US008806433B2
a2y United States Patent (10) Patent No.: US 8.806.433 B2
Phan et al. 45) Date of Patent: Aug. 12,2014

(54) METHOD AND FRAMEWORK FOR (56) References Cited

SOFTWARE DEVELOPMENT
U.S. PATENT DOCUMENTS

(75) Inventors: Nhan Van Phan, San Francisco, CA

(US); Michael Benjamine Selkowe gagfgagg} g: ggg?g geﬂiﬂgf;fl ***************** el /_g;g/;g;
. _ : : | upta etal. *

f}ert‘khpall)‘?f Alto, (li? (U,[S?ﬂ Ewmfg’ \ 2002/0040410 Al* 4/2002 Leach et al. oo 709/315

Ccrarao vignal, Votilalll view, 2003/0226132 Al* 12/2003 Tondreauetal. 717/116

(US); Cheng-chao Yang, Palo Alto, CA 2006/0136921 Al* 6/2006 Beckeretal. 718/100

(US); Therani Madhusudan, San Jose, 2008/0098354 Al* 4/2008 Chenetal.ooooovvvvvviii) 717/120

CA (US) 2008/0184140 Al* 7/2008 KOEINET .oovovveeveevovinn, 715/762

2011/0066999 Al* 3/2011 Rabinovichetal. 717/104

(73) Assignee: Reputation.com, Redwood City, CA 2012/0159428 Al* 6/2012 Parketal. wooooovvveiviii.. 717/104
(US)

FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this R /
patent is extended or adjusted under 35 774756 A2 * 5/1997 ... G11B 27/034

U.S.C. 154(b) by 0 days. * cited by examiner

(21) Appl. No.: 13/282,673
Primary Examiner — Don Wong

(22) Filed: Oct. 27, 2011 Assistant Examiner — Mohammad Kabir
(74) Attorney, Agent, or Firm — Finnegan, Henderson,
(65) Prior Publication Data Farabow, Garrett & Dunner, L..L..P.
US 2013/0111436 Al May 2, 2013
(37) ABSTRACT
(51) Int.CL |
GO6F 9/44 (2006.01) Presented are systems and methods of operation for a frame-
GO6F 9/46 (2006.01) work system. The framework system acquires soitware code
(52) U.S.CL and modularizes the software code to create an associated
CPC ... GOG6F 8/34 (2013.01); GO6F 8/20 (2013.01) modular code, wherein the modular code 1s composed of a
USPC oo 717/120: 717/127: 719/315 Plurality of synchronous and asynchronous modular ele-

ments. The framework system modifies the modular code

(58) Field of Classification Search using a modular element, and automatically modifies the

CPE e GO6F 8(??? 46 : 5816% 8(/}?? 66 : (%26% 8(/}70 16 £ (%36% software code based on the modified modular code.
8/33
See application file for complete search history. 19 Claims, 8 Drawing Sheets

Modulizer Module
407

“—™ |nterface Module 400
. 405

Context 412

p{ Structure Module
410 _ ff’#ff#r

-y

_ Context
¢ Element .
412a

Resource Module

> 415 N
Yy Y Y
Data Storage |,
Module —m| Controller Module
440 o} 420
A A
™| Context Queus
.| Output Module [«—»- 422
435

I

SAS Module
425

Listener
427

|

Handler Meodule 430

Handler

- Madule ol ——
Elament

430a

US 8,806,433 B2

Sheet 1 of 8

Aug. 12,2014

U.S. Patent

€G 22Jn0g eje

IE

2G| 921nog eleQq

1G| ©2In0S eje(

Ot L NIOM}ON

€91 921n8Q

Josn

291 991ne(
198

191 991A8(
188

00t
LWBISAS Yiomawel

GOl
LUBISAS

uonesynuap|

U.S. Patent Aug. 12,2014 Sheet 2 of 8 US 8,806,433 B2

[-~)
) (&)
Nfod !
S 3 v
— ‘9’ S

U.S. Patent Aug. 12,2014 Sheet 3 of 8 US 8,806,433 B2

315

FIG. 3

320

305

U.S. Patent

y

Aug. 12,2014

Modulizer Module
407

L 4

Data Storage

Module
440

A

'

Resource Module
415

Output Module

435

Sheet 4 of 8 US 8.806,433 B2
- > Interface Module 400
> 405
» Structure Module Context 412
410 /
> Context
Element [
412a
o A
Y
—p| Controller Module
420
> Context Queue
< - 422
SAS Module
425
> Listener
427
A
4
Handler Module 430
Handler
Module
Element

430a

FIG. 4

US 8,806,433 B2

Sheet 5 of 8

Aug. 12,2014

U.S. Patent

S Old

09S

=

&

()

- WITueuws[g enpoRN
0csS
\\| —
g op
U0 J0}
a9S|o
096 055 < |
vop 09G
L as
90eJIaju] 9p07) 2JeM)JOS 80ejJoju| epo) Je[NpPoy
omm\\}l\\ N—""015

U.S. Patent Aug. 12,2014 Sheet 6 of 8 US 8,806,433 B2

Acquire Software Code
605

l

Modularize Software Code
610

l

Provide Modular Code
615

l

Modify Modular Code Using a
Modular Element
620

l

Automatically Modify Software
Code
625

U.S. Patent

Aug. 12,2014

Initial
Conditions Met?
700

Yes

Sheet 7 of 8

Identify Job in Controller Queue

705

l

Call Handler
710

Yes

Pass Handler Job
Information
720

'

Acquire Job Complete
Notice
725

l

Update Controller
Queue
730

No

Pass Handler Job
Information
740

US 8,806,433 B2

l

Acquire Return
735

745

Listener Determines
44— Job Complete

U.S. Patent Aug. 12,2014 Sheet 8 of 8 US 8,806,433 B2

Main Job 1: Jack Smith 800
Main Job 2: Jane Doe
Google Bing Yahoo!
810 - 815 - 820

827

826 — 1:] }
08
828~

||

Filter 830

e 835
- _------Jr~84°
] i

0 845
Save e 850

FIG. 8

US 8,806,433 B2

1

METHOD AND FRAMEWORK FOR
SOFTWARE DEVELOPMENT

BACKGROUND

Since the early 1990°s, the number of people using the
World Wide Web and the Internet has grown at a substantial
rate. As more users take advantage of the services available on
the Internet by registering on websites, posting comments and
information electronically, or simply iteracting with compa-
nies that post information about others (such as online news-
papers), more and more information about the users 1s avail-
able. There 1s also a substantial amount of information
available 1 publicly and privately available databases, such
as LEXISNEXIS. Sending a query to the one or more of the
above resources, using the name of a person or entity and
other identifying information, can return highly dimensional
data sets that occupy large amounts of memory. The large data
sefs can consume excessive system resources to process or
can even be large enough that it 1s not feasible to contain the
data set 1n virtual memory.

Soltware developed to process queries in such systems can
consist of large amounts of code that can exist in a single file.
The file can be extremely large, containing thousands of line
of code, which can make modification of such code difficult.
Additionally, software structures within the file can mvolve
synchronous or asynchronous execution of a particular job. In
particular, for asynchronous execution of the job, the 1denti-
fication and modification of these structures can be problem-
atic.

Additionally, flow control programming structures often
require normalization of files so they can be passed to ditfer-
ent machines. This normalization process can act as signifi-
cant overhead for the system, especially, when large numbers
of files are being passed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows, 1n block diagram form, an exemplary frame-
work system.

FI1G. 2 A 1s an exemplary application of the system depicted
in FIG. 1.

FI1G. 2B 1s an exemplary application of the system depicted

in FIG. 1.

FI1G. 3 illustrates some exemplary module elements used to
modularize soitware code.

FI1G. 4 shows, in block diagram form, an exemplary frame-
work system for editing and executing software composed of
software code.

FI1G. § illustrates an exemplary graphical user interface.

FIG. 6 1s a flowchart representing an exemplary method
modifying software code via moditying associated modular
code using a framework system.

FI1G. 7 1s a flowchart representing an exemplary method for
executing one or more jobs using a framework system.

FIG. 8 1s an exemplary application of the system depicted
in FIG. 1.

DESCRIPTION OF THE EMBODIMENTS

Reference will now be made 1n detail to the present exem-
plary embodiments illustrated in the accompanying draw-
ings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts.

The example embodiments provided below describe a
framework system and method that separates execution flow
and data flow 1n a given program. The framework system 1s

10

15

20

25

30

35

40

45

50

55

60

65

2

configured to convert software code into modular code
including one or more modular elements. The modular code
1s a graphical representation of the software code’s execution
flow. The framework system enables modification of the
modular code by the user. Any changes to modular code cause
the framework system to automatically update the associated
software code. Additionally, the framework system enables
execution of jobs 1n synchronous mode, asynchronous mode,
or a combination thereof.

FIG. 1 15 a block diagram depicting an exemplary system
100 for creating, moditying, and executing modular code.
The system 100 can include user devices 161, 162, and 163,
data sources 151, 152, and 153, network 140, and 1dentifica-
tion system 105. System 100 can be configured to search both
structured and unstructured data. Unstructured data 1s data
that does not fit well into a pre-defined data model. Structured
data can be organized 1n a structure so that it 1s identifiable.
For example, one form of structured data 1s a database like
SQL™ or Microsoft Access™., SQL™ allows the selection of
specific pieces of information based on columns and rows 1n
a field, e.g., rows containing a particular date or ZIP code or
name. Structured data 1s organized and searchable by data
type within the actual content. In contrast, unstructured data
has no 1dentifiable structure. Examples of “‘unstructured data™
can include books, journals, documents, metadata, health
records, audio, video, log, files, and text such as the body of an
¢-mail message, Web page, or word processor document.

One or more user devices 161,162, and 163 can be coupled
to the 1dentification system 105 via the network 140 or some
other coupling. User be coupled to 1dentification system 105
via one or more user devices 161, 162, or 163. A user device
161, 162, and 163 can be, for example, personal computers,
personal data devices, mobile device (cellular phones, tablet,
laptop, etc.), telephones, or other devices coupled to 1dentifi-
cation system 105 via network 140. Additionally, 1n some
embodiments (not shown) users can directly operate 1dent-
fication system 103 (e.g., the user’s personal computer can
embody the identification system 105). While portions of the
specification may only refer one user device 161, 162, or 163,
this has been used for simplification purposes only and,
unless noted otherwise, 1s not meant to limit the described
embodiments 1n any way.

Data sources 151, 152, and 153 can be proprietary database
containing information about one or more users. Data sources
151, 152, and 153 can be “blogs” or websites, such as social
networking websites or news agency websites. Data sources
151, 152, and 153 can be private party websites, company
websites, or cached information stored 1n a search database,
such as those maintained at Google™ or Yahoo™. Data
sources 151, 152, and 153 can be a criminal database or
listing, a credit agency data source, an insurance database, or
any electronic or other source of information about any user.
There can be any number of data sources 151, 152, and 153.
While portions of the specification can only refer to only one
data source 151, 152, and/or 153, this has been used for
simplification purposes only and, unless noted otherwise, 1s
not meant to limit the described embodiments 1n any way. The
documents resulting from the search can relate to a person,
organization, or other entity and can include web pages,
emails, Microsolt Word™ documents, plamn text files,
encoded documents, or any other appropriate form of
unstructured electronic information.

Network 140 can be, for example, the Internet, an intranet,
a local area network, a wide area network, a campus area
network, a metropolitan area network, an extranet, a private
extranet, any set of two or more coupled electronic devices, or
a combination of any of these or other appropriate networks.

US 8,806,433 B2

3

Identification system 105 can include one or more proces-
sors (not shown), a memory (not shown), and a data interface
(not shown). The processor(s) can be a single or multiple
microprocessors, field programmable gate arrays (FPGAs),
or digital signal processors (IDSPs) capable of executing par-
ticular sets of instructions. Computer-readable instructions
can be stored on a non-transitory computer-readable medium,
such as a flexible disk, a hard disk, a CD-ROM (compact
disk-read only memory), and MO (magneto-optical), a DVD-
ROM (digital versatile disk-read only memory), a DVD RAM
(digital versatile disk-random access memory), or a semicon-
ductor memory. Alternatively, the methods can be 1mple-
mented 1n hardware components or combinations of hard-
ware and software such as, for example, ASICs, special
purpose computers, or general purpose computers. Identifi-
cation system 105 can be implemented on a single computer,
or can be distributed across a plurality of computers. Ident-
fication system 105 can be coupled to multiple data sources,
for example, data sources 151, 152, and 153 either via net-
work 140 or via other coupling.

Identification system 103, for example, has a framework
system 400 and can be 1n communication withusers 161, 162,
163, and data source 151, 152, and 153, via network 140.
Framework system 400 can include one or more processors
(not shown), a memory (not shown). The processor(s) can be
a single or multiple microprocessors, field programmable
gate arrays (FPGAs), or digital signal processors (DSPs)
capable of executing particular sets of instructions. Com-
puter-readable instructions can be stored on a tangible non-
transitory computer-readable medium, such as a flexible disk,
a hard disk, a CD-ROM (compact disk-read only memory),
and MO (magneto-optical), a DVD-ROM (digital versatile
disk-read only memory), a DVD RAM (digital versatile disk-
random access memory), or a semiconductor memory. Alter-
natively, the methods can be implemented in hardware com-
ponents or combinations of hardware and software such as,
for example, ASICs, special purpose computers, or general
purpose computers. Framework system 400 can be imple-
mented on a mobile device, a computer (for example 1denti-
fication system 105), distributed across a plurality of comput-
ers, or some combination thereof. For example, 1n some
embodiments (not shown) framework system 400 can be
distributed across the user devices 161, 162, and 163, and
identification system 105.

FI1G. 2A 1llustrates a synchronous example of how frame-
work system 400 converts software code mto modular code
including one or more modular elements. The modular code

1s a graphical representation of the software code’s execution
flow. Software code 205, provides the mstruction to do “A” 1f
condition “D” 1s met, and 1f condition “D” 1s not met, then do
“B” from “0. .. n.” Framework system 400 converts soltware
code 205 to modular code 207. Inthis example, all the module
clements included within modular code 207 are synchronous.
The designation and functionality of module elements are
discussed below 1n detail with reference to FIG. 3.

Modular code 207 1s a modifiable graphic representation of
software code 205, such that framework system 400 auto-
matically modifies software code 205 1n response to modifi-
cations to modular code 207. For example, the condition “D”
1s represented by a condition element 210, designated by “C.”
Do “A” 1s represented by each element 215, designated by
“E ,,” where “E” refers to the each element and the subscript
refers to the item (“A”) being processed. Do “B” from “0 . . .
n” 1s represented by an element structure 2235. The modularity
can make 1t easier to modily the code structures. For example,
if the user wants to change software code 205 such that
instead of doing “A” i1f condition “D” 1s met, 1t does “C” 1f

10

15

20

25

30

35

40

45

50

55

60

65

4

condition “D” 1s met, the user merely needs to replace each
module 215 with each module 230 designated by “E .,” where
“E’’refers to the each element and the subscript refers to the
item (“C”’) being processed as 1llustrated 1n FIG. 2B. Frame-
work system 400 then automatically updates soitware code
205 1n accordance with the change to modular code 207. In
some embodiments, framework system 400 updates modular
code 207 11 the user makes changes to software code 205.

Additionally, as noted above all the module elements 1n
FIGS. 2A and 2B are synchronous, however, one or more of
the module elements can be replaced with one or more asyn-
chronous elements. For example, the plurality of each ele-
ments within element structure 225 can be replaced with
asynchronous each elements. This would allow framework
system 400 to execute E,,, E5,, etc, in parallel.

Framework system 400 can convert software structures
into one or more module elements. FIG. 3 illustrates some
exemplary module elements used to modularize software
code. Some of the module elements can be synchronous and
others can be asynchronous. Synchronous execution means
that jobs are processed as part of the current processing
thread. For example, this occurs when a series of jobs are to be
processed and all are part of the same thread. In this example,
framework system 400 executes jobs 1n a first-in first-out
tashion, thus a job at the head of the queue 1s processed before
the second job 1n the queue, the second job 1s processed before
the third job, and so on. In contrast, 1n asynchronous opera-
tion jobs are processed as part of the different processing
threads, and the processing may occur either locally or
remotely. Asynchronous operation allows framework system
400 to process a plurality of jobs 1n parallel. Thus, asynchro-
nous operation may result in concurrency at scale and assist
with processing power being distributed among available
resources. Asynchronous processing can also decouple the
execution tlow between different processing modules.

Module elements can include an each element 305, a join
clement 310, a condition element 315, a junction element
317, a select element 320, a fork element 325, a merge ele-
ment 330, a split element 333, an asynchronous each element
335, an asynchronous select element 340, an asynchronous
condition element 345, etc., or some combination thereof.
This listing of module elements 1s not exhaustive, and can
include additional module elements.

Each element 305 represents any abstract type of process-
ing which can include, for example, an in-memory function
call, a system call, a database transaction, a external service
call (LAN, WAN or Internet), or some combination thereof.
Additionally, each element 305 can perform logic execution.
Moreover, when an each operation 1s performed asynchro-
nously, asynchronous each element 335 can be used. Condi-
tion element 315 1s a synchronous module element that cor-
responds to a conditional code structure that has a plurality of
chuldren, but canonly selects a single path. For example, 1n
FI1G. 2A, conditional element 210 had two children, each
clement 215 and element structure 225, however, only path
245 or 250 1s selected depending on whether condition “D” 1s
met. Additionally, when a condition operation 1s performed
asynchronously, asynchronous condition element 345 can be
used. Junction element 317 1s a synchronous module element
that allows zero or more contexts to flow through to a particu-
lar path. In contrast, join element 310 1s a synchronous mod-
ule element that actually joins a set of contexts into a collec-
tion again so that one context flows down a single path. An
example of join element 310 in operation 1s seen at module
clement 845 of FIG. 8. In contrast, merge element 330 1s a
synchronous module element that joins a plurality of paths
containing duplicate data. An example of merge element 330

US 8,806,433 B2

S

in operation 1s seen at module element 8235 of FIG. 8. Fork
clement 325 1s a synchronous module element that duplicates
data and sends it to each child along all data paths. An
example of fork element 325 1n operation 1s seen at module
clement 805 of FIG. 8. Select element 320 1s a synchronous
module element that contains a plurality of paths, however,
select element 320 can select one or all paths. Additionally,
when a select operation 1s performed asynchronously, asyn-
chronous select element 340 can be used. Split element 333 1s
a synchronous module element that provides the ability to do
operations on each individual constituent of a collection of
abstract items. In some embodiments, split element 333
receives one main context 331 that 1s composed of a plurality
of sub-contexts (or sub-jobs) 332 , 332, etc., and split ele-
ment 333 passes each sub-context 332 ,, 332, etc., downto a
separate single child. An example of split element 333 1n
operation 1s seen at module element 835 of FIG. 8.

FIG. 4 15 a block diagram depicting an exemplary frame-
work system 400 for creating, modifying, and executing soft-
ware code. Framework system 400 1s agnostic with respect to
data type and any processing that occurs. Framework system
400 treats the module elements (e.g., each element 305, asyn-
chronous each element 335, fork element 325, etc.) as pro-
cessing blocks that are associated with corresponding por-
tions of software code. Framework system 400 can
modularize various types ol software code, including for
example code for, text processing, image processing, audio
processing, statistical analysis, machine learning, feedback
loops, mathematical computation, or any combination
thereol. Framework system 400 can include an interface
module 405, modulizer module 407, a structure module 410,
a resource module 415, a controller module 420, a synchro-

nous/asynchronous (SAS) module 425, a handler module
430, output module 435, and a data storage module 440.

Interface module 405 1s a hardware component, a software
program, or a combination thereof configured to recerve data
from the network, for example data from one or more users
161-163 or one or more data sources 151-153. As discussed
below with reference to FIG. 5, interface module 405 candis-
plays a graphical user interface (GUI) to one or more users,
illustrating a graphical representation (modular code) of a
portion of the software code. Additionally, in some embodi-
ments, interface module 450 1s configured to display the
entire software code as modular code. Interface module 405 1s
configured to allow one or more users to modity the modular
code using one or more module elements (e.g., each element
305, Join element 310, condition element 315, junction ele-
ment 317, select element 320, fork element 325, merge cle-
ment 330, split element 333, asynchronous each 335, asyn-
chronous select element 340, asynchronous condition
clement 345, etc.). Additionally, interface module 405 allows
users to delete or add one or more modules included 1n the
modular code. User mput to modity the modular code gener-
ates a modification request. The modification request 1s com-
municated to modulizer module 407, which performs the
modification of the modular code. In some embodiments,
interface module 405 displays to the user the software code
and allow the user to manually edit the text of the software
code.

FIG. 5 illustrates an exemplary graphical user interface
(GUI) 500 generated by interface module 405. GUI 500 pro-
vides an interface for a user to modily the modular code and
the associated software code. GUI 500 can include a modular
code interface 510, a software code interface 520, and a
module element list 530. GUI 300 can be executed by a
software command.

10

15

20

25

30

35

40

45

50

55

60

65

6

Modular code interface 510 displays one or more portions
of modular code 540. In some embodiments, modular inter-
face code 510 1s configured to display modular code 540 1n 1ts
entirety. The portion of modular code 340 displayed via
modular code interface 510 can be part of a much larger
program. In some embodiments, modular code 1nterface 510
1s configured to display a plurality of different portions of the
modular code. Modular code interface 510 displays modular
code 540 that 1s a graphic representation of software code
550. Modular code interface 510 enables modification of
modular code 540 by a user. For example, GUI 500 enables a
user to delete, add, modity, or any combination thereof, mod-
ule elements associated with modular code 540. Any changes
to modular code 540 cause framework system 400 to auto-
matically update software code 3550. Additionally, modular
code interface 510 allows synchronous module elements,
asynchronous module elements, or a combination thereof to
be mcluded in modular code 540. Modular code interface 510
can include one or more scroll bars 560 that allow a user to
scroll through the entire modular code. In some embodi-
ments, as the user scrolls through the modular code, software
code mterface 520 automatically updates the software code
displayed such that 1t displays the software code associated
with the modular code displayed by modular interface 510.
Additionally, 1n some embodiments, the user selects a par-
ticular module element or group of elements (element struc-
ture) within modular code 540. In some embodiments, when
a particular element or element structure 1s selected software
code 1nterface 1s configured to display software code associ-
ated with the selected element or element structure.

GUI 500 also includes a software code interface 520. Soft-
ware code interface 520 1s configured to display one or more
portions of the entire soitware code, for example, software
code 550. Software code mterface 520 1s displaying software
code 550 that 1s associated with modular code 540. Software
code interface 520 enables modification of software code 550
by the user. For example, GUI 500 enables a user to delete,
add, modity, or any combination thereot, lines of code asso-
ciated with software code 550. Any changes to software code
550 cause framework system 400 to automatically update
modular code 540. Software code interface 520 can include
one or more scroll bars 560 that allow a user to scroll through
the entire software code. In some embodiments, as the user
scrolls through the software code, modular code interface 510
automatically updates the modular code displayed such that 1t
displays the modular code associated with the software code
displayed by soltware code interface 520.

GUI 500 also includes a module element list 530. Module
clement list 530 includes one or more selectable module
clements. The module elements can include an each element
303, join element 310, condition element 313, junction ele-
ment 317, select element 320, fork element 325, merge ele-
ment 330, split element 333, asynchronous each 335, asyn-
chronous select element 340, asynchronous condition
clement 345, etc., or some combination thereot. This listing
of module elements 1s not exhaustive, and can include addi-
tional module elements. In some embodiments module ele-
ments can be selected and dragged and then dropped into
modular code mterface 510 to modity modular code 540. In
some embodiments, once a particular module element or
modular structure 1s added, software code intertace 520 auto-
matically displays software code associated with the modular
clement or modular structure. For example, 11 a user added a
condition element 315 to modular code 540, software code
interface 520 can automatically display the associated sofit-
ware code and prompt the user to enter the associated condi-
tion.

US 8,806,433 B2

7

Interface module 405 can include an Internet web server,
such as Apache Tomcat™, Microsoit’s Internet Information
Services™, or Sun’s Java System Web Server™. Addition-
ally, interface module 405 may also read changes from thefile
system, from and external service, a source code repository,
or some combination thereof. In some embodiments, inter-
face module 405 exposes a service interface that other pro-
grams can use to directly communicate with framework sys-
tem 400. In some embodiments, interface module 405 1is
combined with output module 433. Interface module 403 1s
coupled to one or more of modulizer module 407, structure
module 410, and data storage module 440.

Modulizer module 407 1s a hardware component, a soft-
ware program, or a combination thereof configured to auto-
matically modify existing software code based on edits made
to the associated modular code 1n interface module 405. Addi-
tionally, modulizer 407 can be configured to automatically
modily existing modular code based on edits made to the
associated software code i interface module 405. In some
embodiments, the software code or modular code being
accessed by modulizer module 407 1s stored in data storage
module 440. Additionally, modulizer module 407 1s config-
ured to create modular code based on received software code.
For example, a user can upload software code via interface
module 405 and modulizer module 407 creates modular code
based on the uploaded code. Modulizer module 407 1s
coupled to one or more of interface module 405 and data
storage module 440.

Structure module 410 1s a hardware component, a software
program, or a combination thereof configured to store one or
more context elements 412. Context elements 412 represent
10bs that need to be completed by framework system 400. For
example, one or more handlers can use the information within
a context element 412a to perform an internet search on the
name “Jane Doe” using multiple search engines (e.g.,
GOOGLE™ and Yahoo!™). Structure module 410 can also
provide access control, routing and persistence to allow sys-
tem recovery for system robustness. In some embodiments,
structure module 410 1s distributed across many physical
machines. Structure module 410 1s coupled to one or more of
interface module 405, resource module 415, controller mod-
ule 420, handler module 430, and data storage module 440.

Resource module 415 1s a software module that interfaces
with the hardware (e.g., a central processing unit, not shown)
and thread pool (not shown) of 1dentification system 105 to
determine if system resources are available to execute context
clements 412. The thread pool can include a number of
threads that are executed by a processor (e.g., central process-
ing unit) to perform a number of tasks. Resource module 4135
determines 11 there 1s any context 412 that needs processing,
and then 1dentifies 11 system resources are available for pro-
cessing by framework system 400. If both of these initial
conditions are met, resource module 415 communicates to
controller module 420 to begin job execution. Resource mod-
ule 415 1s coupled to one or more of structure module 410,
controller module 420, and data storage module 440.

Controller module 420 1s a hardware component, a soft-
ware program, or a combination thereof that generally con-
trols the order of job execution 1n framework system 400.
Controller module 420 includes a context queue 422 that
identifies which context 412 is in need of processing, and the
order 1n which processing of one or more context 412 begins.
For example, context 412 can include context elements 412a,
412b, and 412¢ (not shown). Controller module 420 1s con-
figured to execute context 412 synchronously or asynchro-
nously. Context queue 422 contains an ordered list of one or
more pointers to context 412. If purely synchronous, the order

10

15

20

25

30

35

40

45

50

55

60

65

8

ol j0b completion corresponds to the order of pointers listed
in context queue 422. In some embodiments, framework sys-
tem 400 can also execute asynchronous elements or combi-
nations of synchronous and asynchronous elements. In these
cases, the order of job completion does not necessarily cor-
respond to the order of processing listed in context queue 422.

Once context element 412a 1s 1dentified as the next 1n line
for processing, controller module 420 calls SAS module 425
to process the identified context 412 (e.g. context element
412a). Controller module 420 then passes the pointer from
context queue 422 corresponding to the job associated with
context element 412a to SAS module 425. Once context
clement 412a has been processed, controller module 420
receives any resulting output from SAS module 425. In some
embodiments, controller module 420 sends the resulting out-
put to output module 435. Additionally, 1n some embodi-
ments, controller module 420 updates context queue 422 with
information that context element 4124 has been processed.
Controller module 420 can then select the next job 1n context
queue 422, context element 41256 (not shown), for processing.

Controller module 420 1s configured to execute data both
synchronously and asynchronously. When executing an asyn-
chronous element associated with context 412 (e.g., context
clement 4125), controller module calls SAS module 425 to
process the 1identified context 4125. Controller module 420
then passes the pointer from context queue 422 correspond-
ing to the job associated with context element 4125 to SAS
module 425. In this embodiment, controller module 420
receives a return request from SAS module 425. A return
request notifies controller module 420 that context element
4125 1s currently being processed. Controller module 420
then references context queue 422 to 1dentily the next job to
be processed, for example, context element 412¢ (not shown),
and framework system 400 begins processing context ele-
ment 412¢ concurrent with context element 4125. Once con-
text element 41256 or 412¢ have been processed, controller
module 420 recerves any resulting output from SAS module
425. In some embodiments, controller module 420 1s config-
ured to send the resulting output to output module 435. Con-
troller module 420 1s coupled to one or more of structure
module 410, resource module 415, SAS module 425, output
module 435, and data storage module 440.

SAS module 425 1s a hardware component, a soiftware
program, or a combination thereof configured to receive jobs
from controller module 420. SAS module 425 1s configured to
receive one or more pointers from controller module 420.
SAS module 425 1s configured to call handler module 430 to
process the recerved job. SAS module 425 can be configured
to pass the recerved one or more pointers to handler module
430. For synchronous execution, SAS module 425 1s config-
ured to wait for a job complete notice before notifying con-
troller module 420 that the job 1s complete.

In some embodiments, SAS module 425 includes one or
more listeners 427. Listener 427 1s configured to monitor
handler module 430 to determine 1f a job being executed
asynchronously (e.g., context element 4275) has been com-
pleted. IT listener 427 determines that the asynchronous job
has been completed 1t notifies controller module 420. Addi-
tionally, 1n some embodiments SAS module 425 can directly
update context queue 422. SAS module 425 1s coupled to one
or more of controller module 420, handler module 430, and
data storage module 440.

Handler module 430 1s a hardware component, a software
program, or a combination thereof configured to receive and
execute one or more jobs from SAS module 4235. Handler
module 1s configured to receive one or more pointers from
SAS module 425. Handler module 430 1s configured to utilize

US 8,806,433 B2

9

the one or more pointers to directly access and execute the
associated context 412 (e.g., content element 412a). Handler
module 430 can include one or more handler module ele-
ments (e.g., handler module element 430q, handler module
clement 4306 (not shown), etc.). In some embodiments the
one or more handle elements exist locally and perform the
required data transformation and call on the local machine or
a remote server, or a plurality of remote servers. Additionally,
1n some embodiments, the one or more handler elements can
ex1st on one or more remote servers and receive a context to be
processed from the local machine.

Handler module 430 can operate synchronously or asyn-
chronously. For synchronous operation, handler module 430
processes each job sequentially. For example, handler module
430 would process context element 412a, and then context
clement 4125, and so on, until all the jobs 1n context queue
422 have been completed. Once a job 1s complete, handler
module 430 1s configured to send a job complete notice to
SAS module 425. For asynchronous operation, when handler
module 430 receives a job, 1t automatically tasks a handler
module element (e.g., handler module element 430a) with
processing the job. Additionally, handler module 430 sends a
return to SAS module 425, notitying SAS module 423 that the
10b has been received and 1s currently being processed. If
another job 1s received before handler module element 430a
has finished processing its job, handler module 430 15 con-
figured to automatically task an additional handler module
clement 4305 (not shown) to process the recerved job. Insome
embodiments, handler module elements 4304, 4305, etc., can
simply be processing threads run on the same platform as
framework system 400. In some embodiments, handler mod-
ule elements 430q, 4305, etc., are separate systems connected
to framework system via a network (e.g., intranet or internet
(e.g., network 140)). Handler module 1s coupled to one or
more of structure module 410, SAS module 425, and data
storage module 440.

Output module 435 1s a hardware component, a software
program, or a combination thereol configured to transmit
data, via network 140, from framework system 400 to one or
more users devices 161,162, and 163. The output information
can be displayed to the user through the user’s associated user
device 161, 162, or 163. In some embodiments, output mod-
ule 435 can display the results to a human operator who can
modily, correct, or alter the information, or to any other
system or agent capable of interacting with the information,
including an artificial intelligence system or agent (Al agent),

betfore sending 1t to the user. Output module 435 1s coupled to
one or more of controller module 422 and data storage mod-
ule 440.

Data storage module 440 can comprise a random access
memory (RAM), a read only memory (ROM), a program-
mable read-only memory (PROM), a field programmable
read-only memory (FPROM), or other dynamic storage
device for storing information and instructions to be used by
interface module 405, modulizer module 407, structure mod-
ule 410, resource module 415, controller module 420, SAS
module 425, handler module 430, and output module 435. For
example, data storage module 440 can store data recerved by
interface module 405. Data storage module 440 can also
include a database, one or more computer files 1n a directory
structure, or any other appropriate data storage mechanism
such as a memory. In some embodiments, data storage mod-
ule 440 1s distributed across a plurality of different data stor-
age mechanisms. Data storage module 440 1s coupled to one
or more of intertace module 405, modulizer module 407,

10

15

20

25

30

35

40

45

50

55

60

65

10

structure module 410, resource module 415, controller mod-
ule 420, SAS module 425, handler module 430, and output

module 435.

The coupling between modules, or between modules and
network 140, can include, but 1s not limited to, electronic
connections, coaxial cables, copper wire, and fiber optics,
including the wires that comprise network 140. The coupling
can also take the form of acoustic or light waves, such as
lasers and those generated during radio-wave and infra-red
data commumnications. Coupling can also be accomplished by
communicating control information or data through one or
more networks to other data devices. In some embodiments
interface module 405, modulizer module 407, structure mod-
ule 410, resource module 415, controller module 420, SAS
module 425, handler module 430, output module 435, and
data storage module 440 can be coupled 1n a manner such that
cach module 1s logically connected to all of the other modules
in framework system 400.

Each of the logical or functional modules described above
can comprise multiple modules. The modules can be 1mple-
mented individually or their functions can be combined with
the functions of other modules. Further, each of the modules
can be implemented on imndividual components, or the mod-
ules can be implemented as a combination of components.
For example, interface module 405, modulizer module 407,
structure module 410, resource module 415, controller mod-
ule 420, SAS module 425, handler module 430, and output
module 435, can each be implemented by a field-program-
mable gate array (FPGA), an application-specific integrated
circuit (ASIC), a complex programmable logic device
(CPLD), a printed circuit board (PCB), a combination of
programmable logic components and programmable inter-
connects, single CPU chip, a CPU chip combined on a moth-
erboard, a general purpose computer, or any other combina-
tion of devices or modules capable of performing the tasks of
modules 405, 407, 410, 415, 420, 425, 430, and 435.

FIG. 6 1s a tlowchart representing an exemplary method
moditying software code via modifying associated modular
code using a framework system. In step 605, the software
code 1s acquired. The code can, for example, be uploaded
from a memory storage location. Additionally, in some
embodiments, one or more users can manually enter the soft-
ware code.

In step 610, the software code 1s modularlized, such that the
soltware code 1s converted into modular code including one
or more modular elements. For example, for simple work-
flows, a standard code analyzer can determine the structure of
the execution tlow and decompose logical blocks of the soft-
ware code (such as for loops and non-dependent code which
can be executed 1n parallel) into modular code. Additionally,
for highly complicated workflows, a graphical user interface
can be used, for example, GUI 500, to have a user aid 1n the
modularization of the software code. The modular code 1s a
graphical representation of the software code’s execution
tlow.

In step 615, the modular code 1s provided to a user. For
example, one or more portions of the modular code can be
displayed to a user via a graphical user interface (e.g., GUI
500).

In step 620, the modular code 1s modified. The modifica-
tion of modular code can be done using one or more modular
clements. Modular elements can, for example, include each
clement (synchronous and asynchronous), a condition ele-
ment (synchronous and asynchronous), a join element, a
merge element, a fork element, a select element (synchronous
and asynchronous), a splitelement, etc. This listing of module
elements 1s not exhaustive, and can include additional module

US 8,806,433 B2

11

clements. Modification of modular code includes editing the
existing modular code, such as replacing a conditional ele-
ment 1n the existing code with one or more modular elements.
For example, as discussed above with reference to FIGS. 2A
and 2B, where conditional element 215 1s replaced with con-
ditional element 230. Modification of modular code includes
adding modular elements to the existing modular code. Addi-
tionally, modification of modular code includes deleting
modular elements from the existing modular code. For
example, a user can add a conditional modular element to the
modular code by adding the conditional modular element to
the existing modular code. In some embodiments, when the
modular code 1s modified, the framework system generates a
modification request for the associated soitware code.

In step 623, the software code 1s automatically updated
based on one or more modifications made 1n step 620. The
soltware code 1s updated to retlect the modified functionality
presented 1n the modular code. In some embodiments, the
modified functionality 1s described 1n a modification request
generated by a framework system 1n response to changes to
the modular code. Modifications to the software code can be
made based on the changes indicated within the modification
request.

FI1G. 7 1s a flowchart representing an exemplary method for
executing one or more jobs using a framework system. The
framework system operates on one or more servers (e.g.,
identification system 105). In step 700, the framework system
(e.g., framework system 400) determines whether 1nitial con-
ditions have been met. Imitial conditions can include having at
least one job to process, and system resources available to
process the at least one job. The framework system deter-
mines i there are any jobs (e.g., content) that need to be
processed. If there are one or more jobs (e.g., context ¢le-
ments), the framework system interfaces with the thread pool
of the server to determine 11 system resources are available to
execute the 1dentified one or more jobs. The mitial conditions
are satisiied when there are system resources available and at
least one job has been 1dentified for processing.

In step 705, a job 1n a controller queue 1s 1dentified to be
processed. The controller queue can be configured to contain
an ordered list of one or more pointers to context items asso-
ciated with jobs to be processed.

In step 710, a handler 1s called to process the 1dentified job.
In some embodiments the handler 1s local to the server. In
other embodiments, the handler 1s operating on one or more
separate servers.

In step 715, a determination 1s made whether the job can be
executed synchronously or asynchronously. For example, this
determination may be made by referencing the modular code
associated with execution of the job. If the job i1s to be
executed synchronously, the job 1s passed to the called han-
dler (step 720). For example, one or more memory pointers
associated with the job can be passed to the called handler.
The handler can then process the recerved job. In step 725, a
10b completion notice 1s acquired from the handler when the
handler completes processing of its job. In some embodi-
ments, the job completion notice can be acquired 1n conjunc-
tion with an associated output. In step 730, the controller
queue 1s updated with information indicating that the job has
been processed. The framework system then proceeds to step
700.

Referring back to step 715, 11 the job 1s to be executed
asynchronously, 1n step 740, the job 1s passed to the called
handler and the associated thread 1s also returned to the thread
pool (step 735), freeing 1t for other uses. In some embodi-
ments, one or more memory pointers associated with the job
are passed to the called handler. Because the job 1s being

10

15

20

25

30

35

40

45

50

55

60

65

12

processed asynchronously, the framework system is able to
concurrently process other jobs via one or more additional
handlers. A listener monitoring all of the handlers identifies
handlers who have completed processing their respective jobs
(745). An example of asynchronous operation 1s described 1n
detail below with reference to FIG. 8. In step 7235, a job
completion notice 1s acquired from the handler when it has
completed processing of its job. In some embodiments, the
j0b completion notice can be acquired 1n conjunction with an
associated output. In step 730, the controller queue 1s updated
with information indicating that the job has been processed.
Framework system then proceeds back to step 700.

FIG. 8 illustrates an exemplary modular graphic represen-
tation ol code containing both synchronous and asynchro-
nous functionality. The modular code pertains to the execu-
tion of two separate jobs. The first job 1s to perform and
process a search query on the name “Jack Smith,” and the
second job 1s to perform and process a search query on the
name “Jane Doe.” In this example, job 1 and job 2 are pro-
cessed synchronously with respect to each other, however,
clements of the processing of each job individually are asyn-
chronous.

The execution flow of the modular code 1s described using,
a source element 800, a fork element 805, asynchronous each
clements 810, 815, and 820, a merge element 825, an each
clement 830, a split element 835, a plurality of asynchronous
cach elements 840, a join element 845, and an each element
850. The modular code 1s generally executed 1n a top down
fashion and according to how the modular elements are
ordered 1n the modular code. For example, source element
800 1s processed first, followed by fork element 805, and so
on.

In this example, job 1 1s recerved from source element 800.
Job 1 1s passed to fork element 805. Fork element 805 dis-
tributes job 1 to all three asynchronous each elements 810,
815, and 820. In this example, each of the asynchronous each
clements 810, 815, and 820, correspond to an associated
internet search engine, specifically, 1n this example,
Google™, Bing™, and Yahoo!™, respectively. Thus, when
processing job 1, the framework system would enter the name
“Jack Smith™ into all three search engines, creating three
independent sub-jobs related to job 1. Because the sub-jobs of
10b 1 are being processed asynchronously, each of the sub-
j0bs can be processed at the same time. Additionally, due to

the asynchronous processing of the sub-jobs, results from
cach of the search engines can return to the framework system
at different times.

Merge element 825 merges the search results from asyn-
chronous each elements 810, 815, and 820, into a single data
array 826. Data array 826 can include one or more individual
search results (e.g., 826 and 827, etc).

In this example each element 830 1s acting as a filter on data
array 826. Each element 830 can filter out any duplicative
search results. For example, if for job 1, search result 827 and
828 are the same, framework system deletes one of the two
search results.

In this example, split element 835 splits the data array out
into individual results and passes the results to the plurality of
asynchronous each elements 840. Fach asynchronous each
clement, of the plurality of asynchronous each elements 840,
1s able to handle an associated search result. In this example,
the plurality of asynchronous each elements 840 are used to
print the individual search results. After which the individual
search results are joined back into data array 826 using join
clement 845.

US 8,806,433 B2

13

Data array 826 1s then passed to each element 850. In this
example, each element 850 1s configured to save the data
array to one or more memory storage locations.

In this example, after job 1 has been completely processed,
the modular code begins processing job 2. Job 2 1s executed in
a similar manner as the execution of job 1.

Certain adaptations and modifications of the described
embodiments can be made. Therefore, the above discussed
embodiments are considered to be illustrative and not restric-
tive. Embodiments of the present application are not limited
to any particular operating system, device architecture, server
architecture, or computer programming language.

The mvention claimed 1s:

1. A method for modulanzing sotftware code, the method
performed by a system comprising a processor and a memory
storing 1nstructions which, when executed cause the system
to perform the method, the method comprising:

acquiring software code;

modulanzing the software code to create an associated

modular code, wherein the modular code 1s a graphical
representation of the execution flow of the software code
and 1s composed of a plurality of synchronous and asyn-
chronous modular elements;

modifying the modular code using a modular element; and

automatically moditying the software code based on the

modified modular code.

2. The method of claim 1, wherein modifying the modular
code includes adding one or more modular elements to the
modular code.

3. The method of claim 2, wherein adding one or more
modular elements to the modular code 1s done via a graphical
user interface.

4. The method of claim 1, further comprising;

identifying a first job to be processed;

calling a first handler to process the job; and

passing a {irst pointer associated with the first job to the first

handler.

5. The method of claim 4, further comprising;

identifying a second job to be processed;

calling a second handler to process the second job, wherein

the first handler has not completed processing the first
10b; and

passing a second pointer associated with the second job to

the second handler.

6. The method of claim 5, wherein the first job and the
second job can be sub-jobs of a third job.

7. The method of claim 1, wherein the software code 1s
textual.

8. A non-transitory computer-readable medium compris-
ing program code, the program code being operable, when
executed by a computer system, to cause the computer system
to perform a method comprising:

acquiring software code;

modularizing the software code to create an associated

modular code, wherein the modular code 1s a graphical
representation of the execution flow of the software code
and 1s composed of a plurality of synchronous and asyn-
chronous modular elements;

modilying the modular code using a modular element; and

automatically modifying the software code based on the

modified modular code.

9. The computer readable medium of claim 8, wherein
moditying the modular code includes adding one or more
modular elements to the modular code.

10

15

20

25

30

35

40

45

50

55

60

14

10. The computer readable medium of claaim 9, wherein
adding one or more modular elements to the modular code 1s
done via a graphical user 1nterface.

11. The computer readable medium of claim 8, further
comprising:

identifying a first job to be processed;

calling a first handler to process the job; and

passing a first pointer associated with the first job to the first

handler.

12. The computer readable medium of claim 11, further
comprising;

identifying a second job to be processed;

calling a second handler to process the second job, wherein

the first handler has not completed processing the first
10b; and

passing a second pointer associated with the second job to

the second handler.

13. The method of claim 12, wherein the first job and the
second job can be sub-jobs of a third job.

14. A system comprising:

one or more processors configured to execute one or more

modules; and

a memory storing the one or more modules, the modules

comprising:
an interface module configured to acquire solftware
code, and
a modulizer module configured to:
modularize the software code to create an associated
modular code, wherein the modular code 1s a
graphical representation of the execution flow of
the software code and 1s composed of a plurality of
synchronous and asynchronous modular elements,
modily the modular code using a modular element,
and
automatically modily the software code based on the
modified modular code.

15. The system of claim 14, wherein modifying the modu-
lar code includes adding one or more modular elements to the
modular code.

16. The system of claim 15, further comprising a graphical
user interface that corresponds with the interface module for
adding one or more modular elements to the modular code.

17. The system of claim 14, wherein the one or more
modules turther comprises:

a controller module configured to 1dentify a first job to be

processed;

a synchronous/asynchronous module 1s configured to:

call a first handler to process the job, and
pass a first pointer associated with the first job to the first
handler.

18. The system of claim 17, wherein:

the controller module 1s configured to identify a second job

to be processed;

the synchronous/asynchronous module 1s configured to:

call a second handler to process the second job, wherein
the first handler has not completed processing the first
10b, and

pass a second pointer associated with the second job to
the second handler.

19. The system of claim 18, wherein the first job and the
second job can be sub-jobs of a third job.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

