United States Patent

US008793645B2

(12) (10) Patent No.: US 8,793,645 B2
Balasubramanian et al. 45) Date of Patent: Jul. 29, 2014
(54) REPLACEMENT OF DATA ELEMENT IN A 7,240,114 B2 7/2007 Karamanolis et al.
GRAPH 7,587,483 B1* 9/2009 Florissietal. 709/223
7,631,291 B2* 12/2009 Shuklaetal. 717/107
: : 7,788,238 B2* &/2010 Gabniel etal. 707/695
(75) Inventors: Ramrajprabu Balasubramanian, 7818.690 B2 10/2010 Srivastava
Renton, WA (US); Kushal Shah, 7,930,648 Bl 4/2011 Jaramillo
Redmond, WA (US); Balasubramanian 8,316,323 B2 11/2012 Sariaiya et al.
Shyamsunder, Redmond, WA (US) 8,452,821 B2 5/2013 Shankar
2001/0032320 Al 10/2001 Abdelnur et al.
(73) Assignee: Microsoft Corporation, Redmond, WA (Continued)
(US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this)
patent 1s extended or adjusted under 35 P 2-205829 10/{ 1993
U.S.C. 154(b) by 917 days. 1P 7-210443 S/1993
(Continued)
(21) Appl. No.: 12/753,695 OTHER PURI ICATIONS
(22) Tled: Apr. 2, 2010 Implementing Dynamic Flexibility in Workflows using Worklets—
. S Published Date: 2006 http://www.yawlfoundation.org/documents/
(65) Prior Publication Data Implementing%20Worklets.pdf (22 pages).
US 2011/0246872 Al Oct. 6, 2011 .
(Continued)
51) Int. CL
(1) (;10617 0/44 (2006.01) Primary Ikxaminer — Don Wong
(52) U.S.Cl | Assistant Examiner — Daxin Wu
USPC oo 7171104 (74) Antorney, Agent, or Firm — Ben labor; Brian Haslam;
(58) Field of Classification Search Micky Minhas
None
See application file for complete search history. (57) ABSTRACT
The generation and/or use of a hierarchical structure of model
(56) References Cited clements such as those that might be portions of a computer

U.S. PATENT DOCUMENTS

4,918,621 A 4/1990 Nado et al.

5,617,568 A 4/1997 Ault et al.

5917492 A 6/1999 Berelter et al.

6,209,036 Bl 3/2001 Aldres et al.

6,625,604 B2 9/2003 Muntz et al.

6,633,869 B1* 10/2003 Duparcmeur etal. 1/1
6,789,204 B2 9/2004 Abdelnur et al.

6,925,515 B2 8/2005 Burns et al.

7,043,485 B2 5/2006 Manley et al.

7,162,488 B2 1/2007 DeVorchik et al.

501 —

program. If 1t 1s determined that if a particular one of the
model elements should be changed from one model element
type to another model element type, that change 1s automati-
cally made. The determination of whether the change should
be made may be based on monitoring of actual behavior of the
soltware program. The determination might alternatively be
made based on expressed gestures of an author using an
authoring program that visualizes the hierarchical structure of
model elements.

20 Claims, 8 Drawing Sheets

Access Hierarchical Structure

Determine Model Element
To Be Replaced

504 —

Automatically Perform Replace

Populate Properties \

US 8,793,645 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0188292 Al* 10/2003 Herkertcoooeeeeeinn, 717/105
2004/0034497 Al 2/2004 Shah et al.

2004/0205143 Al 10/2004 Uemura

2004/0205711 Al 10/2004 Ishimitsu et al.

2005/0132304 Al 6/2005 Gudo et al.

2006/0053147 Al 3/2006 Wabhlert et al.

2006/0053178 Al 3/2006 wvan Ingen et al.

2006/0085428 Al 4/2006 Bozeman et al.

2006/0173956 Al 8/2006 Ulrich et al.

2006/0242197 Al* 10/2006 Tsyganskiy etal. 707/103Y
2007/0006468 Al 1/2007 Davies et al.

2007/0022087 Al 1/2007 Bahar et al.

2007/0088669 Al 4/2007 McGuire et al.

2007/0094354 Al 4/2007 Soltis

2007/0234224 Al 10/2007 Leavitt et al.

2007/0250505 Al 10/2007 Yang et al.

2008/0098016 Al* 4/2008 Sasaietal. 707/100
2008/0256508 Al 10/2008 Jonsson

2008/0270933 Al 10/2008 Straw et al.

2008/0282189 Al 11/2008 Hofmann et al.

2008/0301658 Al* 12/2008 FEl-Kersh 717/165
2009/0006154 Al 1/2009 Hao et al.

2009/0006468 Al* 1/2009 Shankaretal. 707/103Y
2009/0007063 Al 1/2009 Szpak et al.

2009/0063547 Al 3/2009 Wright et al.

2009/0100405 Al* 4/2009 Belenkyetal. 717/104
2009/0106238 Al 4/2009 Lita et al.

2009/0125877 Al* 5/2009 Kuzsmacetal. ... 717/105
2009/0164939 Al 6/2009 Ishimitsu et al.

2009/0222547 Al 9/2009 Boylan et al.

2009/0300326 Al 12/2009 Sweeney

2009/0300579 Al* 12/2009 Duttaetal. 717/105
2010/0049766 Al 2/2010 Sweeney et al.

2010/0287528 Al* 11/2010 Lochmann 717/104
2010/0313179 Al* 12/2010 Grovesetal. 717/101
2011/0145690 Al 6/2011 Hofmann et al.

FOREIGN PATENT DOCUMENTS

JP 11/15722 1/1999

JP 2004240803 8/2004

WO WO 2004042618 5/2004
OTHER PUBLICATIONS

Enhancing the Flexibility of Worktflow Execution by Activity Antici-

pation—Published Date: 2006 http://www.prism.uvsq.ir/~grig/
These/IIBPIM.pdf (13 pages).

Enhancing the Fault Tolerance of Workilow Management Systems—
Published Date: 2000 http://1eeexplore.ieee.org/stamp/stamp.
1sp?arnumber=00865896 (8 pages).

Windows Workflow Foundation: Creating a Custom Composite
Activity—Published Date: Jan. 2006 http://msdn.microsoft.com/en-
us/library/aa480200.aspx (15 pages).

ActivityFlow: Towards Incremental Specification and Flexible Coor-
dination of Workflow Activities—Published Date: 1997 http://www.
springerlink.com/content/52)5165w88471 8k3/fulltext.pdf (14

pages).
Kushal Shah—Workflows—Retrieved Date: Feb. 1, 2010 http://
blogs.msdn.com/kushals/archive/2009/11/1 1/morphing.aspx (2

pages).
Navigation Fast Pack User Guide—Published Date: 2009; http://
download.softpress.com/downloads/Navigation_ Pack User

Guide.pdf (28 pages) (The month of Publication 1s 1rrelevant since
the year of Publication is clearly prior to the filing of the Application).
“Are SharePoint Breadcrumbs completely wrong?” Published Date:
May 2, 2008; http://www.novolocus.com/tag/breadcrumbs/ (11
pages).

“ShearerSite Template System”—Published Date: Apr. 19, 2008;
http://www.shearersoftware.com/software/web-tools/ShearerSite/
(3 pages).

“Navigation 1mn School Atlases: Functionality, Design, and Imple-
mentation 1n the ‘Swiss World Atlas Interactive’”—Published Date:
2009; http://www.schwelzerwelfatlast.ch/downloads/publikationen/
2009 _1cc-1.pdf, 10 pages. (The month of Publication 1s irrelevant

since the year of Publication 1s clearly prior to the filing of the
Application).

“Manage Sites and Site Collections”—Available at least as early as:
Jan. 27, 2010; http://www.nirma.org/__layouts/help.aspx?Icid=1033
&c1d0=MS . WSS manifest&tid=MS. WSS HA10157781, (5 pages).
U.S. Appl. No. 12/748,110, Apr. 18, 2012, Office Action.

U.S. Appl. No. 12/748,110, Aug. 3, 2012, Notice of Allowance.
Dhruba Borthakur, “The Hadoop Distributed File System: Architec-
ture and Design™ http://lucene.apache.org’/hadoop/hdis_ design.pdt,
Avallable as early as Jul. 19, 2007,

Kevin Fu et al., “Fast and Secure Distributed Read-Only File Sys-
tem”, Feb. 2002, http:delivery.acm.org/10.1145/510000/505453/pl -
fu.pdi?keyl=505453&key2=4653284811&coll=GUIDE
&dlI=GUIDE&CFID=28875249& CFTOKEN=90749616.

Kiron Viayasankar, “File System and Storage Integrity”, http://
www.fs1.cs.sunysb.edu/~kvijayas/
FILE%20system%and%20Storage%20Integrity.pdf Awvailable as
early as Jul. 19, 2007.

Mitsuo Koikawa, “Web Technology in the Era of 2000, Special
Version: The First Round”, Visual Basic Magazine, vol. 6, No. 10, pp.
298-306, Shoeisha. Co., Ltd, Japan, Aug. 1, 2000,

U.S. Appl. No. 12/013,284, Mar. 18, 2010, Office Action.

U.S. Appl. No. 12/013,284, Aug. 18, 2010, Office Action.

U.S. Appl. No. 12/013,284, Mar. 30, 2011, Office Action.

U.S. Appl. No. 12/013,284, Jul. 9, 2012, Office Action.

U.S. Appl. No. 12/013,284, Oct. 2, 2012, Notice of Allowance.
U.S. Appl. No. 12/013,284, Feb. 6, 2013, Notice of Allowance.

* cited by examiner

US 8,793,645 B2

Sheet 1 of 8

Jul. 29, 2014

U.S. Patent

L a1nbi4

301
sjouueyD

uonEeIIuUNWWoN

001
wa)sAg bunndwon

o[l}e|]OA-UON

9|l1E|OA

¢ol

(S)10SS820.(

4
Aeidsiq

201

202

U.S. Patent Jul. 29, 2014 Sheet 2 of 8
200
201A~f—
202A
204A
—— 204B
204C
205A
205B

US 8,793,645 B2

204

205

Figure 2

U.S. Patent Jul. 29, 2014 Sheet 3 of 8 US 8,793,645 B2

300
301 200
311
0
Compilation
Interpretation <
312
0
Computer
Executable
Instructions

Figure 3

US 8,793,645 B2

Sheet 4 of 8

Jul. 29, 2014

U.S. Patent

$ 81nb14

aiaH AjAYy doi(]
%0)7
acov Apog
uoissaldxg ga v Jejug
GOV VGOopY UONIPUOY)
LG V@RI R R R R R R RN g [
g ;
cop Al DE0Y ar0y 3 V0 3 kpog
NO._N uolssaldxg gA v Jojug | uj wia]| | yoralo4
L Py AN R R geuisydegioy [
Ly RO T T T T T ojfedeg L)
LOY ™
O R D R D D R R nh e souenbag (O}
L0V 0071 L 97
I &sdejo) IV puedx3 | MOPLIOAN
00¥%

U.S. Patent Jul. 29, 2014 Sheet 5 of 8 US 8,793,645 B2

00

o017

Access Hierarchical Structure

002

Determine Model Element
To Be Replaced

003

Automatically Perform Replace

004

Populate Properties

Figure 5

U.S. Patent Jul. 29, 2014

Sheet 6 of 8

Sequence

ActivityOne

~_

PlaceHolderActivity

Activity Three

-~ 611

F~ 0612

— 0613

26']0

i 2

Viewer 601

Figure 6

-
I
:
ActivityOne
PlaceHolderActivity

US 8,793,645 B2

ActivitiesCollection

ActivityThree

2 Memory 602

U.S. Patent Jul. 29, 2014 Sheet 7 of 8 US 8,793,645 B2

700
Sequence ActivitiesCollection
:> ActivityOne
MyElementActivity
ActivityOne 611 ActivityThree
2 720
2 Memory 602
MyElementActivity 712
ActivityThree
v . 613
] }710
2 Viewer 601

Figure 7

U.S. Patent Jul. 29, 2014 Sheet 8 of 8 US 8,793,645 B2

6017

Access Value From Replaced

Model Element

602

Transform Value

803

Populate Property Field Of Replacement
Model Element With Transformed Value

Figure 8

US 8,793,645 B2

1

REPLACEMENT OF DATA ELEMENT IN A
GRAPH

BACKGROUND

Documents are often drafted 1n a hierarchically structured
way 1n which portions of the document represents nodes 1n a
hierarchy, and there 1s some convention for recognizing inter-
relationships between the nodes. Organization into some
hierarchical structure is helptul as 1t enables data to be more
clifectively organized and identified within the document.
That 1s one of the driving motivations for the development of
eXtensible Markup Language or XML. As an example, there
have even been standards for the definition of application
programs based on hierarchically structured documents. One
such standard 1s referred to as eXtensible Application Markup
Language (XAML).

However, such hierarchically structured documents can
become quite complex and cumbersome to deal with as the
number of nodes 1n the hierarchy increase. However,
increased nodes are often required to deal with complex data
such as, for example, a complex XAML document that
describes a sophisticated software program.

BRIEF SUMMARY

At least one embodiment described herein relates to the
generation and/or use of a hierarchical structure of model
clements. In one embodiment, the model elements may be
components of a computer program. If 1t 1s determined that 1f
a particular one of the model elements should be changed
from one model element type to another model element type,
that change 1s automatically made.

As an example, based on the actual usage of the computer
program, it may be determined that one of the model elements
ol one particular type should be replaced by another model
clement of another type that 1s more suited towards the actual
usage of the computer program. Based on this determination,
the computer program 1s then modified accordingly automati-
cally.

As another example, the author of a computer program
may decide to replace one model element of a particular type
with another. Using one or more simple gestures, the author
may manipulate a visualization of the hierarchical structure
of model elements. In response, the system underlying the
visualization may automatically replace the model element
while preserving the position of the model element in the
hierarchical structure.

This Summary 1s not intended to 1dentify key features or
essential features of the claimed subject matter, nor 1s 1t
intended to be used as an aid 1n determining the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features can be obtained, a more
particular description of various embodiments will be ren-
dered by reference to the appended drawings. Understanding
that these drawings depict only sample embodiments and are
not therefore to be considered to be limiting of the scope of
the 1invention, the embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings 1n which:

FIG. 1 illustrates an example computing system that may
be used to employ embodiments described herein;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 abstractly illustrates an example hierarchically
structured document that may be viewed by the viewer 1n
accordance with the principles described herein;

FIG. 3 abstractly illustrates the document of FIG. 2 being,
compiled and/or terpreted to thereby become computer-
executable 1nstructions:

FIG. 4 1llustrates a user interface that represents a begin-
ning point in an example replacement that will be described
herein;

FIG. 5 1llustrates a flowchart of a method for altering a
hierarchical structure of multiple model elements constitut-
Ing a computer program;

FIG. 6 1llustrates an environment 1n which the placeholder
model element 1s used within a sequence model element;

FIG. 7 illustrates an environment 1n which the placeholder
model element 1s replaced with another model element; and

FIG. 8 illustrates a flowchart of a method for automatically

populating a property value 1n a case where transformation 1s
used.

DETAILED DESCRIPTION

In accordance with embodiments described herein, a hier-
archical structure of model elements 1s modified. The model
clements may be, for example, portions of a computer pro-
gram. IT 1t 1s determined that 11 a particular one of the model
clements should be changed from one model element type to
another model element type, that change 1s automatically
made. The determination of whether the change should be
made may be based on monitoring of actual behavior of the
soltware program. The determination might alternatively be
made based on expressed gestures of an author using an
authoring program that visualizes the hierarchical structure of
model elements. First, some introductory discussion regard-
ing computing systems will be described with respect to FIG.
1. Then, the embodiments 1n which a hierarchical structure 1s
modified will be described with respect to FIGS. 2 through 8.

First, introductory discussion regarding computing sys-
tems 1s described with respect to FIG. 1. Computing systems
are now 1ncreasingly taking a wide variety of forms. Com-
puting systems may, for example, be handheld devices, appli-
ances, laptop computers, desktop computers, mainframes,
distributed computing systems, or even devices that have not
conventionally been considered a computing system. In this
description and 1n the claims, the term “computing system” 1s
defined broadly as including any device or system (or com-
bination thereol) that includes at least one processor, and a
memory capable of having thereon computer-executable
instructions that may be executed by the processor. The
memory may take any form and may depend on the nature and
form of the computing system. A computing system may be
distributed over a network environment and may include mul-
tiple constituent computing systems.

As 1llustrated 1n FIG. 1, 1n 1ts most basic configuration, a
computing system 100 typically includes at least one process-
ing unit 102 and memory 104. The memory 104 may be
physical system memory, which may be volatile, non-vola-
tile, or some combination of the two. The term “memory”
may also be used herein to refer to non-volatile mass storage
such as physical storage media (e.g., physical storage devices,
which are separate from and do not include wireless media or
signals, as discussed below in connection with the term com-
munications media, which does). If the computing system 1s
distributed, the processing, memory and/or storage capability

US 8,793,645 B2

3

may be distributed as well. As used herein, the term “module”
or “component” can refer to software objects or routines that
execute on the computing system. The different components,
modules, engines, and services described herein may be
implemented as objects or processes that execute on the com-
puting system (e.g., as separate threads).

In the description that follows, embodiments are described
with reference to acts that are performed by one or more
computing systems. If such acts are implemented 1n software,
one or more processors of the associated computing system
that performs the act direct the operation of the computing,
system 1n response to having executed computer-executable
instructions. An example of such an operation involves the
manipulation of data. The computer-executable instructions
(and the manipulated data) may be stored 1n the memory 104
of the computing system 100. The computing system 100 also
may include a display 112 that may be used to provide various
concrete user interfaces, such as those described herein.

Computing system 100 may also contain communication
channels 108 that allow the computing system 100 to com-
municate with other message processors over, for example,
network 110. Communication channels 108 are examples of
communications media. Communications media typically
embody computer-readable instructions, data structures, pro-
gram modules, or other data in a modulated data signal such
as a carrier wave or other transport mechanism and include
any information-delivery media. By way of example, and not
limitation, communications media include wired media, such
as wired networks and direct-wired connections, and wireless
media such as acoustic, radio, infrared, and other wireless
media. The term computer-readable media as used herein
includes both storage media (e.g., physical storage devices
that do not mclude wireless media or signals), and commu-
nications media. Physical storage media (devices) and com-
munications media are thus distinct and separate kinds of
media, as noted.

Embodiments within the scope of the present invention
also 1include a computer program product having computer-
readable media for carrying or having computer-executable
instructions or data structures stored thereon. Such computer-
readable media (or machine-readable media) can be any
available media that can be accessed by a general purpose or
special purpose computer. By way of example, and not limi-
tation, such computer-readable media can comprise physical
storage media such as RAM, ROM, EEPROM, CD-ROM,
DVD-ROM or other optical disk storage, magnetic disk stor-
age or other magnetic storage devices, or any other medium
which can be used to carry or store desired program code
means 1n the form of computer-executable instructions or
data structures and which can be accessed by a general pur-
pose or special purpose computer. Combinations of the above
should also be 1included within the scope of computer-read-
able media.

Computer-executable instructions comprise, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions.
Although the subject matter has been described 1n language
specific to structural features and/or methodological acts, 1t 1s
to be understood that the subject matter defined in the
appended claims 1s not necessarily limited to the specific
features or acts described herein. Rather, the specific features
and acts described herein are disclosed as example forms of
implementing the claims. The computer-executable mstruc-
tions cause the computer or processing device to perform the
function or group of functions because the computer-execut-
able 1nstructions have a certain structure. If digitally repre-

10

15

20

25

30

35

40

45

50

55

60

65

4

sented, for example, such structures may represent one or
more bits of information. In the case of magnetic storage
media, for example, such a structure may be a level and/or
orientation of magnetism on the media at predetermined parts
of the magnetic storage media. In the case of optical storage
media, for example, such a structure may be a level of reflec-
tivity of the media at particular predetermined parts of the
optical media.

The computing system 100 may execute viewer/editor
such as that to be described further herein. The computing
system 100 may also have access to hierarchically structured
documents such as the example document described further
herein.

FIG. 2 abstractly illustrates a hierarchically structured
document 200 that represents a certain hierarchy of nodes.
The hierarchically structured document 200 1s just a simple
example 1 which there are four nodes in the hierarchy,
including parent node 201, and child nodes 202 through 205.
However, the principles described herein may apply to any
hierarchy, even complex hierarchies of hundreds or thousands
ol nodes.

Although not required, each of the nodes may have zero or

more fields. For instance, node 201 contains field 201 A; node
202 contains field 202 A; node 203 has no fields; node 204 has

three fields 204 A, 204B, and 204C; and node 205 has two
fields 205A and 2035B. In this example, field 201 A 1s a body
field of node 201 and 1s defined as including node 202. Like-
wise, node 202A 1s a body field ol node 202 and 1s defined as
including nodes 203 and 204. Finally, node 204C 1s a body
field of node 204 and 1s defined as including node 205. Thus,
some {ields define relationships with one or more child nodes.
Other fields define parameters ol the node. For instance, fields

204 A and 204B define properties of the node 204, and node

2035 A defines a property for node 205. Field 205B may be a
body field for node 205 and thus may be used to add a child

node relation to the node 205. Furthermore, body fields 201 A,
202 A and 204C may be further used to add additional child
nodes for respective nodes 201, 202 and 204.

FI1G. 3 1llustrates one example usage 300 of a hierarchically
structured document. In this case, the hierarchically-struc-
tured document 200 1s provided to a computing system 301,
where the document 200 undergoes one or more stages of
compilation and/or interpretation 311 to cause the computing
system to formulate computer-executable instructions 312
that may be executed by the computing system. One example
of a standard for formulating hierarchical descriptions of
computer programs 1s eXtensible Application Markup Lan-
guage (or XAML). XAML 1s a standard for drafting applica-
tion descriptions 1n eXtensible Markup Language (or XML)
such that the XML may be mterpreted and an application
formulated at run-time or prior to run-time. XML 1s a stan-
dard often used for drafting hierarchically structured docu-

ments, although the principles described herein are not lim-
ited to the viewing and/or editing of documents that are based

on XML or XAML..

The following 1s an XAML document that will be provided
as an example only. The example 1s provided by realizing that

the principles described herein are not limited to any specific
type or structure for the hierarchically structured document,
but recognizing that an example can be helptiul in understand-
ing the broader principles described herein. The example
XAML document 1s as follows with line numbering added for
clarty:

US 8,793,645 B2

S 6
1. <Activity [Appropriate Namespace Descrations Inserted Herein|>
2 <WorkiflowViewStateService. ViewState>
3. <Dictionary TypeArguments="String, Object’>
4, <Boolean Key="ShouldExpandAll”>True</Boolean>
5 </Dictionary=>
6 </WorkflowViewStateService.ViewState>
7 <Sequence XamlDebuggerXmlReader.FileName= [Insert FileName]>
8. <WorkflowViewStateService.View State>
9. <Dictionary TypeArguments="String, Object’>
10. <Boolean Key="IsExpanded”>True</Boolean>
11. </Dictionary>
12. </WorkflowViewStateService. View State>
13. <Parallel>
14. <Delay/>
15. <ForEach TypeArguments="x:Int32"">
16. <WorktlowViewStateService.ViewState>
17. <Dictionary TypeArguments="String, Object’>
18. <Boolean Key="IsExpanded”>False</Boolean>
19. <Boolean Key="IsPinned”>False</Boolean>
20. </Dictionary>
21. </WorkflowViewStateService.View State>
22. <ActivityAction TypeArguments="“Int32">
23. <ActivityAction. Argument>
24, <DelegateIn Argument TypeArguments="Int32” Name="item”
/>
25. </Activity Action.Argument>
26. <While />
27. </ActivityAction>
28. </ForEach>
29. </Parallel>
30. </Sequence>

31. </Activity>

The document extends from lines 1 through 31. Lines 2 30
through 6 represent certain properties of the document. In
particular, line 4 1n this context indicates that the view of the
document should expand all of the nodes upon opening. Thus,
prior state regarding the expansion properties of the docu-
ment as a whole are preserved within the document 1tself. 35

Lines 7 through 30 represent a sequence activity, and 1s an
example of the node 201 of FIG. 2. Line 10 1s once again a
persisted expansion state, and indicates that this sequence
should be expanded upon opening. The editor may change
this setting at some point 1n response to user iteraction with 40
the editor.

The sequence activity contains a child parallel activity that
extends from lines 13 through 29. The parallel activity 1s an
example of the node 202 of FIG. 2, and will be interpreted to
be the child of the sequence activity due to its nested position 45
within the sequence activity.

The parallel activity includes a first child activity that 1s
represented wholly at line 14. The delay activity represents an
example of the node 203 of FIG. 2. This first activity 1s adelay
activity and will be interpreted to be the child of the parallel 50
activity due to 1ts nested position within the parallel activity.

The parallel activity also includes a second child activity, a
“For Each™ activity that extends from lines 15 through 28.
The For Each activity represents an example of the node 204
of FIG. 2, and will be interpreted to be the child of the parallel 55
activity due to its nested position within the parallel activity.
Line 18 represents that the current persistent expansion state
of the For Each activity 1s collapsed.

The For Each activity includes a child while activity that 1s
represented wholly atline 26. The while activity represents an 60
example ol the node 205 of FIG. 2. This while activity will be
interpreted to be the child of the For Each activity due to 1ts
nested position within the For Each activity.

The wviewer/editor described herein need not actually
execute the hierarchical document 200, but does provide a 65
view of the hierarchical document such that the document can
be easily navigated through. A walkthrough of one example

of the operation of the viewer/editor will be described with
respect to FIGS. 4 through 12.

FIG. 4 1llustrates a user interface 400 that represents a
beginning point in an example replacement that will be
described herein. The user interface 400 illustrates the hier-
archical document represented by the XAML document
described above. In this case, each node in the hierarchical
document (1.¢., an activity in the document 1n this example) 1s
represented by a window. For instance, a sequence window
401 represents the sequence activity. In this mitial state, the
visualization 1s completely expanded in that each window
associated with each activity 1s viewable, along with all of the
property fields of the activity.

The parallel window 402 represents the parallel activity.
The fact that a node (1n the example an activity) 1s a chuld of
another node (also an activity in the example) 1s represented
visually in this example by the window representing the child
node being included within the window representing the par-
ent node. Thus, the parallel window 402 1s included within the
sequence window 401, since the parallel activity 1s the child
ol the sequence activity. Populated or unpopulated properties
of a particular node are presented also within the correspond-
ing window that represents the node, but outside any window
that represents a child node of that particular node. Thus, in
FIG. 4, since there are no properties within sequence window
that are not also 1n parallel window, there are no properties of
the sequence activity represented.

The delay window 403 represents the delay activity of the
XAML example. The delay window 403 does not contain any

properties and thus 1s represented only as a small window.

The For Each window 404 represents the For Each activity
of the XAML example. The For Each window 404 shows two
properties 404 A and 404B (unpopulated 1n both cases) of the
For Each activity. Properties 404 A and 404B are examples of
the fields 204 A and 204B of FIG. 2. The body field 403C may
contain one or more activities. In this case the body field 403C
includes a while window 405.

US 8,793,645 B2

7

The while window 403 represents the while activity of the
XAML example. The while window 405 shows two fields.
One field 405A 15 an expression field into which an expres-
s10n may be inserted which 1s the condition for continuing the
while activity. Once the condition 1s false, the while activity
finishes executing. A body field 4035B 1s shown empty with a
mere prompt that an activity may be dropped within the body
ficld 405B to create a child activity of the while activity.

FI1G. 5 illustrates a flowchart of a method 500 for altering a
hierarchical structure of multiple model elements constitut-
ing a computer program. The method 300 may be performed
by the computing system 100 1n response to the execution, by
the computing system, of one or more computer-executable
instructions.

The method 1nitiates by accessing a hierarchical structure
of model elements (act 501). An example of such a hierarchi-
cal structure was provided above. The model elements may
be, for example, components of a computer program. In the
example above, the components of the computer program
were activities 1n a worktlow. However, even 11 the computer
program contained activities, they may contain other types of
model elements as well, such as, for example, a try-catch
block which 1s a common C# model element.

For at least one of the model elements, the computing
system determines that a model element of the hierarchical
structure 1s to be replaced by another model element (act
502). Specifically, the model element of one particular model
clement type 1s to determined to be replaced by a model
clement of another particular model element type (act 502).

In response to this determination, the model element of the
first model element type 1s replaced by the model element of
a second model element type (act 503). This replace operation
1s completed while maintaining the ancestral relationship
status of the model element within the hierarchical structure
of model elements. In other words, the model element that
replaced that prior model element retains the same position in
the hierarchical structure as the prior model element had. In a
final step, the properties of the replacing model element are
populated (act 504).

The replacement operation may be behavior-based. In
other words, the computing system determines that a model
clement should be replaced by another model element by
monitoring usage of the computer program that 1s constructed
from the hierarchical structure of model elements. If there 1s
a change 1n usage that warrants a replacement from one model
clement to another, the computing system may automatically
perform the replace operation.

As an example, suppose that one of the functions of a
computer program 1s to send an e-mail. Now suppose there
are three types of model elements that send e-mail, 1) a full
¢-mail model element that functions to send of e-mails with
headings, a body, and with multiple attachments, 2) an inter-
mediate e-mail model element that functions to send e-mails
with headings, and a body, but no attachments, and 3) a simple
¢-mail model element that functions to send e-mails with
headings and with a body, but with the size of the body limited
to 128 characters, and without the ability to send attachments.
The hierarchical structure of model elements may first oper-
ate using the full e-mail model element that permits attach-
ments to be sent. However, the computer program may detect
that the user never really sends e-mails with attachments. In
fact, the computer program only ever needs to send e-mails
with a short body. In that case, the computing system may
replace the full e-mail model element with the simple e-mail
model element. Then, should the behavior change further in
the future, the model element may yet be replaced again as
needed. This occasional replacement operation may be per-

10

15

20

25

30

35

40

45

50

55

60

65

8

formed for other model elements as well, where there are
alternative model elements available. In this way, the com-
puter program may be kept as simple as the behavior of the
program warrants, while becoming more complex as behav-
10rs change.

The replacement may alternatively be 1nitiated by the user,
through one or more gestures made 1n a viewer 1 which 1s
displayed a hierarchical visualization of multiple model ele-
ments 1n the hierarchical structure of model elements. An
example of such a viewer has been illustrated in FIG. 4 with
respect to the example XAML document that includes four
model elements.

In the case of a gesture-based replacement, the computing,
system determines that the model element should be changed
in response to one or more user gestures interfacing with the
viewer 1n a manner to convey user intent to perform the
replacement. For instance, in FIG. 4, suppose that the user
desires to replace the For Each activity 404 with another type
of activity, perhaps a sequence activity. In this case, the user
might select the For Each activity 404, right click to present a
list of options, select an option to replace the activity, then
select a sequence activity template. Then, based on these
simple gestures, a sequence activity window might appear 1n
the same position as the For Each activity window 404. In this
case, the while activity window 405 might disappear. Under-
lying this window replacement, the computing system actu-
ally changes the model element 1tself, in this case, the activity
1s replaced in the underlying XAML, of course, while pre-
serving position of the activity within the ancestral chain of
the hierarchical structure.

As another example, suppose that the user wants to replace
the For Each activity with a Try-Catch block that contains the
For Each activity. A Try-Catch block 1s not an activity, but 1s
a model element that can be included within a workflow. The
try-catch block includes try block that contains code to be
executed, and which 1s protected by exception handling, and
a catch block that contains the exception code to be executed
should the code 1n the try block fail. Referring to FIG. 4, the
user might, in that case, again select the For Each activity
window 404, and then right click and select a replace opera-
tion. Now, the user selects a Try-Catch block.

In this case, the try-catch block window then replaces the
For Each activity window 404 within the hierarchical visual-
1zation, with the computing system enforcing a correspond-
ing replacement 1n the underlying hierarchical structure of
model elements. In this case, however, some of the fields of
the try-catch block may be populated (reference act 504 of
FIG. 5). For instance, when a replace operation 1s performed,
some of the fields may be automatically populated based on
the 1dentity of the replaced model element type and/or based
on the 1dentity of the replacing model element type. In the
case ol atry-catch block replacing another model element, the
try field of the try-catch block are populated by the sam
model element that the try-catch block replaced, with all of
the descendent chains of the old model element preserved.
Reterring to FIG. 4, the result would be that a try-catch block
window replaces the For Each Window 404. However, the For
Each window 404 1s then contained within the try-catch block
window. The For Each Window 404 still contains the While
window 405 since the descendent chains are preserved. The
computing system enforces corresponding changes in the

underlying model elements.

Note that these changes can be easily made by the user
without having to first delete the prior model element, then
manually add a new model element and 1nsert the new model
element 1nto the hierarchic structure. Instead, the model ele-
ment to be replaced 1s selected, then a simple user gesture 1s

US 8,793,645 B2

9

performed indicative of a user intent to replace. Then, the
replacement model element type 1s selected. The new model
clement automatically takes the same position as the prior
selected model element. Thus, there 1s no separate gesture
required to delete the model element, and there 1s no separate
gesture required to add the new model element. The two
functions are integrated 1n a single replace gesture.

The principles described herein also allow the user of a
simple placeholder model element to be used 1n the hierar-
chical structure during the authoring process. The place-
holder model element may be used when the author 1s not
quite sure yet what kind of model element to use at a particu-
lar position within the hierarchy, but the author knows that
some type of model element will be used at that position. In
such cases, the placeholder model element may be deposited
in the visualization, with the computing system enforcing a
corresponding placeholder model element within the model
clement hierarchy. Then, regardless of how entangled the
placeholder model element 1s within the hierarchical struc-
ture, the replace operation may be used to replace the place-
holder element within the hierarchy of model elements. FIG.
6 1llustrates an environment 600 1n which the placeholder
model element 1s used within a sequence model element. FIG.
7 illustrates an environment 700 1n which the placeholder
model element 1s replaced with another model element.

Referring to FIG. 6, the initial environment includes a
viewer 601 that 1s providing a visualization of an underlying,
activities collection 620 present in memory 602. The collec-
tion 620 includes a sequence activity that includes three
activities 1 sequence including 1) ActivityOne, 2) Place-
HolderActivity, and 3) ActivityThree. The wviewer thus
includes a visualization 610 of the sequence activity, a visu-
alization 611 of the Activity One, a visualization 612 of the
PlaceHolder Activity, and a visualization 613 of Activity
Three.

Once the author has a better idea of the type of model
clement that 1s to replace the PlaceHolder Activity, the author
may simply select the placeholder activity visualization 612,
indicate that a replacement i1s to be made, and select the
replacement model element (in this case, the MyElementAc-
tivity). The result 1s shown i FIG. 7, which illustrates an
environment in which the sequence visualization 710 has
been modified from the prior sequence visualization 610 to
replace the PlaceHolder Activity visualization 612 with the
MyElement Activity visualization 712. The computing sys-
tem enforces a change to the activity collection 1n memory
602 to change the references to the PlaceHolderActivity to
properly refer to the myFElementActivity 720.

In one embodiment, when a particular model element 1s
selected for replacement, the computing system may replace
all of the model elements of that type with model elements of
the replacement type, either by default, or at the selection of
the author.

Recall that the try-catch block replacement replaces the
prior selected model element with a try-catch block, and
reinserts the replaced model element as a child model element
of the try-catch block, preserving any descendent model ele-
ments of the replaced model element. A similar example 1s the
replacement of portion of the hierarchical model elements
with a refactored activity.

The refactored activity retains all of the functionality of the
replaced portion of the hierarchical model elements, but
allows the visualization to be simplified. A refactored activity
1s really just a container. When a particular portion of the
hierarchy 1s replaced by a refactored activity, the refactored
activity (1.e., a container) replaces the portion of the hierar-
chy. In order to allow the refactored activity to retain the same

10

15

20

25

30

35

40

45

50

55

60

65

10

functionality as the portion replaced, the portion replaced
then becomes a child of the refactored activity, wherein the
portion retains the same hierarchical form that 1t possessed
prior to the replacement. In order to allow for the benefit of a
simplified visualization, the visualizations for the replaced
portion may be hidden 1n the visualization itself. Thus, refac-
torization creates a new model element with a simple visual-
1zation, while retaining the same functionality as the replaced
portion of the hierarchy.

Referring back to FIG. 3, recall that once a model element
1s replaced by another model element, the replacement model
clement has fields that are then populated. Some model ele-
ments may not have any fields to populate at all. In that case,
act 504 ol FI1G. 4 1s not performed. However, 1n cases in which
there are property fields to be populated, there may be one or
more mechanisms used to populate the fields.

In some cases, population might be performed based on
context of the replaced model element and the replacement
model element. For example, 1f a portion of the hierarchy 1s
replaced by a try-catch block, the try field of the try-catch
block 1s populated by that portion of the hierarchy that was
replaced by the try-catch block. Similarly, the refactored
activity has a body field that 1s populated by the portion of the
hierarchy that was replaced by the refactored activity.

Likewise, other fields may be populated based on context.
For instance, the value of the DateTime field of one model
clement may be used to populate a DateTime field of a
replacement model element. Some transformation modules
may be available to assist when the value of a field of the
replaced model element cannot be copied directly into the
field of the replacement model element. There may be a
collection of transformation modules available to perform
such transformations. An API may be provided to extend the
availability of such transformation modules, as well as to
author new custom model elements.

FIG. 8 illustrates a flowchart of a method 800 for automati-
cally populating a property value 1n a case where transforma-
tion 1s used. The property value of the replaced model element
1s accessed (act 801) and then transformed (act 802). The
transformed value 1s then used to populate the property field
of the replacement model element (act 803).

The principles described herein thus provide an efficient
mechanism for replacing model element with other model
clements 1n a hierarchical structure of model elements. The
replacement may be behavior-based in response to usage
changes in a computer program. The replacement may also be
in response to author gestures, and without requiring separate
gestures to delete an element, add an element, and insert the
clement into the hierarchical structure.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential character-
istics. The described embodiments are to be considered 1n all
respects only as illustrative and not restrictive. The scope of
the invention 1s, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What 1s claimed 1s:

1. A computer program product comprising one or more
physical computer-readable hardware storage devices having
stored thereon computer-executable 1nstructions that, when
executed by one or more processors of a computing system,
cause the computing system to perform the following:

an act of accessing a hierarchical structure of model ele-

ments, each element having an ancestral relationship
status defined by the position of the each element 1n the

US 8,793,645 B2

11

hierarchical structure and parent-child associations of
the each element and one or more other elements;
for at least one of the model elements, an act of determining
that the at least one model element should be changed
from a first model element type to a second model ele-
ment type, determining being at least 1n part behavior-
based and based upon monitoring usage of the model
elements;
in response to the determination, an act of automatically
changing the at least one model element from a {first
model element type to a second model element type and
maintaining the ancestral relationship status of the
changed at least one model element within the hierar-
chical structure of model elements such that the position
in the hierarchical structure and parent-child associa-
tions of the at least one of the model elements are pre-
served for the changed at least one model element.
2. The computer program product in accordance with claim
1, wherein the model elements are components of a computer
program.
3. The computer program product in accordance with claim
2, wherein the act of changing the model element from the
first model element type to the second model element type
occurs 1n response to a change 1n usage of the computer
program.
4. The computer program product in accordance with claim
2, wherein the model elements are activities within a work-
flow.
5. The computer program product in accordance with claim
1, wherein the computer-executable instructions are further
structured such that the computing system further performs
the following:
an act of displaying a hierarchical visualization of multiple
model elements 1n the hierarchical structure of model
elements 1n a viewer, the hierarchical visualization
including a visualization for each of the multiple model
clements.
6. The computer program product in accordance with claim
5, wherein the act of determining that the model element
should be changed comprises an act of detecting that a user
has mterfaced with the viewer with one or more gestures
indicative of a user intent to perform the change.
7. The computer program product in accordance with claim
6, wherein the one or more gestures do not include a separate
gesture for deleting the model element of the first model
clement type and a separate gesture for adding the model
clement of the second model element type.
8. The computer program product in accordance with claim
6, wherein the one or more gestures 1s a single gesture.
9. The computer program product in accordance with claim
6, wherein the one or more gestures 1s a single gesture once
the model element of the first model element type 1s selected.
10. The computer program product in accordance with
claim 5, wherein the model element of the first model element
type 1s a placeholder model element that 1s not executable.
11. The computer program product in accordance with
claim 5, wherein the model element of the first model element
type 1s a collection of model elements, and the model element
of the second model element type 1s a refactored activity.
12. The computer program product in accordance with
claim 1, wherein the model element of the second model
clement type includes one or more property fields, wherein
the computer-executable 1nstructions are further structured
such that the computing system further performs an act of
automatically populating at least one of the one or more
property fields based on property values of the model element
of the first model element type.

10

15

20

25

30

35

40

45

50

55

60

65

12

13. The computer program product 1n accordance with
claim 12, wherein the act of automatically populating com-
prises an act of copying a property value of the at least one
model element of the first model element type into a property
filed of the model element of the second model element type.

14. The computer program product in accordance with
claim 12, wherein the act of automatically populating com-
prises the following:

an act of access a property value of the model element of

the first model element type;

an act of transforming the property value of the model

clement of the first model element type into a different
property value; and

an act of providing the transformed property value into a

property ficld of the Model element of the second model
clement type.

15. The computer program product in accordance with
claim 14, wherein the act of transforming the property value
comprises changing a type of the property value.

16. A computer-implemented method for altering a hierar-
chical structure of multiple model elements that constitute a
computer program, the method comprising:

of a computing system accessing the hierarchical structure

of model elements; each element having an ancestral
relationship status defined by the position of each model
clement 1n the hierarchical structure and parent-child
associations of the each element and one or more other
elements;

the computing system determining that a first model ele-

ment of the hierarchical structure 1s to be replaced, deter-
mining being at least in part behavior-based and based
upon monitoring usage ol the model elements;

in response to the determination, an act of the computing

system automatically replacing the first model element
of with another model element that retains the same
ancestral relationship status and position within the hier-
archical structure and parent-child associations of the
another model element 1s the same as the replaced first
model element; and

in response to replacing the first model element, automati-

cally populating a property value of the another model
clement with an associated property value from the
replaced first model element.

17. The method in accordance with claim 16, wherein
determining that the first model element 1s to be replaced 1s
performed by monitoring usage of the computer program and
making the determination based on a change 1n usage of the
computer program.

18. The method 1n accordance with claim 16, further com-
prising:

displaying a hierarchical visualization of multiple model

clements 1n the hierarchical structure of model elements
in a viewer, the hierarchical visualization including a
visualization for each of the multiple model elements,
the multiple model elements including at least some the
model elements 1n the hierarchical structure,

wherein determining that the first model element 1s to be

replaced comprises an act of detecting that a user has
interfaced with the viewer with one or more gestures
indicative of a user intent to perform the replace.

19. The method in accordance with claim 18, wherein the
one or more gestures are performed without deleting the
model element of the first model element type and without a
separate gesture for adding the model element of the second
model element type.

20. A computer program product comprising one or more
physical computer-readable hardware storage devices having

US 8,793,645 B2
13

stored thereon computer-executable istructions that, when
executed by one or more processors ol a computing system,
cause the computing system to perform the following;
displaying a hierarchical structure of model elements that
constitute a computer program in a viewer, the hierar- 5
chical visualization comprising simultaneously display-
ing 1n the viewer a plurality of windows, each displayed
in a hierarchical manner that corresponds to the hierar-
chical structure of the displayed model elements;
for at least one of the displayed model elements of the 10
hierarchical structure, determining that the at least one
model element should be changed from a first model
clement type to a second model element type inresponse
to one or more user gestures made 1n the window of the
at least one displayed model element and upon monitor- 15
ing usage of the model elements; and
in response to the determination, changing in the viewer
window for the at least one displayed model element
from a first model element type to a second model ele-

ment type without requiring a user gesture to delete the 20
at least one model element from the hierarchical struc-
ture and while maintaining an ancestral relationship sta-

tus of the at least one displayed model element within the
hierarchical structure of model elements such that the
position in the hierarchical structure and each parent- 25
chuld association of the displayed model element of a
first model element type are preserved for the displayed
model element when changed to the second model ele-
ment type.

30

	Front Page
	Drawings
	Specification
	Claims

