US008793095B2
a2y United States Patent (10) Patent No.: US 8.793.095 B2
Patil et al. 45) Date of Patent: Jul. 29, 2014
(54) FUNCTIONAL FABRIC-BASED TEST 7,519,884 B2 42009 Whetsel
CONTROLLER FOR FUNCTIONAL AND oSl o T {gﬁ;’; ot al
STRUCTURAL TEST AND DEBUG o |
(Continued)
(75) Inventors: Srinivas Patil, Austin, TX (US); Abhijit
Jas, Austin, TX (US); Peter Lisherness, FOREIGN PATENT DOCUMENLS
Goleta, CA (US); Enrico Carrieri, WO 20121121780 A2 9/7012
Rancho Cordova, CA (US) WO 20121121781 Al 9/2012
. Continued
(73) Assignee: Intel Corporation, Santa Clara, CA (Continued)
(US) OTHER PUBLICATIONS
" . . : : : International Search Report & Written Opinion received for PCT
(*) Notice: Egngti:?‘eilgn(g:zl2?5%3;@?&5:21; Patent Application No. PCT/US2011/066644 , mailed on Sep. 12,
2012, 11 *
U.S.C. 154(b) by 755 days. IR
(Continued)
(21) Appl. No.: 13/044,272
Primary Examiner — Phoung Huynh
(22) Filed: Mar. 9, 2011 (74) Attorney, Agent, or Firm — Law Oflfice of R. Alan
Bumett, P.S
(65) Prior Publication Data
57 ABSTRACT
US 2012/0232825 Al Sep. 13, 2012 (57) ‘ | o
A Test Access Mechanism (TAM) architecture for facilitating
(51) Imt.CL testing of IP blocks integrated on a System on a Chip (SoC).
GOIR 31/00 (2006.01) The TAM architecture 1includes a Test Controller and one or
GO6F 11/00 (2006.01) more Test Wrappers that are integrated on the SoC proximate
(52) U.S. CL to IP blocks. Test data and commands corresponding to input
USPC 702/117: 702/121: 702/122- 702/1]8: from an external tester are packaged by the Test Controller
702/189 and sent to the Test Wrappers via an interconnect fabric. The
(58) Field of Classification Search Test Wrappers employ interface with one or more test ports to
USPC 700/117-122. 188 189 provide test data, control, and/or stimulus signals to the IP
Qe apphca‘[lonﬁleforcomplete earch his‘éory ’ block to facilitate circuit-level testing of the IP block. Test
| results for the circuit-level tests are returned to the Test Con-
: troller via the fabric. Test Wrappers may be configured to pass
(56) References Cited PP y S p

through interconnect signals, enabling functional testing of
IP blocks to be facilitated via test packages and test results
transmitted between the Test Controller and the IP blocks via

U.S. PATENT DOCUMENTS

g’g;g’%g E% 1%3882 ﬁhitsel. the fabric. The TAM may be implemented 1n a fabric-to-fabric
,UdU, cLaurin : . : :
7.162,670 B2* 1/2007 SIUth wovovveoeoeeeoei) 714/715 bridge, enabling testing of IP blocks connected to fabrics on
7,269,805 Bl 9/2007 Ansari et al. both sides ot the bridge.
7,290,186 Bl 10/2007 Zorian et al.
7,353,362 B2* 4/2008 Georgiouetal. 712/33 20 Claims, 6 Drawing Sheets
P P BLOCK
e T
- —
P 130~ 110
o 3
...... - :
o ¢
'H'__‘,...-.--' ----------- L
B
w s 308
e [
i :ﬂ Test Data In :|_|=_|_|=_9__j Test Wrapper Tl?riisgh /\
) > 1xa
: ﬁ: ~ 314 i Interface hild gv
| ') a | = T
| % IC:% CONTROL <L (’312 <304 3 = <:> 5
'3 LCGIC Test State o 3 A
| 2| Machine [302 3 |2 O
o) FIFO RXQ oo 310
: : » Interface [| 2 %‘/
] Test Data Qut JJ‘J:_' | g | A
:,__FZH — e (}/
A 306 =
108A 300 106

US 8,793,095 B2

Page 2
(56) References Cited 2012/0191400 Al 7/2012 Sontakke et al.
2012/0233504 Al 9/2012 Patil et al.
U.S PATENT DOCUMENTS 2012/0233514 Al 9/2012 Patil et al.
2012/0284580 Al 11/2012 Whetsel
7.607.057 B2 10/2009 Boike et al. 2013/0024737 Al 1/2013 Marinissen et al.
7.624320 B2 11/2009 Yi et al. 2013/0073917 Al 3/2013 Whetsel
7,761,763 B2 7/2010 Shin et al. 2013/0268808 Al 10/2013 Patil et al.
8,438,440 B2 5/2013 Whetsel
8,479,129 Bl 7/2013 Kalyanaraman et al. FOREIGN PATENT DOCUMENTS
8,522,189 B2 8/2013 Patil et al.
2002/0184419 Al 12/2002 Creedon et al. WO 20121121783 A2 9/2012
2003/0046622 Al 3/2003 Whetsel WO 2012/121780 A3 11/2012
2003/0120986 Al 6/2003 Whetsel WO 2012/121783 A3 11/2012
2004/0019891 Al 1/2004 Koenen
2004/0078709 Al 4/2004 Beukema et al. OTHER PUBLICATIONS
2004/0081171 Al 4/2004 Finn
2004/0128641 Al 7/2004 Broberg et al. International Search Report & Written Opinion received for PCT
2004/0153915 Al 8/2004 McLaurin Patent Application No. PCT/US2011/066625, mailed on Aug. 14,
2004/0212393 Al 10/2004 Abramovici et al. 2012, 9 pages.
2005/0030971 Al 2/2005 Yuan International Search Report & Written Opinion received for PCT
2006/0031807 Al 2/2006 Abramovicl Patent Application No. PCT/US2011/066600, mailed on Sep. 12,
2007/0101195 Al 5/2007 Gooch et al. 2012, 10 pages
2007/0106923 Al 5/2007 Aitken et al. . . T .. .
2007/0208071 Al 017007 Goel ntematlona! Prn.almunary Report on Patentability I:ecelved tor PCT
2007/0255986 Al 11/2007 Chang et al. Patent Application No. PCT/US2011/066600 mailed on Sep. 19,
2008/0022172 Al 1/2008 Yi etal 2013, 7 pages. y |
2008/0763486 Al 10/2008 Alexanian et al International Preliminary Report on Patentability received for PCT
2009/0089467 Al 4/2009 Rothman et al. Patent Application No. PCT/US2011/066625, mailed on Sep. 19,
2009/0164845 Al 6/2009 Whetsel 2013, 6 pages.
7009/0183040 Al 7/2009 Whetsel International Preliminary Report on Patentability recerved for PCT
2009/0235222 Al 9/2009 Raje et al. Patent Application No. PCT/US2011/066644, mailed on Sep. 19,
2010/0023807 Al 1/2010 Wu et al. 2013, 8 pages.
2010/0278195 Al 11/2010 Wagh et al. DaSilva et al., “Overview of the IEEE P1500 Standard”, ITC Inter-
2011/0175638 Al 7/2011 Maeda national Test Conference, 2003, IEEE, pp. 988-997.
2011/0307750 A1 12/2011 Narayanan et al.
2012/0159251 Al 6/2012 Wu et al. * cited by examiner

U.S. Patent Jul. 29, 2014 Sheet 1 of 6 US 8,793,095 B2

Flg. J 100 ~L TESTER (ATE)
7 o el e
130~ S0C _ 102
% TEST CONTROLLER 114
— & 110 TEST DATA FORMATTER
i 116 [] 118
A 128 N —
{/__ B=IXQ= ERX 104
129 QUEUES
112
_ 2| TPass Through | 108 FABRIC
| l—————= . T N
= - L__J 120

TEST WRAPPER |€—— TEST CONFIGURATION e — /F
124 ﬂ il U
ax - P

< G

TEST WRAPPER

Fig, 14 100 4 TESTER (ATE)
SoC 103 TEST INTERFACE 102
130 MEM| | CACHE | 126A l o
% TEST CONTROLLER 114
S 110B
— o~ TEST DATA FORMATTER
L) 116 118
O l IP 142 \dJ ‘ i“' . TT
- | - = 104
122 TXQ RXQ= QUEUES
QUEUES / 112 ! ! ‘ ‘
[TARGET] MASTER TARGET
§ Pass Through | ~_ 108
i1 Rttt 1 132 i 134

U TT

v/ <~

< IOSF FABRIC >
Thoc

U.S. Patent Jul. 29, 2014 Sheet 2 of 6 US 8,793,095 B2

/-202
Test Data In FIFO Test Controller
A~ > T
TXQ g
Destination Interface i
Address Reg % ;
Command 200 f‘.,:} 0 %
Decoder 200 210 208 ;Do S
D
FIFO RXQ =
Interface o
Test Data Qut 2
P 204 S~
104A _ 212
Fig, 2
IP BLOCK
_ 126
130~ 5 110
_I
.s.
- % CORE
Al 10]
I
P 308 128 A
| _i-m Test Data In Pass
I_> Test Wrapper ‘ Through
: TXQ _n
j | Interface ©
|) = | Z U
g :C:H Test COTFETSRTOL I 512 <304 % = >
T ~ontrols - osic Test State c | - T
- : Machine 302 § A O
» | ‘ FIFO RXQ o | 37
| Interface Q| [T
| Test Data Out o | A
__ A r}/
/4 306
108A 300 106

Fig. 3

U.S. Patent Jul. 29, 2014 Sheet 3 of 6 US 8,793,095 B2

| . 114 T T T T T T T T T o T I
| CLK Domain 1 | CLK Domain 2 :
|
: 100 | [!CLKXING FIFO 212
| ol 1 206 N |
: | =5 g
2> M TXQ O 2
| A T | § = Ol |
: CLK1| | & o |CLK 2 :
LT :
l T l

h____________

Test Controller 1006

Fig. 4

CLK Domain 3

CLKDomain2 106

:
| i
| |
| |
| c .
|

| P 300 |
| A |
| K AL T :
I | | & Py |
| z o 2 (1 |
| A m% I
| D o

| | o | CLK 2 |
| O |
I N I
| |
| |

Fig. 5

U.S. Patent Jul. 29, 2014 Sheet 4 of 6 US 8,793,095 B2

600 602
130 P BLOCK
MEM CACHEI-
3 (DAT) | | (SBFT)
S L] 604
> i 110A
1
122A o

Fig. 6

o[o |

TEST WRAPPER T~ 108C

124 1]

FABRIC

TEST
INTERFACE

[
|IOSF Fabric

904 906 806
924 IOSF T IOSF M
| - 920
- 912
TC /X
pu Ny ‘ 916

— Bridge 900
1 Channel
0914 I Wrapper

O
N
N

Bridge Core

926

OCP Fabric

On-die
Memory
816

304

U.S. Patent Jul. 29, 2014

Sheet 5 of 6 US 8.793.095 B2

710

MEMORY

TEST
WRAFPER

UHL 108-4

TEST
INTERFACE

708

COHERENT FABRIC

IP 3 P 2 P 1
AGENT 1
|BmDGE|
TEST Er—'n TEST 5; TEST rgn;
WRAPPER %EC— WRAPPER ﬁﬂ'c— WRAPPER EEC 706
108-3 J L L1082 1.108-
|IOSF FABRIC
\702 \ AGENT O
\ North Complex TEST CONTROLLER
BRIDGE4_ 718 104
South Complex
P 7 P 6 P5
AGENT 7 ‘AGENTE‘ AGENT 5
TEST % - TEST % m TEST % ,.—I,.,|<7
WRAPPER |15 WRAPPER |9 WRAPPER |2
. 108-7 ‘ 108-6 11085
|OSF FABRIC
k _716 J TESTIF] SoC
WIJJHIIIJJ#IIIJ#JIII{{g{{{g,ﬁ,;-'IIIIIIIIIIIIIIIIIIW .-r".-r".-r".-r".-r".-r".-".-".-".-".-"J
/‘ TESTER (ATE) 100

700

U.S. Patent

600

Jul. 29, 2014

823

Sheet 6 of 6

SoC

80"
-

|IOSF/OCP Bridge

Queue &
Transaction |
conversion

: 818 Test Cont. Block

Test Controller

Injection

Fabric || Array
Injection Load/
J Unload

la—P Queue

Interface

820 - 822
A

Data
Conversion/
Formatter

/—800

Controller

824
mp
P JTAG/TAP Interface

US 8,793,095 B2

T o e M M o e M P e M P " T

812
QCP Bridge \(

Memory Block

<>

Test Wrapper

Array
Load/
Unload

A

b

e M e e M e e e M e e e e e el e el M el e el e e e M e e e e M e e

\ 300

TESTER
(ATE)

US 8,793,095 B2

1

FUNCTIONAL FABRIC-BASED TEST
CONTROLLER FOR FUNCTIONAL AND
STRUCTURAL TEST AND DEBUG

FIELD OF THE INVENTION

The field of invention relates generally to computer sys-
tems and, more specifically but not exclusively relates to
testing System on a Chip (SoC) designs.

BACKGROUND INFORMATION

Computer architectures are moving from interfacing dis-
crete components on a printed circuit board or through use of
other package configurations, to integrating multiple compo-
nents onto a single integrated chip, which 1s commonly
referred to as a System on a Chip (SoC) architecture. SoCs
offer a number of advantages, including denser packaging,
higher speed communication between functional compo-
nents, and lower temperature operation. SoC designs also

provide standardization, scalability, modularization, and
reusability.

While SoC architectures are the wave of the future, the
present some challenges with respect to verification of design
and 1ntegration when compared with using discrete compo-
nents. For example, for many years personal computers
employed INTEL’s ubiquitous “North™ bridge and “South”
bridge architecture, wherein a central processing unit was
interfaced to a memory controller hub (MCH) chip via a first
set of buses, and the memory controller hub, 1n turn, was
interfaced to an Input/Output controller hub (ICH) chip via
another set of buses. Each of the MCH and ICH further
provided interface to various system components and periph-
erals via further buses and interfaces. Each of these buses and
interfaces adhere to well-established standards, enabling the
system architectures to support modular designs. To ensure
proper design, each of the individual or groups of components
could be tested using test interfaces which are accessible
through the device pins.

Modularity 1s also a key aspect of SoC architectures. Typi-
cally, the system designer will integrate various functional
blocks, including functional blocks that are commonly
referred to 1n the industry as Intellectual Property (IP) cores,
IP blocks, or simply IP. For the purposes herein, these func-
tional blocks are referred to as IP blocks or simply “IP”; 1t wall
be understood that the terminology IP blocks or IP also covers
IP cores and any other component or block generally known
as IP, as would be understood by those 1n the SoC develop-
ment and manufacturing industries. These IP blocks gener-
ally serve one or more dedicated functions and often comprise
existing circuit design blocks that are licensed from various
vendors or developed in-house. In order to integrate these 1P
blocks, various interfaces are designed 1nto the SoC. These
can be quite challenging, as the well-defined North bridge-
South bridge architecture and 1ts standardized interfaces are
not practical or desirable for integration in the SoC.

To address this problem, new higher-speed and more
modular 1interfaces have been developed. For example,

INTEL Corporation has recently developed new interconnect
fabric architectures, including the INTEL On-Chip Scalable

Fabric (IOSF). Additionally, other fabric-based interfaces
have been developed, including the Open Core Protocol
(OCP), and ARM’s AMBA (Advanced Microcontroller Bus
Architecture) iterface. On-chip interconnects such as IOSF
interconnect fabrics employ a packetized layered communi-
cation protocol and support point-to-point interconnects

10

15

20

25

30

35

40

45

50

55

60

65

2

between IP blocks facilitating easy integration of heterog-
enous IPs with standard IOSF interfaces.

In order to verity the design integrity of an SoC architec-
ture, testing of the communication between IP blocks and
testing of IP functionality and circuitry 1s required. Under the
conventional approach, testing of a given SoC architecture 1s
implemented using Test Access Mechanisms (TAMSs) that are
devised using ad-hoc techniques. Such TAMSs entail dedi-
cated validation and design effort, which needs to be repeated
for every lead or derntvative SoC. The ad-hoc techniques used
also result in extra area and wiring effort at the SoC level,
which can cause increased congestion 1n today’s dense SoCs.
This can seriously jeopardize Time-To-Market and low-cost

goals for SoC. Accordingly, there 1s a need to facilitate testing
of SoC architectures in a manner that 1s more tlexible and

predictive.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein like reference
numerals refer to like parts throughout the various views
unless otherwise specified:

FIG. 1 1s a block diagram 1llustrating an exemplary Test
Access Mechanism (TAM) architecture, 1n accordance with
one embodiment of the invention;

FIG. 1A 1s a block diagram of an embodiment of the TAM
architecture of FIG. 1 implementing an IOSF fabric;

FIG. 2 1s a block diagram illustrating a micro architecture
of a Test Controller, 1n accordance with one embodiment;

FIG. 3 1s a block diagram 1illustrating a micro architecture
of a Test Wrapper, 1n accordance with one embodiment;

FIG. 4 1s a block diagram illustrating use of a clock cross-
ing FIFO 1 a Test Controller; in accordance with one
embodiment;

FIG. 5 1s a block diagram illustrating use of a clock cross-
ing FIFO 1n a Test Wrapper, in accordance with one embodi-
ment

FIG. 6 1s a block diagram 1illustrating details of an exem-
plary IP block and corresponding test logic;

FIG. 71s ablock diagram illustrating an SoC architecture in
which a test controller and multiple Test Wrappers are imple-
mented to facilitate testing of corresponding IP blocks;

FIG. 8 15 a block diagram 1llustrating an SOC architecture
in which a test controller 1s implemented in a fabric-to-fabric
bridge; and

FIG. 9 1s a block diagram illustrating details of a test
controller implemented 1n at fabric-to-fabric bridge.

DETAILED DESCRIPTION

Embodiments of methods and apparatus for facilitating
testing of SoCs are described herein. In the following descrip-
tion, numerous specific details are set forth to provide a thor-
ough understanding of embodiments of the invention. One
skilled 1n the relevant art will recogmize, however, that the
invention can be practiced without one or more of the specific
details, or with other methods, components, materials, etc. In
other 1nstances, well-known structures, materials, or opera-
tions are not shown or described 1n detail to avoid obscuring
aspects of the imnvention.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the

US 8,793,095 B2

3

embodiment 1s included 1n at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” 1n various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner 1n one or more embodiments.

In accordance with aspects of the embodiments disclosed
herein, a standard, modular, scalable, and reusable infrastruc-
ture for test access, called a Test Access Mechanisms or TAM
1s provided. The TAM 1s implemented using existing func-
tional fabric(s) and provides a standard mechanism for deliv-
ery of test stimulus and sampling of test response during
component debug and manufacturing testing. Reuse of the
functional fabric for the TAM reduces the implementation
cost, whereby the TAM inherits the benefits of a standardized
functional fabric (such as modularity, reusability, scalability,
and low cost) over conventional approaches and architectures
which entail use of a dedicated test inirastructure that 1s
separate and apart from the functional fabric.

In some of the following embodiments, exemplary imple-
mentation aspects and concepts are disclosed that employ a
TAM implemented using SoCs that employs an Intel On-Chip
Scalable Fabric (IOSF). It will be understood that implemen-
tation using an IOSF fabric 1s merely exemplary, and similar
concepts may be employed to implement a TAM using other
types of interconnect fabrics, mncluding, but not limited to
Open Core Protocol (OCP), and the INTEL Quickpath™
interconnect.

In accordance with one embodiment, the TAM 1s 1mple-
mented using fabric infrastructure, protocols, and interfaces
that are already implemented on an SoC for delivery of test
data and stimulus to and from a tester, also retferred to as
Automated Test Equipment or ATE. Since the TAM uses the
ex1isting functional fabric, 1t results 1n less gate count and less
global routing (especially important in dense SoCs) than con-
ventional techniques.

The TAM 1s implemented through two primary compo-
nents: a Test Controller and a Test Wrapper. As an overview,
the Test Controller acts as an agent of the fabric and functions
as a portal between the ATE and the SoC, thus enabling an
ATE that 1s external to the SoC to deliver test data to the target
IP by converting 1t into packets employed by the applicable
tabric protocol for each type of fabric 1in the SoC. The packets
are de-packetized (1f necessary) into test stimulus at the des-
tination IP block by the Test Wrapper. The Test Wrapper then
collects the response to the test stimulus from the target IP and

transmits 1t back as one or more packets towards the Test
Controller, which then converts 1t into a form suitable for
sampling by the ATE.

An exemplary architecture 111ustrat1ng block-level details
of one embodiment of the TAM 1s shown in FIG. 1. The
architecture includes an ATE 100 that 1s external to an SoC
102 that includes atest interface 103, a Test Controller 104, an
interconnect fabric 106, a Test Wrapper 108, an IP block 108,
and a test configuration block 112. Each of the test controller
104 and test wrapper 108 are Communicatively coupled to
tabric 106. Test Controller 104 1s also commumcatwely
coupled to ATE 100 via test interface 103, which comprises a
plurality of pins on the SoC package. In addltlon Test Wrap-
per 108 1s communicatively coupled to IP block 110.
Although not shown 1n FIG. 1 for clarity, various other test
wrappers, IP blocks and/or bridges will also be communica-
tively coupled to fabric 106 1n a typical SoC architecture, such
as 1llustrated in FIG. 7 and discussed below.

The Test Controller 1s the primary interface through which

the tester applies test stimulus to the IP-under-Test IUT) and

10

15

20

25

30

35

40

45

50

55

60

65

4

samples the response from the IUT. The Test Controller pro-
vides an abstracted interface between the ATE and the fabric
from the tester by providing an interface very similar to the
interface needed to test a device that does not employ a
fabric-based interface. As shown 1n FIG. 1, Test Controller
104 1ncludes three main components: a test data formatter
114, a transmit transaction queue (1 XQ) 116, arecerve trans-
action queue (RXQ) 118, and a fabric interface 120.

A Test Wrapper acts as the interface between the fabric and
the test ports of the IP block: one way of envisioning a
wrapper 1s as an abstraction layer which abstracts out the
low-level signaling requirements for testing an IP block from
the fabric and conversely abstracts out the fabric-related pro-
tocols from the IP block. As shown 1 FIG. 1, a portion of the
test signals from Test Wrapper 108 are interfaced with the
fabric interface components of the IP block, while another
portion of the test signals connects to the IP test ports 130 via
a connection 122 coupled between the IP test ports and a test
interface 124 on test wrapper 110. The IP test ports may be
used for performing various component and circuit-level
tests, including scan tests commonly performed to verify the
integrity of IP cores and the like. Test Wrapper 108 1s also
configured to support pass through of fabric signals directly to
IP block 110 to support commumnication and functional testing
of the IP block and fabric interfaces and to support fabric
communication operations during normal SoC use.

IP block 110 1s 1llustrative of various types of IP blocks and
IP cores that may be tested using a TAM 1n accordance with
the principles and concepts disclosed herein. As illustrated, IP
block 110 includes an IP core 126, a fabric interface block
128, and IP test ports 130. Further details corresponding to an
exemplary IP block are discussed below with reference to
FIG. 6.

Details of one embodiment of a micro architecture for Test
Controller 104 A are shown in FIG. 2. The illustrative com-
ponents mclude a command decoder 200, a pair of FIFO
(First In, First Out) buffers 202 and 204, respectively coupled
to a transmit queue (1XQ) interface 206 and a recerve queue
(RXQ) interface 208. Test Controller 104 also includes a
destination address register 210. In addition, the transmit and
receive queues (1XQ 116 and RQX 118) and the fabric inter-
face 120 of Test Controller 104 of FIG. 1 are collectively
depicted as a fabric interface block 212 1n FIG. 2 for clarity so
as to not obscure the other details of the micro architecture for
Test Controller 104.

The test data formatter 114 receives tester input comprising,
test data and tester commands/controls signals from the tester
and packages corresponding test data and test commands/
instructions for transmission to the IUT: the packaging opera-
tion 1mnvolves including the approprniate address information
so that the package 1s forwarded to the intended destination
IP, and appending additional command fields so that the target
IP knows what to do with the test data. For instance, in the
scan mode, the packet consists of the IP address, and com-
mands embedded in data which direct the Test Wrapper for
the IP to execute either a scan load, unload, simultaneous
load/unload or pulse the capture clock.

The tester input data packaged by the test data formatter 1s
deposited into the transmit transaction queue for transmission
on to the fabric. The maximum package size depends on the
s1ze ol the transmit/receive transaction queues and 1s opti-
mized to ensure the overhead for packetization/de-packetiza-
tion 1s minimized. To simplify the design of the wrappers by
minimizing the amount of bookkeeping, 1n one embodiment
cach entry of the transmit transaction queue i1s a selif-con-
tained entity which encodes command as well as the data on
which the command 1s executed. For instance, an entry con-

US 8,793,095 B2

S

taining scan data will have fields specitying the type of scan
operation (load, unload or both) followed by scan data. Addi-
tionally, the destination scan wrapper continues executing,
scan shift operations as long as it 1s receiving scan data,
leading to a simple, low-cost wrapper design. No bookkeep-
ing 1s necessary to ensure the scan chain of maximum scan
length has been loaded (and the wrapper can be designed
independent of the maximum scan chain length). Once a test
data packet has been assembled, 1t 1s forwarded to the fabric
interface for transmission over the fabric as a posted transac-
tion to the destination IUT. Under an alternative scheme, a
given test package may be sent using multiple packets; how-
ever, this scheme entails more overhead since information in
a first packet or other information such as header information
would need to be employed to inform the receiver of how
many packets were 1n a particular test package.

In one embodiment, Test Controller 104A operates 1n the
following manner. Test data 1s received from ATE 100, along
with a test command. In the illustrated embodiment, the test
datais received from ATE 100 over an N-bit interface, and test
commands are received over a 4-bit interface as 4-bit values.
However, the use of a 4-bit value 1s exemplary, as test com-
mands comprising other bit-values may also be employed. In
general, each of the N-bit and 4-bit interface may comprise
parallel or serial interfaces, although to simplify communi-
cations between an ATE and the Test Controller (and by proxy
test interface 103 of SoC 102), parallel interfaces are pre-
terred. Moreover, one or more N-bit groups of test data may
be employed for a given test package. Additionally, a given
test command may be coded as one or more 4-bit test com-
mand data values that are received sequentially. The test
command data may also comprise control data. In addition to
the test data and test command data inputs shown 1n FIG. 2
there 1s also a clock (CLK) signal operating at a correspond-
ing clock frequency. As described 1n further detail below,
techniques are implemented by the Test Controller such that
the clock frequency used by the ATE clock signal may be
different than the clock frequency used by the interconnect
fabric.

The test command data from ATE 100 1s received at com-
mand decoder 200 and decoded using a lookup table, register,
or the like. The test command tells the Test Controller what
operation 1s to be performed to control the transier of data to
and from the fabric. The destination address register 210
stores the destination address of the IP towards which a test
packet 1s to be sent, and 1s loaded using a separate command
from the tester. Under the control of applicable test com-
mands, mput test data (““Test Data In”") 1s loaded into FIFO
202, and transmit queue interface 204 1s used to “load™ for-
matted test command packets into the transmit queue to be
transmitted to fabric 106. In practice, transmit queue interface
204 manipulates pointers to 1dentily memory storage loca-
tions containing the packet data that 1s to be transmitted
outbound to the fabric.

The fabric intertace block 212 provides an interface to
communication with fabric 106 using applicable data, sig-
nals, and protocols employed by the corresponding intercon-
nect. In some embodiments, fabric 106 comprises a point-to-
point interconnect implemented using a plurality of
unidirectional serial links of one or more configurable widths,
such as 1x, 2x, 4x, 8%, 16x, etc. The fabric may also have a
bus-like architecture. In general, any type of existing and
tuture fabric may be employed for implementing the general
concepts and principles disclosed herein. Data is transferred
using packets and corresponding transactions that are imple-
mented using a multi-level protocol stack employed by fabric
106. For instance, 1n one embodiment, the fabric protocol

10

15

20

25

30

35

40

45

50

55

60

65

6

corresponds to the Intel On-Chip Scalable Fabric (IOSF)
protocol. In other embodiments, fabric 106 may implement
the Open Core Protocol (OCP). These examples are not meant
to be limiting, as the SoC architecture and corresponding
principles and concepts disclosed herein may be imple-
mented with any existing or future interconnect fabric struc-
ture and protocol. Moreover, 1n addition to point-to-point
interconnects, the techniques and principles disclosed herein
may also be implemented on SoCs employing other topolo-
gies such as ring-, mesh-, torus- and bus-based 1interconnects.

On a more general level, fabric iterface block 212 pro-
vides a layer of abstraction between the transaction imple-
mentation employed by fabric 106 and the data transmitted
outbound and received inbound over fabric 106. Accordingly,
to support different types of interconnect fabrics, only the
circuitry in fabric interface block 212 (and potentially TX(Q)
and RXQ interfaces 206 and 208) would need to be changed,
while the rest of the circuitry 1 Test Controller 104 could
remain the same and be implemented 1n a manner that was
independent of the particular fabric interconnect structure
and protocols.

In embodiments employing packet-based fabric protocols,
test data and corresponding test command information 1s
“packetized” (that 1s, formatted in one or more packets) and
transierred over the fabric to a target IP block, as identified by
a corresponding address assigned to the IP block. Likewise,
test output data generated by the target IP block and/or Test
Wrapper (as described below in further detail) 1s received at
tabric interface block 212, “de-packetized,” and loaded nto
FIFO 204 in accordance with applicable test commands, with
coordination of the receive queue transier being facilitated by
RXQ interface 206 via corresponding control signals. Appli-
cable test result data builered in FIFO 204 1s then transterred
out of Test Controller 104 to be received as “Test Data Out™
(1.e., test response data) by ATE 100. As depicted in FIG. 2,
the test data 1s recerved from Test Controller 200 as one or
more M-bit data blocks. As before, an M-bit data transfer may
be implemented via a parallel or serial interface, and a given
test result may comprise one or more M-bit units of data.

As an overview, there are two classes of testing that 1s
performed on a typical IP block: functional testing and struc-
tural testing. Functional testing relates to testing the commu-
nication interfaces and the functionality performed by the IP
block, and since each IP block that 1s communicatively or
operatively coupled to a fabric in an SoC can send and receive
data via the fabric, functional testing can generally be facili-
tated through use of test data and commands sent via the
tabric. Accordingly, in one embodiment the Test Wrapper
provides a pass through mechanism to enable test packets
containing testing data and commands relating to functional
testing to be passed from the Test Controller via the fabric and
for packets containing test results and/or functional test return
data back through the Test Wrapper to be returned to the Test
Controller.

In addition to tunctional testing, structural testing 1s also
supported by the Test Wrapper. In essence, the Test Wrapper
in combination with the Test Controller provide a mechanism
that effectively couples an ATE to the test ports 1n each IP
block for which a Test Wrapper 1s implemented. Accordingly,
structural testing that might be performed on a conventional
discrete component, such as scan testing can likewise be
performed on an IP block; however, under the architecture
disclosed herein there 1s no need for global wiring from an
ATE SoC intertace or switch block to each IP block, or the
need for global wiring to separate JTAG pins, saving valuable
die layout space. In addition, since the Test Wrapper design 1s
modular, reusable, and involves very little die space, 1t 1s easy

US 8,793,095 B2

7

to add to new and existing designs with minimum i1mpact on
development timelines and thus time-to-market concerns are
alleviated. Moreover, the modular and reusable nature of the
architecture means that separate customized test architectures
are no longer required.

As discussed above, a Test Wrapper acts as the interface

between the fabric and the test ports of the IP. The Test
Wrapper retrieves test packets that originate at the Test Con-
troller via the fabric, interprets how the data 1n the packets
needs to be processed through commands embedded in the
packets themselves, and then applies the data with the proper
signaling protocols to the appropriate test ports of the IP. For
example, in the scan mode (asserted by setting the appropriate
control registers through the TAP), the wrapper performs scan
load operations using the scan data supplied by the test con-
troller (retrieved from the packets deposited in the IP receive
queue (RXQ)), stores the scan unload data (response) from
the IP into the IP transmit queues (1XQs), and applies the
appropriate capture clocks when directed by the commands
embedded 1n the scan packets. A Test Wrapper for a particular
test methodology can be implemented by designing sub-
blocks which perform the following functions:

RXQ/TX(Q Read-Write Logic:

This 1s a sub-block that interfaces with the transactions
queues to retrieve data from the recerve queue (RXQ) and
places data in the transmit queues (TX(Q) for eventual for-
warding back to the Test Controller via the fabric. Data 1s
retrieved from RX(Q by detecting that new data has arrived in
the RXQ. Arrival of data in RX(Q could be determined by a
simple status signal or by comparing the head and tail pointers
of the queue (if present). A read operation from RXQ 1s
usually performed by popping the entry from the RX Q. Simi-
larly a write operation on the TXQ 1s performed when
response data 1s available from the IP and 1t 1s determined that
the TXQ has adequate space to support the write operation
(e1ther using a simple status signal, or by comparing the head
and tail pointers of the TXQ). Once the number of TX(Q
entries reaches a predetermined limit, the data 1n the TXQ 1s
torwarded to the Test Controller as a fabric packet.

Test Protocol Translator:

This 1s a logical sub-block (1implemented via multiple com-
ponents) that interfaces with the RXQ/TXQ Read-Write
Logic described above on one side and interfaces with the test
pins of the IP on the other side to implement the test protocol
needed to test the IP. This interfacing involves decoding
embedded commands and converting raw data from the RX(Q
to wavelorms needed to apply test stimulus to the IP, and
sampling the response wavetorms ifrom the IP and converting
them to data suitable for writing into TXQ. By caretul design,
Test Protocol Translators needed to implement diverse struc-
tural test methodologies test methodologies such as scan can
share the same RXQ/TX(Q Read-Write Logic to lower the
hardware overhead for the Test Wrapper.

Clock-Domain Crossings:

The main sub-block that has to deal with as many as 3
different clock domains 1s the RXQ/TXQ Read-Write Logic:
it has to contend with the reference clocks needed to read and
write to/from RXQ/TXQ and the reference clocks used by the
Test Protocol Translator, which are determined by the signal-
ing requirements of the test protocol (for instance, a scan
wrapper would use a reference clock determined by the maxi-
mum shift frequency). To ensure an orderly exchange of data
across these clock boundaries, handshaking logic 1s used to
ensure data 1s not sampled before 1t 1s available, and enough
time 1s allowed to send data to logic which may be on a
different clock domain. Figures of example clock-domain

10

15

20

25

30

35

40

45

50

55

60

65

8

crossing 1mplementations for a Test Controller and Test
Wrapper are respectively shown in FIGS. 4 and 5, discussed
in further detail below.

An 1mportant point to note here 1s that the Test Wrapper 1s
only needed for structural or other non-functional test appli-
cations. In such cases the functional transactions need to be
modified by the Test Wrapper to fit a non-functional/struc-
tural protocol. For functional tests the IP will be responding
directly to the functional transactions coming in from the
tabric and hence the Test Wrapper 1s not needed. Accordingly,
the pass through feature of the Test Wrapper 1s implemented
during functional testing.

FIG. 3 shows further details of one embodiment of a micro
architecture for a Test Wrapper 108A and imterfaces to and
from a generalized IP block 110. Several of the components
shown 1n FIG. 3 are similar to analogous components in Test
Controller 104 A of FIG. 2, including a fabric interface 300,
RX(Q and TXQ interfaces 302 and 304, and FIFOs 306 and
308. Test Wrapper 108 further includes a multiplexer block
310, a test state machine 312, and test control logic 314.

Fabric interface block 300 employs multiplexer circuitry
and associated logic, collectively depicted as multiplexer
block 310, to facilitate both send/receipt and pass through of
signals recerved mmbound from and sent outbound to fabric
106. From the perspective of the interconnect fabric, each IP
block that interfaces to the fabric has a respective fabric
interface and unique interconnect address. In some embodi-
ments (depending on the particular fabric architecture and
protocol), each device or IP block that interfaces to a fabric
employs an agent for handling transaction packets sent via the
fabric interconnect. As used herein, such agents (which may
generally be implemented via programmed logic and the like)
are embedded within the fabric interface blocks depicted 1n
the Figures and are not separately shown for clarity purposes;
however, 1t will be understood that such agents and their
associated functionality are implemented 1n the various fabric
interface blocks for applications that employ interconnect
tabric protocols employing such agents.

In the 1llustrated embodiment, test packets that originate at
a Test Controller for use for testing a given target IP block
may have one of two addresses: an address corresponding to
the IP block 1tself (generally for functional testing); or an
address allocated to the Test Wrapper. As discussed above,
since functional testing of the IP block does not require sup-
port from the Test Wrapper, the Test Wrapper can be
bypassed. This 1s effected by the multiplexer block 300, as
discussed above. To determine the correct target of the test
packets (IP block, or Test wrapper), some type ol address
detection for each packet 1s performed. Thus, fabric interface
block 300 or the fabric (106) includes circuitry to detect the
packet address and then route the packet accordingly.

Transmission of outbound packets from a Test Wrapper
and associated IP block are handled in a somewhat similar
manner, only 1n reverse. In this case, signals from IP block
fabric interface 128 and signals generated internally by Test
Wrapper 108 are selectively coupled to the fabric interface of
the Test Wrapper via multiplexers. In this case, there 1s no
need for address detection, as mere presence of outbound data
on the mterconnect signal path between fabric interface 128
and the Test Wrapper indicates the source ol the output packet
1s IP block 110. From the perspective of an IP block, the Test
Wrapper 1s transparent, as 1f the fabric interface of the IP
block was connected directly to the imterconnect fabric. This
desired functionality 1s facilitated by this designed-in signal
pass through functionality.

Data packets destined for the Test Wrapper are retrieved
from the transaction retrieve queue in fabric interface block

US 8,793,095 B2

9

300 using RXQ interface 302, which in turn drives a test state
machine 306 that provides corresponding inputs into test
control logic 314, which interprets the inputs and applies
corresponding test stimulus to the IP block via Test Controls
signals and associated test data (as depicted by “Test Data
Out”). Sitmilarly, response data (“Test Data In”) 1s retrieved
from the IP block, buffered in FIFO 308, formatted into

packets and transterred over fabric 106 via use of TXQ) inter-
tace 304 and fabric interface block 300. The destination of the
test response packets 1s usually the Test Controller, which
de-packetizes and reformats the response data and transiers
the data to the ATE. Depending on the test method being
implemented by the Test Wrapper, corresponding circuitry
and logic 1s implemented via test state machine 312 and test
control logic 314, and appropriate test data 1s transferred
through the “Test Data Out” and “Test Data In” signals. For
istance, 11 the wrapper 1s designed to apply scan data, the
“Test Controls” are scan control signals (scan enables, cap-
ture and scan clocks), and the ““Test Data In” and “Test Data
Out” signals interface with the scan data in and scan data out
signals of the IP (via corresponding IP test ports 130). For a
wrapper implementing multiple test methodologies for an IP,
some of the building blocks can be shared (such as blocks that
communicate with the fabric, e.g., the FIFOs and the RX(Q
and TXQ interfaces).

As describe above, 1n one embodiment the FIFOs comprise
timing crossing FIFOs that are configured to facilitate a dii-
terence in clock frequencies employed by the communication
signals between an ATE and the Test Controller, and between
the Test Controller and the fabric. For example, this 1s sche-
matically illustrated in FIG. 4. In general, 11 the ATE and
fabric(s) run off separate and unrelated clocks, the clock-
crossing FIFOs synchronize data: usually the tester will have
to run at 2x or more slower than the fabric clock to ensure data
integrity. In another scenario, 11 Design for Test (DFT) logic
1s 1mserted (simple bypass MUXes) to make the tester clock
the same as the fabric clock, then the synchronizing FIFOs are
not needed, and the tester can run as fast as the fabric. The
latter scenario 1s the preferred choice of implementation for
structural tests.

In the example shown 1n FIG. 4, ATE 100 and the compo-
nents on the left-hand side of Test Controller 104B (collec-
tively shown as Formatter 114) operate at a first clock fre-
quency CLK 1 corresponding to a first clock domain (CLK
Domain 1). Meanwhile, the components on the right-hand
side of Test Controller 104, collectively represented by TX Q)
interface 206 and fabric mterface block 212 for simplicity,
operate 1n a second clock domain (CLK Domain 2) corre-
sponding to the frequency of a CLK 2 signal employed by
tabric 106. The clock crossing FIFO 202A 1s configured to
cross the different clock domains, operating 1n an asynchro-
nous manner relative to one or both of the clock signal fre-
quencies and employing applicable handshaking circuitry to
ensure data integrity. The circuitry and logic 1s simplified 1f
the frequency of CLK 2 1s a multiple of the frequency of CLK
1, but this 1s not a strict requirement. Although not shown, the
circuitry of Test Controller 104B relating to receipt and pro-
cessing of test result packets 1s configured 1n a similar man-
ner, wherein FIFO 204 1s configured as a second clock cross-
ing FIFO.

A similar technique 1s employed for addressing clock fre-
quency differences between the interconnect fabric, Test
Wrapper, and IP block. As shown 1n a Test Wrapper 108B of
FIG. 5, the components (abstracted here for simplicity) are
divided 1nto two clock domains, labeled CLK Domain 2 and
CLK Domain 3. The clock domains are crossed using hand-
shaking control and timing circuitry implemented 1n a clock

5

10

15

20

25

30

35

40

45

50

55

60

65

10

crossing FIFO 306 A. In a similar manner, circuitry relating to
packaging and forwarding of test result data 1n the Test Wrap-
per would be implemented, including a clock crossing FIFO
308 (not shown).

In general, substantially any test that might be performed
on a discrete component using a tester coupled directly to pins
on the discrete component may be performed on an IP block
having similar core circuitry using the combination of the
Test Controller and Test Wrapper disclosed herein. Specific
test logic may be embedded 1n one or more of the components
herein, depending on the particular test requirements. Typi-
cally, test logic particular to a type of class of IP block or core
may be embedded 1n the Test Wrapper implemented for that
class.

For example, an exemplary IP block 110A shown in FIG. 6
1s 1llustrative of a class of IP block for which scan testing 1s
applicable. As depicted, IP block 110A has an core 126 A
including memory 600, cache 602, and scan chains 604. Also
depicted 1s logic 1n a Test Wrapper 108C for performing scan
testing, Direct Access Test (DAT) testing, and Structure
Based Function Test (SBFT).

As discussed above, the Test Wrapper provides a test inter-
face to communicate with the IP test ports of the IP block.
This interface 1s schematically depicted as a Test Interface
block 124 and a connection 122A. In general, connection
122A may be implemented via any type of connection
capable of transmitting data and/or signals, such as a bus,
serial connection, etc.

Another aspect relating to the implementation of the TAMs
disclosed herein 1s TAM configuration. Before test data 1s
delivered to the TAM, the TAM has to be configured so that
various components of the TAM know how to process the
data. For instance, in the scan mode, the wrappers and test
controllers need to be configured so that they can package and
interpret the scan data correctly, and interpret the appropriate
fields 1n the scan-oriented packets to do shift operations,
apply capture clocks etc. Such configuration 1s better done
using an independent mechanism such as the 1149.1 TAP,
IEEE 1500 WTAP or a fabric sideband. At a minimum, the
configuration mechanism 1s expected to support all of the test
modes supported by the TAM, such as scan, DAT and SBFT.
To simplity design, validation and bring-up, the configuration
mechanism should not be dependent on an operational fabric,
and 1t 1s assumed the imndependent configuration mechanism
will place the TAM 1n the appropriate test mode before the
first test-related operation 1s mitiated over the fabric.

Generally, logic for implementing the TAM test configu-
ration may be embedded 1n the Test Controller, implemented
in a separate block, or may comprise logic distributed among
multiple components. For example, logic for implementing
test configuration 1s depicted as test configuration block 112
in FIG. 1. In this exemplary implementation, test configura-
tion block 112 recerves input and control information from
ATE 100, and, 1n response, provides test configuration data to
cach of Test Controller 104 and Test Wrapper 108.

As discussed above, aspects of the embodiments disclosed
herein may be implemented using various types of intercon-
nect fabrics and associated fabric protocols, and the overall
Test Controller and Test Wrapper architecture 1s independent
of any particular interconnect fabric. However, to better 1llus-
trate 1nterface aspects related to the use of an interconnect
fabric for facilitating related communication operations,
embodiments are now presented using an IOSF 1nterconnect
fabric.

IOSF 1s an on-die functional interconnect fabric that 1s
being proliferated across INTEL SoCs. IOSF offers a plug-
and-play mechanism of integrating IOSF-compliant IPs into

US 8,793,095 B2

11

an SoC, and 1s based on the PCl-e standard. IOSF enforces
standardization at the interface and protocol level, but does
not specily the fabric implementation to allow flexibility in
how the fabric 1s implemented to address different SoC mar-
ket segments. Being based on PCI-e allows compatibility of
shrink-wrap operating systems that assume PCI-e behavior. A
primary motivation for developing the technology disclosed
herein was to enable usage of the IOSF standard functional
interconnect fabric as a standard TAM {for the purpose of
delivering data to and sampling response from IOSF fabric-
resident IPs. This allows for a logical layering of a standard-
1zed TAM with plug-and-play capabilities over a standard
functional interconnect, reducing design overhead.

FIG. 1A shows an embodiment of the TAM architecture of
FIG. 1 implementing an IOSF interconnect Fabric. Many of
the illustrated components in FIG. 1A share the same refer-
ence numbers as analogous components 1n FIG. 1, and such

components perform similar operations in both embodi-
ments. Additionally, the architecture in FIG. 1A includes an
IP block 110B that includes the IP core 126 A of FIG. 6,
wherein the operations of the components of IP core 126 A in
FIGS. 6 and 1A are similar.

Under IOSF, communication over the interconnect fabric
1s facilitated through use of packets that are delivered via the
interconnect using a multi-layer protocol. The protocol
employs agents at each endpoint that manage communication
and arbitration operations for the transier of packet data over
the interconnect. The protocol also employs a master and
target interfaces that respectively facilitate send and receive
fabric interface operations. Under the IOSF protocol, packet
transmissions originate at a master interface an include
address information corresponding to a target interface on a
targeted (for receipt of the packets) IP. The master and target

interfaces in FIG. 1A include a master interface 132 and target
interface 134 1n a test controller 104C, and a master interface
138 1n IP block 110B. IP block 110B further depicts a trans-
mit transaction queue (1X(Q) 140 and a recerve transaction
queue (RQX) queue 142. The pairing of a TX(Q to a master
interface and the pairing of a target interface to an RXQ are
common to each IOSF interface. Although not shown 1n FIG.
1A, Test Wrapper 108 A also includes master and target inter-
faces and an associated TX(Q and RXQ).

In general, an actual TAM implementation for an SoC will
include a Test Controller that communicates with multiple
Test Wrappers, with an instance of a Test Wrapper for each IP
for which the TAM architecture 1s implemented for testing
that IP. The particular micro architecture of a given Test
Wrapper will be somewhat dependent on the IP it 1s designed
to test, although many of the micro architecture sub-blocks
described herein will be reusable across Test Wrappers. An
exemplary implementation of such a TAM architecture is
illustrated by an SoC 700 shown 1n FIG. 7.

SoC 700 1ncludes a Test controller 104 coupled to a test
interface 103 configured to be connected to ATE 100 via a
plurality of SoC test pins. The components of SoC 700 are
depicted as being divided between a north complex and a
south complex, which 1s somewhat analogous to the discreet
component integration employed by INTEL’s north bridge/
south bridge architecture, acknowledging that in an SoC all of
the components are integrated on a common die without
external interconnects between components.

The North complex includes a plurality of IP’s (depicted as
anIP 1, IP 2, and IP 3) connected to an IOSF fabric 702. Each
IP includes a respect agent (depicted as Agent 1, Agent 2, and
Agent 3) that 1s used to facilitate communication between the
IP and other agents coupled to the IOSF fabric, including an
Agent 0 implemented by test controller 104. Respective Test

5

10

15

20

25

30

35

40

45

50

55

60

65

12

Wrapper 108-1, 108-2, and 108-3 are implemented to facili-
tate testing of IP 1, IP 2, and IP 3, and are also coupled to IOSF
tabric 702.

The North complex also includes a coherent fabric 704
communicatively coupled to IOSF fabric 702 via a coherent-
to-10 fabric bridge 706. Coherent fabric 704 supports coher-
ent memory transactions for accessing various shared
memory resources, which are collectively depicted as
memory 708. A CPU 710 including a plurality of cores 712 1s
communicatively coupled to coherent fabric 704, wherein
cach core1s enabled to access memory 708 while maintaining
memory coherency. Support for maintaining memory coher-
ency using a coherent interconnect fabric 1s typically main-
tained by various agents (not shown for clarity).

A Test Wrapper 108-4 1s implemented for facilitating test-
ing of CPU 710, and interfaces with CPU 710 via an interface

714 and an agent (Agent 4) on the CPU. Agent 4 and the fabric
interface components of Test Wrapper 108-4 are configured
to 1nterface with coherent fabric 704, which employs a dii-
terent interface structure and protocol than IOSF fabric 702.
Bridge 706 facilitates a bridging operation between the two
tabric protocols, converting packets 1n accordance with a first
protocol (e.g., IOSF) into packets corresponding to a second
protocol (e.g., OCP), while also facilitating timing and sig-
naling interfaces between the two fabrics. In this manner, test
package data can be sent from Test Controller 104 via IOSF
tabric 702, bridge 706, and coherent fabric 704 to Test Wrap-
per 108-4, and corresponding test result data can be returned
in the reverse direction back to the test controller.

The implementation of the Test Wrappers 1n the South
complex 1s similar to the implementation of Test Wrappers
coupled to IOSF fabric 702 in the North Complex. The South
complex includes an IOSF fabric 716 to which multiple IPs
are commumnicatively coupled, as depicted by an IP 5, and IP
6, and an IP 7, which communication with the fabric facili-
tated by respect Agents 5, 6, and 7. Testing operations for each

of these IPs 1s facilitated by a respect Test Wrapper 108-5,
108-6 and 108-7. IOSF fabric 716 1s shown coupled to IOSF

tabric 702 via an IOSF-to-IOSF bridge 718. In an alternative
configuration, IOSF fabrics 702 and 716 comprise a single
interconnect fabric; accordingly, no bridge would be
employed. In another embodiment, the South Complex fabric
comprises an OCP fabric, and bridge 718 comprises an IOSF -
to-OCP bridge.

FIG. 8 shows details of an exemplary implementation of a
TAM including a test controller implemented 1n a fabric-to-
tabric bridge 1n an SoC 800. In the particular example, the
tabric-to-fabric bridge comprises an IOSF-to-OCP bridge;
however, this 1s merely exemplary, as similar architecture
clements and aspects of the design may be implemented 1n
other types of fabric-to-fabric bridges, including fabric-to-
tabric bridges coupled to different types of interconnect fab-
rics employing different protocols or bridges coupled to inter-
connect fabrics of the same type.

In the architecture of FIG. 8, a Test Controller block 801 1s
embedded in an IOSE/OCP bridge 802. This architecture
allows the reuse of the existing fabric interfaces, and also
provides access to the southbound OCP fabric 804 and the
northbound IOSF fabric, which includes IOSF primary fabric
806 and ISOF sideband fabric 808. The architecture also
includes a memory block 810 including an OCP bridge 812,
a Test Wrapper 814, and on-die memory 816. Test Controller
block 800 includes a Test Controller 818, and injection queue
interface 820, and a data conversion/formatter 822. The archi-
tecture further includes a TAP Controller block 824, and a
JTAG/TAP interface 826. In addition, various IP’s 1n the SoC

are represented as 1Pa, IPb, IPc, IPm, and IPn.

US 8,793,095 B2

13

IOSF/OCP bridge 802 also includes facilities for perform-
ing conventional fabric-to-fabric bridging functions, such as
bullfering received packets configured 1n accordance with a
protocol corresponding to the fabric on one side of the bridge
and converting the packet configuration in accordance with
the protocol for the fabric on the other side of the bridge. For
example, OCP {fabric packets would be received by the
bridge, buifered, converted into IOSF packets, and transmuit-
ted onto IOSF primary fabric 806. In addition to buffering and
packet conversion, a fabric-to-fabric bridge also handles tim-
ing considerations, such as supporting fabrics operating at
different clock frequencies and employing different signaling
protocols. For simplicity, these fabric-to-fabric bridge func-
tions are collectively depicted by a Queue & Transaction
Conversion block 828.

The Test Wrapper 814 1n Memory Block 810 1s used to
allow Test Controller 818 to load and unload arrays of test
stimulus and response data, which may be stored 1n on-die
memory 816. In general, on-die memory 816 may be
employed for dedicated test purposes or may be implemented
as a shared memory resource and used for other purposes.
OCP bridge 812 provides the interface and queuing to facili-
tate communications with OCP fabric 804. In a similar man-
ner, equivalent interfaces and functionality could be 1mple-
mented for whatever type of fabric 1s employed 1n an SoC. In
one embodiment there 1s also a direct interface from the Test
Controller to the on-die memory to allow time-stamp based
injection of traific onto the OCP or IOSF fabric (both primary
and sideband). The on-die memory 1n this case provides extra
butler space to store transactions to be injected into the IOSF
or OCP fabric.

As with the prior embodiments, testing will typically
employ an ATE 100, which 1s shown coupled to JTAG/TAP
interface 826. The physical coupling of the ATE mnput and
output signals will typically be via a plurality of pins on the
SoC 1n the conventional manner. Accordingly, JTAG/TAP
interface 826 comprises an external tester interface that is
used to facilitate transter of signals and data between ATE 100
and internal components in the SoC. In the illustrated
embodiment, JTAG/TAP {facilitates communication with
TAP controller block 830, which interfaces with each of Test
Controller 818, and Test Wrapper 814. Generally, TAP Con-
troller 824 1s used for various configuration and test control
operations, such as configuring various DFT blocks JTAG
ports, including a JTAG port at the Test Controller (not
shown).

FI1G. 9 illustrates details of one embodiment of a Bridge
Wrapper 900 that may be implemented in a fabric-to-fabric
bridge such as the IOSF/OCP Bridge 802 of FIG. 8. It 1s noted
that although the interfaces and corresponding blocks in
Bridge Wrapper 900 are depicted 1n the context of an OCP-
to-IOSF fabric bridge, this 1s not meant to be limiting. Rather,
the general architecture and principles may be applied to
other types of fabric-to-fabric bridges when implemented
with corresponding interfaces and considerations relating to
the particularities of each fabric (e.g., timing, packet protocol,
transaction queuing, etc.)

Bridge Wrapper 900 includes a bridge core 902 including,
an JOSF T (target) interface 904, an IOSF M (master) inter-

face 906, an OCP M (master) interface 908, and an OCP S
(slave) interface 910. Bridge core 902 further includes a chan-
nel block 910 including clock-crossing FIFOs 914 and 916,
and multiplexers 918,920, and 922. Bridge Wrapper 900 also
includes a Test Controller (TC) sub-block 924 connected to
on-die memory 816 via a private channel 926.

By implementing the Test Controller 1n an IOSF-to-OCP
bridge, access to both IOSF and OCP buses 1s supported, as

5

10

15

20

25

30

35

40

45

50

55

60

65

14

well as the ability to share the transaction buflers and fabric
interfaces to the OCP and IOSF fabrics to reduce hardware
overhead. In the test mode, the Test Controller gets control
over the appropriate data path via a bank of multiplexers
(1llustrated as multiplexers 918, 920, and 922 for simplicity)
so that traflic can be 1njected or intercepted to/from the OCP
and IOSF fabrics. The tester channels (not shown) connect to
the “TC”” sub-block 924 1nside the IOSE/OCP bridge. The test
controller can be used to load up the on-die memory with
data/instructions ifrom the tester.

The private channel 926 1s used to 1nject traific on to either
the OCP or IOSF fabrics (both on the primary and sideband
channels for IOSF). First, the test controller loads the trans-
actions/instructions into on-die memory 816 from the tester
by sending data over OCP {fabric 804. Once the on-die
memory has been loaded, the test controller retrieves the
transactions from the on-die memory for traific injection.
Based upon the time-stamps stored with the transactions, the
test controller injects transactions ito the approprate bus at
the appropriate time (“time” here refers to the reference clock
cycle which 1s the IOSF clock for downstream 1njections and
OCP clock for upstream injections). Note that for down-
stream 1njections the TC actually writes 1nto the queues from
the IOSF side and for upstream 1njections the TC writes mnto
the queues from the OCP side.

The combined use of the Test Controller and a Test Wrap-
per provides a mechanism for effectively transmitting test
commands, test stimulus, and test results to and from an IUT
such that the ATE 1s effectively coupled to each IP without the
need for global wiring. Moreover, the TAM architecture sup-
ports reuse and scalability, while minimizing the need for
generating and implementing specific test facilities requiring
corresponding circuitry for each SoC design or dertvative. For
example, once a test wrapper for a given IP block has been
designed, that test wrapper design can be used wherever an
instance of the IP block 1s implemented in an SoC employing
similar communication architectures (e.g., the same intercon-
nect fabric). Moreover, 1t 1s envisioned that the Test Control-
ler may be configured to support testing across multiple SoC
architectures and/or denivatives. For example, a “umversal”
test controller could be configured to support testing across a
chipset family. Optionally, a configurable RTL block for the
test controller that contains parameterizable sub-components
(such as type and number of signals) and also sub-compo-
nents which can be included/excluded using compiler direc-
tives could be employed. As another option, a program or
script that functions as a “test controller” generator” could be
used to generate a customized test controller on-the-1ly using
pre-coded building blocks and templates.

The exemplary embodiments of the mvention disclosed
herein illustrate implementation of various aspects of the
invention as implemented on a semiconductor chip, as exem-
plified by an SoC architecture. In addition, embodiments of
the present description may be implemented within machine-
readable media. For example, the designs described above
may be stored upon and/or embedded within machine read-
able media associated with a design tool used for designing
semiconductor devices. Examples include a netlist formatted
in the VHSIC Hardware Description Language (VHDL) lan-
guage or Verilog language. Some netlist examples include: a
behavioral level netlist, a register transier level (RTL) netlist,
a gate level netlist and a transistor level netlist. Machine-
readable media also include media having layout information
such as a GDS-II file. Furthermore, netlist files or other
machine-readable media for semiconductor chip design may
be used 1n a simulation environment to perform the methods
of the teachings described above.

US 8,793,095 B2

15

The above description of illustrated embodiments of the
invention, including what 1s described 1n the Abstract, 1s not
intended to be exhaustive or to limit the mvention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for 1llustra-
tive purposes, various equivalent modifications are possible
within the scope of the invention, as those skilled in the
relevant art will recognmize.

These modifications can be made to the invention in light of
the above detailed description. The terms used 1n the follow-
ing claims should not be construed to limit the invention to the
specific embodiments disclosed 1n the specification and the
drawings. Rather, the scope of the invention 1s to be deter-
mined entirely by the following claims, which are to be con-
strued 1n accordance with established doctrines of claim inter-
pretation.

What 1s claimed 1s:

1. A system on a chip (SoC), comprising;:

a first interconnect fabric;

a second interconnect fabric;

a Tabric-to-fabric bridge coupled to each of the first and

second 1nterconnect fabrics:

a Test Access Mechanism (TAM), having at least a portion
thereol including a test controller implemented 1n the
tabric-to-fabric bridge;

a first intellectual property (IP) block, operatively coupled
to the first interconnect fabric; and

a second IP block, operatively coupled to the second inter-
connect fabric,

wherein the TAM 1s configured to recerve test input from an
external tester corresponding to one or more tests to be
performed on the first IP block and send corresponding
test data and/or test commands for testing the first IP
block over the first interconnect fabric via the fabric-to-
fabric bridge.

2. The SoC of claim 1, wherein the TAM 1s configured to
receive test result data corresponding to testing the first 1P
block over the first interconnect fabric via the fabric-to-fabric
bridge and return corresponding test result data to the external
tester.

3. The SoC of claim 1, wherein the TAM 1s configured to
receive test input from the external tester corresponding to
one or more tests to be performed on the second IP block and
send corresponding test data and/or test commands for testing
the second IP block over the second interconnect fabric via
the fabric-to-fabric bridge.

4. The SoC of claim 3, wherein the TAM 1s further config-
ured to receive test result data corresponding to testing the
second IP block over the second interconnect fabric via the
tabric-to-fabric bridge and return corresponding test result
data to the external tester.

5. The SoC of claim 1, further comprising a test wrapper
communicatively coupled to each of the first interconnect
fabric and the first IP block,

wherein, 1n response to recerving tester mput the TAM 1s
configured to generate a test package comprising test
data and/or test commands corresponding to the tester
input and to transmit the test package to the test wrapper
via the fabric-to-fabric bridge and the first interconnect
fabric, and wherein, in response to receiving the test
package the test wrapper 1s configured to provide corre-
sponding test input data, control and/or stimulus signals
to the first IP block to perform one or more test opera-
tions on circuitry 1n the first IP block.

6. The SoC of claim 1, further comprising a test wrapper

communicatively coupled to each of the second interconnect

fabric and the second IP block,

10

15

20

25

30

35

40

45

50

55

60

65

16

wherein, 1n response to receiving tester input the TAM 1s
configured to generate a test package comprising test
data and/or test commands corresponding to the tester
input and to transmit the test package to the test wrapper
via the fabric-to-fabric bridge and the second intercon-
nect fabric, and wherein, 1n response to recerving the test
package the test wrapper 1s configured to provide corre-
sponding test input data, control and/or stimulus signals
to the second IP block to perform one or more test
operations on circuitry in the second IP block.

7. The SoC of claim 1, further comprising an external tester
interface operatively coupled to the TAM and comprising a
set of pins to which signals to and/or from an external tester
may be coupled to facilitate commumnication between the
TAM and the external tester.

8. The SoC of claim 1, further comprising a memory block
operatively coupled to the first interconnect fabric to store
transactions associated with testing IP blocks in the SoC.

9. The SoC of claim 1, wherein one of the first and second
interconnect fabrics comprise an Open Core Protocol fabric.

10. The SoC of claim 1, wherein the first and second

interconnect fabrics comprise different types of interconnect
tabrics employing different protocols.
11. A method, comprising:
testing Intellectual Property (IP) blocks in a system on a
chip (SoC) including first and second interconnect fab-
rics to which IP blocks are operationally coupled and a
fabric-to-fabric bridge,
receving, at a test controller having at least a portion
embedded 1n the fabric-to-fabric bridge, tester input
from a tester external to the SoC;
generating, at the test controller and based on the tester
iput, test packages including test data and/or test com-
mands 1n accordance with the tester input; and
transmitting test packages from the test controller onto the
first interconnect fabric via the fabric-to-fabric bridge to
facilitate testing of one or more IP blocks operationally
coupled to the first interconnect fabric.
12. The method of claim 11, further comprising:
recerving, at the fabric-to-fabric bridge via the first inter-

connect fabric, one or more packets comprising test
result data associated with testing of an IP block opera-
tionally coupled to the first interconnect fabric; and

returning test output data corresponding to the test result
data to the external tester.
13. The method of claim 11, further comprising transmit-
ting test packages from the test controller onto the second
interconnect fabric via the fabric-to-fabric bridge to facilitate
testing ol one or more IP blocks operationally coupled to the
second 1nterconnect fabric.
14. The method of claim 13, further comprising:
recerving, at the fabric-to-fabric bridge via the second
interconnect fabric, one or more packets comprising test
result data associated with testing of an IP block opera-
tionally coupled to the second interconnect fabric; and

returning test output data corresponding to the test result
data to the external tester.

15. The method of claim 12, wherein each test package
comprises a single packet.

16. The method of claim 11, wherein the SoC {further
comprises a test wrapper operationally coupled to each of the
first interconnect fabric and a first IP block, the method fur-
ther comprising:

transmitting, via an first interconnect fabric, test data and/

or test commands to a test wrapper integrated on the SoC

US 8,793,095 B2

17

and communicatively coupled to the first interconnect
fabric and an IP block operatively coupled to the first
interconnect fabric; and

providing, via the test wrapper, test input data, control,

and/or stimulus signals to the IP block to facilitate cir-
cuit-level testing of the IP block corresponding to the
test data and/or test commands.
17. The method of claim 16, wherein the test wrapper 1s
communicatively coupled between the IP block and the first
interconnect fabric, the method turther comprising configur-
ing the test wrapper to pass through signals from the IP block
to the first interconnect fabric to facilitate direct communica-
tion between the IP block and the first interconnect fabric.
18. The method of claim 11, further comprising,
receiving tester input at the test controller corresponding to
functional testing to be performed using an IP block
operatively coupled to the first interconnect fabric; and

performing functional testing of the IP block by sending
test inputs from the test controller to the IP block via the
fabric-to-fabric bridge and the first interconnect fabric
and returning test output from the IP block to the test
controller via the first interconnect fabric and the fabric-
to-fabric bridge.

19. The method of claim 11, wherein the first and second
interconnect fabrics comprise different types of interconnect
tabrics employing different protocols.

20. The method of claim 11, wherein one of the first and
second interconnect fabrics comprise an Open Core Protocol
fabric.

10

15

20

25

30

18

	Front Page
	Drawings
	Specification
	Claims

