12 United States Patent
Hallak et al.

US008799705B2

US 8,799,705 B2
Aug. 5, 2014

(10) Patent No.:
45) Date of Patent:

(54) DATA PROTECTION IN A RANDOM ACCESS

DISK ARRAY
(75) Inventors: Renen Hallak, Tel-Aviv (IL); Tal Ben
Moshe, Kiryat-Ono (IL); Niko Farhi,
Tel-Aviv (IL); Erez Webman,
Petach-Tikva (IL)
(73) Assignee: EMC Corporation, Hopkinton, MA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 320 days.
(21) Appl. No.: 13/420,633
(22) Filed: Mar. 15, 2012
(65) Prior Publication Data
US 2013/0173955 Al Jul. 4, 2013
Related U.S. Application Data
(60) Provisional application No. 61/582,841, filed on Jan.
4,2012.
(51) Int.CL
Gool’ 11/00 (2006.01)
Gool’ 11/10 (2006.01)
(52) U.S. CL
CPC GO6I 11/1076 (2013.01); GO6F 11/1092
(2013.01)
USPC o, 714/6.24;°714/6.2;°714/6.22

(38) Field of Classification Search
CPC GO6F 11/1076; GO6F 11/1092
USPC 714/6.2,6.22, 6.24

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2007/0220313 Al* 9/2007 Katsuragietal. 714/6
2008/0126844 Al* 5/2008 Morntaetal. 714/6
2012/0246511 AL* 9/2012 Sato ...ccoooevvvvvviiiinineennnnnn, 714/6.2

* cited by examiner

Primary Examiner — Sarai Butler

(74) Attorney, Agent, or Firm — Krishnendu Gupta; Konrad
R. Lee

(57) ABSTRACT

A disk array memory system comprises: a plurality of disks in
a disk array for storage of content data and parity data in
stripes, content data 1n a same stripe sharing parity bits of said
parity data, each disk having a spare disk capacity including
at least some of a predefined array spare capacity, said array
spare capacity providing a dynamic space reserve over said
array to permit data recovery following a disk failure event; a
cache for caching content data prior to writing to said disk
array; and a controller configured to select a stripe currently
having a largest spare stripe capacity, for a current write
operation of data from said cache, thereby to write all said
data of said current write operation on a same stripe, thereby
to maximize sharing of parity bits per write operation and

minimize separate parity write operations.

26 Claims, 9 Drawing Sheets

18
10
/
™
Controller
L 16
12 ()
Disk Array) ’
Write Cache
/
/

~_

14

U.S. Patent Aug. 5, 2014 Sheet 1 of 9 US 8,799,705 B2

Fig. 1A
Fig. 1B
Fig. 1C

'. eyeq] oN

\eje ON

Prior Art

T —

— o ..

3 © C 5

03 . o .2

5 9 5 5 3 5 5 2
© 3 3 x

= ®© E5 00 S0 3

tw WO <=2

1y Jolid

US 8,799,705 B2

)s1g MON
JO UoIlIBSU|
19UV
D2 b1
2 'L YSI1Q
7 Jo pjingay
de b1 R ain|led
- 1YY
b
—
-«
v "Dl .a1B1S
lenu;

U.S. Patent

US 8,799,705 B2

Sheet 3 of 9

Aug. 5, 2014

U.S. Patent

Ng "B

¢ b1

¢ "Bi

My Jold

17 & C ! 0

)SiQ MoN
JO UOI}I9SU]

=2\

-
ek ek
. ?
W.M..ﬂ............ﬂ.

e

3¥S1Q
Jo p|ingay
R ainjled

:9]e1S
e} iu]

U.S. Patent Aug. 5, 2014 Sheet 4 of 9 US 8,799,705 B2

16

/10

Write Cache

Controller
Fig. 4

18

Disk Array

\

12

£SG

US 8,799,705 B2

Aelle
MSIP JNO JO Welbelp 1oo|g

Sheet S of 9

:Bulouejeqay BUY

Aug. 5,2014

¢S
A°
'S

-4S1J MON

1 10 Uolasuy|

=2 A

“a ‘a N °‘d

-1 ASId

}O plinQgay

R ainjie

1OV

-9]e1S

[eliuj

U.S. Patent

US 8,799,705 B2

Sheet 6 of 9

Aug. 5, 2014

U.S. Patent

G9 -

S,

€9

pu
ON'

¢ Sadlis

— 3I0IN SOA

il

‘AjguipJodoe dewliq
pue ajgel suiddew a1epdn "S2049Z ||e S| 1B
MU SHO0|g 2sayl duinedipul Aq uollewloul
Allied 2yl woJdj $300(q 150} ay] ,9A0WDY ,
"2WRYIS gIVY SulAldapun ayj guisn
12JJNg , 91M 01 SH00|q,, WOol} S320(|g a|di3jnw
suljepdn Ajpuasinauod Aq 2diais 2u3 |14,

l[4yng ,23114M 01 $)00|q,,
U1 $320]q pPaJancdal 1nd pue ‘Uoilew.ojul

AduepunpaJ 3uUish ejep 1S0| JOA0IBY

3SIP PaAOWal uo Ajlied uijou, payJew

¢ 9

1,usie 1yl $320|g yum adiiis pui4

'‘24npadoud pjingsJ uidag pue

9 -

AENTIA L SB HSIP mum__mu__“um>OEw.h HEIA

1IE1S

US 8,799,705 B2

Sheet 7 0of 9

Aug. 5, 2014

U.S. Patent

pu

AlessadaN } eje(Jo supue|egay WJ04I9d

_3|gejieAe, Se)SIp pa1Jasul Ajmau yie

$S8204d p|IingaY AQIvy Hoqy

o

>

!

/ "D

L

L

L

US 8,799,705 B2

Sheet 8 0f 9

Aug. 5, 2014

U.S. Patent

pu4

AJeSS229N I e1eQ JO Suldue|egay W.I0}I9d

d|gejieAe, Se)SIp palasul AjMmau MJe

g "3l

¢ 8

18

US 8,799,705 B2

Sheet 9 of 9

Aug. 5, 2014

U.S. Patent

pug

ON

¢IUIM
01 S)20|q
20N

SOA

Ve —

‘AjSuipJ1020e dewlig
. pue a|ge) suiddew aiepdn swayds qIvy
o O dulAjlJapun ay3l suisn s}00|q ajdiyjnwi
guilepdn Ajpuaainduod Ag adliis aul |4,

=6 _ $YJ0|q 3|ge|ieAe
JO Joquwinu 1saysiy yim adials pui4

911IM 01 $)20|q J0 dnou3 anl229Yy

| 6

11E1S

6 "SI

US 8,799,705 B2

1

DATA PROTECTION IN A RANDOM ACCESS
DISK ARRAY

RELATED APPLICATION

This application claims the benefit of priority under 35
USC §119(e) of U.S. Provisional Patent Application No.
61/582,841 filed Jan. 4, 2012, the contents of which are incor-

porated herein by reference 1n their entirety.

FIELD AND BACKGROUND OF THE
INVENTION

The present invention, in some embodiments thereof,
relates to data protection 1 a random access disk array, and,
more particularly, but not exclusively, to a variation of a
RAID system to provide for data protection.

Raid 1s an acronym for Redundant Array of Independent
Disks, and 1s a system for storing data on multiple disks 1n
which redundancy of data storage between the disks ensures
recovery of the data 1in the event of failure. This i1s achieved by
combining multiple disk drive components 1nto a logical unit,

where data 1s distributed across the drives 1n one of several
ways called RAID levels.

RAID 1s now used as an umbrella term for computer data
storage schemes that can divide and replicate data among
multiple physical disk drives. The terms disks and drives will
be used interchangeably henceforth. The physical disks are
said to be in a RAID array, which 1s accessed by the operating
system as one single disk. The different schemes or architec-
tures are named by the word RAID followed by a number
(e.g., RAID 0, RAID 1). Each scheme provides a different
balance between three key goals: increasing data reliability,
decreasing capacity overhead and increasing input/output
performance.

The most basic form of RAID—a building block for the
other levels but not used for data protection, 1s Raid 0, which
has high performance but no redundancy. The data 1s spread
evenly between N disks. RAID 0 gives maximum pertor-
mance since data retrieval 1s carried out on all N disks in
parallel. However each data i1tem 1s stored exactly once so
disk failure always loses some data.

RAID 1 requires mirroring of all the data. Capacity drops
by 50% since all data 1s stored twice, but excellent perfor-
mance 1s still achieved since the data 1s still spread between
disks 1n the same way, allowing for parallel reads. RAID 1 can
support failure of one of each pair of disks, however the price
1s the loss of half of the capacity. Although multiple disk
fallures can be tolerated, only one failure 1s possible per
mirrored pair without loss of data.

In greater detail, RAID 1 1s mirroring. Mirroring comprises
writing each block of data to two disks, D, and D,, and
reconstructing a disk by copying 1ts minor disk upon failure.
This method requires performing two disk writes per user
write, and consumes an overhead of 100% in capacity. Its
rebuild requires performing reads and writes 1n proportion to
the size of the failed disk, without additional computation
penalties. Additionally, reading data which resided on the
failed disk while 1n degraded mode requires a single disk read,
just as under a normal system operation.

In general, RAID-1 protects from single disk failure. It may
protect from more than one failure if no two failed disks are
part of the same pair, known as a “RAID group”. RAID-1 may
also be implemented 1n “n-way mirroring” mode to protect
against any n—1 disk failures. An example 1s RAID 1.3 which
introduced three way mirroring, so that any two disks could

10

15

20

25

30

35

40

45

50

55

60

65

2

tail and all the data could still be recovered. The cost however
1s that there 1s only 33% utilization of the disks.

A requirement thus became apparent, to somehow develop
a system that allowed for the system to recover all data after
the failure of any disk at the cost of a more reasonable over-
head, and as a result RAID 4 was developed.

RAID 4 uses a parity bit to allow data recovery following
failure of a bit. In RAID 4 data 1s written over a series of N
disks and then a parity bit 1s set on the N+1 disk. Thus if N 1s
9, then data 1s written to 9 disks, and on the tenth, a parity of
the nine bits 1s written. If one disk fails the parity allows for
recovery of the lost bit. The failure problem 1s solved without
any major loss of capacity. The utilization rate 1s 90%. How-
ever the tenth disk has to be changed with every change of
every single biton any of the nine disks, thus causing a system
bottleneck.

In greater detail, a RAID-4 group contains k data disks and
a single parity disk. Each block 1 in the parity disk P contains
the XOR of the blocks at location 1 1n each of the data disks.
Reconstructing a failed disk is done by computing the parity
of the remaiming k disks. The capacity overhead 1s 1/k. This
method contains two types of user writes—iull stripe writes
known as “encode’ and partial stripe modifications known as
“update”. When encoding a full stripe, an additional disk
write must be performed for every k user writes, and k-1
XORs must be performed to calculate the parity. When modi-
tying a single block 1n the stripe, two disk reads and two disk
writes must be performed, as well as two XORs to compute
the new parity value. The rebuild of a failed block requires
reading k blocks, performing k-1 XORs, and writing the
computed value. Reading data which resided on the failed
disk while 1n degraded mode also requires k disk reads and
k-1 XOR computations. RAID-4, like RAID-1, protects from
a single disk failure.

RAID 5 solves the bottleneck problem of RAID 4 in that
parity stripes are spread over all the disks. Thus, although
some parity bit somewhere has to be changed with every
single change 1n the data, the changes are spread over all the
disks and no bottleneck develops.

However RAID 5 still only allows for a single disk failure.

In order to combine the multiple disk failure of RAID 1.3
with the high utilization rates o1 RAID 4 and 5, and 1n addition
to avoid system bottlenecks, Raid 6 was specified to use an
N+2 parity scheme that allows failure of two disks. RAID 6
defines block-level striping with double distributed parity and
provides fault tolerance of two drive failures, so that the array
continues to operate with up to two failed drives, irrespective
of which two drives fail. Larger RAID disk groups become
more practical, especially for high-availability systems. This
becomes increasingly important as large-capacity drives
lengthen the time needed to recover from the failure of a
single drive. Following loss of a drive, single-parity RAID
levels are as vulnerable to dataloss as a RAID O array until the
failed drive 1s replaced and its data rebuilt, but of course the
larger the drive, the longer the rebuild takes, causing a large
vulnerability interval. The double parity provided by RAID 6
gives time to rebuild the array without the data being at risk 1f
a single additional drive fails betfore the rebuild 1s complete.

Reference 1s now made to FIGS. 1A to 1C which show
three stages of a method for data protection using a spare disk,
known as a hot spare. In traditional disk arrays, using physical
magnetic disks, data protection often mvolved having a hot
spare disk. As shown in FIG. 1A, this hot spare disk 1s not
used during normal system operation, but rather i1s kept
empty, and used only when a regular disk failed. At this point
an exact copy of the failed disk 1s recovered and written to the
spare disk, as shown in FIG. 1B. During recovery, the lost data

US 8,799,705 B2

3

1s written to the new disk exactly in the same fashion as 1t
resided on the old disk. When the old disk 1s replaced, as
shown 1n FIG. 1C, 1ts replacement becomes the new hot spare
disk. The hot spare method cannot handle the recovery of
more than a single disk without human intervention of manu-
ally replacing the failed disk with an empty disk, unless you
keep several hot-spare disks. The cost of keeping this spare
disk 1s that it 1s not used during normal system operation and
thus 1t reduces the total performance of the system. Another
downside of having a single disk replace the failed disk 1s that
the hot spare disk recetves a storm of writes during recovery
and becomes a system bottleneck, causing the recovery, or
rebuild, process to take a while to complete.

Reference 1s now made to FIGS. 2A to 2C, which show a
variation of the spare hot disk system in which space for the
rewrite 1s reserved, or dedicated, across all the disks of the
array, as 1s common 1n more contemporary arrays. Keeping
dedicated spare space across all the disks 1s slightly more
complex than keeping a dedicated spare disk. A coarse granu-
larity, possibly static, mapping must be held between sections
of the failed disk and hot spare sections distributed across the
rest of the disks. This mapping should be smart in the sense
that lost sections are not written to disks which have other
sections 1n the same stripe as the lost section. FIG. 2A 1llus-
trates the 1n1tial state or state during normal operation. During,
normal operation, the dedicated spare sections are reserved
and not be written to. As shown 1n FIG. 2B, during recovery,
the lost data 1n each section 1s copied to a hot spare section on
one of the remaining disks. This method mediates some of the
faults of the previous option. The cost of keeping spare space
1s lower, since there 1s no performance penalty of having disks
which are not used. Writing the lost data 1s also distributed
across all the disks, reducing the recovery bottleneck and thus
decreasing the recovery time. However, the overhead of the
method of FIGS. 2A-2C 1s that when the old disks are
replaced, the sections must be copied back to them, thus
doubling the number of writes needed. Half of the writes are
distributed across all disks, and the remaining half go to a
single disk.

FIG. 2C 1illustrates such a recovery process. This also
implies that a rebuild abort process, in case a failed (removed)
disk 1s reinserted, will actually need to undo the work which
was already performed and copy back the data. If dedicated
spare space which 1s equal to the size of x disks 1s kept, x
recoveries can be performed without human intervention.
This x must be decided upon 1n advance and cannot change
dynamically.

Previously Used 10 Reduction Methods

The main problem with N+K RAID schemes such as RAID
4/5/6 (as opposed to RAID 1) 1s the 10 overhead incurred
upon user writes during regular system operation. RAID 1 has
a single write overhead per user write, while RAID 4/5 have
a penalty of 2 reads and 1 write on top of the user write, and
RAID 6 schemes have a penalty of 3 reads and 2 writes. Thus,
the main method used for reducing 10 overhead and increas-
ing performance was to use a RAID 1 scheme.

Reference 1s now made to FIGS. 3A-3C, which 1llustrate
the dedicated spare space method of FIGS. 2A-2C 1 a RAID
5 scheme. The S stripes contain data and the P stripes contain
parity. FIG. 3A shows the 1n1tial state, during normal system
operation. F1G. 3B shows the state during rebuild after failure
of disk D1, and FIG. 3C shows the system after insertion of a
new disk to replace the failed D1.

In all these N+K RAID schemes, encoding a full stripe of
redundant data for protection 1s much more efficient 1n terms
of 10s and computation, than updating a single block in that
stripe. In fact, 1t 1s even more efficient than the RAID 1

5

10

15

20

25

30

35

40

45

50

55

60

65

4

alternative. However, forcing the writing of full stripes on
magnetic drives, using various log structured approaches,

severely degrades performance from a different perspective.
The problem with this approach on magnetic drives 1s that
grouping random access user writes 1nto a full stripe harms
subsequent sequential read operations by literally randomiz-
ing the application’s access pattern to the underlying media.
In fact, 11 the underlying media 1s not naturally random
access, this will most likely degrade performance to a greater
extent than using the naive approach with the added 10 over-
head it entails.

Under both of the methods of FIGS. 2A-C and FIGS.
3A-C, dedicated spare space must be pre-allocated, and the
RAID stripe size 1s kept constant.

A solution to the general problem, which 1s agnostic of the
user access pattern, does not seem to coincide with the nature
of sequential media. Thus, much more complicated heuris-
tics, which were in many cases tailored to specific user access
patterns, were used to try to alleviate the problems described
above.

SUMMARY OF THE INVENTION

Data 1s cached for writing to disk. The disk or disk part with
the most space 1s selected for writing together of the cached
data 1n such a way as to share parity bits, and space reserved
in any event for disk failure 1s used as a dynamic space
reserve.

According to an aspect of some embodiments of the
present mnvention there 1s provided a disk array memory sys-
tem comprising

a plurality of disks 1n a disk array for storage of content data
and parity data in stripes, content data 1n a same stripe sharing
parity bits of said parity data, each stripe having a spare stripe
capacity including at least some of a predefined array spare
capacity, said array spare capacity providing a dynamic space
reserve over said array to permit data recovery following a
disk failure event:

a cache for caching content data for aggregation prior to
writing to said disk array;

a controller configured to select a stripe currently having a
largest spare stripe capacity, for a current write operation of
aggregated data from said cache, thereby to write all said
aggregated data of said current write operation on a same
stripe, thereby to maximize sharing of parity bits per write
operation and mimimize separate parity write operations.

An embodiment may comprise a table for mapping of
physical locations of said content data as defined by respec-
tive write operations with corresponding logical locations of
said data.

In an embodiment, the data 1s written on said disks in
blocks and the table granularity 1s the block size.

In an embodiment, said controller 1s configured to use said
table to balance write operations between respective disks of
said array.

In an embodiment, said controller 1s configured to use said
table to divert a current write operation from a disk which 1s
temporarily unavailable.

In an embodiment, said disk array has a stripe size, said
stripe size being differentially variable.

In an embodiment, said disks 1n said array have respec-
tively different capacities, said stripe size being such as to
provide for even distribution of stripes over said disks, in
proportion to said respective capacity at each disk.

In an embodiment, stripes have parity columns for said
parity bits, said parity columns being distributed evenly over

said disks.

US 8,799,705 B2

S

In an embodiment, said controller 1s configured to use said
parity data to recover content data lost 1n said disk failure
event and to write said recovered content data into said

dynamic space reserve.

In an embodiment, said disk array 1s arranged 1nto blocks,
and each block 1s assigned one of three states, 1n use, not 1n
use and not in parity, said not 1 parity state allowing for
1gnoring physical data and treating 1t as zeroed out.

An embodiment may be configured as a RAID 6 array
using two parity columns, said two columns being distributed
in respectively different directions.

In an embodiment, different amounts of spare stripe
capacities are defined for respective sections, thereby to pro-
vide variable levels of performance over said array.

According to a second aspect of the present invention there
1s provided a disk array memory system comprising

a plurality of disks 1n a disk array for storage of content data
and parity data 1n stripes, content data 1n a same stripe sharing
parity bits of said parity data,

a cache for caching content data prior to writing to said disk
array;

a controller configured to select a stripe for a current write
operation of data from said cache, thereby to write all said
content data of said current write operation and correspond-
ing parity data on a same stripe at a same physical location,
and 1rrespective of logical relationships of parts of said con-
tent data; and the controller utilizing a mapping table to map
between physical locations and logical relationships of said
content data.

According to a third aspect of the present invention there 1s
provided a disk array memory method comprising

providing a plurality of disks in a disk array,

storing content data and parity data in stripes within said
disk array, wherein content data 1n a same stripe shares parity
bits of said parity data,

for said array defining an array spare capacity, said array
spare capacity providing a dynamic space reserve over said
array to permit data recovery following a disk failure event;

caching content data to aggregate data from multiple write
operations mto a single aggregated write operation prior to
writing to said disk array;

selecting a stripe having a largest spare stripe capacity;

writing said aggregated cached data 1n a single write opera-
tion to said selected stripe, thereby to maximize sharing of
parity bits per write operation and minimize separate parity
write operations.

An embodiment may comprise mapping, using a table, of
physical locations of said content data as defined by respec-
tive write operations with corresponding logical locations of
said data.

An embodiment may comprise using said table to balance
write operations between respective disks of said array.

An embodiment may use said table to divert a current write
operation from a disk which 1s temporarily unavailable.

In an embodiment, the stripe size may be differentially
variable.

In an embodiment, said disks in said array have respec-
tively different capacities, said stripe size being such as to
provide for even distribution of stripes over said disks, in
proportion to said respective capacity at each disk.

In an embodiment, stripes have parity columns for said
parity bits, said parity columns being distributed evenly over
said disks.

An embodiment may use said parity data to recover content
data lost 1in said disk failure event and to write said recovered
content data 1nto said dynamic space reserve.

10

15

20

25

30

35

40

45

50

55

60

65

6

In an embodiment, said disk array 1s arranged 1nto blocks,
and each block 1s assigned one of three states, 1n use, not 1n

use and not in parity, said not in parity state allowing for
ignoring physical data and treating 1t as zeroed out.

An embodiment may be configured as a RAID 6 array
using two parity columns, said two columns being distributed
in respectively different directions.

Different amounts of spare stripe capacities may be defined
for respective sections, thereby to provide variable levels of
performance over said array.

According to a fourth aspect of the present invention there
1s provided a disk array memory method comprising

providing a plurality of disks 1n a disk array for storage of
content data and parity data in stripes, content data in a same
stripe sharing parity bits of said panty data,

caching content data prior to writing to said disk array;

selecting a stripe for a current write operation of data from
said cache, thereby to write all said content data of said
current write operation and corresponding parity data on a
same stripe at a same physical location, and irrespective of
logical relationships of parts of said content data; and

utilizing a mapping table to map between physical loca-
tions and logical relationships of said content data.

Unless otherwise defined, all technical and/or scientific
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which the
invention pertains. Although methods and materials similar
or equivalent to those described herein can be used in the
practice or testing of embodiments of the mvention, exem-
plary methods and/or materials are described below. In case
of contlict, the patent specification, including definitions, will
control. In addition, the materials, methods, and examples are
illustrative only and are not intended to be necessarily limait-
ng.

Implementation of the method and/or system of embodi-
ments of the invention can involve performing or completing
selected tasks manually, automatically, or a combination
thereof. Moreover, according to actual instrumentation and
equipment of embodiments of the method and/or system of
the invention, several selected tasks could be implemented by
hardware, by software or by firmware or by a combination
thereol using an operating system.

For example, hardware for performing selected tasks
according to embodiments of the mvention could be 1mple-
mented as a chup or a circuit. As soltware, selected tasks
according to embodiments of the mvention could be 1mple-
mented as a plurality of software 1nstructions being executed
by a computer using any suitable operating system. In an
exemplary embodiment of the invention, one or more tasks
according to exemplary embodiments of method and/or sys-
tem as described herein are performed by a data processor,
such as a computing platform for executing a plurality of
instructions. Optionally, the data processor includes a volatile
memory for storing instructions and/or data and/or a non-
volatile storage, for example, a magnetic hard-disk and/or
removable media, for storing instructions and/or data.
Optionally, a network connection 1s provided as well. A dis-
play and/or a user mput device such as a keyboard or mouse
are optionally provided as well.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are herein described,
by way of example only, with reference to the accompanying
drawings. With specific reference now to the drawings 1n
detail, 1t 1s stressed that the particulars shown are by way of
example and for purposes of illustrative discussion of

US 8,799,705 B2

7

embodiments of the invention. In this regard, the description
taken with the drawings makes apparent to those skilled 1n the

art how embodiments of the invention may be practiced.

In the drawings:

FIGS. 1A-1C are a block diagram of a prior art hot spare
disk method of data protection;

FIGS. 2A-2C are a block diagram of a prior art dedicated
spare space method of data protection;

FIGS. 3A-3C are a block diagram illustrating the prior art
dedicated spare space method used with a RAID 5 scheme;

FIG. 4 1s a stmplified block diagram of a RAID memory
device according to a first embodiment of the present mnven-
tion;

FIG. 5 1s a simplified block diagram of a disk array with
stripes configured according to the present embodiments;

FI1G. 6 1s a simplified flowchart illustrating a disk removal
procedure according to an embodiment of the present inven-
tion;

FI1G. 7 1s a ssmplified flowchart of a disk re-insertion pro-
cedure according to an embodiment of the present invention;

FIG. 8 1s a simplified flowchart of an empty disk insertion
procedure according to an embodiment of the present inven-
tion; and

FIG. 9 1s a simplified flowchart of a write procedure in
accordance with an embodiment of the present invention.

DESCRIPTION OF SPECIFIC EMBODIMENTS
OF THE INVENTION

The present invention, in some embodiments thereof,
relates to data protection 1n a random access disk array, and,
more particularly, but not exclusively, to a variation of a
RAID system to provide for data protection.

The present embodiments may provide a data protection
system for a RAID memory device contaiming random access
media, which 1s based on logical to physical mappings at fine
granularity on the random access media. By fine granularity 1s
meant that the mapping is to the block size, the block being
the smallest unit to which data 1s written, 4 k being a typical
block size. According to the present embodiments there 1s no
need to keep dedicated spare space, rather one can use ordi-
nary space to store recovered data by changing the mapping
information.

The embodiments may use variable sized stripes to reduce
parity overhead and allow easy addition/removal of disks.

The embodiments may balance and re-balance data across
the various disks since the placement of blocks 1s flexible due
to the random access nature of the media and the mapping,
table.

The embodiments may write new data or updates so as to
{111 the emptiest stripe. In combination with keeping fairly
little spare capacity the concentration of the current write to a
single stripe may considerably reduce 10 overhead induced
by the RAID scheme. As the disks are solid state disks rather
than magnetic disks, no 1ssue 1s raised by the fact that blocks
of data that belong together are stored at widely separate
physical locations.

The spare capacity that 1s kept can be the same space used
for recovery purposes.

For purposes of better understanding some embodiments
of the present invention, as illustrated in FIGS. 4-9 of the
drawings, reference has been made 1n the background to the
construction and operation of three prior art data protection
systems for disk arrays, as illustrated in FIGS. 1-3.

Before explaining at least one embodiment of the invention
in detail, 1t 1s to be understood that the invention 1s not nec-
essarily limited 1n 1ts application to the details of construction

10

15

20

25

30

35

40

45

50

55

60

65

8

and the arrangement of the components and/or methods set
forth 1n the following description and/or illustrated in the
drawings and/or the Examples. The invention 1s capable of
other embodiments or of being practiced or carried out 1n
various ways.

Referring now to the drawings, FIG. 4 illustrates a disk
array memory system 10 according to an embodiment of the
present invention. FIG. 3 illustrates the various states of the
disk array during operation of the embodiment. Within the
system 1s a disk array 12 1n which content data and parity data
are stored 1n stripes, the stripes being units of content data and
their corresponding parity columns. The stripes may be
smaller than, larger than or the same as the disks. In each
stripe, content data shares parity bits but different stripes have
different parity columns and are protected independently
from data loss or corruption.

Each disk 1n the array, and likewise each stripe, has spare
capacity made up of unused blocks. A certain amount of the
unused capacity 1s a predefined array spare capacity which 1s
intended for writing recovered data following a disk failure.
The array defines the amount of space that 1s to be reserved for
a disk failure but not 1ts physical location, thus the spare
capacity 1s in the form of a dynamic space reserve spread over
the array. The array spare capacity may thus migrate between
different physical data blocks over the lifetime of the array.
The array may for example be preset so that 10% of the
capacity 1s kept spare. In such a case each individual disk 1n
the array may have 1ts own spare disk capacity which may
vary statistically depending on the use of the device but the
array will refuse to accept further data when the 90% global
array limit 1s reached. Likewise each stripe has a spare stripe
capacity, again which is free to vary, as long as the overall disk
array does not exceed the 90% data limit. The 1nmitial state, or
state during normal disk operation, 1s illustrated as state 5.1 1n
FI1G. 5, which shows data blocks on each one of a series of
disks. The blocks are indicated as either used or empty.

The system includes a write cache 14 which caches content
data prior to writing to the disk array 12, so that write opera-
tions can be aggregated. A controller 16 selects a stripe for the
aggregated write operation, and looks for the stripe currently
having the largest spare stripe capacity. The current write
operation 1s then made of the aggregated data to a single
stripe, thus minimizing the number of separate parity bits that
need to be written. All the data of the aggregated write opera-
tion 1s written onto a single stripe, and this has the effect of
maximizing sharing of parity bits per write operation and thus
minimizing separate parity write operations.

A table 18 15 used to map physical locations of the content
data on the disks and stripes as defined by the write operations
with corresponding logical locations of the data. The result of
aggregating the write operations 1s that storage of the data at
the physical locations ceases to be constrained by the rela-
tionship of the data to other data. In other words the storage
ceases to be sequential. For a magnetic disk where readout
rate 1s atlected by i1nertia of the read head and search time,
such an arrangement would be disastrous, but for random
access memory such an arrangement 1s no disadvantage at all,
provided that efficient mapping 1s available to find the correct
physical address.

The controller 16 may use the table, not only for data
retrieval, but also to balance write operations between difier-
ent disks on the array so as to ensure even use of the disks.

A common fault of memory arrays 1s that a disk may be
temporarily unavailable, known as a hiccup. For data write a
hiccup can be ameliorated by using the memory table 18 to
divert a current write operation from the disk which 1s tem-
porarily unavailable, and thus avoid having to wait for the

US 8,799,705 B2

9

particular disk to become available again. For a data read, the
parity mformation present on other disks can be used to
reconstruct data that 1s currently on the unavailable disk.

The disk array may have a stripe size, which can be ditfer-
entially variable, meaning 1t may vary between disks or vary
over the course of the lifetime of the array. That 1s to say the
stripe size 1s a system setting of the array.

Disks 1n the array may have respectively different capaci-
ties. For example disks added later on to the array may have
larger capacities than the original disks. The stripe size may
be chosen to provide for even distribution of stripes over the
disks, 1n proportion to the respective capacity at each disk.
Such a stripe size provides for even ware of the disks. As will
be explained below, a typical stripe size may be decided
according to the total capacity of the array divided by the
capacity of the largest disk 1n the array.

In the disks, the stripes have their own parity columns for
the parity bits, and the parity columns of the various stripes
may be distributed evenly over the various disks of the array,
so that no stripe 1s compromised by the failure of any given
disk.

The controller 16 may use the parity data to recover content
data lost during a disk failure event, 1n which case the recov-
ered content data 1s written 1nto the dynamic space reserve, as
discussed above. In such a case array performance may drop
until a replacement 1s provided for the failed disk, since the
array has less disks to work with. State 5.2 in FIG. S 1llustrates
an exemplary state of the array after failure of disk D1 and
rebuild of the array. The amount of spare space 1s reduced
since the blocks have been used to write the recovered data
from the lost disk.

The disk array 1s arranged 1nto blocks, the blocks being the
smallest write unit 1n the array, for example of size 4 k.
Typically blocks are assigned two states, 1n use or not 1n use.
In an embodiment, the blocks may be assigned one of three
states, 1n use, not 1 use and not 1n parity. The “not in parity”
state means that the data 1s still there but for parity purposes 1s
marked as being all zeroes. By using this state, new disks may
be added without actual physical zeroing out of their data.

If a disk 1s erroneously removed, starting a data recovery
operation using parity and error correction, but then 1is
returned before the disk recovery 1s complete. Any data block
that has been rebuilt before the remnsertion of the disk 1s
marked as such, since it 1s no longer needed and no longer
present 1n the stripe’s parity block, but the blocks not already
recovered by the parity and error correction can then simply
be recovered by retaiming the “1n use” state of the data block.

In an embodiment, the array may be a RAID 6 array that
uses two parity columns, so as to recover from a double disk
tailure. The two parity columns may be distributed 1n respec-
tively different directions, for example horizontal and diago-
nal or two opposing diagonals.

In an embodiment, different amounts of spare capacities
may be defined for different sections made up of a collection
of stripes. In such a way, different levels of performance or
quality of service (QOS) may be provided for different sec-
tions over the array.

Considering some of the above points 1n greater detail, the
present embodiments utilize over-provisioning of capacity in
order to reduce the 10 overhead of the underlying RAID
scheme. The controller may reduce the overhead by always
secking the emptiest stripe, and writing multiple pages to that
stripe. In effect the system always fills the emptiest stripe. In
order to make sure the emptiest stripe has a lot of free space,
all that 1s needed 1s to keep some free space 1n the system. If
the system randomizes the mapping between logical and
physical locations, and thus causes data blocks to be dis-

10

15

20

25

30

35

40

45

50

55

60

65

10

carded from stripes at random, the emptiest stripe will have at
least twice the average free space of the array.

The constraints on free space may be array wide, or alter-
natively, the system may be considered as a collection of
separate sections, each containing its own quality of service
guarantees, enforced by keeping a different percentage of
spare space.

The system does not need to keep dedicated spare space for
recovery purposes. Instead, the array may treat recovered data
in a similar manner to user data, and simply write the recov-
ered data to somewhere else 1n the array.

State 5.3 illustrates the state of the system after insertion of
a new disk. The amount of spare space 1s reduced due to
writing data recovered from the failed disk, and then the new
disk 1s simply 1nserted. The data blocks in the new disk may
be marked as “not 1n parity” to avoid zeroing out the physical
data.

The system may allow for flexible addition and removal of
disks. When adding or replacing a disk no data need be
written to the new disk 1n order for the system to regain its
redundancy. In fact, many times redundancy will have been
regained before the addition of another disk. The number of
added disks 1s limited only by the number of available slots,
and the system may increase 1ts capacity and performance by
adding more disks over time. Multiple failures do not require
disk replacement, so long as there remains enough available
(regular) space to write the recovered data.

In order to fully utilize the performance of the underlying
disks, data may be kept balanced between disks. State 5.4
illustrates a typical disk state after rebalancing with the new
disk. When a disk 1s removed 1ts data may be dispersed
between the remaining disks. When a disk 1s added 1t may be
f1lled, either implicitly through user writes or explicitly, until
it 1s balanced with the existing disks.

Fast rebuild abortion 1s a useful feature of the present
embodiments. In fact, if a failed disk returns to proper oper-
ating condition, no work needs to be done 1n order to stop the
rebuild process. The recovered data which was copied to
other disks may be read from the disks. Data which has not yet
been recovered may be read from the returned disk. Data
rebalancing may then be performed in the background if
needed, but need not delay the disk’s availability. The above
allows the rebuild decision to happen the mstant a disk 1s
found to be faulty (or removed), without keeping the system
in degraded mode while waiting for 1t to recover.

The system also supports temporary disk failures, or hic-
cup management. When a disk fails temporarily, reads may be
serviced using the underlying RAID scheme’s degraded
mode read functionality, where the data 1s recovered from the
redundancy information kept. Writes may be diverted away
from such disks.

Architecture Description

In order to support the features listed above, table 18 1s used
to provide what may be a very granular mapping table
between logical and physical offsets. The table may be kept as
small as the application’s typical block size (e.g. 4 Kbytes of
data). The map may be used to understand where data 1s kept
on disk, and may be updated whenever data 1s written by the
user, or rewritten by the system itself for the purpose of
rebalancing between disks or data recovery.

A reverse mapping between physical offset and logical
ollset may be provided for efficient rewriting of data accord-
ing to a physical offset, for example when a failed disk needs
to be rebuilt. The mapping may be either kept 1n memory, or
kept only on disk to save memory space. In disks which have
extra space per block for metadata, the information may be
kept 1n the space reserved for metadata. In cases where the

US 8,799,705 B2

11

system 1s content based and the logical offset 1s based on a
hash value of the data itself, the reverse mapping may be
computed.

A bitmap, indicating which blocks are taken and which are
free, can be used for efficient searching for free locations.
Adding a third state to the bitmap as discussed above, in
addition to “taken” and “free” states, can help in reducing the
need to format disks as well as reducing the overhead of
aborting a rebuild process. This third state—*“all zeros™ or
“not 1n parity” may indicate that a block 1s free, and that the
data written should be assumed to equal all zeros for redun-
dancy purposes, regardless of the actual data written on disk
in this physical position. For example, in RAID-5 or in parity
based RAID-6, such a block will be considered as not being,
part of the parity block. For this reason the term “not 1n parity™
1s used.

When inserting a blank disk, all blocks on 1t may be marked
“not 1n parity”. Additionally, when a failed disk 1s being
rebuilt, 1ts blocks may be marked as “not in parity” once they
are recovered and rewritten to different locations. The benefit
this gives 1s that the bitmap 1s always 1n a correct state. 11 the
disk was to return so that the recovery could be aborted, the
data blocks not yet recovered can be used directly, and the
recovered blocks are already marked as having been zeroed.

The metadata can for example be protected under a sepa-
rate RAID scheme from the rest of the data, namely the
content and parity data. The metadata may be significantly
smaller and thus may be based on a less efficient scheme.
Volatile data structures may include an indication of how
many free slots each stripe has, and an ordering of stripes
according to free slots. Such structures may aid 1n finding the
freest stripe to write to at any given moment 1n an efficient
mannet.

No Dedicated Spare Space for Recovery

The disk array may use an approach which does not man-
date keeping dedicated spare space. In fact, the exact same
disk space used for normal system writes may also be used for
data recovery. The number of failures that the system can
support without human 1ntervention mvolving replacing the
failed disks may be limited only by the amount of free capac-
ity presently available in the array. Additionally, the present
embodiments allow simple addition and removal of disks
from the array, since 1t 1s based on a variable sized RAID
stripe strategy. Keeping non-dedicated spare space 1s cleaner
and more flexible than previously used methods and may
require nothing more than a very granular (e.g. at the 4K
block level) mapping between logical and physical locations,
and the ability to place (and re-place) each block of data at any
available physical position on disk.

The present embodiments may support variable sized
stripes that may grow and shrink according to the number of
disks, and are preferably but not necessarily kept equal to the
number of disks. This contrasts with prior art systems which
generally used fixed stripe sizes which were smaller than the
number of available disks. Variable stripe size allows
dynamic optimizing in terms of parity overhead. Moreover,
the spare space 1s used to help with RAID 10 overhead as will
be discussed 1n greater detail hereinbelow, thus increasing
performance during normal system operation.

When a disk fails the array may perform two operations.
First, the array may write the lost data 1n other stripes, which
includes some overhead of updating parity information for
those stripes. Second, the array may update the parity infor-
mation of all the stripes 1n the array, because the stripe size
may have decreased. Note that these two operations can be
united into a single operation to reduce the number of 10s. In
cases where stripe sizes are smaller than the number of disks,

5

10

15

20

25

30

35

40

45

50

55

60

65

12

it may be necessary to move around data which was not lost,
in order to decrease the stripe sizes of stripes not present on
the failed disk. All the writes are distributed over all of the
disks, and when a disk 1s added the stripe size 1s increased
accordingly.

Flows

The main process tflows are discussed below with reference
to FIGS. 6 to 9, and include procedures for removing a disk,
reinserting a removed disk before 1t’s rebuild process com-
pletes and 1nserting a blank disk.

Removing a Disk

Reference 1s now made to FI1G. 6, which 1s a simplified tlow
chart illustrating a disk removal procedure using an embodi-
ment of the present invention. When removing a disk, the
array may or may not have the opportunity to read its contents
beforehand. I the array does read the disk’s contents before
removing 1t, for example 1n the case ol a worn out SSD which
indicates 1t cannot accept new write commands, then all that
1s required 1s to read the appropnate data blocks from the disk
which 1s pending removal and move them elsewhere, by
tollowing the procedure described below, before removal. If,
on the other hand, the disk was removed unexpectedly or
failed for some reason, its data may be recovered from the
underlying RAID scheme and 1ts redundancy information.

The disk that has failed or been removed may 1mtially be
marked as virtual—stage 6.1.

Disk removal may then initiate a RAID rebuld process.

In stage 6.2, the blocks that are not marked “not 1n panty”™
are 1dentified as the ones that need to be recovered. Blocks
marked as 1n use must be recovered, written elsewhere, and
removed from the parity. Blocks marked as free must only be
removed from parity.

The rebuild process 1includes recovering all lost data and
writing 1t elsewhere. These writes may be scattered across
other stripes, just as user writes are written, and they may
include updating the mapping table with the new physical
olfsets of the moved pages. Lost parity information may be
rewritten 1n a well balanced manner on the remaiming disks.

In stage 6.3, redundancy information 1s used to recover the
data in the missing blocks. It the failed disk can still be read
from, data can simply be read from it imnstead of using redun-
dancy information. The recovered data 1s placed 1n the write
butifer or write cache 14 1n FI1G. 4
In stage 6.4, the recovered blocks are written into existing,
spaces 1n stripes 1n accordance with the underlying RAID
scheme. That 1s to say data 1s written 1nto the stripe with the
most space first and then 1nto the next stripe. During writing,
new parity data 1s created and may be rebalanced across the
available disks. The data that the new parity columns over-
write may be written elsewhere, just like any other lost data.
In addition, the array may update the parity information of all
stripes which have lost data. The lost data may be zeroed out,
that 1s marked as not 1n parity, and 1n an embodiment, the
array may turn the lost disk into a virtual disk and decrease the
stripes size by one. An optimization includes updating each
parity page only once. Thus, when filling a certain stripe with
lost data, the array may simultaneously update its parity infor-
mation to reflect the new virtual disk.

A method for keeping track of the rebuild process includes
the use of a three way bitmap as discussed above. Instead of
keeping a binary bitmap indicating which pages are free and
which are taken, the three-way bitmap may indicate for each
block or page whether 1t 1s free, taken or not-in-parity. If 1t 1s
taken then 1t has actual data. If 1t 1s free, 1t can be overwritten
but the data 1t holds has been used as part of the parity
computation. If it 1s not-in-parity, and the disk 1s not virtual,
then the slot 1s free and the data written there 1s arbitrary but

US 8,799,705 B2

13

should be considered zero as far as the parity 1s concerned.
During rebuild, when updating a stripe’s parity information,
one can simply update the bit to not-in-parity. If a disk 1s
reinserted, the controller knows that all the not-in-parity
stripes have been rebuilt, and that the rest have not. The
mapping table will also reflect this.

Reinserting a Disk Before Rebuild 1s Completed

Reference1s now made to FIG. 7, which 1s a simplified tflow
diagram 1illustrating a procedure for aborting a data rebuild
process that has already begun but not yet finished. When
re-mserting a disk, or when a disk comes back to life, the array
may take advantage of the data on this disk by aborting the
rebuild process 7.1. If the rebuild process was 1n progress, 1t
may be aborted. All zeroed blocks, marked as not 1n parity,
have been removed from their stripe’s parity blocks. It they
were previously used they were also recovered and are
present elsewhere. All non-zeroed blocks may be used as they
are. Thus the disk may simply be marked as available—stage
7.2.

Finally, 1n stage 7.3, rebalancing of the data may be carried
out to ensure even wear of the disks. However for frequently
used systems explicit rebalancing may not be necessary,
because user writes will cause the system to rebalance implic-
itly.

Reference 1s now made to FIG. 8, which 1s a variation of the
procedure of FIG. 7, for a case 1n which the disk 1s mserted
aiter the rebuild operation 1s complete. If the rebuild process
1s complete, the remnserted disk may be considered as inser-
tion of an empty disk, and the entire disk 1s marked as not in
parity, or available—stage 8.1. Again rebalancing—stage 8.2,
1s carried out as necessary.

The above procedure allows for treating of the locations of
the pages which were already moved by the rebuild process as
free locations, and keeping the pages which the rebuild pro-
cess did not yet reach 1n their previous state. By holding a
three-way-bitmap as described above, the process 1s reduced
to simply stopping the rebuild which 1s 1 progress, with no
extra overhead and no further change of state.

Some rebalancing may be achieved by copying parity and
content data back to the returned disk. This of course does not
have to happen explicitly, 1t can happen implicitly as user
writes arrive. I explicit copying of data 1s performed, the data
to be copied can be arbitrary, and should be chosen according
to RAID efliciency considerations, for example by emptying
the fullest available stripes, and copying their blocks to the
reinserted disk.

Adding an Empty Disk

When an empty disk 1s added, no trimming or zeroing 1s
required since all blocks on this disk may simply be mnitially
marked as not 1n parity. The procedure of FIG. 8 1s also
suitable for addition of a new or empty disk.

The only requirement on 1nsertion of a new disk may be to
update the volatile metadata, for example the list of stripes
and a corresponding counter of the empty pages in each
stripe, with the empty pages that are now present in this newly
inserted disk. The bitmap may not need updating, since the
bitmaps of these previously virtual sections were all marked
appropriately, as not 1n parity.

It may be the case that over a fairly short period of time,
user writes cause the capacity utilization to balance between
the new disk and the old disks. Otherwise data can be proac-
tively moved to the new disk. Parity information can be
moved to the new disk, 1n order to regain balance in the parity
column distribution between disks. It 1s interesting to note
that if the underlying RAID scheme (e.g. RAID 5) keeps the
old parity block as a free block which 1s part of the newly
expanded parity set, the new set’s parity may equal zero, thus

10

15

20

25

30

35

40

45

50

55

60

65

14

not requiring to write anything to the new disk 1n this case.
The above assumes parity blocks can also be marked as *“all
Zeros’”.

Reducing 10 Overhead

A problem with parity based RAID schemes, as opposed to
mirroring schemes, concerns the 10 overhead incurred upon
user writes during regular system operation. In all known
schemes, encoding a full stripe 1s much more efficient 1n
terms of I0s and computation, than updating a single block in
that stripe. Moreover, the efficiency scales significantly with
respect to the number of blocks updated concurrently.

Thus, always choosing the emptiest stripes to fill and then
filling them as much as possible with aggregation of write
operations can reduce the 10 overhead sigmificantly. To
increase this effect even more, one can over-provision the
system’s capacity by keeping (possibly different levels of)
spare space. Another option one can use to further amplify
this etlect, 1s to separate static and dynamic data. Both these
methods may cause the emptiest stripe to be much emptier
than the average stripe in the system. In some cases, using
such methods may reduce the need for more performance
oriented RAID schemes such as mirroring. Keeping rela-
tively little spare space may reduce the steady state 10 over-
head of parity based RAID schemes with double parity, such
as RAID-6, to the level of RAID-1. Moreover, where RAID-1
includes two writes per user write, RAID-6 with spares can in
this case induce only 1.1 writes on average, thus significantly
increasing SSD endurance by writing much less. In many
cases 1t may be favorable to choose RAID-6 with spares over
RAID-1. Surprisingly, this will most likely increase resil-
iency, since RAID-6 supports double disk failure, and SSD
endurance because the number of writes 1s nearly halved,
without degrading capacity utilization and performance
under normal system operation. Moreover, the tradeoll
between capacity and performance can easily be tuned.

Write Flow

Reference 1s now made to FIG. 9, which 1s a simplified
diagram 1llustrating write flow according to an embodiment
of the present invention. When performing write operations,
the array may write multiple pages together and fill stripes in
the process—9.1. The multiple pages or blocks are stored 1n
the builer. Then, 1n 9.2, the array may, as discussed, find the
emptiest stripe, and write user data to the free blocks in the
stripe, marked as free or as not 1n parity. In 9.3, relevant parity
pages may also be recomputed and updated. The array may
then update its bitmap according to the newly taken pages,
and also update the logical to physical mapping table.

In the case of external hiccup management as described
below, 11 one of the disks cannot be written to currently, the
system may find a stripe which 1s not contained in the tem-
porarily unavailable disk. In the case of internal hiccup man-
agement, the system may not fill the empty pages present 1n
the failed disk. It may make sense to find a stripe which has a
maximum number of free pages on properly working disks, or
alternatively, the stripe can be left partially free. In both
hiccup management scenarios, the array may avoid writing to
a stripe which has a parity column on an unavailable disk.

In the case 1n which part of a stripe 1n question resides on a
removed disk, which 1s currently being rebuilt, the writing
process may aid the rebuild process by updating the stripe’s
parity data 1n accordance with the removed blocks contained
on the removed disk. Such updating requires initiating
another write process for these recovered blocks 11 there 1s not
enough free space to write them to other free locations 1n the
current stripe.

US 8,799,705 B2

15

Hiccup Management

In order to deal with hiccups while trying to write full
stripes, the array may do one of two things:

External Hiccup Management—includes reducing the
stripe si1ze so as not to encompass all of the disks. For
example, if the stripe size includes all disks except for one,
and the stripes are distributed evenly across the disks, a fixed
percentage of the stripes will not reside on any given one of
the disks. When a disk encounters write problems, the array
may simply be able to update stripes which do not reside on
that disk. To deal with more than one concurrent disk hiccup,
the system may further reduce the stripe size. Such a method
1s named external hiccup management, since it manages hic-
cups above the stripes. Its downside 1s the increased parity
overhead.

Internal Hiccup Management—a second option 1s to write
around the failed disk, by updating only the blocks of a certain
stripe which do not reside on the failed disk. This has the
advantage of reduced parnity overhead, since the stripes are
larger. However, this method does not {ill stripes completely,
and thus slightly hurts the efficiency of the 10 reduction
methods described above. Another benefit of this method 1s
that there 1s no limit on the number of concurrent hiccups that
can be dealt with.

In order to deal with reads directed at temporarily failed
disks, one can use the underlying RAID scheme’s rebuild
functionality to recover the data from the RAID scheme’s
redundancy information.

Supporting Disks of Different Sizes

In order to optimally support disks of different sizes one
should fix the stripe size according to a weighted average of
the disk sizes, computed by taking the full capacity of the
array and dividing by the capacity of the largest available
disk. For example, 11 we have X disks of size N and another X
disks of size 2N. Then the stripe size may be NX+2NX

divided by 2N which equals 1.5X. As another example, 1f we
have 2X disks of size N and another X disks of size 4N, the

stripe s1ze may be 2NX+4NX divided by 4N which 1s again
1.5X. The various stripes may be evenly distributed between
the available disks, 1 proportion to each disk’s capacity.

Balanced Parity Column Distribution Across Disks

Parity columns of the various stripes may be distributed
evenly across the available disks. Moreover, when a disk 1s
removed, only parity columns from that disk need be moved
in a balanced manner to all of the remaining disks and when
a disk 1s added, parity columns may be moved only to the new
disk, 1n a balanced manner from all previously available
disks. Such mapping between stripe 1d and the disks contain-
ing the corresponding parity columns can be done statically
using a permutation of disk ids per stripe, thus requiring no
extra metadata. This permutation can be generated 1 a
pseudo random manner, where the seed 1s based on the stripe
1d. The location of the parity column may be determined by
the first disk 1d 1n the permutation which contains a non-
virtual, or available, disk. For example, 1n a system which can
potentially hold 8 slots, we can assume the permutation of
stripe X 15 <2, 7,5, 6,1, 0, 4, 3>, If disks 2 and 5 are virtual,
the parity column will reside on disk 7. If disk 7 fails the
column may be moved to disk 6. If disk 2 is inserted the
column may be moved to disk 2.

In a similar manner, 1n cases such as RAID-6, where there
are two parity columns, their location can be decided accord-
ing to the permutation by having the first column reside on the
first available disk starting from the left of the permutation,
and the second parity column reside on the first available disk
starting from the right of the permutation. In the previous

[

5

10

15

20

25

30

35

40

45

50

55

60

65

16

example, 1f all disks are present, the first column will reside
on disk 2, and the second on disk 3.

Stripe Sizes and Distributions Across Disks

The simplest stripe distribution may 1nvolve having each
stripe present on all of the available disks. This 1s made
possible by a variable size stripe scheme. Possible reasons to
keep stripe sizes smaller than the number of disks, 1s to
support the above-described external hiccup management, or
to support various sized disks. If such support 1s required, and
one concurrent disk hiccup 1s to be supported, there exist X
possible stripe distributions for a configuration which
includes X disks, since each stripe may be present on all disks
except for one. This can be generalized to smaller stripe sizes
as well.

When stripe sizes are smaller than the number of disks,
choosing which disks each stripe 1s present on can be done
using a similar technique. If for example the stripe size 15 X,
it may reside on the X first available disks in its pseudo
random permutation. This can also be performed on groups of
stripes, as long as enough granularity 1s provided.

It 1s expected that during the life of a patent maturing from
this application many relevant memory arrays, raid schemes
and disks will be developed and the scope of the correspond-
ing terms 1s intended to include all such new technologies a

Priori.
The terms “‘comprises”, “‘comprising”’, “includes”,
“including™, “having” and their conjugates mean “including

but not limited to™.

The term “consisting of means “including and limited to™.

As used herein, the singular form “a”, “an” and “the”
include plural references unless the context clearly dictates
otherwise.

It 1s appreciated that certain features of the invention,
which are, for clarity, described 1n the context of separate
embodiments, may also be provided in combination 1n a
single embodiment. Conversely, various features of the
invention, which are, for brevity, described 1n the context of a
single embodiment, may also be provided separately or 1n any
suitable subcombination or as suitable 1n any other described
embodiment of the invention. Certain features described 1n
the context of various embodiments are not to be considered
essential features of those embodiments, unless the embodi-
ment 1s 1noperative without those elements.

Although the invention has been described in conjunction
with specific embodiments thereof, i1t 1s evident that many
alternatives, modifications and variations will be apparent to
those skilled 1n the art. Accordingly, 1t 1s intended to embrace
all such alternatives, modifications and variations that fall
within the spirit and broad scope of the appended claims.

All publications, patents and patent applications men-
tioned 1n this specification are herein incorporated 1n their
entirety by reference into the specification, to the same extent
as 11 each individual publication, patent or patent application
was specifically and individually indicated to be incorporated
herein by reference. In addition, citation or identification of
any reference 1n this application shall not be construed as an
admission that such reference 1s available as prior art to the
present invention. To the extent that section headings are
used, they should not be construed as necessarily limiting.

What 1s claimed 1s:

1. A disk array memory system comprising,

a plurality of disks 1n a disk array for storage of content data
and parity data 1n stripes, content data 1n a same stripe
sharing parity bits of said parity data, each stripe having,
a spare stripe capacity including at least some of a pre-
defined array spare capacity, said array spare capacity

US 8,799,705 B2

17

providing a dynamic space reserve over said array to
permit data recovery following a disk failure event;

a cache for caching content data for aggregation prior to
writing to said disk array;

a controller configured to select a stripe currently having a
largest spare stripe capacity, for a current write operation
of aggregated data from said cache, thereby to write all
said aggregated data of said current write operation on a
same stripe, thereby to maximize sharing of parity bits
per write operation and minimize separate parity write
operations.

2. The disk array memory system of claim 1, further com-
prising a table for mapping of physical locations of said
content data as defined by respective write operations with
corresponding logical locations of said data.

3. The disk array of claim 2, wherein said data 1s written on
said disks 1n blocks and wherein a granularity of said table 1s
a size of said blocks.

4. The disk array memory system of claim 2, wherein said
controller 1s configured to use said table to balance write
operations between respective disks of said array.

5. The disk array memory system of claim 2, wherein said
controller 1s configured to use said table to divert a current
write operation from a disk which 1s temporarily unavailable.

6. The disk array memory system of claim 1, wherein said
disk array has a stripe size, said stripe size being differentially
variable.

7. The disk array memory system of claim 6, wherein said
disks 1n said array have respectively different capacities, said
stripe size being such as to provide for even distribution of
stripes over said disks, 1n proportion to said respective capac-
ity at each disk.

8. The disk array memory system of claim 7, said stripes
having parity columns for said parity bits, said parity columns
being distributed evenly over said disks.

9. The disk array memory system of claim 1, wherein said
controller 1s configured to use said parity data to recover
content data lost 1n said disk failure event and to write said
recovered content data into said dynamic space reserve.

10. The disk array memory system of claim 1, wherein said
disk array 1s arranged 1nto blocks, and wherein each block 1s
assigned one of three states, in use, not 1n use and not 1n parity,
said not in parity state allowing for ignoring physical data and
treating 1t as zeroed out.

11. The disk array memory system of claim 1, configured
as a RAID 6 array using two parity columns, said two col-
umns being distributed 1n respectively difierent directions.

12. The disk array memory system of claam 1, wherein
different amounts of spare stripe capacities are defined for
respective sections, thereby to provide variable levels of per-
formance over said array.

13. A disk array memory system comprising,

a plurality of disks in a disk array for storage of content data
and parity data 1n stripes, content data 1n a same stripe
sharing parity bits of said parity data,

a cache for caching content data prior to writing to said disk
array;

a controller configured to select a stripe for a current write
operation of data from said cache, thereby to write all
said content data of said current write operation and
corresponding parity data on a same stripe at a same
physical location, and 1rrespective of logical relation-
ships of parts of said content data; and the controller
utilizing a mapping table to map between physical loca-
tions and logical relationships of said content data.

14. A disk array memory method comprising

providing a plurality of disks in a disk array,

10

15

20

25

30

35

40

45

50

55

60

18

storing content data and parity data in stripes within said
disk array, wherein content data in a same stripe shares
parity bits of said parity data,

for said array defining an array spare capacity, said array
spare capacity providing a dynamic space reserve over
said array to permit data recovery following a disk fail-
ure event,

caching content data to aggregate data from multiple write
operations 1nto a single aggregated write operation prior
to writing to said disk array;

selecting a stripe having a largest spare stripe capacity;

writing said aggregated cached data 1n a single write opera-

tion to said selected stripe, thereby to maximize sharing
of parity bits per write operation and minimize separate
parity write operations.
15. The disk array memory method of claim 14, comprising
mapping, using a table, of physical locations of said content
data as defined by respective write operations with corre-
sponding logical locations of said data.
16. The disk array method of claim 15, wherein said table
has a granularity of a data block.
17. The disk array memory method of claim 15, comprising
using said table to balance write operations between respec-
tive disks of said array.
18. The disk array memory method of claim 15, comprising
using said table to divert a current write operation from a disk
which 1s temporarily unavailable.
19. The disk array memory method of claim 14, wherein
said disk array has a stripe size, said stripe size being differ-
entially variable.
20. The disk array memory method of claim 19, wherein
said disks 1n said array have respectively different capacities,
said stripe size being such as to provide for even distribution
of stripes over said disks, 1n proportion to said respective
capacity at each disk.
21. The disk array memory method of claim 20, said stripes
having parity columns for said parity bits, said parity columns
being distributed evenly over said disks.
22. The disk array memory method of claim 14, comprising,
using said parity data to recover content data lost 1n said disk
failure event and to write said recovered content data 1nto said
dynamic space reserve.
23. The disk array memory method of claim 14, wherein
said disk array 1s arranged into blocks, and wherein each
block 1s assigned one of three states, 1n use, not 1n use and not
in parity, said not in parity state allowing for 1gnoring physical
data and treating 1t as zeroed out.
24. The disk array memory method of claim 14, configured
as a RAID 6 array using two parity columns, said two col-
umns being distributed 1n respectively difierent directions.
25. The disk array memory method of claim 14, wherein
different amounts of spare stripe capacities are defined for
respective sections, thereby to provide variable levels of per-
formance over said array.
26. A disk array memory method comprising
providing a plurality of disks 1n a disk array for storage of
content data and parity data 1n stripes, content data in a
same stripe sharing parity bits of said parity data,

caching content data prior to writing to said disk array;

selecting a stripe for a current write operation of data from
said cache, thereby to write all said content data of said
current write operation and corresponding parity data on
a same stripe at a same physical location, and irrespec-
tive of logical relationships of parts of said content data;
and

utilizing a mapping table to map between physical loca-

tions and logical relationships of said content data.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

