12 United States Patent

Paterson-Jones et al.

US008806105B2

US 8.806,105 B2
*Aug. 12, 2014

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(63)

(1)
(52)

(58)

MANAGING ACCESS OF MULTIPLE
EXECUTING PROGRAMS TO NON-LOCAL
BLOCK DATA STORAGE

Inventors: Roland Paterson-Jones, Cape Town

(ZA); Peter N. DeSantis, Cape Town
(ZA); Atle Normann Jorgensen, Cape
Town (ZA); Matthew S. Garman,
Seattle, WA (US); Tate Andrew
Certain, Seattle, WA (US)

Assignee: Amazon Technologies, Inc., Reno, NV
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 13/219,318

Filed: Aug. 26,2011

Prior Publication Data
US 2012/0060006 Al Mar. 8, 2012

Related U.S. Application Data

Continuation of application No. 12/188,949, filed on
Aug. 8, 2008, now Pat. No. 8,019,732.

Int. CI.

GO6F 13/00 (2006.01)

U.S. CL

USPC 711/100; 707/812;°714/4.11

Field of Classification Search
USPC 707/999.202, 812; 711/100; 714/4.11

See application file for complete search history.

(Nnda Managar Routine

(56) References Cited

U.S. PATENT DOCUMENTS

5,642,515 A 6/1997 Jonesetal.ccetiin. 395/727
5,848,274 A 12/1998 Hambyetal. 395/705
6,134,673 A * 10/2000 Chrabaszcz 714/13
6,266,781 Bl 7/2001 Chungetal. 714/4
6,324,654 Bl 11/2001 Wahletal.ooviinninl 714/6
6,438,705 Bl 8/2002 Chaoetal.coovvvvvvvnennn, 714/4
6,714,968 Bl 3/2004 Prust ..ooooovivieiiiiiiiiin 709/219
6,799,260 Bl 9/2004 Tunalietal. 711/170
6,915,354 Bl 7/2005 Ozdemuretal. 710/5
(Continued)
OTHER PUBLICATIONS

Cisco System, Solution Guide “Long Distance Application Failover
in the Business Ready Data Center Architecture”, Copyright 1992-
2004, 15 pages, accessed online at <http://www.cisco.com/warp/
public/cc/so/neso/longd_ sg.pdf> on Dec. 27, 2012.*

(Continued)

Primary Examiner — Phuong Thao Cao
(74) Attorney, Agent, or Firm — Seed IP Law Group PLLC

(57) ABSTRACT

Techniques are described for managing access of executing
programs to non-local block data storage. In some situations,
a block data storage service uses multiple server storage
systems to reliably store network-accessible block data stor-
age volumes that may be used by programs executing on other
physical computing systems. A group ol multiple server
block data storage systems that store block data volumes may
in some situations be co-located at a data center, and pro-
grams that use volumes stored there may execute on other
physical computing systems at that data center. If a program
using a volume becomes unavailable, another program (e.g.,
another copy of the same program) may in some situations
obtain access to and continue to use the same volume, such as
in an automatic manner 1 some such situations.

21 Claims, 13 Drawing Sheets

a0g

:

Recajve request related to
program axecutlon on an
associatad computing node

jﬁﬂﬁ

f 515

Obtain a copy of the

indicated program(s},

and initiate execution
on an associatad
computing node

f 535
|dentify associated

volume, and send data

Yes
access request to volumse

v
Receive responsa
within time llmit?

No

Initiale change ic
attach mirror volume

525
\ No
Chtain indication
of primary
volume, and | 20
associate with Yes 5
representative ———_ Attach voluma?
logical block N
device local to 0
ti od <
TP eeE Data access
request
for attached
530 volume?
NG
Perform ather indicated
operaticn as appropriate
565 f
545 ~
598 55
~ " I\
END Continue?
No ™. ~" Yes

US 8,806,105 B2

Page 2
(56) References Cited 2008/0059557 Al1* 3/2008 DeSantisetal. 709/201
2008/0065843 Al 3/2008 Bartfaietal. 711/162
1U.S. PATENT DOCUMENTS 2008/0072000 Al 3/2008 Osakietal. 711/162
2008/0189700 Al 82008 Schmudtetal. 718/1
6,950,871 Bl 0/2005 Honma et al. ... 709/226 2008/0209042 Al 8/2008 Koningetal. 709/226
6,973,516 Bl 12/2005 Athanasetal. 710/100 2008/0228687 Al 9/2008 Devarakonda etal. 706/47
6,993,935 B2 2/2006 Leidy etal. ..cocooovrevvcenen... 65/68 2009/0019157 Al 1/2009 Sumanetal. 7009/225
7,058,731 B2* 6/2006 Kodamaccccoveven.... 710/5 2009/0024752 A1* 172009 Shitomi ..., 709/230
7.072.823 B2 7/2006 Athanas et al. ... 703/25 2009/0086964 Al* 4/2009 Agrawal etal. 380/44
7.085.883 Bl 8/2006 Dalgic etal.o........ 711/114 2009/0210427 Al 82009 FEidleretal.occoevnenn. 707/10
75_ 11,063 Bl 0/2006 Clark etal. 709/225 2009/0271412 A1 10/2009 Lacapraetal. ... 707/10
7,124,320 B1* 10/2006 Wipfelocooovvvvrecennnn.. 714/13 2009/0276594 Al 112009 Fujuretal. 711/162
7.191,299 Bl * 3/2007 Kekreetal.cccoovn..... T11/162 2012/0297157 A1* 11/2012 Iwamuraetal. 711/162
7,213,246 B1* 5/2007 wvan Rietschote et al. 718/1
7,269,611 B2* 9/2007 Mikt .cooooevvvviiiiiiinninn, 707/610 OIHER PUBLICALIONS
;%g%’éié g : iéggg; ﬁ;uk?; uegth;m‘ etal 771%7/5 éé Diaz, et al., “Application-Level Fault-Tolerance Solutions for Grid
7:3 252097 B1* 1/2008 DArcy ..oocoevcovcovecreenes, T11/117 Computing”, In Proceedings of the 8th International Symposium on
7,343,459 B2 3/2008 Prahladetal. 711/162 Cluster Computing and the Grid (CCGRID’ 08), pp. 554-559, 2008,
7,379,990 B2 5/2008 TsSa0 .ovviiviviiiiiiiiiniiann, 709/223 6 pagesfk
7,383,463 B2 . 6/2008 Haydenetal. 714/4 Hewlett-Packard Paper—HP’ “What cloud storage is
507,960 B1* 32000 Toddetai " 7iq fight for you?”, copyright 2013, updated Mar. 2013, 5 pages.
7"577’729 BL* 29000 Umbehocker of al. . 700/293 ac.cessed online at <http://www.hpcloud.com/sites/default/files/
7.581.220 BL* 8/2009 ROCK ..oovvvoooooooreooonr 718/100 Right-storage-for-youpdf>on Apr. 15, 2014.%
7:606:844 B2* 10/2009 Kottomtharayil 1/1 Aboba, B., et al., “Securing Block Storage Protocols Over IP,” 2004,
7,613,749 B2* 11/2009 Flynn etal. .oococoierreverreennn, 1/1 retrieved on Aug. 19, 2008, from http://www.rfc-editor.org/rfc/
7,640,400 B1* 12/2009 Staffordetal. 711/162 rfc3723.1xt, 66 pages.
7,657,578 B1* 2/2010 Karretal.coocovvvnnnn... 707/610 Fegreus, J., “1SCSI Redirection,” Apr. 15, 2008, retrieved on Aug. 19,
7,689,611 B2* 3/2010 Watanabeetal. 707/691 2008, from http://www.open-mag.com/features/Vol__132/rasilient/
7,694,089 B2* 4/2010 Furuhashietal. 711/162 rasilient.html, 8 pages.
7,743,381 B1* 6/2010 Tran ..., 718/106 Gelger, R., “Perforce With Network Appliance Storage,” Oct. 23,
7,792,944 B2* 9/2010 DeSantis etal. 709/223 2001, retrieved on Aug. 19, 2008, from http://www.perforce.cony/
7,797,566 B2 : 9/2010 Droretal.ccocone.. 714/4.11 perforce/conferences/us/2001/geiger/wprmg.html, 18 pages.
D e ooty gooreetal: o 5108 Komiega, K., “Startup Offers Full IP SAN System.” Apr. 7, 2003,
75802ﬁ131 Ry 9/20i‘0 Watanabeetal 71476 11 retrieved on Aug. 19, 2008, from hittp://searchstorage.techtarget.
7:805:583 B1 9/200 Todd etal. 711/162 Com/neWS/&rthIG/O,zgg142,81(15_%(1892537,00htITll,, 2 Pagcs.
7.890,798 Bl 2/2011 Priddy ..ooeovoveeeeeereeran., 714/11 Vogels, W., “Persistent Storage for Amazon EC2,” Apr. 13, 2008,
7,925,630 B1* 4/2011 Krishnamurthy et al. 707/649 retrieved on Jul. 3, 2008, from http://www.allthingsdistributed.com/
8,103,754 B1* 1/2012 Luongetal. 709/223 2008/04/persistent__storage_ for amazon.html, 2 pages.
8,160,247 B2* 4/2012 Agrawaletal. 380/44 “Global File System,” retrieved Aug. 19, 2008, from http://en.
2002/0123997 Al 9/2002 Loyetal.cccoviininnnnn., 707/8 wikipedia.org/wiki/Global__File_ System, 2 pages.
2004/0098637 Al 52004 Duncanetal. 714/6 “Hierarchical Storage Management,” retrieved Aug. 19, 2008, from
2004/0193476 AL* 972004 Aerdts ..o, 705/10 http://en.wikipedia.org/wiki/Hierarchical storage management, 2
2004/0260899 A1 12/2004 Kernetal. 711/162 pages.
20030251716 AL* 112005 Degrenand .o, 714736 - ISCSL” rerieved Aug. 19,2008, from hitp/en wikipedi. org/wiki
. scs1, 6 pages.
20060031636 AL* 22006 Mimmo e TG 1 g NetApp” retrieved Aug. 19, 2008, from http://en.wikipedia.org
2006/0123212 Al 6/2006 Yagawa ..., 711/162 Wiki/Netapp, 3 pages. |
2006/0129627 Al 6/2006 Phillips et al. 709/200 “Shared Disk File System,” retrieved Aug. 19, 2008, from http://en.
2006/0168220 Al1* 7/2006 Katohetal. ... 709/225 wikipedia.org/wiki/Cluster__File_ System, 2 pages.
2006/0179170 Al* 8/2006 Kodamacovvenen., 710/8 “MobileMe 1Disk,” retrieved Aug. 19, 2008, from http://www.apple.
2006/0236198 Al* 10/2006 Lintzetal. 714/758 com/mobileme/features/idisk html, 2 pages.
2006/0242372 A1* 10/2006 Furuhashietal. 711/162 “ElasticDrive—Distributed Remote Storage System,” retrieved Aug.
2007/0083645 A ¥ 4/2007 Roecketal. 709/224 19, 2008, from http://www.elasticdrive.com, 2 pages.
388%8(33222 i . 2?388; glﬁilgga;th?l* **************** ;(1) éggg “ElasticDrive—TFeatures,” retrieved Aug. 19, 2008, from http://www.
20070124355 AL* 52007 Zoharetal. . 711/163 iz:agﬁ‘;ffg‘?fconﬂ features html, 2 pages. .
2007/0156982 Al 7/2007 Meirietal. oo 711/162 “ catures complete hands-iree automated online backup
2007/0233997 Al* 10/2007 Kobara 711/170 ElppliC&tiOIl,” retrieved Allg 19, 2008, from http//WWWldIlVGCOH]/
2007/0240160 Al 10/2007 Paterson-Jones et al. ... 718/104 online-backup-features.htm, 2 pages.
2007/0294319 Al 12/2007 Mankad et al. 707/204 “PersistentFS.com—Online Cloud Storage,” retrieved Aug. 19,
2008/0010496 Al 1/2008 Dasetal. ...coovvevvnnneen.... 714/6 2008, from http://www.persistentfs.com, 3 pages.
2008/0016386 Al1l* 1/2008 Droretal.ccovvvivviiniiinn, 714/4
2008/0028009 Al 1/2008 NgO ooovriiiiiiiieeeeeeirinn, 707/204 * cited by examiner

US 8,806,105 B2

Sheet 1 of 13

Aug. 12,2014

U.S. Patent

7

09/

0/

1 LUD)SAS
Buigndwo?

0¢) v qoc!. epe!
'/ r
_|||M_me:_o> v 1abeuey
GGl [~ Wo)SAg WA | INATIAA WwiasAs WoISAS
swio)sAs abelols abelo)g cel buigndwod Bundwo?
BJED Y30|q JOAISS eje oo|g H _.
_ _
69} \ ¢/l / YIOM)BU [BuIS)UI
i 1obeuepy
SpON
1A
. - > I_|_
| — [Gl
04 | TN e0) I
(AIN)
| AN AN 1obeuepy apoN
lebeue
WwalsAg m
S3d 5 <
..... _ A A NA ANA D
Ob \ 4 A 2=
<
22l | =
coL
yoe. 07
00} e 12JuUa9 ejep

US 8,806,105 B2

Sheet 2 of 13

Aug. 12,2014

U.S. Patent

oggg/ — |

(Jouw) g awn|oA

ocg,—~ WOISAs abelos eyep ¥00|q JonI8s

R —

Wio)SAS abel0)s elep 3oo|q JeAles

2-ggg) - ——— |

(Jounw) @ swnjoA

J-gGG/ \._ (Jouw) g swn|oA

acg, ./ WS)SAS abeio)s elep »00|q JaAIss

~J55) (JoLIIW) 9 BWN|OA
m-%ﬁ_

(Arewiid) g swin|oA
e-yGG1 .\._ u

(Alewiid) y swnjoAa

ecg, ./ Welshs obeioss ejep yoo|q Jonias

gz 'bi4

U-055: - (Aewud) g awn|oA
e
vagh (JO0111W) 7 SWN[OA

ugg,—~ we)shs abelo}s ejep ¥00|q Jonos

0-0561 . _|

(Jodlw) swn|oA

cgeg L |

(Arewud) g swinjoA
gcg, -~ Wayshs abelojs ejep %o0|q Janes

.\.—. :

(Jo1iw) 9 swn|oA

il (Jolliw) g swn|oA

B-yGG | \%A — |

Arewid) y swnjoa

eco | /~ wae)sAs abelols ejep }o0|q JoAISS

vZ ‘bid4

US 8,806,105 B2

€08}
s / wa)sAs abelo)s jealysie / wajsAs abeio}s [eAyoLe _
£908!
061 - t
\ an) e | -_ NE08 “ 1608/
_
e labeuep “
= IBAIUDIY |
_
¢ _ — A _ A
,_w _ | | |
= _ _
7 | |
_ _
|||||| |
_
B
Y _
— _
3 — —_—
uﬂ _ _ _
_ _
ot NE-86G) £e-g6GL~ 288561\ 4e-gsst NG-86GL £9-96GL~ | crdssl i - 10-g66)
2 \ \ \ \ S _ _
7 N Yunyo 4 gJuUNYd | Z2Munyo | | junyd _ N Yunyd gUNYD | Z23unyd | | junyd
Jouiw) g swn|o Aewnd |
p-gogy o/ OHIW) g SWNJOA gqec; . (MEWHd) g SUIN|OA
Wa1sSAs abelo}s elep Moo|q J1oAIaS \ wa)sAs abelo)s ejep 300|q J9AISS
eG9} qGol

U.S. Patent

US 8,806,105 B2

Sheet 4 of 13

Aug. 12,2014

U.S. Patent

az bi4
p
105t / LWIS)SAS abrlols [eAlydle 08+ / LB)sAs abelo)s |[ealyole
£808/
]
dc8! \ ectl \
eNd08! 061
\ ecgogs \ 2608} zm%; 16081
_ _ / [i
| A) 1obeue
|] “ [BAIUDIY
*]
_ A
_ _ _
_ _
_ |
o e
_ T |
| . |
“ _ | |
“ “ m
| |
| NE-GG/ | £e-46G1 NA-g6G1 ' r£G-8GGL ¢9-966G1 Lq-86G1
v/ v J / >/
EN Yunyo “eT B¢ JUNUD | Z Yunyd | | Junyo BN Yunuyo "ot BCOHYUNYD | Zunyd | | Junyo

a-ci0] Ve (JoJliw) g swn|OA

€69} \

LWB]SAS abelo)s elep 3o0|q JeAlss

— Ve (Alewiid) g swn|oA

4G9/ \

Wwa}sAs abelols ejep Moo|q JoAes

US 8,806,105 B2

Sheet So0f 13

Aug. 12,2014

U.S. Patent

3z 'bi4

sk / wa)sAs abelo)s |ealyole

4cs| \
TN exgons \ %1\ 3051

o labeuepy
|||||| “ | [EAIYDIY
_

€08/
/ wa)sAs abelols jealyole

£9081
€csl “

Ng08! 1508 |

(Wa)sAs abelols ejep %o0|q J19AISS
eG91

4G9}

BN Junyo

NG-854/

B¢ Jyunys

£4-85G1 ¢d-H45/ \E-mm&

| yunyo

. Ve (Alewnnd) g swnjon

LWIS}SAS abrli0]s elep %00|q JIaAIaS

US 8,806,105 B2

Sheet 6 0of 13

Aug. 12,2014

U.S. Patent

st / WalsAs abelols [ealyole

=g ‘bi4

qedos!
eNg08! / —
eLdis/ /_

4¢8} \

e \ Nm%“/

labeuep
|BAIYDIY

ENGO08| " 'qcd08lL
'ecg0gl 19081

ENG08) " 'ecd08l
24908l 14908l

AV08L ™ 'LV08L

NG08l "~ ‘€808l
29081 ‘19081t

SHUNYD |BAIYDIE

0§

, _— uojewioju Eoo.mE:_g 104 sdeus

awnjoA | | loysdeug

e08/
m wialsAs abeliols [ealyole

mmomﬁﬁ

2c8l \

NE08 F/

ecag08!

Eo@/

\

eNjunyo| " | g yunyo

\ZQ-me \.3-%2 ¢q-89561 \E.mmﬁ

Bz Junys | | yunyo

— Ve (Aewnd) g swn|oA

4G9l \

LUa)sAs abelols elep 3oo|q JoAlas

US 8,806,105 B2

Sheet 70f 13

Aug. 12,2014

U.S. Patent

¢ b1y

Swa)sAs abelols |ealyole

Iw:_uoc._ jobeuey [BAIUDIY ‘
gée —

Alowawl

z6e— V€

sjusuodwod O/

——

G8E

}IoM)aU
N— 0Ge

—
swia)sAs bunndwod 1alyjo
I

06 —

sWwialsAs abelols elep oo[q JoAISS |_

09¢

_ illu 0] 4

s|npow
labeue SpoN

UOIJEWIOJUI JUSWIYOEB)e SWN|oA i

abelo)s

LLE —/

bLe ™
Ndo

wia)sAs buindwos jsoy

TLE

sjusuodwod O/l _

0.€—

s|npow Jabeuey wasAgS Qg

| AP elpawl
a|qepeal-laindwod

Alowaul
0E¢ —
gl_mhc_ OLIN|OA
GCE abelo}s NdO
oze — - gog~’
SB2INEP (/] JBUJO —Gl¢e co:owc:ool_
}Jomjau

PRI

7 Aejdsip _
L 1€

C

sjusuodwiod O/

wa)sAs bunndwio? Jaales

U.S. Patent Aug. 12,2014 Sheet 8 of 13 US 8,806,105 B2

(Block Data Storage System Manager Routine)/ 400

Fig. 4 <

5\ Receive request or information ./~

Select server block
data storage system(s)
to store volume, initiate
— volume creation on the

425

410 ldentify server block

data storage system(s)
for volume, update

Yes
Create volume?

selesézi tseyi’:jl.l“nni,eand No volume database
| | 4 m_forr_natlon, and
database information 0 provide indication of at

Yes

least one of the servers
Attach volume? bl

435

430

445 ,
Initiate storage of a \ "\ Foreach primary

b ot oo ot the | Yes volume on the server,
P PY < éreate snapshc'@ promote a mirror copy

indicated volume in
remote storage No on another server to
be the primary

440 l —

Replicate a new copy
of each volume that

465 Failure of server \Y €S
I \, block data storage

Create copy of volume system? was on the server on
on new server block 460 No 450 one or more other
data storage \ \Eerver storage systems
system(s), detach any Yes -
current use of existing
volume, optionally

initiate new use of new

N 455 attachment to new
volume, and update © d primary volumes
volume database

485
information \ v 458 \ v

Move volume(s) to l
new server block data |

storage system(s)? Optionally initiate

Perform other indicated Update volume N
operations as appropriate database information
L -
>4

495
499 No Y
\< END)4 Continue? ves

U.S. Patent Aug. 12,2014 Sheet 9 of 13 US 8,806,105 B2

Node Manager Routine 200

<
Y

Receive request related to |~ 909
program execution on an
associated computing node

Fig. 5

015

Obtain a copy of the
indicated program(s),
and initiate execution
On an associated
computing node

510
Execute indicated Yes

55 program(s)?
\ NoO

Obtain indication

of primary
volume, and 590
associate with Yes
: Attach volume?
representative
logical block N
device local to 'L © 535

computing node

Data access
request
for attached
volume?

Yes |dentify associated
» volume, and send data
access request to volume

030 /

940
Perform other indicated

operation as appropriate within time limit?
/ | No
969 i

99 | Initiate change to
attach mirror volume

U.S. Patent Aug. 12,2014 Sheet 10 of 13 US 8,806,105 B2

600
| Server Block Data Storage System Routine)’

Fig. 6 -

605 ~_

Recelve request

619
610 1—L

Store
Associate storage space Yes | information
with new volume? about new
- ! volume

No

63

0 620
v

Perform data Do data access Initialize
access request request for volume? storage space

for new volume

v e 635

If data modification
request is for a primary

volume, initiate Perform other |~ 685

corresponding updates indicated operation
for mirror volume(s) as appropriate

699
695

C END)« ——<Cont|nue'?
Y es

U.S. Patent Aug. 12,2014 Sheet 11 of 13 US 8,806,105 B2

PES System Manager Routine 700
————————————
705
Recelve status message or request
related to the execution of a program

Request to

register program D
| 710
m Status message b

Request to

execute program Other request D

Select one or more host computing —~__720
systems to execute the indicated program

Initiate execution of the program 723
‘ by the selected system(s)

Optionally perform 730
housekeeping tasks

Fig. 7A

795 /99

Yes No
Continue? - —VCENDjJ

U.S. Patent

Aug. 12, 2014 Sheet 12 of 13

US 8,806,105 B2

- 740
Store indication of program,
}— > and associated
administrative information

Optionally initiate distribution
of a copy of the indicated
program to one or more host
computing systems

~_ 745

Update status information

"l for host computing system

Perform other indicated

operation as appropriate

785

U.S. Patent

Aug. 12,2014

Sheet 13 0of 13

US 8,806,105 B2

(Archival Manager Routine >—/ 50

810
{

Determine if

4_‘_R

authorized

815 L
< k Authorized? >
No Yes l
825

>

Y

or a request

eceive information

Store new

Obtain multiple
volume chunks,
store each chunk on
an archival storage
system, and store
information about
the chunks
associated with the
snapshot copy

830 j

Retrieve the
shapshot copy
chunk(s), and send

them to requester

855 !

389
\

Perform other
iIndicated operation
as appropriate

!

Provide snapshot
Yes _COPY chunk(s)?

access request for\
volume chunk(s)?/ Y€s

No

Yes<snapshot copy’?

iNo

¥

Store incremental
shapshot copy?

No

Y

No

Perform data

I

W

820

830

645

Fig. 8

'/ 805

/ 835

|dentify snapshot
chunks that have
changed since prior
snapshot copy

Store copies of
changed chunks,
and store
information about
the new changed
chunks and the prior
other unchanged
chunks associated
with the snapshot

copy

v S

!

860
\

895

Perform requested
read/write data
access requests for
indicated volume
chunk(s)

Y
< Continue? g
Yes

No

END

699

US 8,806,105 B2

1

MANAGING ACCESS OF MULTIPLE
EXECUTING PROGRAMS TO NON-LOCAL
BLOCK DATA STORAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 12/188,949, filed Aug. 8, 2008 and entitled “Managing
Access of Multiple Executing Programs to Non-Local Block
Data Storage™, now U.S. Pat. No. 8,019,732.

BACKGROUND

Many companies and other organizations operate com-
puter networks that interconnect numerous computing sys-
tems to support their operations, such as with the computing,
systems being co-located (e.g., as part of a local network) or
instead located 1n multiple distinct geographical locations
(e.g., connected via one or more private or public intermedi-
ate networks). For example, data centers housing significant
numbers of co-located mterconnected computing systems
have become commonplace, such as private data centers that
are operated by and on behalf of a single organization, and
public data centers that are operated by entities as businesses.
Some public data center operators provide network access,
power, and secure installation facilities for hardware owned
by various customers, while other public data center opera-
tors provide “tull service” facilities that also include hard-
ware resources made available for use by their customers.
However, as the scale and scope of typical data centers and
computer networks has increased, the task of provisioning,
administering, and managing the associated physical com-
puting resources has become increasingly complicated.

The advent of virtualization technologies for commodity
hardware has provided some benefits with respect to manag-
ing large-scale computing resources for many customers with
diverse needs, allowing various computing resources to be
eiliciently and securely shared between multiple customers.
For example, virtualization technologies such as those pro-
vided by XEN, VMWare, or User-Mode Linux may allow a
single physical computing system to be shared among mul-
tiple users by providing each user with one or more virtual
machines hosted by the single physical computing system,
with each such virtual machine being a software simulation
acting as a distinct logical computing system that provides
users with the 1llusion that they are the sole operators and
administrators of a given hardware computing resource,
while also providing application 1solation and security among,
the various virtual machines. Furthermore, some virtualiza-
tion technologies provide virtual resources that span one or
more physical resources, such as a single virtual machine
with multiple virtual processors that actually spans multiple
distinct physical computing systems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a network diagram illustrating an example
embodiment 1n which multiple computing systems execute
programs and access reliable non-local block data storage.

FIGS. 2A-2F 1llustrate examples of providing reliable non-
local block data storage functionality to clients.

FIG. 3 1s a block diagram illustrating example computing,
systems suitable for managing the provision to and use by
clients of reliable non-local block data storage functionality.

FIG. 4 illustrates a flow diagram of an example embodi-
ment of a Block Data Storage System Manager routine.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 1llustrates a flow diagram of an example embodi-
ment of a Node Manager routine.

FIG. 6 illustrates a flow diagram of an example embodi-
ment of a Block Data Storage Server routine.

FIGS. 7A-7B illustrate a flow diagram of an example
embodiment of a Program Execution Service System Man-
ager routine.

FIG. 8 1illustrates a flow diagram of an example embodi-
ment of a Block Data Storage Archival Manager routine.

DETAILED DESCRIPTION

Techniques are described for managing access of executing,
programs to non-local block data storage. In at least some
embodiments, the techniques include providing a block data
storage service that uses multiple server storage systems to
reliably store block data that may be accessed and used over
one or more networks by programs executing on other physi-
cal computing systems. Users of the block data storage ser-
vice may each create one or more block data storage volumes
that each have a specified amount of block data storage space,
and may 1nitiate use of such a block data storage volume (also
referred to as a “volume” herein) by one or more executing
programs, with at least some such volumes having copies
stored by two or more of the multiple server storage systems
so as to enhance volume reliability and availability to the
executing programs. As one example, the multiple server
block data storage systems that store block data may 1n some
embodiments be organized into one or more pools or other
groups that each have multiple physical server storage sys-
tems co-located at a geographical location, such as 1n each of
one or more geographically distributed data centers, and the
program(s) that use a volume stored on a server block data
storage system 1n a data center may execute on one or more
other physical computing systems at that data center. Addi-
tional details related to embodiments of a block data storage
service are included below, and at least some of the described
techniques for providing a block data storage service may be
automatically performed by embodiments of a Block Data
Storage (“BDS”) System Manager module.

In addition, 1n at least some embodiments, executing pro-
grams that access and use one or more such non-local block
data storage volumes over one or more networks may each
have an associated node manager that manages the access to
those non-local volumes by the program, such as a node
manager module that 1s provided by the block data storage
service and/or that operates 1n conjunction with one or more
BDS System Manager modules. For example, a first user who
1s a customer of the block data storage service may create a
first block data storage volume, and execute one or more
program copies on one or more computing nodes that are
instructed to access and use the first volume (e.g., 1n a serial
manner, 1n a simultaneous or other overlapping manner, etc.).
When a program executing on a computing node initiates use
of a non-local volume, the program may mount or otherwise
be provided with a logical block data storage device that 1s
local to the computing node and that represents the non-local
volume, such as to allow the executing program to interact
with the local logical block data storage device in the same
manner as any other local hard drive or other physical block
data storage device that 1s attached to the computing node
(e.g., to perform read and write data access requests, to imple-
ment a file system or database or other higher-level data
structure on the volume, etc.). For example, 1n at least some
embodiments, a representative logical local block data stor-
age device may be made available to an executing program

via use of GNBD (*Global Network Block Device”) technol-

US 8,806,105 B2

3

ogy. In addition, as discussed in greater detail below, when the
executing program interacts with the representative local
logical block data storage device, the associated node man-
ager may manage those mteractions by communicating over
one or more networks with at least one of the server block data
storage systems that stores a copy of the associated non-local
volume (e.g., 1n a manner transparent to the executing pro-
gram and/or computing node) so as to perform the interac-
tions on that stored volume copy on behalf of the executing,
program. Furthermore, 1n at least some embodiments, at least
some of the described techniques for managing access of
executing programs to non-local block data storage volumes
are automatically performed by embodiments of a Node
Manager module.

In addition, 1n at least some embodiments, at least some
block data storage volumes (or portions of those volumes)
may further be stored on one or more remote archival storage
systems that are distinct from the server block data storage
systems used to store volume copies. In various embodi-
ments, the one or more remote archival storage systems may
be provided by the block data storage service (e.g., at a loca-
tion remote from a data center or other geographical location
that has a pool of co-located server block data storage sys-
tems), or mstead may be provided by a remote long-term
storage service and used by the block data storage, and 1n at
least some embodiments the archival storage system may
store data 1n a format other than block data (e.g., may store
one or more chunks or portions of a volume as distinct
objects). Such archival storage systems may be used 1n vari-
ous manners 1n various embodiments to provide various ben-
efits, as discussed 1n greater detail below. In some embodi-
ments 1n which a remote long-term storage service provides
the archival storage systems, users of the block data storage
service (e.g., customers of the block data storage service who
pay lees to use the block data storage service) who are also
users of the remote long-term storage service (€.g., customers
of the remote long-term storage service who pay fees to use
the remote long-term storage service) may have at least por-
tions of their block data storage volumes stored by the archi-
val storage systems, such as in response to mnstructions from
those customers. In other embodiments, a single organization
may provide at least some of both block data storage service
capabilities and remote long-term storage service capabilities
(e.g.,1n an ntegrated manner, such as part of a single service),
while 1n yet other embodiments the block data storage service
may be provided 1n environments that do not include the use
of archival data storage systems. Furthermore, in at least
some embodiments, the use of the archival storage systems 1s
automatically performed under control of one or more archi-
val manager modules, such as an archival manager module
provided by the block data storage service or otherwise pro-
vided to operate 1n conjunction with modules of the block
data storage service (e.g., provided by the remote long-term
storage service to interact with the block data storage ser-
vice).

In some embodiments, at least some of the described tech-
niques are performed on behalf of a program execution ser-
vice that manages execution of multiple programs on behalf
of multiple users of the program execution service. In some
embodiments, the program execution service may have
groups ol multiple co-located physical host computing sys-
tems 1n or more geographic locations, such as in one or more
geographically distributed data centers, and may execute
users’ programs on those physical host computing systems,
such as under control of a program execution service (“PES™)
system manager, as discussed 1n greater detail below. In such
embodiments, users of the program execution service (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

4

customers of the program execution service who pay fees to
use the program execution service) who are also users of the
block data storage service may execute programs that access
and use non-local block data storage volumes provided via
the block data storage service. In other embodiments, a single
organization may provide at least some of both program
execution service capabilities and block data storage service
capabilities (e.g., 1n an 1ntegrated manner, such as part of a
single service), while 1n yet other embodiments the block data
storage service may be provided in environments that do not
include a program execution service (e.g., internally to a
business or other organization to support operations of the
organization).

In addition, the host computing systems on which pro-
grams execute may have various forms 1n various embodi-
ments. Multiple such host computing systems may, for
example, be co-located 1n a physical location (e.g., a data
center), and may be managed by multiple node manager
modules that are each associated with a subset of one or more
of the host computing systems. At least some of the host
computing systems may each include suificient computing
resources (e.g., volatile memory, CPU cycles or other CPU
usage measure, network bandwidth, swap space, etc.) to
execute multiple programs simultaneously, and, 1n at least
some embodiments, some or all of the computing systems
may each have one or more physically attached local block
data storage devices (e.g., hard disks, tape dnives, etc.) that
can be used to store local copies of programs to be executed
and/or data used by such programs. Furthermore, at least
some of the host computing systems 1n some such embodi-
ments may each host multiple virtual machine computing
nodes that each may execute one or more programs on behalf
of a distinct user, with each such host computing system
having an executing hypervisor or other virtual machine
monitor that manages the virtual machines for that host com-
puting system. For host computing systems that execute mul-
tiple virtual machines, the associated node manager module
for the host computing system may in some embodiments
execute on at least one of multiple hosted virtual machines
(e.g., as part of or 1n conjunction with the virtual machine
monitor for the host computing system), while 1n other situ-
ations a node manager may execute on a physical computing
system distinct from one or more other host computing sys-
tems being managed.

The server block data storage systems on which volumes
are stored may also have various forms 1n various embodi-
ments. As previously noted, multiple such server block data
storage systems may, for example, be co-located 1n a physical
location (e.g., a data center), and may be managed by one or
more BDS System Manager modules. In at least some
embodiments, some or all of the server block data storage
systems may be physical computing systems similar to the
host computing systems that execute programs, and 1n some
such embodiments may each execute server storage system
soltware to assist in the provision and maintenance of vol-
umes on those server storage systems. For example, 1n at least
some embodiments, one or more of such server block data
storage computing systems may execute at least part of the
BDS System Manager, such as if one or more BDS System
Manager modules are provided in a distributed peer-to-peer
manner by multiple interacting server block data storage
computing systems. In other embodiments, at least some of
the server block data storage systems may be network storage
devices that may lack some I/O components and/or other
components ol physical computing systems, such as 1f at least
some of the provision and maintenance of volumes on those
server storage systems 1s performed by other remote physical

US 8,806,105 B2

S

computing systems (e.g., by a BDS System Manager module
executing on one or more other computing systems). In addi-
tion, 1n some embodiments, at least some server block data
storage systems each maintains multiple local hard disks, and
stripes at least some volumes across a portion of each of some
or all of the local hard disks. Furthermore, various types of
techniques for creating and using volumes may be used,
including 1n some embodiments to use LVM (*“Logical Vol-
ume Manager”) technology.

As previously noted, 1n at least some embodiments, some
or all block data storage volumes each have copies stored on
two or more distinct server block data storage systems, such
as to enhance reliability and availability of the volumes. By
doing so, failure of a single server block data storage system
may not cause access of executing programs to a volume to be
lost, as use of that volume by those executing programs may
be switched to another available server block data storage
system that has a copy of that volume. In such embodiments,
consistency may be maintained between the multiple copies
of a volume on the multiple server block data storage systems
in various ways. For example, 1n some embodiments, one of
the server block data storage systems 1s designated as storing,
the primary copy of the volume, and the other one or more
server block data storage systems are designated as storing
mirror copies of the volume—in such embodiments, the
server block data storage system that has the primary volume
copy (referred to as the “primary server block data storage
system” for the volume) may receive and handle data access
requests for the volume, and in some such embodiments may
turther take action to maintain the consistency of the other
mirror volume copies (e.g., by sending update messages to
the other server block data storage systems that provide the
mirror volume copies when data in the primary volume copy
1s modified, such as 1n a master-slave computing relationship
manner). Various types of volume consistency techniques
may be used, with additional details included below.

In at least some embodiments, the described techniques
include providing reliable and available access of an execut-
ing program on a computing node to a block data storage
volume by managing use of the primary and mirror copies of
the volume. For example, the node manager for the executing,
program may in some embodiments interact solely with the
primary volume copy via the primary server block data stor-
age system, such as if the primary volume copy 1s responsible
for maintaining the mirror volume copies or 1f another repli-
cation mechanism 1s used. In such embodiments, i1 the pri-
mary server block data storage system fails to respond to a
request sent by the node manager (e.g., a data access request
initiated by the executing program, a ping message or other
request 1mitiated by the node manager to periodically check
that the primary server block data storage system 1s available,
etc.) within a predefined amount of time, or 11 the node man-
ager 1s otherwise alerted that the primary volume copy 1is
unavailable (e.g., by a message from the BDS System Man-
ager), the node manager may automatically switch its inter-
actions to one of the mirror volume copies on a mirror server
block data storage system (e.g., with the executing program
being unaware of the switch, other than possibly waiting for
a slightly longer time to obtain a response to a data access
request made by the executing program 1f 1t was that data
access request that timed out and 1mitiated the switch to the
mirror volume copy). The mirror volume copy may be
selected 1n various ways, such as if 1t 1s the only one, 1f an
order 1n which to access multiple mirror volume copies was
previously indicated, by interacting with the BDS System
Manager to request an indication of which mirror volume
copy 1s promoted to act as the primary volume copy, etc. In

5

10

15

20

25

30

35

40

45

50

55

60

65

6

other embodiments, at least some volumes may have multiple
primary copies, such as if a volume 1s available for stmulta-
neous read access by multiple executing programs and the
resulting data access load 1s spread across multiple primary
copies of the volume—in such embodiments, a node manager
may select one of the multiple primary volume copies with
which to 1nteract 1n various ways (e.g., in a random manner,
based on an instruction from a BDS System Manager module,
etc.).

In addition, the BDS System Manager may take various
actions in various embodiments to maintain reliable and
available access of an executing program on a computing
node to a block data storage volume. In particular, 11 the BDS
System Manager becomes aware that a particular server block
data storage system (or a particular volume on a particular
server block data storage system) becomes unavailable, the
BDS System Manager may take various actions for some or
all volumes stored by that server block data storage system (or
for the particular unavailable volume) to maintain its avail-
ability. For example, for each stored primary volume copy on
the unavailable server block data storage system, the BDS
System Manager may promote one of the existing mirror
volume copies to be the new primary volume copy, and
optionally notily one or more node managers of the change
(e.g., the node managers for any executing programs that are
currently using the volume). Furthermore, for each stored
volume copy, the BDS System Manager may initiate creation
of at least one other new mirror copy of the volume on a
different server block data storage system, such as by repli-
cating an existing copy of the volume on another available
server block data storage system that has an existing copy
(e.g., by replicating the primary volume copy). In addition, 1n
at least some embodiments, other benefits may be achieved in
at least some situations by using at least portions of a volume
that are stored on remote archival storage systems to assist in
replicating a new mirror copy of the volume (e.g., greater data
reliability, an ability to minimize an amount of storage used
for mirror volume copies and/or ongoing processing power
used to maintain full mirror copies of volumes, etc.), as dis-
cussed 1n greater detail below.

The BDS System Manager may become aware of the
unavailability of a server block data storage system 1n various
ways, such as based on a message from a node manager that
cannot contact the server block data storage system, based on
a message from the server block data storage system (e.g., to
indicate that it has suffered an error condition, has begun a
shutdown or failure mode operation, etc.), based on an 1nabil-
ity to contact the server block data storage system (e.g., based
on periodic or constant monitoring of some or all ofthe server
block data storage systems), etc. Furthermore, unavailability
of a server block data storage system may be caused by
various occurrences 1n various embodiments, such as failure
of one or more hard disks or other storage mediums on which
the server block data storage system stores at least a portion of
one or more volumes, failure of one or more other compo-
nents of the server block data storage system (e.g., the CPU,
memory, a fan, etc.), an electrical power failure to the server
block data storage system (e.g., a power failure to a single
server block data storage system, to a rack of multiple server
block data storage systems, to an entire data center, etc.), a
network or other communication failure that prevents the
server block data storage system from communicating with a
node manager and/or the BDS System Manager, etc. In some
embodiments, failure of or problems with any component of
a server block data storage system may be considered to be an
unavailability condition for the entire server block data stor-
age system (e.g., 1n embodiments 1n which a server block data

US 8,806,105 B2

7

storage system maintains multiple local hard disks, failure of
or problems with any of the local hard disks may be consid-
ered to be an unavailability condition for the entire server
block data storage system), while 1n other embodiments a
server block data storage system will not be considered to be
unavailable as long as it 1s able to respond to data access
requests.

Furthermore, 1n addition to moving one or more volumes
from an existing server block data storage system when that
server block data storage system becomes unavailable, the
BDS System Manager may 1n some embodiments decide to
move one or more volumes from an existing server block data
storage system to a different server block data storage system
and/or decide to create a new copy of one or more volumes at
various other times and for various other reasons. Such a
movement of or creation of a new copy of a volume may be
performed 1n a manner similar to that discussed in greater
detail elsewhere (e.g., by replicating the primary copy of the
volume to create a new copy, and by optionally removing the
prior copy of the volume 1n at least some situations, such as
when the volume copy 1s being moved). Situations that may
prompt a volume move or new volume copy creation include,
for example, the following non-exclusive list: a particular
server block data storage system may become over-utilized
(e.g., based on usage of CPU, network bandwidth, I/0O access,
storage capacity, etc.), such as to trigger movement of one or
more volumes from that server block data storage system; a
particular server block data storage system may lack sufifi-
cient resources for a desired modification of an existing vol-
ume (e.g., may lack suilicient available storage space 11 the
s1ze of an existing volume 1s requested to be expanded), such
as to trigger movement ol one or more volumes from that
server block data storage system; a particular server block
data storage system may need maintenance or upgrades that
will cause it to be unavailable for a period of time, such as to
trigger temporary or permanent movement of one or more
volumes from that server block data storage system; based on
recognition that usage patterns for a particular volume or
other characteristics of a volume may be better accommo-
dated on other server block data storage systems, such as
another server block data storage system with additional
capabilities (e.g., Tor volumes that have frequent data modi-
fications, to use a primary server block data storage system
with higher-than-average disk write capabilities, and/or for
volumes that are very large 1n size, to use a primary server
block data storage system with higher-than-average storage
capacity); in response to a request from a user who created or
1s otherwise associated with a volume (e.g., 1n response to the
user purchasing premium access to a server block data storage
system having enhanced capabilities); to provide at least one
new copy of a volume 1n a different geographical location
(e.g., another data center) at which programs execute, such as
to trigger movement of and/or copying of the volume from a
server block data storage system at a first geographical loca-
tion when use of a volume by an executing program at another
geographical location 1s requested; eftc.

In addition, after a volume has been moved or a new copy
created, the BDS System Manager may 1n some embodiments
and situations update one or more node managers as appro-
priate (e.g., only node managers for executing programs cur-
rently using the volume, all node managers, etc.). In other
embodiments, various information about volumes may be
maintained 1n other manners, such as by having one or more
copies ol a volume information database that 1s network-
accessible to node managers and/or the BDS System Man-
ager. A non-exclusive list of types of information about vol-
umes that may be maintained includes the following: an

10

15

20

25

30

35

40

45

50

55

60

65

8

identifier for a volume, such as an 1dentifier that 1s unique for
the server block data storage systems that store copies of the
volume or that 1s globally unique for the block data storage
service; restricted access information for a volume, such as
passwords or encryption keys, or lists or other indications of
authorized users for the volume; information about the pri-
mary server block data storage system for the volume, such as
a network address and/or other access information; informa-
tion about one or more mirror server block data storage sys-
tems for the volume, such as information about an ordering
that indicates which mirror server block data storage system
will be promoted to be the primary system if the existing
primary server storage system becomes unavailable, a net-
work address and/or other access information, etc.; informa-
tion about any snapshot volume copies that have been created
for the volume, as described 1n greater detail below; informa-
tion about whether the volume 1s to be available to users other
than the creator of the volume, and 1t so under what circum-
stances (e.g., for read access only, for other users to make
theirr own volumes that are copies of this volume, pricing
information for other users to receive various types ol access
to the volume); eftc.

In addition to maintaining reliable and available access of
executing programs to block data storage volumes by moving
or otherwise replicating volume copies when server block
data storage systems become unavailable, the block data stor-
age service may perform other actions 1n other situations to
maintain access of executing programs to block data storage
volumes. For example, if a first executing program unexpect-
edly becomes unavailable, 1n some embodiments the block
data storage service and/or program execution service may
take actions to have a different second executing program
(e.g., a second copy of the same program that 1s executing on
a different host computing system) attach to some or all block
data storage volumes that were 1n use by the unavailable first
program, so that the second program can quickly take over at
least some operations of the unavailable first program. The
second program may in some situations be a new program
whose execution 1s mnitiated by the unavailability of the exist-
ing first program, while 1n other situations the second pro-
gram may already be executing (e.g., 1if multiple program
copies are concurrently executed to share an overall load of
work, such as multiple Web server programs that receive
different incoming client requests as mediated by a load bal-
ancer, with one of the multiple program copies being selected
to be the second program; if the second program 1s a standby
copy ol the program that 1s executing to allow a “hot” swap
from the existing first program 1n the event of unavailability,
such as without the standby program copy being actively used
until the unavailability of the existing first program occurs;
etc.). In addition, 1n some embodiments, a second program to
which an existing volume’s attachment and ongoing use 1s
switched may be on another host physical computing system
in the same geographical location (e.g., the same data center)
as the first program, while in other embodiments the second
program may be at a different geographical location (e.g., a
different data center, such as 1n conjunction with a copy of the
volume that was previously or concurrently moved to that
other data center and will be used by that second program).
Furthermore, in some embodiments, other related actions
may be taken to further facilitate the switch to the second
program, such as by redirecting some communications
intended for the unavailable first program to the second pro-
gram.

In addition, 1n at least some embodiments, other techniques
may be used to provide reliable and available access to block
data storage volumes, as well as other benefits, such as to

US 8,806,105 B2

9

allow a copy of an indicated volume to be saved to one or
more remote archival storage systems (e.g., at a second geo-
graphical location that 1s remote from a {first geographical
location at which the server block data storage systems store
the active primary and mirror copies of the volume and/or that
1s remote from the host physical computing systems that
execute the programs that use the volume), such as for long-
term backups and/or other purposes. For example, 1n some
embodiments, the archival storage systems may be provided
by a remote network-accessible storage service. In addition,
the copies of a volume that are saved to the archival storage
systems may 1n at least some situations be snapshot copies of
the volume at a particular point 1in time, but which are not
automatically updated as ongoing use of the volume causes 1ts
stored block data contents to change, and/or which are not
available to be attached to and used by executing programs 1n
the same manner as volumes. Thus, as one example, a long-
term snapshot copy of a volume may be used, for example, as
a backup copy of a volume, and may further in some embodi-
ments serve as the basis of one or more new volumes that are
created from the snapshot copy (e.g., such that the new vol-
umes begin with the same block data storage contents as the
snapshot copy).

In addition, the snapshot copies of a volume at the archival
storage systems may be stored 1n various manners, such as to
represent smaller chunks of a volume (e.g., if the archival
storage systems store data as smaller objects rather than a
large linear sequential block of data). For example, a volume
may be represented as a series of multiple smaller chunks
(with a volume having a size of, for example, one gigabyte or
one terabyte, and with a chunk having a size that 1s, for
example, a few megabytes), and information about some or
all chunks (e.g., each chunk that 1s modified) may be stored
separately on the archival storage systems, such as by treating
cach chunk as a distinct stored object. Furthermore, 1n at least
some embodiments, a second and later snapshot copy of a
particular volume may be created in such a manner as to store
only incremental changes from a prior snapshot copy of the
volume, such as by including stored copies of new storage
chunks that have been created or modified since the prior
snapshot copy, but sharing stored copies of some previously
existing chunks with the prior snapshot copy 1if those chunks
have not changed. In such embodiments, 1f a prior snapshot
copy 1s later deleted, the previously existing chunks stored by
that prior snapshot copy that are shared by any later snapshot
copies may be retained for use by those later snapshot copies,
while non-shared previously existing chunks stored by that
prior snapshot copy may be deleted.

In addition, 1n at least some embodiments, when creating a
snapshot copy of a volume at a point 1n time, access to the
primary volume copy by executing programs may be allowed
to continue, including allowing modifications to the data
stored 1n the primary volume copy, but without any such
ongoing data modifications being reflected 1n the snapshot
copy, such as 11 the snapshot copy 1s based on volume chunks
stored on the archival storage systems that are not updated
once the snapshot copy creation begins until the snapshot
copy creation 1s completed. For example, in at least some
embodiments, copy-on-write techmques are used when cre-
ation of a snapshot copy of a volume 1s mitiated and a chunk
of the volume 1s subsequently modified, such as to mnitially
maintain stored copies of both the unmodified chunk and the
modified chunk on the primary server block data storage
system that stores the primary volume copy (and optionally as
well on the mirror server block data storage systems that store
one or more of the mirror copies of the volume). When con-
firmation 1s receirved that the archival storage systems have

10

15

20

25

30

35

40

45

50

55

60

65

10

successiully stored the snapshot copy of the volume (includ-
ing a copy of the unmodified chunk), the unmodified chunk
copy on the primary server block data storage system (and
optionally on the mirror server block data storage systems)
may then be deleted.

Moreover, such volume chunks or other volume data stored
on the archival storage systems may be used 1n other manners
in at least some embodiments, such as to use the archival
storage systems as a backing store for the primary and/or
mirror copies of some or all volumes. For example, volume
data stored on the archival storage systems may be used to
assist 1n maintaining consistency between multiple copies of
a volume on multiple server block data storage systems 1n at
least some situations. As one example, one or more mirror
copies of a volume may be created or updated based at least in
part on volume chunks stored on the archival storage systems,
such as to minimize or eliminate a need to access the primary
volume copy to obtain at least some of the volume chunks. For
example, 1f the primary volume copy 1s updated more quickly
or more reliably than modified chunks on the archival storage
systems, a new mirror volume copy may be created by using
at least some volume chunks stored on the archival storage
systems that are known to be accurate (e.g., from a recent
snapshot volume copy), and by accessing the primary volume
copy only to obtain portions of the volume that correspond to
chunks that may have been modified subsequent to creation of
the snapshot volume copy. Similarly, if the modified chunks
on the archival storage systems reliably reflect a current state
of a primary volume copy, a mirror volume copy may be
updated using those modified chunks rather than via interac-
tions by or with the primary volume copy.

In addition, 1n some embodiments, the amount of data that
1s stored 1n a mirror volume copy (and the resulting size of the
mirror volume copy) may be much less than that of the pri-
mary copy of the volume, such as 1f volume information on
the archival storage systems 1s used in place of at least some
data that would otherwise be stored 1n such a minimal mirror
volume copy. As one example, once a snapshot copy of a
volume 1s created on one or more archival storage systems, a
minimal mirror copy of a volume need not i such embodi-
ments store any of the volume data that 1s present in the
snapshot volume copy. As modifications are made to the
primary volume copy after the snapshot copy creation, some
or all of those data modifications may also be made to the
minimal mirror volume copy (e.g., all of the data modifica-
tions, only the data modifications that are not reflected in
modified volume chunks stored on the archival storage sys-
tems, etc.)—then, 11 access to the mimmal mirror volume
copy 1s later needed, such as if the minimal mirror volume
copy 1s promoted to be the primary volume copy, the other
data that 1s missing from the minimal mirror volume copy
(e.g., the non-modified portions of the volume) may be
restored by retrieving it from the archival storage systems
(e.g., Irom the prior snapshot volume copy). In this manner,
volume reliability may be enhanced, while also minimizing
the amount of storage space used on the server block data
storage systems for the mirror volume copies.

In yet other embodiments, the definitive or master copy of
a volume may be maintained on the archival storage systems,
and the primary and mirror copies of the volume may reflect
a cache or other subset of the volume (e.g., a subset that has
been recently accessed and/or that 1s expected to be accessed
soon)—in such embodiments, the non-local block data stor-
age volume of the block data storage service may be used to
provide amore proximate source of volume data for access by
executing programs than the remote archival storage systems.
In addition, 1n at least some such embodiments, a volume may

US 8,806,105 B2

11

be described to users as being of a particular size that corre-
sponds to the master copy maintained on the archival storage
systems, but with the primary and mirror copies being a
smaller size. Furthermore, 1n at least some such embodi-
ments, lazy updating techniques may be used to immediately
update a copy of data i1n a first data store (e.g., a primary
volume copy on a server block data storage system) but to
update the copy of that same data 1n a distinct second data
store (e.g., the archival storage systems) later, such as 1n a
manner to maintain strict data consistency at the second data
store by ensuring that write operations or other data modifi-
cations to a portion of a volume are updated at the second data
store before performing any subsequent read operation or
other access of that portion of the volume from the second
data store (e.g., by using write-back cache updating tech-
niques). Such lazy updating techniques may be used, for
example, when updating modified chunks of a volume on
archival storage systems, or when updating a mirror volume
copy from modified chunks of the volume that are stored on
archival storage systems. In other embodiments, other tech-
niques may be used when updating modified chunks of a
volume on archival storage systems, such as to use write-
through cache techniques to immediately update the copy of
data 1n the second data store (e.g., on the archival storage
systems) when the copy of the data in the first data store 1s
modified.

Such snapshot volume copies stored on archival storage
systems provide various other benefits as well. For example,
if all primary and mirror copies of a volume are stored on
multiple server block data storage systems at a single geo-
graphical location (e.g., a data center), and the computing and
storage systems at that geographical location become
unavailable (e.g., electricity 1s lost to an entire data center),
the existence of a recent snapshot copy of the volume at a
different remote storage location may ensure that a recent
version of the volume 1s available when the computing and
storage systems at the geographical location later become
available again (e.g., when electricity is restored), such as if
data from one or more server storage systems at the geo-
graphical location 1s lost. Furthermore, in such a situation,
one or more new copies of the volume may be created at one
or more new geographical locations based on a recent long-
term snapshot copy of the volume from the remote archival
storage systems, such as to allow one or more executing
program copies outside an unavailable geographical location
to access and use those new volume copies. Additional details
related to archival storage systems and their use are included
below.

As previously noted, 1n at least some embodiments, some
or all block data storage volumes each have copies stored on
two or more distinct server block data storage systems at a
single geographical location, such as within the same data
center 1n which executing programs will access the volume—
by locating all of the volume copies and executing programs
at the same data center or other geographical location, various
desired data access characteristics may be maintained (e.g.,
based on one or more 1nternal networks at that data center or
other geographical location), such as latency and throughput.
For example, 1n at least some embodiments, the described
techniques may provide access to non-local block data stor-
age that has access characteristics that are similar to or better
than access characteristics of local physical block data stor-
age devices, but with much greater reliability that 1s similar to
or exceeds reliability characteristics of RAID (“Redundant
Array of Independent/Inexpensive Disks™) systems and/or
dedicated SANs (“Storage Area Networks™) and at much

lower cost. In other embodiments, the primary and mirror

10

15

20

25

30

35

40

45

50

55

60

65

12

copies for at least some volumes may instead be stored 1n
other manners, such as at different geographical locations
(e.g., different data centers), such as to further maintain avail-
ability of a volume even if an entire data center becomes
unavailable. In embodiments 1n which volume copies may be
stored at different geographical locations, a user may 1n some
situations request that a particular program be executed proxi-
mate to a particular volume (e.g., at the same data center at
which the primary volume copy 1s located), or that a particular
volume be located proximate to a particular executing pro-
gram, such as to provide relatively high network bandwidth
and low latency for communications between the executing
program and primary volume copy.

Furthermore, access to some or all of the described tech-
niques may 1n some embodiments be provided 1n a fee-based
or other paid manner to at least some users. For example,
users may pay one-time fees, periodic (e.g., monthly) fees
and/or one or more types of usage-based fees to use the block
data storage service to store and access volumes, to use the
program execution service to execute programs, and/or to use
archival storage systems (e.g., provided by a remote long-
term storage service) to store long-term backups or other
snapshot copies of volumes. Fees may be based on one or
more factors and activities, such as indicated 1n the following
non-exclusive list: based on the size of a volume, such as to
create the volume (e.g., as a one-time fee), to have ongoing
storage and/or use of the volume (e.g., a monthly fee), etc.;
based on non-size characteristics of a volume, such as a
number of mirror copies, characteristics of server block data
storage systems (e.g., data access rates, storage sizes, etc.) on
which the primary and/or mirror volume copies are stored,
and/or a manner 1n which the volume 1s created (e.g., a new
volume that 1s empty, a new volume that 1s a copy of an
existing volume, a new volume that 1s a copy of a snapshot
volume copy, etc.); based on the size of a snapshot volume
copy, such as to create the snapshot volume copy (e.g., as a
one-time fee) and/or have ongoing storage of the volume
(e.g., amonthly fee); based on the non-size characteristics of
one or more snapshot volume copies, such as a number of
snapshots of a single volume, whether a snapshot copy 1s
incremental with respect to one or more prior snapshot cop-
1es, etc.; based on usage of a volume, such as the amount of
data transierred to and/or from a volume (e.g., to reflect an
amount of network bandwidth used), anumber of data access
requests sent to a volume, a number of executing programs
that attach to and use a volume (whether sequentially or
concurrently), etc.; based on the amount of data transierred to
and/or from a snapshot, such as 1n a manner similar to that for
volumes; etc. In addition, the provided access may have vari-
ous forms 1n various embodiments, such as a one-time pur-
chase fee, an ongoing rental fee, and/or based on another
ongoing subscription basis. Furthermore, in at least some
embodiments and situations, a first group of one or more users
may provide data to other users on a fee-based basis, such as
to charge the other users for recerving access to current vol-
umes and/or historical snapshot volume copies created by one
or more users of the first group (e.g., by allowing them to
make new volumes that are copies of volumes and/or of
snapshot volume copies; by allowing them to use one or more
created volumes; etc.), whether as a one-time purchase fee, an
ongoing rental fee, or on another ongoing subscription basis.

In some embodiments, one or more APIs (“application
programming interfaces™) may be provided by the block data
storage service, program execution service and/or remote
long-term storage service, such as to allow other programs to
programmatically initiate various types of operations to be
performed (e.g., as directed by users of the other programs).

US 8,806,105 B2

13

Such operations may allow some or all of the previously
described types of functionality to be invoked, and include,
but are not limited to, the following types of operations: to
create, delete, attach, detach, or describe volumes; to create,
delete, copy or describe snapshots; to specily access rights or
other metadata for volumes and/or snapshots; to manage
execution ol programs; to provide payment to obtain other
types of functionality; to obtain reports and other information
about use of capabilities of one or more of the services and/or
about fees paid or owed for such use; etc. The operations
provided by the API may be invoked by, for example, execut-
ing programs on host computing systems of the program
execution service and/or by computing systems of customers
or other users that are external to the one or more geographi-
cal locations used by the block data storage service and/or
program execution service.

For illustrative purposes, some embodiments are described
below 1n which specific types of block data storage 1s pro-
vided in specific ways to specific types of programs executing,
on specific types of computing systems. These examples are
provided for 1llustrative purposes and are simplified for the
sake of brevity, and the inventive techniques can be used in a
wide variety of other situations, some of which are discussed
below, and the techniques are not limited to use with virtual
machines, data centers or other specific types of data storage
systems, computing systems or computing system arrange-
ments. In addition, while some embodiments are discussed as
providing and using reliable non-local block data storage, in
other embodiments types of data storage other than block data
storage may similarly be provided.

FIG. 1 1s a network diagram illustrating an example
embodiment 1n which multiple computing systems execute
programs and access reliable non-local block data storage,
such as under the control of a block data storage service
and/or program execution service. In particular, in this
example, a program execution service manages the execution
of programs on various host computing systems located
within a data center 100, and a block data storage service uses
multiple other server block data storage systems at the data
center to provide reliable non-local block data storage to
those executing programs. Multiple remote archival storage
systems external to the data center may also be used to store
additional copies of at least some portions of at least some
block data storage volumes.

In this example, data center 100 includes a number of racks
105, and each rack includes a number of host computing
systems, as well as an optional rack support computing sys-
tem 122 in this example embodiment. The host computing,
systems 110a-c on the 1llustrated rack 105 each host one or
more virtual machines 120 i this example, as well as a
distinct Node Manager module 1135 associated with the vir-
tual machines on that host computing system to manage those
virtual machines. One or more other host computing systems
135 also each host one or more virtual machines 120 in this
example. Each virtual machine 120 may act as an indepen-
dent computing node for executing one or more program
copies (not shown) for a user (not shown), such as a customer
of the program execution service. In addition, this example
data center 100 further includes additional host computing
systems 130a-b that do not include distinct virtual machines,
but may nonetheless each act as a computing node for one or
more programs (not shown) being executed for a user. In this
example, a Node Manager module 1235 executing on a com-
puting system (not shown) distinct from the host computing,
systems 130a-6 and 135 1s associated with those host com-
puting systems to manage the computing nodes provided by
those host computing systems, such as 1n a manner similar to

5

10

15

20

25

30

35

40

45

50

55

60

65

14

the Node Manager modules 1135 for host computing systems
110. The rack support computing system 122 may provide
various utility services for other computing systems local to
its rack 105 (e.g., long-term program storage, metering and
other momitoring of program execution and/or of non-local
block data storage access performed by other computing sys-
tems local to the rack, etc.), as well as possibly to other
computing systems located 1n the data center. Each comput-
ing system 110, 130 and 135 may also have one or more local
attached storage devices (not shown), such as to store local
copies of programs and/or data created by or otherwise used
by the executing programs, as well as various other compo-
nents.

In this example, an optional computing system 140 1s also
illustrated that executes a PES System Manager module for
the program execution service to assist in managing the
execution of programs on the computing nodes provided by
the host computing systems located within the data center (or
optionally on computing systems located in one or more other
data centers 160, or other remote computing systems 180
external to the data center). As discussed 1n greater detail
clsewhere, a PES System Manager module may provide a
variety of services 1n addition to managing execution of pro-
grams, including the management of user accounts (e.g., cre-
ation, deletion, billing, etc.); the registration, storage, and
distribution of programs to be executed; the collection and
processing of performance and auditing data related to the
execution of programs; the obtaining of payment from cus-
tomers or other users for the execution of programs; etc. In
some embodiments, the PES System Manager module may
coordinate with the Node Manager modules 115 and 125 to
manage program execution on computing nodes associated
with the Node Manager modules, while 1n other embodiments
the Node Manager modules 115 and 125 may not assist in
managing such execution of programs.

This example data center 100 also includes a computing,
system 1735 that executes a Block Data Storage (“BDS™)
System Manager module for the block data storage service to
assist 1n managing the availability of non-local block data
storage to programs executing on computing nodes provided
by the host computing systems located within the data center
(or optionally on computing systems located in one or more
other data centers 160, or other remote computing systems
180 external to the data center). In particular, 1n this example,
the data center 100 1ncludes a pool of multiple server block
data storage systems 165, which each have local block storage
for use 1n storing one or more volume copies 1535. Access to
the volume copies 155 1s provided over the internal
network(s) 185 to programs executing on computing nodes
120 and 130. As discussed in greater detail elsewhere, a BDS
System Manager module may provide a variety of services
related to providing non-local block data storage functional-
ity, mncluding the management of user accounts (e.g., cre-
ation, deletion, billing, etc.); the creation, use and deletion of
block data storage volumes and snapshot copies of those
volumes; the collection and processing of performance and
auditing data related to the use of block data storage volumes
and snapshot copies of those volumes; the obtaining of pay-
ment from customers or other users for the use of block data
storage volumes and snapshot copies of those volumes; etc. In
some embodiments, the BDS System Manager module may
coordinate with the Node Manager modules 115 and 125 to
manage use of volumes by programs executing on associated
computing nodes, while in other embodiments the Node
Manager modules 115 and 1235 may not be used to manage
such volume use. In addition, 1n other embodiments, one or
more BDS System Manager modules may be structured in

US 8,806,105 B2

15

other manners, such as to have multiple instances of the BDS
System Manager executing in a single data center (e.g., to
share the management of non-local block data storage by
programs executing on the computing nodes provided by the
host computing systems located within the data center), and/
or such as to have at least some of the functionality of a BDS
System Manager module being provided in a distributed man-
ner by software executing on some or all of the server block
data storage systems 165 (e.g., 1n a peer-to-peer mannetr,
without any separate centralized BDS System Manager mod-
ule on a computing system 175).

In this example, the various host computing systems 110,
130 and 135, server block data storage systems 165, and
computing systems 1235, 140 and 175 are interconnected via
one or more internal networks 185 of the data center, which
may include various networking devices (e.g., routers,
switches, gateways, etc.) that are not shown. In addition, the
internal networks 185 are connected to an external network
170 (e.g., the Internet or other public network) in this
example, and the data center 100 may further include one or
more optional devices (not shown) at the interconnect
between the data center 100 and an external network 170
(e.g., network proxies, load balancers, network address trans-
lation devices, etc.). In this example, the data center 100 1s
connected via the external network 170 to one or more other
data centers 160 that each may include some or all of the
computing systems and storage systems illustrated with
respect to data center 100, as well as other remote computing
systems 180 external to the data center. The other computing
systems 180 may be operated by various parties for various
purposes, such as by the operator of the data center 100 or
third parties (e.g., customers of the program execution service
and/or of the block data storage service). In addition, one or
more of the other computing systems 180 may be archival
storage systems (e.g., as part of a remote network-accessible
storage service) with which the block data storage service
may 1interact, such as under control of one or more archival
manager modules (not shown) that execute on the one or more
other computing systems 180 or instead on one or more
computing systems of the data center 100, as described 1n
greater detail elsewhere. Furthermore, while not illustrated
here, 1n at least some embodiments, at least some of the server
block data storage systems 165 may further be interconnected
with one or more other networks or other connection medi-
ums, such as a high-bandwidth connection over which the
server storage systems 165 may share volume data (e.g., for
purposes ol replicating copies of volumes and/or maintaining,
consistency between primary and mirror copies of volumes),
with such a high-bandwidth connection not being available to
the various host computing systems 110, 130 and 1335 1n at
least some such embodiments.

It will be appreciated that the example of FIG. 1 has been
simplified for the purposes of explanation, and that the num-
ber and organization of host computing systems, server block
data storage systems and other devices may be much larger
than what 1s depicted 1n FIG. 1. For example, as one 1llustra-
tive embodiment, there may be approximately 4000 comput-
ing systems per data center, with at least some of those com-
puting systems being host computing systems that may each
host 15 virtual machines, and/or with some of those comput-
ing systems being server block data storage systems that may
cach store several volume copies. If each hosted virtual
machine executes one program, then such a data center may
execute as many as sixty thousand program copies at one
time. Furthermore, hundreds or thousands (or more) volumes
may be stored on the server block data storage systems,
depending on the number of server storage systems, size of

10

15

20

25

30

35

40

45

50

55

60

65

16

the volumes, and number of mirror copies per volume. It will
be appreciated that in other embodiments, other numbers of
computing systems, programs and volumes may be used.

FIGS. 2A-2F illustrate examples of providing reliable non-
local block data storage functionality to clients. In particular,
FIGS. 2A and 2B 1illustrate examples of server block data
storage computing systems that may be used to provide reli-
able non-local block data storage functionality to clients (e.g.,
executing programs), such as on behalf of a block data storage
service, and FIGS. 2C-2F illustrate examples of using archi-
val storage systems to store at least some portions of some
block data storage volumes. In this example, FIG. 2A illus-
trates several server block data storage systems 1635 that each
store one or more volume copies 155, such as with each
volume having a primary copy and at least one mirror copy. In
other embodiments, other arrangements may be used, as dis-
cussed 1n greater detail elsewhere, such as by having multiple
primary volume copies (e.g., with all of the primary volume
copies being available for simultaneous read access by one or
more programs) and/or by having multiple mirror volume
copies. The example server block data storage systems 165
and volume copies 155 may, for example, correspond to a
subset of the server block data storage systems 165 and vol-
ume copies 1535 of FIG. 1.

In this example, the server storage system 165a stores at
least three volume copies, including the primary copy 155A-a
for volume A, a mirror copy 155B-a for volume B, and a
mirror copy 155C-a for volume C. One or more other volume
copies that are not 1llustrated in this example may further be
stored by the server storage system 1634, as well as by the
other server storage systems 165. Another example server
block data storage system 1655 stores the primary copy
155B-b for volume B 1n this example, as well as a mirror copy
155D-b for volume D. In addition, example server block data
storage system 1657 includes a mirror copy 155A-n of vol-
ume A and a primary copy 135D-n of volume D. Thus, 11 an
executing program (not shown) 1s attached to and using vol-
ume A, the node manager for that executing program will be
interacting with server block data storage system 163a to
access the primary copy 155A-a for volume A, such as via
server storage system software (not shown) that executes on
the server block data storage system 165q. Similarly, for one
or more executing programs (not shown) attached to and
using volumes B and D, the node manager(s) for the execut-
ing program(s) will interact with server block data storage
systems 16355 and 165, respectively, to access the primary
copies 155B-b for volume B and 155D-n for volume D,
respectively. In addition, other server block data storage sys-
tems may further be present (e.g., server block data storage
systems 1635¢-165m and/or 1650 and beyond), and may store
the primary volume copy for volume C and/or other primary
and mirror volume copies, but are not shown 1n this example.
Thus, 1n this example, each server block data storage system
may store more than one volume copy, and may store a
combination of primary and mirror volume copies, although
in other embodiments volumes may be stored 1n other man-
ners.

FIG. 2B illustrates server block data storage systems 165
similar to those of FIG. 2A, but at a later point 1n time after
server storage system 16355 of FIG. 2 A has failed or otherwise
become unavailable. In response to the unavailability of
server storage system 1655, and 1ts stored primary copy of
volume B and mirror copy of volume D, the stored volume
copies of the server storage systems 165 ol FI1G. 2B have been
modified to maintain availability of volumes B and D. In
particular, due to the unavailability of the primary copy
155B-b of volume B, the prior mirror copy 1535B-a of volume

US 8,806,105 B2

17

B on server storage system 165a has been promoted to be the
new primary copy lfor volume B. Thus, 11 one or more pro-
grams were previously attached to or otherwise interacting
with the prior primary copy 135B-b of volume B when 1t
became unavailable, those programs may have been auto-
matically transitioned (e.g., by node managers associated
with those programs) to continue ongoing interactions with
server block data storage system 165a to access the new
primary copy 155B-a for volume B. In addition, a new mirror
copy 155B-c for volume B has been created on server storage
system 163c.

While the mirror copy 155A-n of volume A of server stor-
age system 1657 of FIG. 2A 1s not illustrated 1n FIG. 2B for
the sake of brevity, 1t continues to be available on server
storage system 1657 along with the primary copy 155D-n of
volume D, and thus any programs that were previously
attached to or otherwise interacting with the primary copy
155D-n of volume D when server storage system 1655b
became unavailable will continue to interact with that same
primary volume D copy 155D-n on server storage system on
server storage system 1657 without modification. However,
due to the unavailability of the mirror copy 155D-b of volume
D on unavailable server storage system 1655, at least one
additional mirror copy of volume D has been created 1n FIG.
2B, such as volume D mirror copy 1535D-0 of server storage
system 1650. In addition, FIG. 2B illustrates that at least some
volumes may have multiple mirror copies, such as volume D
that also includes a previously existing (but not shown 1n FIG.
2A) volume D mirror copy 155D-c on server storage system
165c.

FIGS. 2C-2F illustrate examples of using archival storage
systems to store at least some portions of some block data
storage volumes. In this example, FIG. 2C illustrates multiple
server block data storage systems 165 that each store one or
more volume copies 155, such as to correspond to the
example server block data storage systems 163 1llustrated 1n
FIG. 2A at a time before server block data storage system
1656 becomes unavailable. FIG. 2C further illustrates mul-
tiple archival storage systems 180, which may, for example,
correspond to a subset of the computing systems 180 of FIG.
1. In particular, 1n this example, FIG. 2C illustrates server
block data storage systems 165a and 1656 of FIG. 2A,
although 1n this example only the primary and mirror copies
of volume B are 1llustrated for those server block data storage
systems. As discussed with respect to FIG. 2A, the server
storage system 1655 stores the primary copy 135B-b of vol-
ume B, and server storage system 165a stores the mirror copy
155B-a of volume B.

In the example of FIG. 2C, a user associated with volume
B has requested that a new 1nitial snapshot copy of volume B
be stored on remote archival storage systems, such as for
long-term backup. Accordingly, volume B has been separated
into multiple chunk portions that will each be stored sepa-
rately by the archival storage systems, such as to correspond
to a typical or maximum storage size for the archival storage
systems, or mstead 1n another manner as determined by the
block data storage service. In this example, the primary copy
155B-b of volume B has been separated into N chunks 155B-
b1 through 155B-bN, and the mirror copy 155B-a of volume
B similarly stores the same data using chunks 155B-al
through 155B-aN. Each of the N chunks of volume B 1s stored
as a separate data object on one of two example archival
storage systems 180a and 1805, and thus those multiple cor-
responding stored data objects 1n aggregate form the nitial
snapshot volume copy for volume B. In particular, chunk 1
155B-b1 of the primary volume B copy 1s stored as data object
180B1 on archival storage system 180a, chunk 2 155B-b2 1s

10

15

20

25

30

35

40

45

50

55

60

65

18

stored as data object 180B2 on archival storage system 1805,
chunk 3 155B-b3 1s stored as data object 180B3 on archival

storage system 180a, and chunk N 155B-bN 1is stored as data
object 180BN on archival storage system 180q. In this
example, the separation of volume B into multiple chunks 1s
performed by the block data storage service, such that indi-
vidual chunks of volume B may be individually transtferred to
the archival storage systems, although 1n other embodiments
the entire volume B may instead be sent to the archival storage
systems, which may then separate the volume into multiple
chunks or otherwise process the volume data 11 so desired.
In addition, 1n this example, the archival storage system
1805 1s an archival storage computing system that executes an
Archival Manager module 190 to manage operations of the
archival storage systems, such as to manage the storage and
retrieval of data objects, to track which stored data objects
correspond to which volumes, to separate transferred volume
data into multiple data objects, to meter and otherwise track
use of the archival storage systems, etc. The Archival Man-
ager module 190 may, for example, maintain a variety of
information about the various data objects that correspond to
a particular volume, such as for each snapshot copy of the
volume, as discussed 1n greater detail with respect to FIG. 2F,
while 1 other embodiments such snapshot volume copy
information may instead be maintained i other manners
(e.g., by the server block data storage systems or other mod-
ules of the block data storage service). In other embodiments,
only a single archival storage system may be used, or instead
the data objects corresponding to chunks of volume B may be
stored across many more archival storage systems (not
shown). In addition, 1n other embodiments, each archival
storage system may execute at least part of an archival man-
ager module, such as for each archival storage system to have
a distinct archival manager module, or for all of the archival
storage systems to provide the functionality of the archival
manager module in a distributed peer-to-peer manner. In
other embodiments, one or more archival manager modules
may 1nstead execute on one or more computing systems that
are local to the other block data storage service modules (e.g.,
on the same computing system or a proximate computing
system to one that executes a BDS System Manager module),
or the operations of the archival storage systems may instead
be managed directly by one or more other modules of the
block data storage service without using an archival manager
module (e.g., by a BDS System Manager module).
Furthermore, 1n at least some embodiments, the archival
storage systems may perform various operations to enhance
reliability of stored data objects, such as to replicate some or
all data objects on multiple archival storage systems. Thus,
for example, the other data objects 1825 of archival storage
system 1805 may include mirror copies of one or more of the
data objects 180B1, 180B3, and 180BN of archival storage
system 180a, and the other data objects 182a of archival
storage system 180a may similarly store a mirror copy ot data
object 180B2 of archival storage system 1805. Furthermore,
as discussed in greater detail elsewhere, 1n some embodi-
ments at least some chunks of volume B may already be
stored on the archival storage systems before the request to
create the 1imitial snapshot copy of volume B 1s received, such
as 11 the data objects stored on the archival storage systems to
represent the volume B chunks are used as a backing store or
other remote long-term backup for volume B. If so, the snap-
shot copy on the archival storage systems may instead be
created without transferring any additional volume data at
that time, such as if the data objects on the archival storage
systems represent a current state of the volume B chunks,
while 1n other embodiments additional steps may be taken to

US 8,806,105 B2

19

ensure that the already stored data objects are up to date with
respect to the volume B chunks.

FIG. 2D continues the example of FIG. 2C, and retlects
modifications to volume B that are performed after the 1nitial
snapshot copy 1s stored with respect to FIG. 2C. In particular,
in this example, after the mnitial snapshot volume copy 1is
created, volume B 1s modified, such as by one or more pro-
grams (not shown) that are attached to the volume. In this
example, data 1s modified 1n at least two portions of volume B
that correspond to chunk 3 155B-b3 and chunk N 155B-bN of
the primary volume B copy, with the modified chunk data
being illustrated as data 3a and Na, respectively. In this
example, after the primary volume B copy 155B-b 1s modi-
fied, the server storage system 1655 1nitiates corresponding
updates of the mirror volume B copy 155B-a on server storage
system 1634, such that chunk 3 155B-a3 of the mirror copy 1s
modified to include the modified 3a data, and chunk N 155B-
aN of the mirror copy 1s modified to include the modified Na
data. Thus, the mirror volume B copy 1s maintained 1n the
same state as that of the primary volume B copy in this
example.

In addition, 1n some embodiments, data on the archival
storage systems may be further modified to reflect the
changes to volume B, even though those new volume B data
modifications are not currently part of any snapshot volume
copy for volume B. In particular, since the prior version of the
chunk 3 and chunk N data 1s part of the initial snapshot
volume copy stored on the archival storage systems, the cor-
responding data objects 180B3 and 180BN are not modified
to retlect the changes to the volume B data that occurs sub-
sequent to the mitial snapshot volume copy creation. Instead,
if copies are optionally made of the modified volume B data,
they are instead stored in this example as additional data
objects, such as optional data object 180B3a to correspond to
the modified 3a data of chunk 3 155B-b3, and such as
optional data object 180BNa to correspond to the modified
Na data of chunk N 155B-bN. In this manner, the data for the
initial snapshot volume copy 1s maintained even as changes
are made to the primary and mirror copies of volume B. If the
optional data objects 180B3a and 180BNa are created, that
creation may be initiated in various ways, such as by the
server block data storage system 1655 1n a similar manner to
the updates that are initiated for the mirror volume B copy
155B-a.

FI1G. 2F illustrates an alternative embodiment with respect
to the embodiment described previously with respect to FIG.
2D. In particular, 1n the example of FIG. 2E, volume B 1s
again modified after the mitial snapshot copy of the volume 1s
stored on the archival storage systems 1n a manner similar to
that discussed with respect to FIG. 2D, and accordingly the
primary copy 155B-b of volume B on server storage system
16556 1s updated so that chunk 3 155B-b3 and chunk N 1535B-
bN are updated to include the modified data 3¢ and Na,
respectively. However, in this embodiment, the mirror copy
155B-a of volume B on server storage system 163a 1s not
maintained as a full copy of volume B. Instead, the snapshot
volume copy of volume B on the archival storage systems 1s
used in conjunction with the mirror copy 155B-a to maintain
a copy of volume B. Thus, 1n this example, as modifications
are made to the primary copy 155B-b of volume B after the
creation of the 1nitial snapshot volume copy, those modifica-
tions are also made for the mirror copy 155B-a on server
storage system 1635a, such that the mirror copy stores the
modified 3a data for chunk 3 155B-a3 and the modified Na
data for chunk N 155B-aN. However, the mirror copy of
volume B does not imitially store copies of the other chunks of
volume B that have not been modified since the nitial snap-

10

15

20

25

30

35

40

45

50

55

60

65

20

shot volume copy was created, since the snapshot volume
copy of volume B on the archival storage systems includes
copies of that data. Accordingly, 1f server storage system 1655
later becomes unavailable, such as previously discussed with
respect to FI1G. 2B, the mirror copy 155B-a of volume B on
server storage system 165aq may be promoted to be the new
primary copy of volume B. In order to accomplish this pro-
motion 1n this example embodiment, the remaining portions
of the mirror copy 155B-a of volume B are restored using the
initial snapshot volume copy of volume B on the archival
storage systems, such as to use the stored data object 180B1

to restore chunk 155B-al, to use the stored data object 18082
to restore the chunk 155B-a2, etc. Furthermore, in this
example, the data objects 180B3a and 180BNa may similarly
be optionally stored on the archival storage systems to repre-
sent the modified 3a and Na data. If so, in some embodiments,
the modified 3a and Na data will also not be 1nitially stored on

the server block data storage system 165a for the mirror copy
155B-a, and 1instead the mirror copy chunks 155B-a3 and
155B-aN may similarly be restored from the archival storage
system data objects 180B3q and 180BNa 1n a manner similar
to that previously described for the other mirror copy chunks.

While the snapshot volume copy of volume B 1s used in the
prior example to restore the mirror copy of volume B when
the mirror copy 1s promoted to be the new primary volume
copy, the snapshot volume copy on the archival storage sys-
tems may be used in other manners in other embodiments. For
example, a new copy of volume B that matches the mitial
snapshot volume copy may be created using the snapshot
volume copy on the archival storage systems 1n a manner
similar to that previously described for restoring the mirror
volume copy, such as to create a new mirror copy of volume
B as of the time of the snapshot volume copy, to create an
entirely new volume that 1s based on the snapshot volume
copy of volume B, to assist in moving volume B from one
server block storage system to another, etc. In addition, when
the server block data storage systems of the block data service
are available in multiple distinct data centers or other geo-
graphical locations, the remote archival storage systems may
be available to all those server block data storage systems, and
thus may be used to create a new volume copy based on a
snapshot volume copy 1n any of those geographical locations.

FIG. 2F continues the examples of FIGS. 2C and 2D,
continuing at a later point in time after additional modifica-
tions are made to volume B. In particular, after the modifica-
tions to chunk 3 and chunk N are made as described with
respect to FIG. 2C or 2D, a second snapshot volume copy of
volume B 1s created on the archival storage systems. Subse-
quently, additional modifications are made to data 1n volume
B that are stored 1n chunks 2 and 3. Accordingly, the primary
copy of volume B 155B-b as illustrated 1n FIG. 2F includes
original data 1 1 chunk 1 155B-bl, data 2¢ in chunk 2
155B-b2 that 1s modified subsequent to creation of the second
snapshot volume copy, data 35 in chunk 3 155B-b3 that 1s also
modified subsequent to creation of the second snapshot vol-
ume copy, and data Na in chunk N 155B-bN that was modi-
fied after creation of the 1initial first snapshot volume copy but
subsequent to creation of the second snapshot volume copy.
Accordingly, after a third snapshot volume copy of volume B
1s indicated to be created, additional data objects are created
in the archival storage systems to correspond to the two
chunks modified since the creation of the second snapshot
volume copy, with data object 180B2a corresponding to
chunk 155B-b2 and including modified data 2a, and chunk
180835 corresponding to chunk 135B-b3 and including
modified data 35.

US 8,806,105 B2

21

In addition, in this example, the server block data storage
system 1654 1s not shown, but a copy of information 250
maintained by the Archival Manager module 190 (e.g., stored
on the archival storage system 1805 or elsewhere) 1s shown to
provide mnformation about snapshot volume copies stored on
the archival storage systems. In particular, in this example, the
information 250 includes multiple rows 250a-2504, which
cach correspond to a distinct snapshot volume copy. Each of
the rows of imnformation 1n this example includes a unique
identifier for the volume copy, an indication of the volume to
which the snapshot volume copy corresponds, and an indica-
tion of an ordered list of the data objects stored on the archival
storage systems that comprise the snapshot volume copy.
Thus, for example, row 250a corresponds to the 1nitial snap-
shot volume copy of volume B discussed with respect to FIG.

2C, and 1indicates that the imitial snapshot volume copy
includes stored data objects 18081, 180B2, 180B3, and so on

through 180BN. Row 2505 corresponds to an example snap-
shot volume copy for a different volume A that includes
various stored data objects that are not shown 1n this example.
Row 250c¢ corresponds to the second snapshot volume copy
of volume B, and row 2504 corresponds to the third snapshot
volume copy of volume B. In this example, the second and
third volume copies for volume B are incremental copies
rather than full copies, such that chunks of volume B that have
not changed since a prior snapshot volume copy will continue
to be represented using the same stored data objects. Thus, for
example, the second snapshot copy of volume B 1n row 250c¢
indicates that the second snapshot volume copy shares data
objects 180B1 and 180B2 with that of the initial snapshot
volume copy of volume B (and possibly some or all of the data
objects for chunks 4 through chunks N-1, not shown). Simi-
larly, the third snapshot copy of volume B shown in row 2504
also continues to use the same data object 180B1 as the mnitial
and second snapshot volume copies.

By sharing common data objects between multiple snap-
shot volume copies, the amount of storage on the archival
storage systems 1s minimized, since a new copy ol an
unchanging volume chunk such as chunk 1 does not have
separate copies on the archival storage systems for each snap-
shot volume copy. In other embodiments however, some or all
snapshot volume copies may not be incremental, instead each
including a separate copy of each volume chunk regardless of
whether the data in the chunk has changed. In addition, when
incremental snapshot volume copies are used that may share
one or more overlapping data objects with one or more other
snapshot volume copies, the overlapping data objects are
managed when additional types of operations are taken with
respect to the snapshot volume copies. For example, 11 a
request 1s subsequently recerved to delete the initial snapshot
volume copy for volume B that 1s indicated 1n row 2504, and
to accordingly free up storage space on the archival storage
systems that 1s no longer needed, only some of the data
objects indicated for that iitial snapshot volume copy may be
deleted on the archival storage systems. For example, chunk
3 and chunk N were modified after the initial snapshot volume
copy was created, and thus the corresponding stored data
objects 180B3 and 180BN ifor the initial snapshot volume
copy are used only by that initial snapshot volume copy. Thus,
those two data objects may be permanently deleted from the
archival storage system 180q if the mnitial snapshot volume
copy of volume B 1s deleted. However, the data objects 18081
and 180B2 will be maintained even 11 that mitial snapshot
volume copy of volume B 1s deleted, since they continue to be
a part of at least the second snapshot volume copy of volume

B.

10

15

20

25

30

35

40

45

50

55

60

65

22

While not illustrated 1n this example, the information 250
may include a variety of other types of information about the
snapshot volume copies, including information about which
archival storage system stores each of the data objects, infor-
mation about who 1s allowed to access the snapshot volume
copy information and under what circumstances, etc. As one
example, 1n some embodiments, some users may create snap-
shot volume copies and make access to those snapshot vol-
ume copies available to at least some other users 1n at least
some circumstances, such as on a fee-based basis to allow the
other users to create copies of one or more particular snapshot
volume copies. 11 so, such access-related information may be
stored 1n information 250 or elsewhere, and the archival man-
ager module 190 may use such information to determine
whether to satisiy requests made for information correspond-
ing to particular snapshot volume copies. Alternatively, 1n
other embodiments, the access to the snapshot volume copies
may instead be managed by other modules of the block data
storage service (e.g., a BBS System Manager module), such
as to prevent requests from being sent to the archival storage
systems unless those requests are authorized.

It will be appreciated that the examples of FIGS. 2A-2F
have been simplified for the purposes of explanation, and that
the number and organization of server block data storage
systems, archival storage systems, and other devices may be
much larger than what 1s depicted. Similarly, 1n other embodi-
ments, primary volume copies, mirror volume copies, and/or
snapshot volume copies may be stored and managed 1n other
manners.

FIG. 3 1s a block diagram 1illustrating example computing
systems suitable for managing the provision and use of reli-
able non-local block data storage functionality to clients. In
this example, a server computing system 300 executes an
embodiment of a BDS System Manager module 340 to man-
age provision of non-local block data storage functionality to
programs executing on host computing systems 370 and/or on
at least some other computing systems 390, such as to block
data storage volumes (not shown) provided by the server
block data storage systems 360. Each of the host computing
systems 370 1n this example also executes an embodiment of
a Node Manager module 380 to manage access of programs
375 executing on the host computing system to at least some
of the non-local block data storage volumes, such as 1n a
coordinated manner with the BDS System Manager module
340 over a network 385 (e.g., an 1nternal network of a data
center, not shown, that includes the computing systems 300,
360, 370, and optionally at least some of the other computing
systems 390). In other embodiments, some or all of the Node
Manager modules 380 may instead manage one or more other
computing systems (e.g., other computing systems 390).

In addition, multiple server block data storage systems 360
are 1llustrated that each store at least some of the non-local
block data storage volumes (not shown) used by the executing
programs 373, with access to those volumes also provided
over the network 385 1n this example. One or more of the
server block data storage systems 360 may also each store a
server software component (not shown) that manages opera-
tion of one or more of the server block data storage systems
360, as well as various information (not shown) about the data
that 1s stored by the server block data storage systems 360.
Thus, 1n at least some embodiments, the server computing
system 300 of FIG. 3 may correspond to the computing sys-
tem 175 of FIG. 1, one or more of the Node Manager modules
115 and 125 of FIG. 1 may correspond to the Node Manager
modules 380 0t FIG. 3, and/or one or more of the server block
data storage computing systems 360 of FIG. 3 may corre-
spond to server block data storage systems 1635 of FIG. 1. In

US 8,806,105 B2

23

addition, 1n this example embodiment, multiple archival stor-
age systems 350 are illustrated, which may store snapshot
copies and/or other copies of at least portions of at least some
block data storage volumes stored on the server block data
storage systems 360. The archival storage systems 350 may
also interact with some or all of the computing systems 300,
360, and 370, and 1n some embodiments may be remote
archival storage systems (e.g., ol aremote storage service, not
shown) that interact with the computing systems 300, 360,
and 370 over one or more other external networks (not
shown).

The other computing systems 390 may further include
other proximate or remote computing systems of various
types 1n at least some embodiments, including computing,
systems via which customers or other users of the block data
storage service interact with the computing systems 300 and/
or 370. Furthermore, one or more of the other computing
systems 390 may further execute a PES System Manager
module to coordinate execution of programs on the host com-
puting systems 370 and/or other host computing systems 390,
or computing system 300 or one of the other illustrated com-
puting systems may instead execute such a PES System Man-
ager module, although a PES System Manager module 1s not
illustrated in this example.

In this example embodiment, computing system 300
includes a CPU (*central processing unit”) 305, local storage
320, memory 330, and various I/O (*input/output”) compo-
nents 310, with the illustrated I/O components 1n this example
including a display 311, a network connection 312, a com-
puter-readable media drive 313, and other I/O devices 315
(e.g., a keyboard, mouse, speakers, microphone, etc.). In the
illustrated embodiment, the BDS System Manager module
340 1s executing 1n memory 330, and one or more other
programs (not shown) may also optionally be executing in
memory 330.

Each computing system 370 similarly includes a CPU 371,
local storage 377, memory 374, and various I/O components
372 (e.g., 'O components similar to I/O components 310 of
server computing system 300). In the 1llustrated embodiment,
a Node Manager module 380 1s executing in memory 374 1n
order to manage one or more other programs 375 executing 1n
memory 374 on the computing system, such as on behalf of
customers of the program execution service and/or block data
storage service. In some embodiments, some or all of the
computing systems 370 may host multiple virtual machines,
and 1f so, each of the executing programs 375 may be an entire
virtual machine image (e.g., with an operating system and one
or more application programs) executing on a distinct hosted
virtual machine computing node. The Node Manager module
380 may similarly be executing on another hosted virtual
machine, such as a privileged virtual machine monitor that
manages the other hosted virtual machines. In other embodi-
ments, the executing program copies 375 and the Node Man-
ager module 380 may execute as distinct processes on a single
operating system (not shown) executed on computing system
370.

Each archival storage system 3350 in this example 1s a
computing system that includes a CPU 351, local storage 357,
memory 354, and various I/O components 352 (e.g., I/O
components similar to I/O components 310 of server com-
puting system 300). In the 1llustrated embodiment, an Archi-
val Manager module 355 1s executing in memory 354 1n order
to manage operation ol one or more of the archival storage
systems 350, such as on behalf of customers of the block data
storage service and/or of a distinct storage service that pro-
vides the archival storage systems. In other embodiments, the
Archival Manager module 355 may instead be executing on

10

15

20

25

30

35

40

45

50

55

60

65

24

another computing system, such as one of the other comput-
ing systems 390 or on computing system 300 in conjunction
with the BDS System Manager module 340. In addition,
while not 1llustrated here, 1n some embodiments various
information about the data that 1s stored by the archival stor-
age systems 350 may be maintained on storage 357 or else-
where, such as previously described with respect to FIG. 2F.
Furthermore, while also not 1llustrated here, each of the server
block data storage systems 360 and/or other computing sys-
tems 390 may similarly include some or all of the types of
components 1llustrated with respect to the archival storage
systems 350, such as a CPU, local storage, memory, and
various I/O components.

The BDS System Manager module 340 and Node Manager
modules 380 may take various actions to manage the provi-
s1on and use of reliable non-local block data storage function-
ality to clients (e.g., executing programs), as described 1n
greater detail elsewhere. In this example, the BDS System
Manager module 340 may maintain a database 325 on storage
320 that includes mformation about volumes stored on the
server block data storage systems 360 and/or on the archival
storage systems 350 (e.g., for use 1n managing the volumes),
and may further store various other information (not shown)
about users or other aspects of the block data storage service.
In other embodiments, information about volumes may be
stored 1n other manners, such as in a distributed manner by
Node Manager modules 380 on their computing systems
and/or by other computing systems. In addition, in this
example, each Node Manager module 380 on a host comput-
ing system 370 may store information 378 on local storage
3777 about the current volumes attached to the host computing
system and used by the executing programs 373 on the host
computing system, such as to coordinate interactions with the
server block data storage systems 360 that provide the pri-
mary copies of the volumes, and to determine how to switch
to a mirror copy of a volume 11 the primary volume copy
becomes unavailable. While not 1llustrated here, each host
computing system may further include a distinct logical local
block data storage device interface for each volume attached
to the host computing system and used by a program execut-
ing on the computing system, which may further appear to the
executing programs as being indistinguishable from one or
more other local physically attached storage devices that pro-
vide local storage 377.

It will be appreciated that computing systems 300, 350,
360, 370 and 390 are merely 1llustrative and are not intended
to limit the scope of the present invention. For example,
computing systems 300, 350, 360, 370 and/or 390 may be
connected to other devices that are not illustrated, including
through network 385 and/or one or more other networks, such
as the Internet or via the World Wide Web (“Web™). More
generally, a computing node or other computing system or
data storage system may comprise any combination of hard-
ware or software that can interact and perform the described
types ol functionality, including without limitation desktop or
other computers, database servers, network storage devices
and other network devices, PDAs, cellphones, wireless
phones, pagers, electronic orgamzers, Internet appliances,
television-based systems (e.g., using set-top boxes and/or
personal/digital video recorders), and various other consumer
products that include appropriate communication capabili-
ties. In addition, the functionality provided by the illustrated
modules may 1n some embodiments be combined 1n fewer
modules or distributed in additional modules. Similarly, in
some embodiments, the functionality of some of the 1llus-
trated modules may not be provided and/or other additional
functionality may be available.

US 8,806,105 B2

25

It will also be appreciated that, while various items are
illustrated as being stored 1n memory or on storage while
being used, these 1tems or portions ol them may be transierred
between memory and other storage devices for purposes of
memory management and data integrity. Alternatively, in
other embodiments some or all of the software modules and/
or systems may execute 1n memory on another device and
communicate with the illustrated computing systems via
inter-computer communication. Furthermore, 1 some
embodiments, some or all of the systems and/or modules may
be implemented or provided 1n other manners, such as at least
partially in firmware and/or hardware, including, but not lim-
ited to, one or more application-specific integrated circuits
(ASICs), standard integrated circuits, controllers (e.g., by
executing appropriate mstructions, and including microcon-
trollers and/or embedded controllers), field-programmable
gate arrays (FPGAs), complex programmable logic devices
(CPLDs), etc. Some or all of the modules, systems and data
structures may also be stored (e.g., as software instructions or
structured data) on a computer-readable medium, such as a
hard disk, a memory, a network, or a portable media article to
be read by an appropriate drive or via an appropriate connec-
tion. The systems, modules and data structures may also be
transmitted as generated data signals (e.g., as part of a carrier
wave or other analog or digital propagated signal) on a variety
of computer-readable transmission mediums, including wire-
less-based and wired/cable-based mediums, and may take a
variety ol forms (e.g., as part of a single or multiplexed analog
signal, or as multiple discrete digital packets or frames). Such
computer program products may also take other forms 1n
other embodiments. Accordingly, the present invention may
be practiced with other computer system configurations.

FI1G. 4 15 a flow diagram of an example embodiment of a
Block Data Storage System Manager routine 400. The routine
may be provided by, for example, execution of the Block Data
Storage System Manager module 175 of FIG. 1 and/or the
BDS System Manager module 340 of FIG. 3, such as to
provide a block data storage service for use by executing
programs. In the illustrated embodiment, the routine may
interact with multiple server block data storage systems at a
single data center or other geographical location (e.g., if each
such data center or other geographical location has a distinct
embodiment of the routine executing at the geographical
location), although 1n other embodiments a single routine 400
may support multiple distinct data centers or other geographi-
cal locations.

The 1llustrated embodiment of the routine begins at block
405, where a request or other information 1s received. The
routine continues to block 410 to determine whether the
received request was to create a new block data storage vol-
ume, such as from a user of the block data storage service
and/or from an executing program that would like to access
the new volume, and 11 so continues to block 415 to perform
the volume creation. In the illustrated embodiment, the rou-
tine in block 415 selects one or more server block data storage
system on which copies of the volume will be stored (e.g.,
based at least in part on location of and/or capabilities of the
selected server storage systems), initializes the volume copies
on those selected server storage systems, and updates stored
information about volumes to retlect the new volume. For
example, 1n some embodiments, the creation of a new volume
may include mitializing a specified size of linear storage on
cach of the selected servers in a specified manner, such as to
be blank, to include a copy of another indicated volume (e.g.,
another volume at the same data center or other geographical
location, or stead a volume stored at a remote location), to
include a copy of an indicated snapshot volume copy (e.g., a

5

10

15

20

25

30

35

40

45

50

55

60

65

26

snapshot volume copy stored by one or more archival storage
systems, such as by interacting with the archival storage
systems to obtain the snapshot volume copy), etc. In other
embodiments, a logical block of linear storage of a specified
s1ze for a volume may be created on one or more server block
data storage systems, such as by using multiple non-contigu-
ous storage areas that are presented as a single logical block
and/or by striping a logical block of linear storage across
multiple local physical hard disks. To create a copy of a
volume that already exists at another data center or other
geographical location, the routine may, for example, coordi-
nate with another instance of the routine 400 that supports
block data storage service operations at that location. Further-
more, 1n some embodiments, at least some volumes will each
have multiple copies that include at least one primary volume
copy and one or more mirror copies on multiple distinct
server storage systems, and 11 so multiple server storage sys-
tems may be selected and initialized.

IT 1t 1s 1nstead determined in block 410 that the received
request 1s not to create a volume, the routine continues instead
to block 420 to determine whether the received request 1s to
attach an existing volume to an executing program copy, such
as a request recerved from the executing program copy or
from another computing system operated on behalf of a user
associated with the executing program copy and/or the 1ndi-
cated volume. If so, the routine continues to block 425 to
identify at least one of the server block data storage systems
that stores a copy of the volume, and to associate at least one
of the i1dentified server storage systems with the executing
program (€.g., to associate the primary server storage system
for the volume with the computing node on which the pro-
gram executes, such as by causing a logical local block stor-
age device to be mounted on the computing node that repre-
sents the primary volume copy). The volume to be attached
may be 1dentified 1n various ways, such as by a unique iden-
tifier for the volume and/or an 1dentifier for a user who created
or 1s otherwise associated with the volume. After attaching
the volume to the executing program copy, the routine may
turther update stored information about the volume to 1ndi-
cate the attachment of the executing program, such as 1f only
a single program 1s allowed to be attached to the volume at a
time, or 1f only a single program 1s allowed to have write
access or other modification access to the volume at a time. In
addition, 1n the indicated embodiment, information about at
least one of the identified server storage systems may be
provided to a node manager associated with the executing
program, such as to facilitate the actual attachment of the
volume to the executing program, although in other embodi-
ments the node manager may have other access to such infor-
mation.

If 1t 1s 1nstead determined in block 420 that the received
request 1s not to attach a volume to an executing program, the
routine continues 1nstead to block 430 to determine whether
the received request 1s to create a snapshot copy for an indi-
cated volume, such as a request received from an executing
program that 1s attached to the volume or instead another
computing system (e.g., a computing system operated by a
user associated with the volume and/or a user who has pur-
chased access to create a snapshot copy of another user’s
volume). In some embodiments, a snapshot volume copy may
be created of a volume regardless of whether the volume 1s
attached or 1n use by any executing programs, and/or regard-
less of whether the volume 1s stored at the same data center or
other geographical location at which the routine 400
executes. [T 1t 1s determined so, the routine continues to block
435 to mitiate creation of a snapshot volume copy of the
indicated volume, such as by interacting with one or more

US 8,806,105 B2

27

archival manager modules that coordinate operations of one
or more archival storage systems (e.g., archival storage sys-
tems at a remote storage location, such as 1n conjunction with
a remote long-term storage service that 1s accessible over one
or more networks. In some embodiments, the snapshot vol-
ume copy creation may be performed by a third-party remote
storage service 1n response to an nstruction from the routine
400, such as 1 the remote storage service already stores at
least some chunks of the volume. Furthermore, various other
parameters may further be specified 1n at least some embodi-
ments, such as whether the snapshot volume copy 1s to be
incremental with respect to one or more other snapshot vol-
ume copies, efc.

If 1t 1s 1nstead determined 1n block 430 that the received
request 1s not to create a snapshot volume copy, the routine
continues 1nstead to block 440 to determine whether the infor-
mation received in block 405 1s an indication of failure or
other unavailability of one or more server block data storage
systems (or of one or more volumes, 1n other embodiments).
For example, as described below with respect to block 485,
the routine may 1n some embodiments monitor the status of
some or all of the server block data storage systems and
determine unavailability on that basis, such as by periodically
or constantly sending ping messages or other messages to
server block data storage systems to determine if aresponse 1s
received, or by otherwise obtaining information about the
status of the server storage systems. If 1t 1s determined 1n
block 440 that the received information indicates the possible
fallure of one or more server storage systems, the routine
continues to block 445 to take actions to maintain the avail-
ability of the one or more volumes stored on the indicated one
or more server storage systems. In particular, the routine 1n
block 445 determines whether any such volumes stored on the
indicated one or more server storage systems are primary
volume copies, and for each such primary volume copy, pro-
motes one of the mirror copies for that volume on another
server storage system to be the new primary copy for that
volume. In block 450, the routine then causes at least one new
copy of each volume to be replicated on one or more other
server storage systems, such as by using an existing copy of
the volume that 1s available on a server storage system other
than one of those indicated to be unavailable. In other
embodiments, the promotion of mirror copies to primary
copies and/or the creation of new mirror copies may instead
be performed 1n other manners, such as 1n a distributed man-
ner by the server block data storage systems (e.g., using an
clection protocol between the mirror copies of a volume). In
addition, 1n some embodiments the mirror volume copies
may be minimal copies that include only portions of a primary
copy of a volume (e.g., only portions that have been modified
since a snapshot copy of the volume was previously created),
and the promotion of a mirror copy to a primary copy may
turther include gathering information for the new primary
copy to make it complete (e.g., from the most recent snapshot
copy).

In block 455, the routine then optionally 1nitiates attach-
ments of one or more executing programs to any new primary
volume copies that were promoted from mirror copies, such
as for executing programs that were previously attached to
primary volume copies on the one or more unavailable server
storage systems, although in other embodiments such re-
attachment to new primary volume copies will instead be
performed in other manners (e.g., by a node manager associ-
ated with the executing program for which the re-attachment
will occur). In block 458, the routine then updates informa-
tion about the volumes on the unavailable server storage
systems, such as to indicate the new volume copies created 1n

10

15

20

25

30

35

40

45

50

55

60

65

28

block 450 and the new primary volume copies promoted in
block 445. In other embodiments, new primary volume cop-
1es may be created in other manners, such as by creating a new
volume copy as a primary volume copy, rather than promot-
ing an existing mirror volume copy, although doing so may
take longer than promoting an existing mirror volume copy.
In addition, 1f no volume copies are available from which to
replicate new volume copies in block 450, such as if multiple
server storage systems that store the primary and mirror cop-
ies for a volume all fail substantially simultaneously, the
routine may in some embodiments attempt to obtain informa-
tion for the volume to use 1n such replication 1n other man-
ners, such as from one or more recent snapshot volume copies
for the volume that are available on archival storage systems,
from a copy of the volume at another data center or other
geographical location, etc.

IT 1t 1s 1nstead determined 1in block 440 that the received
information 1s not an indication of failure or other unavail-
ability of one or more server block data storage systems, the
routine continues instead to block 460 to determine whether
information received in block 405 indicates to move one or
more volumes to one or more new server block data storage
systems. Such volume movement may be performed for a
variety of reasons, as discussed 1n greater detail elsewhere,
including to other server block data storage systems at the
same geographical location (e.g., to move existing volumes to
storage systems that are better equipped to support the vol-
umes) and/or to one or more server data storage systems at
one or more other data centers or other geographical loca-
tions. In addition, movement of a volume may be mitiated in
various ways, such as due to a request from a user of the block
data storage system that 1s associated with the volume, to a
request from a human operator of the block data storage
service, based on an automated detection of a better server
storage system for a volume than the current server storage
system being used (e.g., due to over-utilization of the current
server storage system and/or under-utilization of the new
server storage system), etc. If 1t 1s determined 1n block 460
that the recerved information 1s to move one or more such
volume copies, the routine continues to block 465 and creates
a copy of each indicated volume on one or more new server
block data storage systems, such as 1n a manner similar to that
previously discussed with respect to block 415 (e.g., by using
an existing volume copy on a server block data storage sys-
tem, by using a snapshot or other copy of the volume on one
or more archival storage systems, etc.), and further updates
stored information for the volume 1n block 465. In addition, 1n
some embodiments the routine may take additional actions to
support the movement, such as to delete the prior volume
copy from a server block data storage system after the new
volume copy 1s created. Furthermore, 1n situations in which
one or more executing programs were attached to the prior
volume copy being moved, the routine may initiate the
detachment of the prior volume copy being moved for an
executing program and/or may initiate a re-attachment of
such an executing program to the new volume copy being
created, such as by sending associated instructions to a node
manager for the executing program, although in other
embodiments the node manager may instead perform such
actions.

IT 1t 1s 1nstead determined in block 460 that the recerved
information 1s not an instruction to move one or more vol-
umes, the routine continues instead to block 485 to perform
one or more other indicated operations as appropriate. Other
operations may have various forms in various embodiments,
such as one or more of the following non-exclusive list: to
perform monitoring of some or all server block data storage

US 8,806,105 B2

29

systems (e.g., by sending ping messages or other status mes-
sages to the server block data storage systems and waiting for
a response); by mitiating creation ol a replacement primary
volume copy and/or mirror volume copy in response to deter-
mimng that a primary or mirror copy ol a volume 1s unavail-
able, such as based on monitoring that 1s performed, on a
message recerved from a primary server block data storage
system that stores a primary copy of a volume but 1s unable to
update one or more mirror copies of that volume, on a mes-
sage recerved from a node manager module, etc.; detaching,
deleting, and/or describing one or more volumes; deleting,
describing and/or copying one or more snapshot volume cop-
1es; tracking use of volumes and/or snapshot volume copies
by users, such as to meter such usage for payment purposes;
etc. After blocks 415, 425, 435, 458, 465, or 485, the routine
continues to block 495 to determine whether to continue, such
as until an explicit termination 1nstruction 1s received. If so,
the routine returns to block 405, and 1f not the routine con-
tinues to block 499 and ends.

In addition, for at least some types of requests, the routine
may 1n some embodiments further verity that the requester 1s
authorized to make the request, such as based on access rights
specified for the requester and/or an associated target of the
request (e.g., an mndicated volume). In some such embodi-
ments, the verification of authorization may further include
obtaining payment from the requester for the requested tunc-
tionality (or verifying that any such payment has already been
provided), such as to not perform the request 1f the payment 1s
not provided. For example, types of request that may have
associated payment 1n at least some embodiments and situa-
tions 1nclude requests to create a volume, attach a volume,
create a snapshot copy, move an indicated volume (e.g., to a
premium server storage system), and other types of indicated
operations. Furthermore, some or all types of actions taken on
behalf of users may be monitored and metered, such as for
later use 1n determining corresponding usage-based fees for
at least some of those actions.

FIG. 5 15 a flow diagram of an example embodiment of a
Node Manager routine 500. The routine may be provided by,
for example, execution of a Node Manager module 115 and/
or 125 of FIG. 1, and/or execution of a Node Manager module
380 of FIG. 3, such as to manage the use by one or more
executing programs ol non-local block data storage. In the
illustrated embodiment, the block data storage service pro-
vides functionality through a combination of one or more
BDS System Manager modules and multiple Node Manager
modules and optionally one or more Archival Manager mod-
ules, although in other embodiments other configurations
may be used (e.g., a single BDS System Manager module
without any Node Manager modules and/or Archival Man-
ager modules, multiple Node Manager modules executing
together 1n a coordinated manager without a BDS System
Manager module, etc.).

The 1llustrated embodiment of the routine begins in block
505, where a request 1s received related to program execution
on an associated computing node. The routine continues to
block 510 to determine whether the request 1s related to
executing one or more indicated programs on an indicated
associated computing node, such as a request from a program
execution service and/or a user associated with those pro-
grams. 11 so, the routine continues to block 513 to obtain a
copy of the indicated program(s) and to initiate execution of
the program(s) on an associated computing node. In some
embodiments, the one or more indicated programs may be
obtained 1n block 515 based on the indicated programs being
sent to the routine 500 as part of the request received 1n block
505, while 1n other embodiments the indicated programs may

10

15

20

25

30

35

40

45

50

55

60

65

30

be retrieved from local or non-local storage (e.g., from a
remote storage service). In other embodiments, the routine
500 may instead not perform operations related to executing
programs, such as 1T another routine that supports the program
execution service mstead performs those operations on behalf
of associated computing nodes.

If 1t 1s 1mstead determined 1n block 510 that the received
request 1s not to execute one or more indicated programs, the
routine continues 1nstead to block 520 to determine whether a
request 1s recerved to attach an indicated volume to an 1ndi-
cated executing program, such as from the executing pro-
gram, from the routine 400 of FIG. 4, and/or from a user
associated with the indicated volume and/or the indicated
executing program. It so, the routine continues to block 525 to
obtain an indication of a primary copy of the volume, and to
associate that primary volume copy with a representative
logical local block data storage device for the computing
node. In some embodiments, the representative local logical
block data storage device may be 1ndicated to the executing
program and/or computing node by the routine 500, while in
other embodiments, the executing program may instead 1ni-
tiate the creation of the local logical block data storage device.
For example, 1n some embodiments the routine 500 may use
GNBD (*Global Network Block Device”) technology to
make the logical local block data storage device available to a
virtual machine computing node by importing a block device
into a particular virtual machine and mounting that logical
local block data storage device. In some embodiments, the
routine may take further actions at block 525, such as to
obtain and store indications of one or more mirror volume
copies for the volume, such as to allow the routine to dynami-
cally attach to a mirror volume copy 1if the primary volume
copy later becomes unavailable.

IT 1t 1s 1nstead determined in block 520 that the recerved
request of block 505 1s not to attach an indicated volume, the
routine continues 1nstead to block 530 to determine whether
the recerved request 1s a data access request by an executing,
program for an attached volume, such as a read request or a
write request. It so, the routine continues to block 535, where
the routine 1dentifies the associated primary volume copy that
corresponds to the data access request (e.g., based on the
representative local logical block data storage device used by
the executed program for the data access request), and 1ni-
tiates the requested data access to the primary volume copy.
As discussed 1n greater detail elsewhere, 1n some embodi-
ments a lazy write scheme may be used, such as by immedi-
ately modifying the actual primary and/or mirror volume
copies to reflect a write data access request (e.g., to always
update the mirror volume copy, to update a mirror volume
copy only 11 the mirror volume copy 1s being promoted to be
the primary volume copy, etc.), but not immediately modify-
ing a corresponding chunk stored on one or more archival
storage systems to reflect the write data access request (e.g.,
so as to eventually update the copy stored on the archival
storage systems when suificient modifications have been
made and/or when read access to corresponding information
1s requested, etc.). In the 1llustrated embodiment, the main-
taining of mirror volume copies 1s performed by a routine
other than the routine 500 (e.g., by the primary server block
data storage system that stores the primary volume copy),
although 1n other embodiments the routine 300 may 1n block
535 further assist 1n maintaining one or more of the mirror
volume copies by sending similar or i1dentical data access
requests to those mirror volume copies. Furthermore, 1n some
embodiments a volume may not be stored on the archival
storage systems until explicitly requested by a corresponding
user (e.g., as part ol a request to create a snapshot copy of the

US 8,806,105 B2

31

volume), while 1n other embodiments a copy may be main-
tained on the archival storage systems of at least some por-
tions of at least some volumes (e.g., if the archival storage
systems’ copy 1s used as a backing store for the primary
and/or mirror volume copies).

After block 535, the routine continues to block 540 to
determine whether a response 1s received from the primary
server block data storage system for the request sent in block
535 within a predefined time limait, such as to indicate success
of the operation. If not, the routine determines that the pri-
mary server block data storage system is unavailable, and
continues to block 545 to initiate a change to attach one of the
mirror volume copies as the new primary volume copy, and to
associate the server block data storage system for that mirror
volume copy as the new primary server block data storage
system for the volume. Furthermore, the routine similarly
sends the data access request to the new primary volume copy
in a manner similar to that indicated above with respect to
block 535, and may further 1n some embodiments monitor
whether an appropriate response 1s recerved and proceed to
block 545 again 1 not (e.g., to promote another mirror volume
copy and repeat the process). In some embodiments, the
initiating of the change to a mirror volume copy as a new
primary volume copy may be performed 1n coordination with
routine 400, such as by mitiating contact with routine 400 to
determine which mirror volume copy should become the new
primary volume copy, by receiving instructions from routine
400 when a mirror volume copy 1s promoted to be a primary
volume copy by the routine 500 (e.g., as prompted by an
indication sent by the routine 500 1n block 545 that the pri-
mary volume copy 1s unavailable), etc.

If 1t 1s instead determined in block 530 that the received
request 1s not a data access request for an attached volume, the
routine continues nstead to block 5835 to perform one or more
other indicated operations as appropriate. The other opera-
tions may have various forms 1n various embodiments, such
as mstructions from routine 400 of new volume information
for one or more volumes (e.g., a new promoted primary
volume copy for a volume to which one or more executing,
programs being managed are attached), to detach a volume
from an executing program on a computing node associated
with the routine 500, etc. In addition, 1n at least some embodi-
ments, the routine 500 may turther perform one or more other
actions of a virtual machine monitor, such as 1f the routine 500
operates as part of or otherwise 1n conjunction with a virtual
machine monitor that manages one or more associated virtual
machine computing nodes.

After blocks 515, 525, 545, or 585, or 11 1t 15 1nstead deter-
mined 1n block 540 that a response 1s recerved within a pre-
defined time limit, the routine continues to block 595 to
determine whether to continue, such as until an explicit ter-
mination instruction 1s recerved. If so, the routine returns to
block 505, and 1 not continues to block 599 and ends.

In addition, for at least some types of requests, the routine
may 1n some embodiments further veriy that the requester 1s
authorized to make the request, such as based on access rights
specified for the requester and/or an associated target of the
request (e.g., an mdicated volume). In some such embodi-
ments, the verification of authorization may further include
obtaining payment from the requester for the requested func-
tionality (or verifying that any such payment has already been
provided), such as to not perform the request 11 the payment 1s
not provided. For example, types of request that may have
associated payment 1n at least some embodiments and situa-
tions include requests to execute indicated programs, attach a
volume, perform some or all types of data access requests,
and other types of indicated operations. Furthermore, some or

10

15

20

25

30

35

40

45

50

55

60

65

32

all types of actions taken on behalf of users may be monitored
and metered, such as for later use in determining correspond-
ing usage-based fees for at least some of those actions.

FIG. 6 1s a flow diagram of an example embodiment of a
Server Block Data Storage System routine 600. The routine
may be provided by, for example, execution of a software
component on a server block data storage system, such as to
manage the storage of block data on one or more block data
storage volumes on that server storage system (e.g., for server
block data storage systems 165 of FIG. 1 and/or of FIG. 2). In
other embodiments, some or all of the functionality of the
routine may be provided in other manners, such as by soft-
ware executing on one or more other computing systems to
manage one or more server block data storage systems.

The 1llustrated embodiment of the routine begins at block
605, where a request 1s received. The routine continues to
block 610 to determine whether the recerved request 1s related
to creating a new volume, such as by associating a block of
available storage space for the server storage system (e.g.,
storage space on one or more local hard disks) with a new
indicated volume. The request may, for example, be from
routine 400 and/or from a user associated with the new vol-
ume being created. If so, the routine continues to block 615 to
store information about the new volume, and 1n block 620
initializes storage space for the new volume (e.g., a logical
linear block of storage space of an indicated size). As dis-
cussed 1n greater detail elsewhere, in some embodiments new
volumes may be created based on another existing volume or
snapshot volume copy, and 11 so the routine may 1n block 620
initialize the storage space for the new volume by copying
appropriate data to the storage space, while 1n other embodi-
ments may 1nitialize new volume storage space 1n other man-
ners (e.g., such as to mitialize the storage space to a default
value, such as all zeros).

IT 1t 1s 1nstead determined 1n block 610 that the received
request 1s not to create a new volume, the routine continues
instead to block 625 to determine whether a data access
request has been recerved for an existing volume stored on the
server storage system, such as from a node manager associ-
ated with an executing program that mitiated the data access
request. If so, the routine continues to block 630 to perform
the data access request on the indicated volume. The routine
then continues to block 635 to, 1n the 1llustrated embodiment,
optionally 1mtiate corresponding updates for one or more
mirror copies of the volume, such as 1f the indicated volume
on the current server storage system 1s the primary volume
copy lfor the volume. In other embodiments, consistency
between a primary volume copy and mirror volume copies
may be maintained in other manners. As discussed 1n greater
detail elsewhere, 1n some embodiments, at least some modi-
fications to the stored data contents of at least some volumes
may also be performed to one or more archival storage sys-
tems (e.g., at a remote storage service), such as to maintain a
backing copy or other copy of those volumes, and 1f so the
routine may further iitiate updates to the archival storage
systems to 1nitiate corresponding updates for one or more
copies ol the volume on the archival storage systems. Fur-
thermore, 11 the routine determines 1n block 635 or elsewhere
that a mirror copy of the volume is not available (e.g., based
on a failure to respond within a predefined amount of time to
a data access request sent 1n block 635, or to a ping message
or other status message 1nitiated by the routine 600 to peri-
odically check that the mirror volume copy and its mirror
server block data storage system are available; based on a
message from the mirror server block data storage system that
it has suflered an error condition or has begun a shutdown or
failure mode operation; etc.), the routine may 1nitiate actions

US 8,806,105 B2

33

to create a new mirror copy ol a volume, such as by sending,
a corresponding message to the routine 400 of FIG. 4 or
instead by directly mitiating the mirror volume copy creation.

If 1t 15 1nstead determined 1n block 625 that the received
request 1s not a data access request for a volume, the routine
continues to block 685 to perform one or more other indicated
operations as appropriate. Such other operations may have
various forms 1n various embodiments, such as one or more of
the following non-exclusive list: to delete a volume (e.g., so as
to make the associated storage space available for other use);
to copy a volume to an 1indicated destination (e.g., to another
new volume on another server block data storage system, to
one or more archival storage systems for use as a snapshot
volume copy, etc.); to provide information about use of vol-
umes (e.g., for metering of volume use, such as for fee-based
volume use by customers); to perform ongoing maintenance
or diagnostics for the server block data storage system (e.g.,
to defragment local hard disks); etc. After blocks 620, 635, or
685, the routine continues to block 695 to determine whether
to continue, such as until an explicit termination istruction 1s
recerved. If so, the routine returns to block 605, and if not
continues to block 699 and ends.

In addition, for at least some types of requests, the routine
may 1n some embodiments further verity that the requester 1s
authorized to make the request, such as based on access rights
specified for the requester and/or an associated target of the
request (e.g., an indicated volume), while 1n other embodi-
ments the routine may assume that requests have been previ-
ously authorized by a routine from which 1t receives requests
(e.g.,a Node Manager routine and/or a BDS System Manager
routine). Furthermore, some or all types of actions taken on
behalf of users may be monitored and metered, such as for
later use 1n determining corresponding usage-based fees for
at least some of those actions.

FIGS. 7A and 7B are a flow diagram of an example
embodiment of a PES System Manager routine 700. The
routine may be provided by, for example, execution of a PES
System Manager module 140 of FIG. 1. In other embodi-
ments, some or all of the functionality of the routine 700 may
instead be provided 1in other manners, such as by routine 400
as part of the block data storage service.

In the 1llustrated embodiment, the routine begins at block
705, where a status message or other request related to the
execution of a program 1s received. The routine continues to
block 710 to determine the type of the received message or
request. If 1t 1s determined 1n block 710 that the type 15 a
request to execute a program, such as from a user or executing,
program, the routine continues to block 720 to select one or
more host computing systems on which to execute the 1ndi-
cated program, such as from a group of candidate host com-
puting systems available for program execution. In some
embodiments, the one or more host computing systems may
be selected 1n accordance with user instructions or other
indicated criteria of interest. The routine then continues to
block 725 to initiate execution of the program by each of the
selected host computing systems, such as by interacting with
a Node Manager associated with the selected host computing
system. In block 730, the routine then optionally performs
one or more housekeeping tasks (e.g., monmitoring program
execution by users, such as for metering and/or other billing
PUrposes).

If 1t 1s instead determined in block 710 that the received
request 1s to register a new program as being available for later
execution, the routine continues instead to block 740 to store
an indication of the program and associated administrative
information for 1its use (e.g., access control nformation
related to users who are authorized to use the program and/or

10

15

20

25

30

35

40

45

50

55

60

65

34

authorized types of uses), and may turther store at least one
centralized copy of the program in some situations. The rou-
tine then continues to block 745 to optionally initiate distri-
bution of copies of the indicated program to one or more host
computing systems for later use, such as to allow rapid startup
of the program by those host computing systems by retrieving
the stored copy from local storage of those host computing
systems. In other embodiments, one or more copies of the
indicated program may be stored 1n other manners, such as on
one or more remote archival storage systems.

I1 1t 1mnstead determined 1n block 710 that a status message
1s recerved 1n block 705 concerning one or more host com-
puting systems, the routine continues instead to block 750 to
update information concerning those host computing sys-
tems, such as to track usage of executing programs and/or
other status information about host computing systems (e.g.,
use of non-local block data storage volumes). In some
embodiments, status messages will be sent periodically by
node manager modules, while 1n other embodiments, status
messages may be sent at other times (e.g., whenever a relevant
change occurs). In yet other embodiments, the routine 700
may 1nstead request information from node manager modules
and/or host computing systems as desired. Status messages
may include a variety of types of information, such as the
number and identity of programs currently executing on a
particular computing system, the number and 1dentity of cop-
1es of programs currently stored 1n the local program reposi-
tory on a particular computing system, attachments and/or
other use of non-local block data storage volumes, pertor-
mance-related and resource-related information (e.g., utiliza-
tion of CPU, network, disk, memory, etc.) for a computing
system, configuration imformation for a computing system,
and reports of error or failure conditions related to hardware
or soitware on a particular computing system.

I1 the routine 1nstead determines 1n block 705 that another
type of request or message 1s received, the routine continues
instead to block 785 to perform one or more other indicated
operations as appropriate. Such other operations may include,
for example, suspending or terminating execution of cur-
rently executing programs, and otherwise managing admin-
istrative aspects of the program execution service (registra-
tion of new users, determining and obtaining of payment for
use of the program execution service, etc.). After blocks 745,
750 or 785, the routine continues to block 730 to optionally
perform one or more housekeeping tasks. The routine then
continues to block 795 to determine whether to continue, such
as until an explicit termination 1nstruction 1s received. I so,
the routine returns to block 705, and 1f not continues to block
799 and ends.

While not 1llustrated here, 1n at least some embodiments, a
variety of additional types of functionality to execute pro-
grams may be provided by a program execution service, such
as 1n conjunction with a block data storage service. In at least
some embodiments, the execution of one or more copies or
instances of a program on one or more computing systems
may be initiated 1n response to a current execution request for
immediate execution of those program instances. Alterna-
tively, the mitiation may be based on a previously received
program execution request that scheduled or otherwise
reserved the then-future execution of those program instances
for the now-current time. Program execution requests may be
received 1n various ways, such as directly from a user (e.g.,
via an 1nteractive console or other GUI provided by the pro-
gram execution service), or from an executing program of a
user that automatically mitiates the execution of one or more
instances of other programs or of itself (e.g., via an API
provided by the program execution service, such as an API

US 8,806,105 B2

35

that uses Web services). Program execution requests may
include various information to be used in the 1nitiation of the
execution ol one or more 1nstances of a program, such as an
indication of a program that was previously registered or
otherwise supplied for future execution, and a number of
instances of the program that are to be executed simulta-
neously (e.g., expressed as a single desired number of
istances, as a minimum and maximum number of desired
instances, etc.). In addition, in some embodiments, program
execution requests may include various other types of infor-
mation, such as the following: an indication of a user account
or other indication of a previously registered user (e.g., foruse
in 1identiiying a previously stored program and/or in deter-
mimng whether the requested program 1nstance execution 1s
authorized); an indication of a payment source for use 1n
providing payment to the program execution service for the
program instance execution; an indication of a prior payment
or other authorization for the program instance execution
(e.g., apreviously purchased subscription valid for an amount
of time, for a number of program execution mstances, for an
amount of resource utilization, etc.); and/or an executable or
other copy of a program to be executed immediately and/or
stored for later execution. In addition, in some embodiments,
program execution requests may further include a variety of
other types of preferences and/or requirements for execution
ol one or more program instances. Such preferences and/or
requirements may include indications that some or all of the
program 1instances be executed in an indicated geographical
and/or logical location, such as in one of multiple data centers
that house multiple computing systems available for use, on
multiple computing systems that are proximate to each other,
and/or on one or more computing system that are proximate to
computing systems having other indicated characteristics
(e.g., that provide a copy of an indicated block data storage
volume).

FIG. 8 15 a flow diagram of an example embodiment of an
Archival Manager routine 800. The routine may be provided
by, for example, execution of one of the Archival Manager
modules 355 of FIG. 3, of the Archival Manager module 190
of FIGS. 2C-2F and/or of one or more archival manager
modules (not shown) on the computing systems 180 of FIG.
1. In other embodiments, some or all of the functionality of
the routine 800 may instead be provided in other manners,
such as by routine 400 as part of the block data storage
service. In the illustrated embodiment, the archival storage
systems store data in chunks that each correspond to a portion
of ablock data storage volume, but 1n other embodiments may
store data 1n other manners.

The 1llustrated embodiment of the routine 800 begins in
block 805, where information or a request 1s recerved. The
routine then continues to block 810 to determine if the request
or information 1s authorized, such as i1f the requester has
provided payment for fee-based access, or otherwise has
access rights to have an mdicated request be performed. If 1t
1s determined in block 815 that the request or information 1s
authorized, the routine continues to block 820, and otherwise
returns to block 805. In block 820, the routine determines 1t
the received request 1s to store a new snapshot copy for an
indicated volume. If so, the routine continues to block 825 to
obtain multiple volume chunks for the volume, store each
chunk as an archival storage system data object, and then
store information about the data objects for the chunks that
are associated with the snapshot volume copy. As discussed 1n
greater detail elsewhere, the chunks of the volume may be
obtained 1n various ways, such as by being received in block
805 as multiple distinct blocks, received 1 block 805 as a
single large group of block data that 1s separated into chunks

5

10

15

20

25

30

35

40

45

50

55

60

65

36

in block 825, retrieved 1n block 825 as individual chunks or a
single large group of block data to be separated into chunks,
previously stored on the archival storage systems, etc.

If 1t 1s 1nstead determined 1n block 820 that the received
request 1s not to store anew snapshot volume copy, the routine
continues instead to block 830 to determine whether the
received request 1s to store an incremental snapshot copy of a
volume that reflects changes from a prior snapshot volume
copy. If so, the routine continues to block 835 to identily
snapshot chunks that have changed since a prior snapshot
copy of the volume, and to obtain copies of the changed
snapshot chunks in a manner similar to that previously dis-
cussed with respect to block 825. The routine then continues
to block 840 to store copies of the changed chunks, and to
store information about the new changed chunks and the prior
other unchanged chunks whose corresponding data objects
are associlated with the new snapshot volume copy. The
chunks that have changed since a prior snapshot volume copy
may be identified 1n various ways, such as by the server block
data storage systems that store primary and/or mirror copies
of the volume (e.g., by tracking any write data access requests
or other modification requests for the volume).

If 1t 1s 1mstead determined 1n block 830 that the received
request 1s not to store an incremental snapshot volume copy,
the routine continues instead to block 8435 to determine
whether the request 1s to provide one or more chunks of a
snapshot volume copy, such as from corresponding stored
data objects. If so, the routine continues to block 850 to
retrieve the data for the indicated snapshot volume copy
chunk(s), and sends the retrieved data to the requester. Such
requests may be, for example, part of creating a new volume
based on an existing snapshot volume copy by retrieving all of
the chunks for the snapshot volume copy, part of retrieving a
subset of a snapshot volume copy’s chunks to restore a mini-
mal mirror volume copy, eftc.

IT 1t 1s 1nstead determined 1n block 845 that the received
request 1s not to provide one or more snapshot volume copy
chunks, the routine continues to block 855 to determine 1f the
received request 1s to perform one or more data access
requests for one or more volume chunks that are not part of a
snapshot volume copy, such as to perform read data access
requests and/or write data access requests for one or more
data objects that represent particular volume chunks (e.g., 1f
those stored data objects serve as a backing store for those
volume chunks). I so, the routine continues to block 860 to
perform the requested data access request(s) for the stored
data object(s) corresponding to the indicated volume
chunk(s). As discussed 1n greater detail elsewhere, 1n at least
some embodiments, lazy updating techniques may be used
when moditying stored data objects, such that a write data
access request may not be immediately performed. I so,
betore a later read data access request for the same data object
1s completed, the one or more preceding write data access
requests may be performed to ensure strict data consistency.

If 1t 1s 1mnstead determined 1n block 855 that the received
request 1s not to perform data access requests for one or more
volume chunks, the routine continues instead to block 885 to
perform one or more other indicated operations as appropri-
ate. Such other operations may include, for example, repeat-
edly receiving information that corresponds to modifications
being performed on a volume 1n order to update correspond-
ing stored data objects that represent the volume (e.g., as a
backing store or for other purposes) and taking approprate
corresponding actions, responding to requests to delete or
otherwise modily stored snapshot volume copies, responding
to requests of a user to manage an account with a storage
service that provides the archival storage systems, etc. After

US 8,806,105 B2

37

blocks 825, 840, 850, 860, or 885, the routine continues to
block 895 to determine whether to continue, such as until an
explicit termination instruction 1s received. It so, the routine
returns to block 805, and 1 not continues to block 899 and
ends.

As noted above, for at least some types of requests, the
routine may in some embodiments verily that the requester 1s
authorized to make the request, such as based on access rights
specified for the requester and/or an associated target of the
request (e.g., an indicated volume or snapshot volume copy),
while 1n other embodiments the routine may assume that
requests have been previously authorized by a routine from
which 1t receives requests (e.g., a Node Manager routine
and/or a BDS System Manager routine). Furthermore, some
or all types of actions taken on behalf of users may be moni-
tored and metered 1n at least some embodiments, such as for
later use 1n determining corresponding usage-based fees for
at least some of those actions.

Additional details related to the operation of example
embodiments of a program execution service with which the

described techniques may be used are available in U.S. patent
application Ser. No. 11/395,463, filed Mar. 31, 2006 and
entitled “Managing Execution Of Programs By Multiple
Computing Systems;” 1n U.S. patent application Ser. No.
11/851,343, filed Sep. 6, 2007 and entitled “Executing Pro-
grams Based on User-Specified Constraints,” which 1s a con-
tinuation-in-part of U.S. patent application Ser. No. 11/395,
463; and U.S. application Ser. No. 12/145,411, filed Jun. 24,
2008 and entitled “Managing Communications Between
Computing Nodes;” each of which 1s incorporated herein by
reference 1n 1ts entirety. In addition, additional details related
to the operation of one example of a remote storage service
that may be used to store snapshot volume copies or otherwise
provide remote archival storage systems are available 1n U.S.
Patent Application Publication No. 2007/0156842, published
Jul. 5, 2007 and entitled “Distributed Storage System With
Web Services Client Interface,” which 1s incorporated herein
by reference 1n 1ts entirety, and which claims priority of U.S.
Patent Application No. 60/754,726, filed Dec. 29, 2005. Fur-
thermore, additional details related to one example of users
providing paid access to the users’ programs or other data for
other users are available 1n U.S. patent application Ser. No.
11/963,331, filed Dec. 21, 2007 and entitled “Providing Con-
figurable Pricing for Execution of Software Images,” which 1s
incorporated herein by reference in 1ts entirety, and which
may similarly be used herein for users to charge other users
for various types of paid access to volumes and/or snapshot
copies, as discussed 1n greater detail elsewhere.

In addition, as previously noted, some embodiments may
employ virtual machines, and 1f so the programs to be
executed by the program execution service may include entire
virtual machine 1images. In such embodiments, a program to
be executed may comprise an entire operating system, a file
system and/or other data, and possibly one or more user-level
processes. In other embodiments, a program to be executed
may comprise one or more other types of executables that
interoperate to provide some functionality. In still other
embodiments, a program to be executed may comprise a
physical or logical collection of instructions and data that
may be executed natively on the provided computing system
or indirectly by means of interpreters or other soltware-
implemented hardware abstractions. More generally, in some
embodiments, a program to be executed may 1nclude one or
more application programs, application frameworks, librar-
1es, archives, class files, scripts, configuration files, data files,
etc.

10

15

20

25

30

35

40

45

50

55

60

65

38

In addition, as previously noted, 1n at least some embodi-
ments and situations, volumes may be migrated or otherwise
moved from one server storage system to another. Various
techniques may be used to move volumes, and such move-
ment may be mitiated 1n various manners. In some situations,
the movement may retlect problems related to the server
storage systems on which the volumes are stored (e.g., failure
of the server storage systems and/or of network access to the
server storage systems). In other situations, the movement
may be performed to accommodate other volume copies to be
stored on existing server storage systems, such as for higher-
priority volumes, or to consolidate the storage of volume
copies on a limited number of server storage systems, such as
to enable the original server storage systems that store the
volume copies to be shut down for reasons such as mainte-
nance, energy conservation, etc. As one specific example, 1f
the one or more volume copies stored on a server storage
system need more resources than are available from that
server storage system, one or more of the volume copies may
be migrated to one or more other server storage systems with
additional resources. Overuse of available resources may
occur for various reasons, such as one or more server storage
systems having less resources than expected, one or more of
the server storage systems using more resources than
expected (or allowed), or, in embodiments 1n which available
resources ol one or more server storage systems are inten-
tionally over-commuitted relative to possible resources needs
of one or more reserved or stored volume copies. For
example, i the expected resources needs of the volume copies
are within the available resources, the maximum resource
needs may exceed the available resources. Overuse of avail-
able resources may also occur 1f the actual resources needed

for volume storage or use exceed the available resources.

It will be appreciated that 1n some embodiments the func-
tionality provided by the routines discussed above may be
provided in alternative ways, such as being split among more
routines or consolidated into fewer routines. Similarly, in
some embodiments, 1llustrated routines may provide more or
less functionality than 1s described, such as when other 1llus-
trated routines istead lack or include such functionality
respectively, or when the amount of functionality that 1s pro-
vided 1s altered. In addition, while various operations may be
illustrated as being performed 1n a particular manner (e.g., 1n
serial or 1n parallel) and/or 1n a particular order, 1n other
embodiments the operations may be performed 1n other
orders and in other manners. Similarly, the data structures
discussed above may be structured in different manners in
other embodiments, such as by having a single data structure
split into multiple data structures or by having multiple data
structures consolidated 1nto a single data structure, and may
store more or less information than 1s described (e.g., when
other illustrated data structures instead lack or include such
information respectively, or when the amount or types of
information that 1s stored 1s altered).

From the foregoing 1t will be appreciated that, although
specific embodiments have been described herein for pur-
poses of 1illustration, various modifications may be made
without deviating from the spirit and scope of the invention.
Accordingly, the mvention 1s not limited except as by the
appended claims and the elements recited therein. In addition,
while certain aspects of the invention are presented below 1n
certain claim forms, the mventors contemplate the various
aspects of the mvention in any available claim form. For
example, while only some aspects of the mnvention may cur-
rently be recited as being embodied in a computer-readable
medium, other aspects may likewise be so embodied.

US 8,806,105 B2

39

What 1s claimed 1s:

1. A non-transitory computer-readable medium having
stored contents that configure one or more computing sys-
tems of a program execution service to perform a method, the
method comprising:

executing, by the configured one or more computing sys-

tems and in response to a request from a {irst customer of
the program execution service, a first program copy of an
application program on a first computing system pro-
vided by the program execution service;

providing, by the configured one or more computing sys-

tems to the first program copy, access to a block data
storage volume on a block data storage system of a block
data storage service that 1s separated from the first com-
puting system by one or more networks;

initiating, by the configured one or more computing sys-

tems, performance of a first data access request for the
block data storage volume that 1s made by the first pro-
gram copy, the mitiating of the performance including
performing one or more nteractions with the block data
storage system over the one or more networks;

in response to the first program copy executing on the first

computing system becoming unavailable, providing, by
the configured one or more computing systems, access
to the block data storage volume from a second program
copy of the application program that 1s executing for the
first customer on a second computing system provided
by the program execution service, to allow continued
access of the application program to the block data stor-
age volume; and

initiating, by the configured one or more computing sys-

tems, performance of a second data access request for
the block data storage volume that 1s made by the second
program copy, the imtiating of the performance includ-
ing performing one or more additional interactions with
the block data storage system over the one or more
networks.

2. The non-transitory computer-readable medium of claim
1 wherein the block data storage service provides an applica-
tion programming interface (API) for use by the first cus-
tomer and by multiple other customers, wherein the first and
second data access requests are initiated by the first and
second program copies via the API, and wherein the provid-
ing to the first program copy of the access includes attaching
the block data storage volume to the first computing system
via a logical representation of the block data storage volume
that 1s created locally to the first computing system.

3. The non-transitory computer-readable medium of claim
2 wherein the configured one or more computing systems
include the first computing system and execute a node man-
ager module of the block data storage service that performs
the one or more interactions to send the first data access
request to the block data storage system.

4. The non-transitory computer-readable medium of claim
1 wherein the first and second data access requests for the
block data storage volume are to access block data stored on
the block data storage volume.

5. The non-transitory computer-readable medium of claim
1 wherein the first customer 1s also a customer of the block
data storage service and interacts with the block data storage
service to initiate creation of the block data storage volume.

6. The non-transitory computer-readable medium of claim
1 wherein the block data storage service provides an applica-
tion programming interface (API) for use by a plurality of
customers that include the first customer, and wherein the
stored contents further configure the one or more configured
computing systems to, before the providing of the access to

10

15

20

25

30

35

40

45

50

55

60

65

40

the first program copy, send a request from the first customer
via the API to the block data storage service to create the
block data storage volume for use by the first customer.
7. The non-transitory computer-readable medium of claim
1 wherein the block data storage service provides an applica-
tion programming interface (API) for use by a plurality of
customers that include the first customer, and wherein the
stored contents further configure the one or more configured
computing systems to send a request from the first customer
via the API to the block data storage service to obtain infor-
mation about use of capabilities of the block data storage
service by the first program copy.
8. The non-transitory computer-readable medium of claim
1 wherein the block data storage service provides an applica-
tion programming intertace (API) for use by a plurality of
customers that include the first customer, and wherein the
stored contents further configure the one or more configured
computing systems to send a request from the first customer
via the API to the block data storage service to obtain addi-
tional functionality from the block data storage service in
exchange for payment recerved from the first customer.
9. A system comprising:
a memory having stored thereon instructions; and
a processor coupled to the memory that, when executing
the stored 1nstructions, 1s caused to provide a block data
storage service that has an application programming,
intertace (API) for use by customers of the block data
storage service, the providing of the block data storage
service including;
in response to a request from a first customer of the block
data storage service via the API, creating a block data
storage volume for use by a first program copy of an
application program that 1s executing for the first cus-
tomer on a first computing device separated from the
block data storage service by one or more networks,
wherein the block data storage volume 1s stored on a
block data storage system provided by the block data
storage service, and wherein the first computing device
1s part of a program execution service and 1s used to
execute the first program copy for the first customer 1n
exchange for one or more fees;
responding, to a first data access request of the first pro-
gram copy to the block data storage volume that 1s
received over the one or more networks, by nitiating
performance of the first data access request on the block
data storage volume;
in response to the first program copy executing on the first
computing device becoming unavailable, providing, to a
second program copy of the application program that 1s
executing for the first customer on a second computing
device, access to the block data storage volume to allow
continued access of the application program to the block
data storage volume, wherein the second computing
device 1s part of the program execution service and 1s
used to execute the second program copy for the first
customer; and
responding, to a second data access request of the second
program copy to the block data storage volume that 1s
received over the one or more networks, by nitiating
performance of the second data access request on the
block data storage volume.
10. The system of claim 9 wherein the providing of the
block data storage service further includes:
providing, to the first program copy, local access to the
block data storage volume by attaching the block data
storage volume to the first computing device; and

US 8,806,105 B2

41

providing, to the second program copy, local access to the
block data storage volume by attaching the block data
storage volume to the second computing device.

11. The system of claim 10 wherein the first and second
data access requests are to access stored block data and are
initiated via the API.

12. The system of claim 9 wherein the first customer 1s a
customer of the program execution service that interacts with
the program execution service to mitiate execution of the first
executing program on the first computing device.

13. The system of claim 9 wherein the providing of the
block data storage service includes, 1n response to a request
received from the first customer via the API, providing infor-
mation to the first customer about use of capabilities of the
block data storage service involving the block data storage
volume.

14. The system of claim 9 wherein the providing of the
block data storage service includes, 1n response to a request
received from the first customer via the API, providing addi-
tional functionality to the first customer from the block data
storage service i exchange for payment recerved from the
first customer.

15. A computer-implemented method comprising:

executing, by a configured computing system of a program

execution service and i response to arequest from a first
customer of the program execution service, a first pro-
gram copy ol an application program for the first cus-
tomer on a {irst computing system provided by the pro-
gram execution service, the executing of the first
program copy being performed based on at least one fee
charged by the program execution service to the {first
customer;

providing, by the configured computing system to the first

program copy, access to a block data storage volume
provided by a block data storage system of a block data
storage service that i1s separated from the program
execution service by one or more networks, wherein the
access of the first program copy 1s based on one or more
fees paid by the first customer to the block data storage
service;

iitiating, by the configured computing system, perior-

mance of a first data access request using the block data
storage volume that 1s made by the first program copy,
the mitiating of the performance including performing
one or more interactions with the block data storage
system over the one or more networks;

in response to the first program copy executing on the first

computing system becoming unavailable, providing, by
the configured computing system to a second program
copy of the application program that 1s executing for the
first customer on a second computing system provided
by the program execution service, access to the block
data storage volume to enable continued access of the
application program to the block data storage volume;
and

initiating, by the configured computing system, perior-

mance ol a second data access request using the block
data storage volume that 1s made by the second program

5

10

15

20

25

30

35

40

45

50

55

42

copy, the imtiating of the performance including per-
forming one or more additional interactions with the
block data storage system over the one or more net-
works.

16. The method of claim 15 wherein the providing of the
access to the first program copy includes attaching the block
data storage volume to the first computing system via a {irst
logical representation of the block data storage volume that 1s
local to the first computing system, and wherein the providing
of the access to the second program copy includes attaching
the block data storage volume to the second computing sys-
tem via a second logical representation of the block data
storage volume that 1s local to the second computing system.

17. The method of claim 16 wherein the configured com-
puting system executes a first node manager module of the
block data storage service that 1s associated with the first
computing system and that performs the one or more inter-
actions to send the first data access request to the block data
storage system, and wherein the configured computing sys-
tem executes a second node manager module of the block data
storage service that 1s associated with the second computing
system and that performs the one or more additional interac-
tions to send the second data access request to the block data
storage system.

18. The method of claim 17 further comprising, under
control of the executing first node manager module, sending
the first data access request from the first computing system
over the one or more networks to the block data storage
system.

19. The method of claim 15 wherein the block data storage
service provides an application programming interface (API)
for use by a plurality of customers that include the first cus-
tomer, and wherein the method further comprises, before the
providing of the access for the first application program and in
response to mstructions from the first customer, sending a
request via the API to the block data storage service to create
the block data storage volume for use by the first customer.

20. The method of claim 15 wherein the block data storage
service provides an application programming interface (API)
for use by a plurality of customers that include the first cus-
tomer, and wherein the method further comprises, inresponse
to mstructions from the first customer, sending a request via
the API to the block data storage service to obtain information
for the first customer about use of capabilities of the block
data storage service by the first application program.

21. The method of claim 15 wherein the block data storage
service provides an application programming interface (API)
for use by a plurality of customers that include the first cus-
tomer, and wherein the method further comprises, inresponse
to mstructions from the first customer, sending a request via
the API to the block data storage service to obtain additional
functionality for the first customer from the block data stor-

age service 1n exchange for payment received from the first
customer.

	Front Page
	Drawings
	Specification
	Claims

