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uses a memory map to translate the first data block address in
the first memory module to a first data block address in the
second memory module. If the first data block 1s present in an
on-SoC cache, the first data block 1s supplied on the SoC data
bus from the cache. Then, the cache 1s loaded with a plurality
of data blocks from a corresponding plurality of addresses 1n
the second memory module, associated with the first data

block address.
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DYNAMIC MEMORY MODULE SWITCHING
WITH READ PREFETCH CACHING

RELATED APPLICATIONS

This application 1s a Continuation-in-Part of a pending
application entitled, SYSTEM-ON-CHIP WITH DYNAMIC
MEMORY MODULE SWITCHING, invented by Waseem
Kraipak et al., Ser. No. 12/763,110, filed Apr. 19, 2010;

which 1s a Contlnuatlon -in-Part of a application entitled,
SYSTEM-ON-CHIP WITH MEMORY SPEED CONTROL
CORE, mnvented by Waseem Kraipak et al., Ser. No. 12/729,
210, filed Mar. 22, 2010 now U.S. Pat. No. 8,438,358;

which 1s a Continuation-in-Part of a pending application
entitled, SYSTEM-ON-CHIP WITH THERMAL MAN-
AGEMENT CORE, invented by Waseem Kraipak et al., Ser.
No. 12/687,817, filed Jan. 14, 2010;

which 1s a Continuation-in-Part of a pending application
entitled, SYSTEM-ON-CHIP WITH FEEDBACK LOOP
FOR PROCESSOR FREQUENCY CONTROL, invented by
Waseem Kraipak et al., Ser. No. 12/639,064, filed Dec. 16,
2009. All the above-referenced applications are incorporated
herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention generally relates to system-on-chip (SoC)
off-SoC memory management and, more particularly, to a
system and method for using a SoC hardware core to prefetch
the data from a shutdown memory, being temporarily stored
in a combination of slower memories, and using a hierarchy
of memories and cache to attain power savings with nearly the
speed of the shutdown memory.

2. Description of the Related Art

As noted 1n Wikipedia, a memory controller 1s a digital
circuit that manages the tlow of data going to and from the
main memory. The memory controller can be a separate chip
or integrated into another chip, such as on the die of a micro-
processor. Computers using Intel microprocessors have con-
ventionally had a memory controller implemented on their
motherboard’s Northbridge, but some modern microproces-
sors, such as DEC/Compaq’s Alpha 21364, AMD’s Athlon 64
and Opteron processors, IBM’s POWERS, Sun Microsys-
tems UltraSPARC T1, and more recently, Intel Core 17 have a
memory controller on the microprocessor die to reduce the
memory latency. While this arrangement has the potential of
increasing system performance, it locks the microprocessor
to a specific type (or types) of memory, forcing a redesign in
order to support newer memory technologies. When the
memory controller 1s not on-die, the same CPU may be
installed on a new motherboard, with an updated North-
bridge.

The integration of the memory controller onto the die of the
mICroprocessor 1s not a new concept. Some miCroprocessors
in the 1990s such as the DEC Alpha 21066 and HP
PA-7300LC had integrated memory controllers, but to reduce
the cost of systems by removing the requirement for an exter-
nal memory controller instead of increasing performance.

Memory controllers contain the logic necessary to read and
write dynamic random access memory (DRAM), and to
“refresh” the DRAM by sending current through the entire
device. Without constant refreshes, DRAM loses the data
written to 1t as the capacitors leak their charge within a frac-
tion of a second (not less than 64 milliseconds according to

JEDEC standards).
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Reading and writing to DRAM 1s facilitated by use of
multiplexers and demultiplexers, by selecting the correct row
and column address as the iputs to the multiplexer circuat,
where the demultiplexer on the DRAM can select the correct
memory location and return the data (once again passed
through a multiplexer to reduce the number of wires neces-
sary to assemble the system).

Bus width 1s the number of parallel lines available to com-
municate with the memory cell. Memory controller bus
widths range from 8-bit 1n earlier systems, to 512-bit in more
complicated systems and video cards. Double data rate
(DDR) memory controllers are used to drive DDR SDRAM,
where data 1s transferred on the rising and falling edges of the
memory clock. DDR memory controllers are significantly
more complicated than Single Data Rate controllers, but
allow for twice the data to be transterred without 1increasing
the clock rate or increasing the bus width to the memory cell.

Dual channel memory controllers are memory controllers
where the DRAM devices are separated onto two different
buses, allowing two memory controllers to access them in
parallel. This dual arrangement doubles the theoretical
amount of bandwidth of the bus. In theory, more channels can
be built (a channel for every DRAM cell would be the 1deal
solution), but due to wire count, line capacitance, and the need
for parallel access lines to have identical lengths, more chan-
nels are very difficult to add.

Fully buffered memory systems place a memory buller
device on every memory module (called an FB-DIMM when
Fully Buffered RAM 1s used), which unlike conventional
memory controller devices, use a serial data link to the
memory controller instead of the parallel link used 1n previ-
ous RAM designs. This decreases the number of the wires
necessary to place the memory devices on a motherboard
(allowing for a smaller number of layers to be used, meaning
more memory devices can be placed on a single board), at the
expense of icreasing latency (the time necessary to access a
memory location). This latency increase 1s due to the time
required to convert the parallel information read from the
DRAM cell to the serial format used by the FB-DIMM con-
troller, and back to a parallel form in the memory controller
on the motherboard. In theory, the FB-DIMM’s memory
butiler device could be built to access any DRAM cells, allow-
ing for memory cell agnostic memory controller design, but
this has not been demonstrated, as the technology 1s 1n 1its
infancy.

A DIMM, or dual mn-line memory module, comprises a
series ol dynamic random access memory integrated circuits.
These modules are mounted on a printed circuit board and
designed for use 1n personal computers, workstations and
servers. DIMMs began to replace SIMMs (single in-line
memory modules) as the predominant type of memory mod-
ule as Intel’s Pentium processors began to gain market share.

The main difference between SIMMs and DIMMs 1s that
DIMMs have separate electrical contacts on each side of the
module, while the contacts on SIMMs on both sides are
redundant. Another difference 1s that standard SIMMs have a
32-bit data path, while standard DIMMs have a 64-bit data
path. Since Intel’s Pentium has (as do several other proces-
sors) a 64-bit bus width, it requires SIMMs i1nstalled 1n
matched pairs 1n order to complete the data bus. The proces-
sor would then access the two SIMMs simultaneously.
DIMMs were introduced to eliminate this practice.

Serial ATA (SATA) 1s a computer bus interface for connect-
ing host bus adapters to mass storage devices such as hard
disk drives and optical drives. Serial ATA was designed to
replace the older ATA (AT Attachment) standard (also known

as EIDE). It 1s able to use the same low level commands, but
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serial ATA host-adapters and devices communicate via a
high-speed serial cable over two pairs of conductors. In con-
trast, the parallel ATA (the redesignation for the legacy ATA
specifications) used 16 data conductors each operating at a
much lower speed. SATA offers several compelling advan-
tages over the older parallel ATA (PATA) mterface: reduced
cable-bulk and cost (reduced from 80 wires to seven), faster
and more efficient data transfer, and hot swapping.

The SATA host adapter 1s integrated into almost all modern
consumer laptop computers and desktop motherboards. As of
2009, SATA has mostly replaced parallel ATA 1n all shipping
consumer PCs. PATA remains in industrial and embedded
applications dependent on Compacttlash storage although the
new CFast storage standard will be based on SATA.

Flash memory 1s a non-volatile computer storage that can
be electrically erased and reprogrammed. It 1s a technology
that 1s primarily used 1n memory cards and USB flash drives
for general storage and transfer of data between computers
and other digital products. It 1s a specific type of EEPROM
(Electrlcally Erasable Programmable Read- Only Memory)
that 1s erased and programmed in large blocks; 1n early flash
the entire chip had to be erased at once. Flash memory costs
far less than byte-programmable EEPROM and therefore has
become the dominant technology wherever a significant
amount of non-volatile, solid state storage 1s needed.
Example applications include PDAs (personal digital assis-
tants), laptop computers, digital audio players, digital cam-
eras and mobile phones. It has also gained popularity 1n
console video game hardware, where 1t 1s often used 1nstead
of EEPROMSs or battery-powered static RAM (SRAM) for
game save data.

Since flash memory 1s non-volatile, no power 1s needed to
maintain the imnformation stored in the chip. In addition, flash
memory offers fast read access times (although not as fast as
volatile DRAM memory used for main memory 1 PCs) and
better kinetic shock resistance than hard disks. These charac-
teristics explain the popularity of flash memory 1n portable
devices. Another feature of tlash memory 1s that when pack-
aged 1n a “memory card,” 1t 1s extremely durable, being able
to withstand intense pressure, extremes of temperature, and
even immersion in water.

Although technically a type of EEPROM, the term
“EEPROM” 1s generally used to refer specifically to non-
flash EEPROM which 1s erasable in small blocks, typlcally
bytes. Because erase cycles are slow, the large block S1ZES
used 1n flash memory erasing give 1t a significant speed
advantage over old-style EEPROM when writing large
amounts of data.

In summary, DIMMs are fast, consume relatively large
amounts ol power, and have a high bit density. Flash memo-
ries are slower than DIMMs, but faster than SATA or SSDs
(solid state drives), consume less power, and have a lower
memory density. SATA are mechanical, making them the
slowest memory. They burn more power than a DIMM when
active. However, a SATA drive has lots of storage and can be
turned on and off, to save power, without losing data.

As noted above, most computing devices are currently built
using DIMM type RAM memories. There are many occa-
s10ns when a computing device 1s turned on, but not accessing
memory. Keeping the DIMM memory “alive” 1n these con-
ditions 1s wasteiul of power. The power 1ssue can be espe-
cially critical 1f the computing device 1s battery operated or
sensitive to high operating temperatures. Currently, there 1s
no technology able to shutdown or replace memory devices
on-the-fly. Some problems that prevent such an operation
include the possibility of data corruption, operating system
inflexibility, and signal integrity or electrostatic discharge

10

15

20

25

30

35

40

45

50

55

60

65

4

(ESD) 1ssues. Even 1n the case when the operating system
(OS) 1s hibernating, DIMMSs cannot be removed, as the OS

and the basic input/output system (BIOS) always look for the
exact same memory state that existed prior to hibernation.

It would be advantageous if at least some of a computer
device’s memories could be put mto a sleep mode when the
system determines limited memory read/write access 1s
required.

It would be advantageous 11 data from a shutdown memory
could be written into cache when there 1s a high likelihood
that 1s to be requested by a processor.

SUMMARY OF THE INVENTION

Described herein 1s a technique to shutdown a memory
module on-the-1ly, permitting a user to extend the runtime of
the system while running on a battery. This situation may
occur, for example, when the user 1s traveling or making a
presentation. This memory shutdown may even be used when
the user 1s running Office applications, such as Word or Pow-
erPoint, or checking emails, since these applications do not
necessarily need access to the full memory.

The user can shut down one of the memory modules for
deep power saving purpose and extended battery life. For
instance, if the user 1s traveling and they know that they will
be working mostly on the Office applications (MsWord,
Excel, PowerPoint, or emails) and need to extend battery life.
The user can click a hot key meant for deep power saving,
which shuts down one of the memory modules on-the-fly. The
system continues working with only one memory module
without taking much of a performance hit. The machine does
not need to be rebooted or the applications restarted. The
memory shutdown happens in the background.

Otherwise a thermal control unit monitoring the memory
modules may detect that there 1s a frequent heating 1ssue with
one of the memories that 1s not responding to 1mitial thermal
controls. In this case, data can be moved out of the problem
memory module, and that memory shut down until 1t properly
cools. After cooling, the memory module can be brought back
online.

If there 1s a constant thermal i1ssue with a particular
memory module, or some other malfunction, the memory
module can be shut down and replaced with a new memory
module while the system 1s still in operation. There 1s no data
loss, as the data 1s moved to a dedicated auxiliary storage
location (flash, HDD, or Solid State Drive (SSD)). This fea-
ture 1s important for mission critical systems that need to have
a 99.99999% uptime.

Also described 1s a technique to prefetch data from the
SATA or a flash device and copy 1t to a SoC embedded cache.
When the processor requests data from a shutdown memory,
the linked list map determines the status of the address, 1.e. 1
the data 1s in the cache, flash, or SATA drive. Then, data
related to the requested data (e.g., data with proximal
addresses) 1s loaded into cache (if not already present), in case
it 1s subsequently requested.

Accordingly, a method 1s provided for using a system-on-
chip (SoC) memory manager to optimize the use of off-chip
memory modules. A SoC 1s provided with a processor, a
memory controller core interfaced to an external random
access memory (RAM) first memory module, and a memory
switching core interfaced to an external second memory mod-
ule. In use, the memory controller may receive a request for a
first data block, subsequent to shutting the first memory
down, and determine that the first data block 1s stored in the
first memory. The memory switching core uses a memory
map to translate the first data block address in the first
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memory module to a first data block address 1n the second
memory module. If the first data block 1s present 1n the cache,
the first data block 1s supplied on the SoC data bus from the
cache. Then, the cache 1s loaded with a plurality of data
blocks from a corresponding plurality of addresses in the
second memory module, associated with the first data block
address.

If the first data block 1s not 1n cache, the memory switching,
core accesses the memory map to determine the first data
block location. If the first data block 1s 1n a second memory
flash, 1t 1s transierred to cache. If the first data block 1s 1n the
bulk memory (e.g., a solid state drive (SSD) or serial
advanced technology attachment (SATA) memory), the first
data block 1s transterred to both cache and flash memory (1f
flash 1s present), and the memory map 1s updated with the
location of the first data block in the cache and tlash memo-
ries.

Additional details of the above-described method, and a
SoC with a memory management system to optimize the use
of off-SoC memories, are provided below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic block diagram of a system-on-chip
(SoC) with a memory management system to dynamically
shutdown, restart, and optimize the use of off-chip memory
modules.

FIG. 2 1s a schematic block diagram depicting additional
details of the system presented in FIG. 1.

FIG. 3 1s a schematic block diagram depicting additional
details of the system presented in FIG. 2.

FIG. 4 1s a detailed flowchart illustrating a process for
moving data to more accessible memory.

FIGS. SA and 3B are flowcharts illustrating a method for
using a SoC memory manager to optimize the use of off-chip
memory modules.

DETAILED DESCRIPTION

FIG. 1 1s a schematic block diagram of a system-on-chip
(SoC) with a memory management system to dynamically
shutdown, restart, and optimize the use of off-chip memory
modules. The memory management system 102 comprises a
processor 104 connected to a command address bus on line
106. A memory controller 108 1s interfaced to the processor
104 via the command address bus on line 106. An external
(o11-SoC) random access memory (RAM) first memory mod-
ule 110 1s 1interfaced to the memory controller 108 via a first
memory bus on line 112. The system 102 also comprises an
external (oif-SoC) (typically low power consumption) sec-
ond memory module 114. A memory switching core 116 has
a hold interface on line 118 connected to the processor 104.
The memory switching core (MSC) 116 1s connected to the
memory controller 108 via a data bus on line 120 and control
interface on line 122. The MSC 116 i1s connected to the
second memory module 114 via an auxiliary data bus on line
124. The MSC 116 1s enabled as a hardware device.

The memory switching core 116 asserts a hold on proces-
sor operations 1n response to enacting a memory switch
operation and desserts the hold when the memory switch
operation 1s completed. The memory switching core 116
commands the transier of data from a source memory module
to a destination memory module. The data transier operations
can be either a shutdown or restart operation. A shutdown
operation transiers data from the first memory module source
110 to the second memory module destination 114. The
restart operation transiers data from the second memory mod-
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6

ule source 114 to the first memory module destination 110. A
memory map 126 embedded 1n the memory switching core
116 translates the data addresses 1n the source memory mod-
ule to data addresses 1n the destination memory module.

In one aspect as shown, an external (o1f-SoC) RAM third
memory module 128 1s connected to the memory controller
108 via a second memory bus on line 130. If memory switch-
ing core 116 enacts a shutdown operation (of the first memory
module 110), the memory controller 108 changes processor
memory access from interleaved access to the first memory
module 110 and third memory module 128, to sequential
access to the third memory module 128.

Alternately, 1f the memory switching core determines that
a shutdown operation 1s desired, but that only the first
memory module 1s interfaced to the memory controller (e.g.,
the third memory module 1s not present or not connected), the
memory switching core 116 delivers a set of slow-operation
parameters to the memory controller 108, to replace an initial
set of parameters. Then, the memory controller 108 manages
the first memory module 110 using the delivered set of param-
eters. One or more of the following memory control param-
cters may be delivered: column address strobe (CAS) latency
(tAAmin), row address strobe (RAS) to CAS delay (tRCD-
min), active to precharge delay time (tRAS min), active to
active refresh delay time (tRC min), and combinations of the
above-mentioned parameters. These parameters are well
understood 1n the art. Details of a system able to change
memory operation parameters are provided in parent appli-
cation Ser. No. 12/729,210, which 1s incorporated herein by
reference.

FIG. 2 1s a schematic block diagram depicting additional
details of the system presented 1n FIG. 1. In this aspect the
second memory module 114 includes a flash memory 1144, a
solid state drive (SSD) 1145, a serial advanced technology
attachment (SATA) memory 114¢. Although three memory
components are shown connected 1n parallel on the auxiliary
bus 124, 1t should be understood that the second memory
module may comprise just one of the depicted modules, or
any combination of the above-mentioned devices. In a shut-
down operation, the memory switching core 116 transfers
data to the second memory 114 by determining the capacity of
the first memory module 110. If the capacity of the first
memory module 110 1s greater than the flash memory capac-
ity 114a, it transters the data to either the SSD memory 1145
if present) or the SATA memory 114c¢ (1f present). But 11 the
capacity of the first memory module 110 1s less than the flash
memory 114a capacity, the MSC 116 can transier the data to
the flash memory. As noted above 1n the Background, a flash
memory conventionally uses less energy than SATA or SSD.
Note: the decision to transier data to a particular module need
not necessarily be made on the basis of capacity. Power con-
sumption 1s another factor to be considered.

In another aspect the memory switching core 116 has a
command interface, and the MSC enacts the shutdown opera-
tion 1n response to recerving a trigger message from a graphi-
cal user interface (GUI) connected to the SoC on line 200. The
GUI, not shown, 1s typically a software application of instruc-
tions stored in a computer readable memory that are executed
by a processor. The trigger message may also be supplied on
line 202 as a thermal warning from an SoC-embedded ther-
mal monitor 204. Details of a thermal monitoring system are
provided 1n parent application Ser. No. 12/687,817, which 1s
incorporated herein by reference. Alternately, the trigger can
be an error detection message on line 122 from the memory
controller 108, or from a software application (not shown)
enabled as a sequence of 1nstructions, stored 1n memory, and
executed by a processor.




US 8,306,140 Bl

7

Subsequent to the hold being deasserted on the processor
104, the processor 1s still able to access data originally stored
in the first memory module 110, even after the first memory
module has been shut down. Thus, 1f the memory controller
108 receives a request from the processor 104 for a first data
block 1n the first memory module 110, the memory switching
core 116 uses the memory map 126 to translate the first data
block address 1n the first memory module 110 to a first data
block address 1n the second memory module 114. The MSC
116 then accesses the second memory module 114, and sup-
plies the first data block on the data bus 120.

Typically, a cache 206 1s embedded in the memory switch-
ing core 116. The memory switching core 116 mitially checks
for the first data block 1n the cache 206, and 1f the first data
block 1s present 1n the cache, 1t supplies the first data block on
the data bus 120 from the cache. Then, the memory switching
core 116 loads the cache 206 with data blocks associated with
a first plurality of addresses in the second memory module
114.

A read first-1n first-out (FIFO) 208 may also be embedded
in the memory switching core 116, interposed between the
data bus 120 and auxiliary bus 124. If the first data block 1s not
in cache 206, the memory switching core 116 supplies the
first data block on the data bus by accumulating portions of
the first data block 1n the read FIFO 208 and transferring the
accumulated portions from the read FIFO to the data bus 120
(and to the cache 206 so that subsequent fetches can be served
by the cache).

Subsequent to the first memory module shutdown and the
hold being deasserted on the processor 104, the memory
controller 108 may receive a request from the processor 104
to write a second data block in the first memory module 110.
The memory switching core 116 saves the second data block
in the second memory module 114 and uses the memory map
126 to translate the second data block address in the second
memory module 114 to a second data block address in the first
memory module 110.

In one aspect, awrite FIFO 210 1s embedded 1in the memory
switching core 116, interposed between the data bus 120 and
auxiliary bus 124. The memory switching core 116 saves the
second data block in the second memory module 114 by
accumulating portions of the second data block 1n the write
FIFO 210 and transfers the accumulated portions from the
write FIFO 210 to the second memory module 114.

The system depicted in FI1G. 2 may also be described as one
that optimizes the use of off-chip memory modules. If the
memory controller 108 receives a request for a first data
block, subsequent to shutting the first memory 110 down, and
determines that the first data block 1s stored in the first
memory, then the memory switching core 116 uses the
memory map 126 to translate the first data block address in
the first memory module 110 to a first data block address in
the second memory module 114. If the first data block 1s
present in the cache 206, the first data block 1s supplied on the
SoC data bus 120 from the cache. Then, the cache 206 1s
loaded with a plurality of data blocks from a corresponding
plurality of addresses in the second memory module 114,
associated with the first data block address. For example, the
data blocks loaded into cache may be the next-in-sequence
addresses to the first data block. Alternately, there may be
pointer associated with the first data block address that directs
the MSC 116 to the next address(es) to be loaded.

It the first data block 1s not 1n cache 206, the memory
switching core 116 accesses the memory map 126 to deter-
mine the first data block location, and transfers the first data
block to cache 11 the first data block 1s 1n tlash memory 114a.
For convenience, the bulk memory 1145/114¢ 1s defined

5

10

15

20

25

30

35

40

45

50

55

60

65

8

herein as components of the second memory that include a
SSD 114d, a SATA 114c¢, or both a SSD and SATA. If the first

data block 1s 1n the bulk memory 11456/114¢, the memory
switching core 116 also transfers the first data block to flash
memory 114a (assuming a tflash memory 1s present), and
updates the memory map 126 with the location of the first data
block 1n the cache 206 and flash 114a memories.

The memory switching core 116 loads the cache 206 with
data blocks from the second memory module 114 by setting a
limit value equal to n and a counter value equal to 0. The MSC
116 determines 1f the next address 1s 1n cache 206, and 1if so,
increments the counter. The MSC 1teratively determines 11 the
next address 1s 1n cache until the counter 1s equal to n. If 1t 15
determined that the next address 1s not in cache, the MSC 116
accesses the memory map 126 to determine the location of the
next address in the second memory module 114. If the next
address 1s 1n the flash memory 114, the next data block asso-
ciated with the next address i1s transferred to cache 206, the
counter 1s incremented, and a determination 1s made 1f the
next address 1s 1n cache. This method 1s iteratively repeated
until the counter 1s equal to n.

If the next address 1s 1n the bulk memory, the next data
block associated with the next address 1s transferred to cache
206 and to flash memory (it present). The memory map 126 1s
updated with the location of the next data block in the cache
and flash memories, the counter 1s incremented, and a deter-
mination 1s made 1f the next address 1s 1n cache 206. This
process 1s 1teratively repeated until the counter 1s equal to n.

The access of data from the second memory 114 1s pre-
mised upon the assumption that the data has previously been
moved from the first memory 110 to the second memory 114,
and the first memory shut down. More explicitly, the memory
switching core 116 asserts a hold on processor operations
prior to recerving the request for the first data block, and 1n a
shutdown operation, transiers data from the first memory
module 110 to the second memory module 114. The memory
map 1s used for translating the data addresses i1n the first
memory module to data addresses 1n the second memory
module. After the data transter, the MSC 116 deasserts the
hold on processor operations.

As part of the shut down operation, the memory switching
core 116 determines the capacity of the first memory module
110, and transiers the data to the bulk memory 11456/114¢ 11
the capacity of the first memory module 1s greater than the
flash memory 114a capacity. However, the data 1s transferred
to the tlash memory 114a 11 the capacity of the first memory
module 110 1s less than the flash memory capacity.

I1 the memory controller 108 recerves a request for a sec-
ond data block, and determines that the second data block 1s
stored 1n the still active (not shut down) third memory 128, the
request for the second data block 1s passed to the third
memory. Alternately, the MSC may make the determination.

As used 1n this application, the term “core” refers to an
integrated circuit die of connected hardware sub-components
that supply electrical signals in response to electrical signal
stimuli. While these electrical signals may be indirectly
alfected by software operations performed external to die,
there 1s no software application internal to the die indirectly
generating electrical signals. Any logic functions performed
internal to the core are the result of a hardware-based state
machine type logic.

Functional Description

FIG. 3 1s a schematic block diagram depicting additional
details of the system presented 1n FIG. 2. A double data rate
(DDR) controller 108 1s connected to two DIMMS, 110 and
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128. For clarity, memory controller 108 1s shown as one block
but 1t actually contains two sub-blocks, one dedicated to each
DIMM. The DDR memory controller 108 1s connected with
the DDR_data-interface block 300, with interfaces cntrll
122, data-bus 120, and transaction done 302 signals.

The command/address itercept block 304 intercepts the
DDR command and address on line 106, and monitors com-
mands between the processor and memory controller. The
memory shutdown/power up state machine 306 1s the main
state machine. It has the function of shutting down a memory
module and also bringing 1t back up.

The linked list map 126 remaps the physical addresses of
the memory module that has been shut down to the tlash
memory, SATA, or SSD address space. The link list map also
indicates whether an address that 1s being translated can be
found 1n the pretfetch cache 206. The flash pretfetch block 308
moves data from the second memory 114 to the prefetch

cache 206 before the read request for that block comes from
the core 104. The NAND flash controller 310 controls the data
movement to and from the NAND flash 114a. It should be
noted that the flash memory type 1s not limited to NAND flash
and can be NOR flash as well. SATA/SSD controller 312
controls data flow to and from the SATA and SSD memories
(bulk memory) 114¢/1145b.

FIG. 4 1s a detailed flowchart illustrating a process for
moving data to more accessible memory. Considering both
FIGS. 3 and 4, 1t 1s assumed that two DIMMSs populate the
Board, and one DIMM (e.g., 110) has been shut down. Any
request targeted for that DIMM 1s honored by the MSC and
linked list map 126, Step 400. The processor core 104
requests data from the memory controller 108 1n Step 402.
The targeted address lies 1n the address space of the first
DIMM 110, which has been shut down. The linked list map
126 intercepts all memory requests going to the memory
controller 108. The linked list map 126 contains an address
tracker linked-list that denotes whether the addresses are
stored 1n bulk memory 1145/114¢, flash memory 114a, or
reside 1n the prefetch cache 206.

The dedicated MSC 116 hardware performs a lookup (Step
404) for the address and generates a HIT or MISS for that
address 1n Step 406. 11 the address 1s for the active DIMM 128,
the request 1s passed on to the memory controller 108 1n Step
408. A HIT means that data for this address ranges 1s not
stored 1n the active main memory (DIMM) and that 1t 1s either
stored 1n the NAND cache 206, SATA/SSD 114¢/1145, or
flash memory 114¢. There are other lookups performed 1n
Steps 410 and 412 to determine 1n which of the three areas the
data 1s stored. If the linked list map indicates that the data 1s
stored 1n the cache 206, the data 1s read and returned to the
core 104 1n Step 414. After this, the linked list map generates
an internal prefetch request i Step 416. This request 1is
intended to check 11 the next x blocks of memory requests are
in the flash, cache, or bulk memory drives.

If Step 410 determines a cache MISS and Step 412 deter-
mines a flash read, the linked list map forwards the address to
the flash controller and the controller reads the data in Step
418. This data 1s copied to the cache and in Step 414, for-
warded to the core 104. The linked list map updates the
address tracker with the data/address locations, and generates
an internal prefetch request 1 Step 416. This request 1s
intended to check 11 the next x blocks of memory requests are
in the flash, cache, or in the bulk memory drive.

It Step 410 determines a cache MISS and Step 420 deter-
mines a bulk memory read, then the data for this address range
1s stored on the SATA or SSD drives. The linked list map
torwards the address to the SATA (or SSD) controller and the

data 1s read. In Step 422 the data 1s then copied into the cache
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206 and tlash 1144, and 1n parallel, forwarded to the core. The
linked list address tracker register 1s updated accordingly to
show that the data 1s stored 1n the cache as well as the flash.
Having the data in both the cache and flash 1s eff]

icient because
the data can be evicted from the cache 1t 1t 1s not used.
However, since the data still resides in flash, the latency
associated with another SATA/SSD read 1s avoided. After
this, the linked list map generates an internal prefetch request
in Step 416. This request 1s intended to check i1 the next x
blocks of memory requests are in the flash, cache, or in the
bulk memory drive.

The cache has the fastest access, followed by flash access.
The slowest access 1s that of the SATA or SSD drives. It 1s
desirable to keep as much data as possible 1n the cache and
flash so as to minimize the SATA/SSD accesses. The mecha-
nism of copying the data from SATA/SSD drive to flash
memory and on-silicon cache boosts the performance during
read operations.

Following Step 416, the linked list map 1nitiates copying of
the next n blocks of data to cache 1n Step 424. The linked list
map updates the address tracker linked list accordingly. If the
next address 1s 1n cache, Step 426 determines 11 the n blocks
of data have been read. If yes, the process returns to Step 402.
If no, the process returns to Step 416. If Step 424 determines
that the next address 1s not 1n cache, a lookup 1s performed in
Step 428 and Step 430 determines 11 the address 1s 1n flash or
bulk memory. If the address 1s 1n flash, the data 1s read 1n Step
432 and then Step 434 determines if all n cache lines have
been read. I yes, the process returns to Step 402. If no, the
process returns to Step 416. If Step 430 determines that the
address 1s 1n bulk memory, Step 436 read the data block, Step
438 copies the data into cache and flash and updates the linked
list map of addresses, and the process moves to Step 434.

The same methodology as described above could also be
applied to a DIMM that 1s not shutdown, to improve the speed
of HDD access. The result would be a power savings 1n that
the number of times that the HDD 1s spun up 1s minimized by
using the flash and on-die cache.

FIGS. 5A and 5B are tlowcharts illustrating a method for
using a SoC memory manager to optimize the use of off-chip
memory modules. Although the method 1s depicted as a
sequence of numbered steps for clarity, the numbering does
not necessarily dictate the order of the steps. It should be
understood that some of these steps may be skipped, per-
formed 1n parallel, or performed without the requirement of
maintaining a strict order of sequence. Generally however,
the method follows the numeric order of the depicted steps.
The method starts at Step 500.

Step 502 provides a SoC with a processor, a memory con-
troller core interfaced to an external RAM first memory mod-
ule, and a memory switching core interfaced to an external
second memory module. In Step 504 the memory controller
receives a request for a first data block, subsequent to shutting
the first memory down. In Step 506 the memory controller
determines that the first data block 1s stored in the first
memory. In Step 508 the memory switching core uses a
memory map to translate the first data block address in the
first memory module to a first data block address 1n the second
memory module. It the first data block 1s present 1n the cache,
Step 510 supplies the first data block on the SoC data bus from
the cache. Step 512 loads the cache with a plurality of data
blocks from a corresponding plurality of addresses 1n the
second memory module, associated with the first data block
address.

In one aspect, loading the cache with data blocks 1n Step
512 includes loading data blocks from a flash memory, and/or
a bulk second memory module, where the bulk memory can
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be a SSD and/or a SATA memory. If the first data block 1s not
in cache, Step 514 accesses the memory map to determine the
first data block location. If the first data block 1s 1n flash
memory, Step 516 transters the first data block to cache. If the
first data block 1s 1n the bulk memory, Step 518 transfers the
first data block to cache and flash memory (if present), and
Step 520 updates the memory map with the location of the
first data block 1n the cache and flash memories.

In another aspect, loading the cache with data blocks in
Step 512 includes the following substeps. Step 512a sets a
limit value equal to n and a counter value equal to 0. Step 5125
determines 1f the next address 1s in cache. If so, Step 512c¢
increments the counter and determines if the next address 1s 1in
cache until the counter i1s equal to n. If Step 5125 determines
that the next address 1s not 1n cache, Step 5124 accesses the
memory map to determine the location of the next address in
the second memory module. I the next address 1s in the flash
memory, Step 512e transiers anext data block associated with
the next address to cache, and then Step 512¢ increments the
counter and determines 11 the next address 1s 1n cache until the
counter 1s equal to n. If the next address 1s 1n the bulk memory,
Step 512/ transiers a next data block associated with the next
address to cache and flash memory (if present). Then, Step
512¢g updates the memory map with the location of the next
data block 1n the cache and tflash memories, and Step 312c¢
increments the counter and determines if the next address 1s 1n
cache until the counter 1s equal to n.

In a different aspect, prior to recerving the request for the
first data block 1n Step 504, the memory switching core
asserts a hold on processor operations 1n Step 503q. In a
shutdown operation, Step 5035 transiers data from the first
memory module source to the second memory module. In
Step 503¢ the memory switching core uses the memory map
for translating the data addresses in the first memory module
to data addresses 1n the second memory module. Then 1n Step
5034 the memory switching core deasserts the hold on pro-
cessor operations.

In one aspect, transferring data in Step 5035 includes the
tollowing substeps. Step 50351 determines the capacity of the
first memory module. If the capacity of the first memory
module 1s greater than the flash memory capacity, Step 50352
transiers the data to the bulk memory. If the capacity of the
first memory module 1s less than the tlash memory capacity,
Step 50353 transiers the data to the flash memory.

In another aspect, providing the SoC with the memory
controller core 1n Step 502 additionally includes providing
the memory controller core interfaced to an external active
RAM third memory module via a third memory bus. In Step
504 the memory controller core recerves a request for a sec-
ond data block, and in Step 506 the memory controller core
determines that the second data block is stored in the third
memory. In Step 507 the memory controller core passes the
request for the second data block to the third memory. Alter-
nately, the MSC may make the determination in Step 506.

A system and method have been provided for using a SoC
memory manager to optimize the use of off-SoC memory
modules. Examples of particular message structures, proces-
sors, and hardware units have been presented to illustrate the
invention. However, the invention 1s not limited to merely
these examples. Other variations and embodiments of the
invention will occur to those skilled 1n the art.

We claim:

1. A method for using a system-on-chip (SoC) memory
manager to optimize off-chip memory modules, comprising;:

receiving a request for a first data block at a memory

controller, subsequent to shutting a first memory module
down;
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determiming that the first data block 1s stored in the first
memory module;
translating a first data block address in the first memory
module to a second data block address 1n a second
memory module via a memory map;
11 the first data block 1s present in a cache, supplying the
first data block on a SoC data bus from the cache; and
loading the cache with a plurality of data blocks from a
corresponding plurality of addresses in the second
memory module, associated with the first data block
address, wherein the loading the cache further com-
Prises
setting a limit value equal to n and a counter value equal
to O;

determining 1f a next address 1n the cache;

if’ so, incrementing the counter and determining 1if the
next address 1s 1n the cache until the counter 1s equal
to n.

2. The method of claim 1 wherein loading the cache with
data blocks associated with the plurality of addresses in the
second memory module comprises loading data blocks from
the second memory module selected from at least one of a
flash memory, or a bulk memory;

the method further comprising:

i1 the first data block 1s not i1n the cache, accessing the
memory map to determine a location of the first data

block; and,
11 the first data block 1s in the flash memory, transferring the
first data block to the cache.

3. The method of claim 2 further comprising;:

11 the first data block 1s in the bulk memory, transferring the
first data block to the cache;

transierring the first data block to the flash memory; and,

updating the memory map with the location of the first data
block in the cache memory and the flash memory.

4. The method of claim 1 wherein loading the cache with
data blocks from corresponding addresses in the second
memory module further comprises:

determining that the next address 1s not in the cache;

accessing the memory map to determine a location of the
next address 1n the second memory module;

11 the next address 1s in the flash memory, transferring a
next data block associated with the next address to the
cache; and,

incrementing the counter and determining 1f the next
address 1s 1n cache until the counter 1s equal to n.

5. The method of claim 4 wherein loading the cache with
data blocks from corresponding addresses in the second
memory module further comprises:

11 the next address 1s 1n the bulk memory, transferring a next

data block associated with the next address to the cache;
transierring the next data block to the flash memory;
updating the memory map with a location of the next data

block 1n the cache and flash memories; and.,
incrementing the counter and determining 1f the next

address 1s 1n the cache until the counter 1s equal to n.

6. The method of claim 1 further comprising;:

asserting a hold on processor operations prior to receiving,
the request for the first data block;

in a shutdown operation, transferring data from the first
memory module to the second memory module;

the memory switching core using the memory map for
translating the data addresses 1n the first memory mod-
ule to data addresses 1n the second memory module; and,

deasserting the hold on processor operations.

7. The method of claam 6 wherein transferring data

includes transferring data to the second memory module
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selected from a group consisting of a flash memory, and a bulk
memory selected from a group consisting of a solid state drive

(SSD), a serial advanced technology attachment (SATA)

memory, and a combination of the above-mentioned memo-
ries, as follows:

determining the capacity of the first memory module;

if the capacity of the first memory module 1s greater than
the flash memory capacity, transferring the data to the
bulk memory; and,

if the capacity of the first memory module 1s less than the
flash memory capacity, transierring the data to the flash
memory.

8. The method of claim 1,

turther comprising:

receiving a request for a second data block;

determining that the second data block 1s stored 1n the third
memory; and,

passing the request for the second data block to the third
memory.

9. The method of claim 1, further comprising facilitating
the using the system-on-chip (SoC) memory manager with a
SoC with a processor, a memory controller core interfaced to
an external random access memory (RAM) first memory
module, and a memory switching core interfaced to an exter-
nal second memory module.

10. A system-on-chip (SoC) comprising a memory man-
agement system to optimize the use of oif-chip memory mod-
ules, the memory management system comprising:

a processor connected to a command address bus;

a memory controller interfaced to the processor via the

command address bus;

a first memory module interfaced to the memory controller
via a first memory bus, wherein the first memory module
1s an external random access memory;

an external second memory module;

a cache memory;

a memory switching core having a hold interface con-
nected to the processor, a data bus and control interface
connected to the memory controller, and an auxiliary
data bus connected to the second memory module and
cache memory;

a memory map embedded in the memory switching core;

wherein the memory controller 1s configured for receiving
a request for a first data block, subsequent to shutting the
first memory down, and 1s further configured for deter-
mining that the first data block is stored in the first
memory; and,

the memory switching core 1s configured for using the
memory map to translate an address of the first data
block 1n the first memory module to a second data block
address 1n the second memory module, and 11 the first
data block 1s present in the cache, supplying the first data
block on the SoC data bus from the cache, and loading
the cache with a plurality of data blocks from a corre-
sponding plurality of addresses 1n the second memory
module, associated with the first data block address, and

the memory switching core 1s further configured for load-
ing the cache with data blocks from the second memory
module by setting a limit value equal to n and a counter
value equal to O, determinming 11 the next address 1s 1n the
cache, and 1f so, incrementing the counter, and determin-
ing 1f the next address 1s 1n the cache until the counter 1s
equal to n.

11. The memory management system of claim 10 wherein

the second memory module 1s at least one of a flash memory,
or a bulk memory; and
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the memory switching core 1s further configured for
accessing the memory map to determine a location of the
first data block 1f the first data block 1s not 1n the cache,
and transierring the first data block to the cache 1f the
first data block 1s 1n tlash memory.

12. The memory management system of claim 11 wherein
the memory switching core 1s configured for transferring the
first data block to the tlash memory 11 the first data block 1s 1n
the bulk memory, and updating the memory map with the
location of the first data block 1n the cache and flash memory.

13. The memory management system of claim 10 wherein
the memory switching core i1s configured for loading the
cache with data blocks associated with the second memory
module by determining that the next address 1s not in the
cache, accessing the memory map to determine the location
of the next address 1n the second memory module, transier-
ring a next data block associated with the next address to
cache 11 the next address 1s 1n the flash memory, incrementing
the counter, and determining if the next address 1s in cache
until the counter 1s equal to n.

14. The memory management system of claim 13 wherein
the memory switching core i1s configured for loading the
cache with data blocks from the second memory module by
transierring a next data block associated with the next address
to cache 1f the next address 1s 1n the bulk memory, transferring
the next data block to flash memory, updating the memory
map with the location of the next data block in the cache and
flash memories, incrementing the counter, and determining 1f
the next address 1s in the cache until the counter 1s equal to n.

15. The memory management system of claim 10 wherein
the memory switching core 1s configured for asserting a hold
on processor operations prior to recerving the request for the
first data block, and 1n a shutdown operation, transferring data
from the first memory module to the second memory module,
using the memory map for translating the data addresses in
the first memory module to data addresses in the second
memory module, and then deasserting the hold on processor
operations.

16. The memory management system of claim 15 wherein
the second memory module 1s selected from a group consist-
ing of a flash memory, and a bulk memory selected from a
group consisting of a solid state drive (SSD), a serial
advanced technology attachment (SATA) memory, and a
combination of the above-mentioned memories; and,

the memory switching core 1s configured for determining
the capacity of the first memory module, transferring the
data to the bulk memory if the capacity of the first
memory module 1s greater than the flash memory capac-
ity, and transferring the data to the flash memory 1f the
capacity of the first memory module 1s less than the tlash
memory capacity.

17. The memory management system of claim 10 further

comprising;

a third memory module 1nterfaced to the memory control-
ler core via a second memory bus, wherein the third
memory module 1s another external active random
access memory; and,

wherein the memory controller 1s configured for receiving
a request for a second data block, determining that the
second data block 1s stored in the third memory, and
passing the request for the second data block to the third
memory.

18. The method of claim 11, wherein the bulk memory 1s at

least one of a solid state drive or a serial advanced technology
memory.
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