program as that within the primary
data storage area;

determine that the calculated second verification num-
ber and the stored number match;

overwrite the image from the primary data storage area
with the additional 1image of the executable applica-
tion associated with the device; and

execute the program defined by the additional 1image
from the secondary data storage area.

7. The device according to claim 6 wherein said device
comprises an aircrait avionics unit.

8. The device according to claim 7 wherein the image
stored 1n said primary storage area and the additional 1mage
stored 1n said at least one secondary data storage area com-
prise an operational tlight program, and wherein the calcu-
lated verfication number comprises a checksum for the
operational tlight program.

9. The device according to claim 6 wherein said at least one
secondary data storage area comprises one or more of the
following: a silicon memory device, a computer hard drive, a
CD-ROM, a flash drive, and a thumb drive.

10. One or more non-transitory computer-readable storage
media having computer-executable instructions embodied
thereon, at least a portion of said storage media comprising
data representing a checksum associated with an executable
application, wherein when executed by at least one processor,
the computer-executable instructions cause the at least one
processor 1o:

calculate a verification number for data within a primary
data storage area, the data within the primary data stor-
age area defining an executable program;

compare the calculated verification number for primary
data storage area with a stored number;

US 8,826,080 B2

11

determine that the calculated verification number does not

match the stored number;

based on the determination that the verification number

does not match the stored number, calculate a second
verification number for data within a secondary data
storage area, the data within the secondary data storage
areca defining the same executable program as that within
the primary data storage area;

compare the calculated second verification number for the

data within the secondary data storage area with the
stored number:;

determine that the calculated second verification number

for the data within the secondary data storage area and
the stored number match;

based on the determination that the calculated second veri-

fication number for the data within the secondary data

storage area and the stored number match:

overwrite the data from the primary data storage area
with the data from the secondary data storage area;
and

execute the program defined by the data from the sec-
ondary data storage area.

11. One or more non-transitory computer-readable storage
media according to claim 10 wherein the executable applica-
tion comprises an operational flight program.

12. A method for execution of a program from a memory,
said method comprising:

calculating a verification number for data within each of a

plurality of data storage areas, the data within each data
storage area defining the same executable program:;

10

15

20

25

12

comparing the calculated verification number for each of
the plurality of data storage areas with a stored number;

determining that the calculated verification number for a
first data storage area of the plurality of data storage
areas does not match the stored number;

determining that the calculated verification number for a
second data storage area of the plurality of data storage
areas matches the stored number; and

executing the program defined by data from the second

data storage area.

13. The method according to claim 12 wherein calculating
a verification number comprises at least one of:

calculating a checksum of an operational flight program for

an aircraft avionics device; and

executing mstructions within a boot ROM device to calcu-

late a checksum of the data defining the same executable
program.

14. The method according to claim 12, further comprising,
prior to executing the program defined by stored data from the
second data storage area, overwriting the data from first data
storage area with the data from the second data storage area.

15. The method according to claim 12, further comprising,
prior to executing the program defined by stored data from the
second data storage area, copying the data from the second
data storage area to the to the first data storage area.

16. The method according to claim 12, wherein the pro-
gram defined by data from the second data storage area 1s
executed directly from the second data storage area.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

