(12)

United States Patent

Schmidt et al.

US008789051B2

(10) Patent No.: US 8.789,051 B2
45) Date of Patent: Jul. 22, 2014

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(1)
(52)

(58)

(56)

OPERATING SYSTEM AND ARCHITECTURE
FOR EMBEDDED SYSTEM

Inventors: Jeffrey S. Schmidt, Rockton, IL (US);
Mark E. Jenkinson, Winnebago, IL
(US)

Assignee: Hamilton Sundstrand Corporation,
Rockford, IL (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 2216 days.

Appl. No.: 10/991,743

Filed: Nov. 18, 2004

Prior Publication Data

US 2006/0107264 Al May 18, 20006

Int. CI.
GO6F 9/46 (2006.01)

U.S. CL
USPC 718/100

Field of Classification Search
U S P i e e et re e e aans, 718/100

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

5,210,872 A 5/1993 Ferguson et al.
5,303,369 A 4/1994 Borcherding et al.
5,325,526 A 6/1994 Cameron et al.
5,887,143 A 3/1999 Saito et al.
5,915,252 A * 6/1999 Misheskietal. 707/103 R
5,961,585 A 10/1999 Hamlin
6,076,157 A 6/2000 Borkenhagen et al.
6,110,220 A 8/2000 Dave et al.

6,112,023 A 8/2000 Dave et al.
6,117,180 A 9/2000 Dave et al.
0,151,538 A 11/2000 Bate et al.

6,212,544 Bl 4/2001 Borkenhagen et al.
6,247,109 B1* 6/2001 Klemsorgeetal. 712/13
6,345,287 Bl 2/2002 Fong et al.
6,470,397 B1* 10/2002 Shahetal. 709/250
6,490,611 Bl 12/2002 Shen et al.
6,567,839 Bl 5/2003 Borkenhagen et al.
6,567,840 Bl 5/2003 Binns et al.
6,633,916 B2 10/2003 Kauffman
6,813,527 B2* 11/2004 HesS .ccoovviviiviiiiniinn., 700/82
6,871,350 B2* 3/2005 Wongetal. 719/323
7,076,634 B2* 7/2006 Lambethetal. 711/206
7,140,022 B2* 11/2006 Bmnscccooevvinvinn, 718/105
7,380,039 B2* 5/2008 Miloushevetal. 710/244
2002/0091863 Al* 7/2002 Schug ... 709/250
2003/0009508 Al 1/2003 Troia et al.
2003/0131042 Al 7/2003 Awada et al.
2003/0154234 Al 8/2003 Larson
2004/0078799 Al* 4/2004 Koningetal. 719/313
2005/0097035 Al1* 5/2005 Likasetal.ccoeiiii, 705/39

2006/0101473 Al* 5/2006 Tayloretal. 719/314

* cited by examiner

Primary Examiner — Gregory A Kessler

(74) Attorney, Agent, or Firm — Carlson, Gaskey & Olds,
P.C.

(57) ABSTRACT

An improved operating system and architecture, particularly
usetul for aircrait, provides a schedule for multiple tasks that
ensures that each task has sufficient execution time and does
not interfere with any other tasks. In the operating system,
cach task i1s scheduled to a deadline monotonic algorithm.
The algorithm creates a schedule for the tasks in which the
tasks are time partitioned by task, not by task level. The APIs
in the operating system are provided by the services. Thus,
changing a service, e.g. because of a change 1n hardware, 1s
facilitated, since the service will provide the proper API.

5 Claims, 7 Drawing Sheets

64
62 62y
-~
PARTITION
APPLICATIONS < BRSO RAGAOBLOEOO S m @ 64”
9 , 3
- Y ¥ -
&U_,J:-| CORE REUSABLE - APPLICATION PROGRAMMING INTERFACE (API) A e oy MG 72
) i
CORE PRDERAMMIHG _ CORE PRDERAMMIMG 56 ! 3)
INTERFACE (CPI) }7 e PARTITION
RTOS & .

INTERFACE (CP) APPLICATION
e v |
sE%?nerEs y o1 ¥ PARTITION ”
Cf HED) |
0 " SPECIFIC

HARDWARE _
INTERFACES

BOARD SUPPORT PACKAGE (BSP) T
. INTERFACES -
- 4

US 8,789,051 B2

Sheet 1 of 7

Jul. 22, 2014

U.S. Patent

A

ONLLHOI
HOIM3INI

1 've ‘e g i
ONILHOM | | 08INOD
NHOTL || TMINO9 1 Inouvoinn| | swvee | | amoNa
07 0¢
6z

ve

US 8,789,051 B2

Sheet 2 of 7

Jul. 22, 2014

U.S. Patent

JUVMAEYH
14
SRR ER)
dSd

NOILILYVd

1

SIOV-HILNI
(dS8) 3OOV 140ddNS aivo8

NA193dS
NOILYDITddY 0 JOIAY3S
NOILLLYVd NOILILYVd
SIDIAYIS
o (IdD)30VM3INI _ 1d0) 30V 43N
NOILYDIddY “
’ | NOLLILaYd 90 ONINAYHOOYNd IH0D ONINNYHOO0M ! 340D
| —
IdV) 30V443INT -
7/ ONINWYNO0Ed NS NOLLYIddY (1dv) 30V44ILNI ONIAWVHOO0N NOLLYINddY - TNaVSNIY 3¥09D
Vb9 e e | YSYL
NO!LILHYd
NZg
:@ l E

SFOV4H3LNI
JAVMOIVH

/

0F

S30IAM3S
3400
3501y

09

> SNOILVOl1ddY

U.S. Patent Jul. 22, 2014 Sheet 3 of 7 US 8,789,051 B2

30 602 bt

e [,
- —

621 625

il

60b
Fig-3
641
30
603
APPLICATION RTOS o)
GALLEY LIGHT MESSAGES GL TO COMMS QUEUE
SWITCH TASK(U!
QUEUES INRTOS LEVEL A
Fig- 4
903
30
60a
RTOS 0
GL TO COMMS QUEUE MESSAGES | COMMUNICATIONS
SERVICE
QUEUES INRTOS LEVEL A
HARDWARE

48
Fig-3

U.S. Patent

Jul. 22, 2014 Sheet 4 of 7 US 8.789,051 B2
50a
10
COMMUNICATIONS
SERVICE
73
INPUT IMAGE
MEMORY MAP
60¢
COMM 10 13
— DEVICE DRIVER
MAPPED [0
HARDWARE
Fi g- 6
............ e
APPLICATION
641 CALLTOA
GALLEY LIGHT DEVICE DRIVER
SWITCH TASK(U) 0
!
303
JO
COMMUNICATIONS
SERVICE |
UPDATE MMU FOR
DEVICE DRIVER
73 l RT0S |
MENORY AP READ INPUT A1 . 60c
DEVICEDRVER | (=

COMM 10 DEVICE DRIVER

LEVELA

[OTHER DEVICE DRIVERS |

U.S. Patent Jul. 22, 2014 Sheet 5 of 7 US 8,789,051 B2

64, APPLICATION

GALLEY LIGHT
SWITCH TASK(U)

50a

0
COMMUNICATIONS | | TEQu 0

SERVICE

INPUT IMAGE

MEMORY MAP READ INPUT AP 60c
DEVICE DRIVER

COMM 10 DEVICE DRIVER
LEVEL A OTHER DEVICE DRIVERS

COMM 10 DEVICE DRIVER
l OTHER DEVICE DRIVERS

Fig-8
............ LEVELA .,
64, APPLICATION
CALLTOA
GALLEY LIGHT DEVICE DRIVER :
SWITCH TASK(U) 5 ; 20
50a
He :
COMMUNICATIONS :
SERVICE :
: UPDATE MMU FOR
; DEVICE DRIVER
. I I RT0S |
INPUT IMAGE : :
MEMORY MAP_! 5 READ INPUT API ; 60¢c
— ; DEVICE DRIVER :

U.S. Patent Jul. 22, 2014 Sheet 6 of 7 US 8,789,051 B2

/1

‘5- 69

64 [DATABATENTRY |
76

-

_ DATATBL ENTRY | >~
80 -

LS

INSTR BAT ENTRY

88 130
SCHEDULE STATUS

<O
o

TASK A 1
TASK A 0
TASK A 2
TASKC 1
TASKC 2
TASK B 1
TASK B 0
TASK B 0
TASK B 0
TASK B 0
TASK A 1
TASK A 0
TASK A 2
TASKC ; i U 133'-\-1_,@—7

TASK C T
TAKB | [0 [NERR]
TASKB

|
|
|
|
|
|

L

1
!
N

US 8,789,051 B2

Sheet 7 of 7

Jul. 22, 2014

U.S. Patent

¢}

(3LV3d3y
S 3NAIHIS

phl |®§&\\\\

0}
. vE. ; .NE.
¢6 06 V6 o 06
88

(S107S ALdWASASN) 7
HOLINOW XSV1 \\ LIM LN

L3OMLINAE

US 8,789,051 B2

1

OPERATING SYSTEM AND ARCHITECTURE
FOR EMBEDDED SYSTEM

BACKGROUND OF THE INVENTION

The present mvention relates generally to operating sys-
tems and architecture and more particularly to an operating,
system and run-time architecture for safety critical systems.

Aircraft systems that contain software are subject to func-
tionality restrictions and the verification requirements speci-
fied 1n the RTCA/DO-178B (DO-178B) Standard, “Software
Considerations 1n Airborne Systems and Equipment Certifi-
cation.” The Federal Aviation Authority in conjunction with
its worldwide counterparts recognizes and enforces adher-
ence to this standard. In the RTCA/DO-178B standard, there
are three concepts of interest defined, the first being “Levels
ol software criticality,” the second concept being protection,
and the third, which 1s closely related to the second, 1s the
concept of partitioning.

Software levels of criticality, as defined 1n the DO-178B
standard, are defined as five differing levels (e.g. Levels A, B,
C, D, E), where Level A represents software of the highest
criticality and Level E the lowest 1n terms of the software’s
function 1n controlling safety critical function on the aircratt.
Thus the standard provides a method to classity high critical-
ity functions and tasks from lower level criticality functions
and tasks. Safety critical standards from other industries may
define this concept similarly.

The DO-178B standard defines partitioning as the separa-
tion of software levels of criticality in both time and space
running on a single CPU. Thus a partitioned design provides
both Time Partitioning and Space Partitioning. Time Parti-
tioming 1s the ability to separate the execution of one task from
another task, such that a failure 1n one task will not impede the
execution of the other. Space Partitioming 1s defined as the
separation of space for two partitions, such that one partition
cannot corrupt the other partition’s memory (space), or access
a critical resource. The DO-178B standard defines protection
as the protection of one partition from another partition, such
that a violation of either time or space 1n partition has no etfect
on any other partition 1n the system.

Many existing task analysis and scheduling techniques
ex1st 1n real-time preemptive operating systems today. One
method of interest 1s Deadline Monotonic Analysis (DMA)
and Scheduling (DMS) (reference Embedded Systems Pro-
gramming see “Deadline Monotonic Analysis,” by Ken Tin-
dell, June 2000, pp. 20-38.). Deadline Monotonic Analysis
DMA) 1s a method of predicting system schedule-ability
where the system 1s a CPU with multiple tasks that are to be
executed concurrently. DMA requires that the analyst have
the following basic information for every task to be scheduled
in the system: 1) Task period, the task cycle or rate of execu-
tion. 2) Task Deadline, the time that the task must complete
execution by as measured from the start of a task period. 3)
The task’s worst case execution time (WCET), the worst-case
execution path of the task in terms of instructions converted to
time. Armed with this basic information the analyst can use
the DMA mathematics or formulas to predict if the system
can be scheduled. 1.e. whether all tasks will be able to meet
their deadlines 1n every period under worst case execution
scenarios. If the system can be scheduled then the system can
be executed using a runtime compliant Deadline Monotonic
Scheduler (DMS).

Existing Deadline Monotonic Schedulers use a dynamic
method for determining individual task execution at runtime.
At each timing interval, an evaluation 1s made at run-time to
determine whether the currently executing task 1s to be pre-

10

15

20

25

30

35

40

45

50

55

60

65

2

empted by a higher priority task, or whether a new task 1s due
to be started on an 1dle system. This dynamic method achieves
the goals of schedule-ability, but does introduce an element of
variability, since the individual preemption instances and task
initiation times may vary over successive passes through the
schedule. For example, 1n an existing Deadline Monotonic
Scheduler, individual task execution may be “slid” to an
carlier execution time 11 the preceding task finishes early or
aborts. Also, the number and placement of preemptions that
take place are similarly atffected, and so individual tasks may
vary anywhere within the bounds defined by theirr DMS
parameters.

Even though the amount of variability 1n existing Deadline
Monotonic Schedulers 1s limited to the schedule parameters,
it 1s nevertheless undesirable for certain applications where a
higher degree of predictability and repeatability 1s desired, for
example, DO-178B (avionics) and other safety critical appli-
cations

In a partitioned design, tasks inside of one partition com-

municate data via Application Programming Interfaces
(APIs) or APplication/EXecutive (or APEX) has they are

called in ARINC 653 compliant designs. The RTCA/DO-
1’78B standard concept of protection requires that partitions
be protected from each other such that a violation of either
time or space 1n partition has no effect on any other partition
in the system. This concept of protection applies to the APIs
or APEX 1interfaces as well.

In ARINC 6353 compliant designs, partitions are given
access to the APEX interface during the partition’s window of
execution. During this window, a partition can request or send
data to any resource available in the system via calls to the
appropriate APEX interface.

In the case of the ARINC 653 compliant designs, all par-
titions have access to all of the APEX interfaces to request or
send information. Thus, the standard has no concept for
restricted use or protected services or restricted interfaces.

Many safety critical industries like aviation provide regu-
latory guidelines for the development of embedded safety
critical software. Adherence to safety critical software design
standards involves creation of design and verification artifacts
that must support and prove the pedigree of the software code
and its particular application to the assessed software criti-
cality level.

Adherence to these safety critical standards typically
means that designers will spend less than 20% of their time
producing the actual code, and greater than 80% producing
the required supporting artifacts, and 1n some cases the time
spent producing the code can enter the single digits.

While adherence to these standards 1s meant to produce
error-iree embedded software products, the cost associated
with the production of these products 1s high. As a result the
producers seek as much reuse as possible. Due to the critical
nature of these products in the industries that they serve, the
safety critical standards also provide guidance for reuse.

The reuse guides, like those provided by the FAA for
avionics designs, typically state that a software configuration
item can be reused without additional effort 1t 1t has not
changed, implying that 1ts artifacts have not changed 1n addi-
tion to the code.

Today, only one standard exists for a partitioned software
design in the safety critical world of avionics, that standard 1s
the ARINC 653 standard. The ARINC 653 standard supports
application partitions that could be reused across multiple
applications, since the standard provides a common APEX or
user 1nterface to the Operating System functions. Using the
APEX interface as specified in the standard, it 1s possible to
write an application that does not change across multiple

US 8,789,051 B2

3

applications. Such an application would be a candidate for
reuse and reduced work scope 1n 1ts successive applications as

defined by safety critical guidelines like thus provided by the
FAA.

One of the flaws with speciiying the user interface or

APEX or API’s as a part of the executable operating system
code 1s that the underlying system hardware, like an aircratt
avionics communications device or protocol and or other
system hardware devices tend to change from program to
program (or aircraft to aircraft).
In addition, most aircrait OEM’s change aircrait specifica-
tions from aircrait to aircraft. Thus any changes 1n the user
interface, APEX or API’s will cause changes 1n the applica-
tion software or application partitions. Once the software or
its artifacts have changed, 1ts chances for reuse via a reduced
work scope as provided by industry guidance, like that of the
FAA, has evaporated. Architectures which separate the Oper-
ating Systems user interfaces from the hardware device or
services interfaces better serve reuse claims.

In summary, existing safety critical operating systems con-
tain many noticeable drawbacks, among these are the follow-
ng:

1) They do not ensure that the individual tasks grouped
within a partition will be individually time partitioned.

2) They do not provide the flexibility to space partition
multiple tasks of the same criticality either individually or in
subgroups.

3) The architecture requires the operating system to pro-
vide all Application Programming Interfaces (API’s) or
APEX’s 1n the case of ARINC 633, to all partitions.

4) Access to system hardware or CPU resources 1s provided
by operating system via the API (or APEX 1n the case of
ARINC 633), thus the interface for these resources 1s con-
trolled by the operating system, and could change from plat-
form to platform, limiting the ability to reuse software with-
out change.

5) The architecture and API or APEX 1nterfaces provide no
mechanism for exclusive use of critical resources by a parti-
tion, the concept of protected resources.

6) The architecture and API or APEX 1nterfaces are open to
use by any caller and as such does not provide protection for
cach partition.

7) Runtime dynamic compliant Deadline Monotonic
Schedulers do not limit task execution variability.

SUMMARY OF THE INVENTION

The present invention provides an improved operating sys-
tem and architecture, particularly useful for safety critical
systems like aircraft. In the operating system, each task 1s
scheduled to a deadline monotonic algorithm. The algorithm
creates a schedule for the tasks in which the tasks are time
partitioned by task, not by task level. The schedule 1s created
when the operating system 1s started or at compile time. The
schedule 1s created based upon time blocks, which are the
period of time between time 1nterrupts (preferably a constant
value).

In creating the schedule, each task has an associated
period, which indicates the rate at which the task needs to be
executed. Each task also has an associated worst case execu-
tion time (WCET), which 1s the time the task needs to execute
from its beginning until 1ts end. Further, each task has an
assoclated deadline, which indicates the time that a task needs
to finish its execution, as measured from the beginning of the
period. The schedule 1s then created using a deadline mono-
tonic algorithm based upon the WCETSs, periods and dead-
lines of the many tasks. The schedule 1s constant and 1is

10

15

20

25

30

35

40

45

50

55

60

65

4

repeated over and over. The schedule does not change during
operation, even 11 some tasks are terminated or restarted. Each
task has specific time blocks 1n which 1t 1s permaitted to run.
Therefore, one task cannot starve or block any other tasks and
the fixed schedule ensures that each task receives the neces-
sary processor time to execute and meet 1ts WCET, period and
deadline.

Additionally, 1n the architecture provided in the present
invention, the non-operating system APIs are provided by the
services and are located outside of the operating system’s
executable code partition. Thus, changing a service, e.g.
because of a change in hardware, 1s facilitated outside of the
operating system, since the service will provide the proper
API outside of the operating system’s partition or executable
code. Because the non-operating system APIs are not part of
the operating system, the architecture and non-operating sys-
tem API interfaces can provide exclusive use of critical
resources by a particular partition.

The architecture described herein supports reuse at mul-
tiple layers by providing more software layers (ARINC 653
provides only two) and by having each service provide its
own set of API (equivalent to ARINC 633°s APEX’s), such
that the code and the artifacts for these services could support
a reuse claim.

BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages of the present invention can be under-
stood by reference to the following detailed description when
considered 1n connection with the accompanying drawings
wherein:

FIG. 1 1s a high level schematic of a control system, shown
controlling systems of an aircratt.

FIG. 2 1s a schematic of the architecture of the control
system.

FIG. 3 1illustrates the operation of the message queues 1n
FIG. 2 generally.

FIG. 4 1llustrates a first step 1n the operation of the message
queues of FIG. 3.

FIG. 5 1illustrates a second step in the operation of the
message queues of FIG. 3.

FIG. 6 1llustrates a first step 1n the operation of the device
drivers of FIG. 2.

FIG. 7 1illustrates a second step in the operation of the
device dnivers of FIG. 6.

FIG. 8 illustrates a third step 1n the operation of the device
drivers of FIG. 6.

FI1G. 9 1llustrates a fourth step 1n the operation of the device
drivers of FIG. 6.

FIG. 10 conceptually illustrates the space partitioning of
the control system.

FIG. 11 1illustrates the method of scheduling used 1n the
control system.

FIG. 12 illustrates the operation of the schedule for use 1n
the control system.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PR.

(L]
=]

ERRED

FIG. 1 schematically illustrates a control system 20
installed and 1n use 1n an aircraft 22. The control system 20
includes a CPU having a processor 26 and memory 28 storing
an operating system 30 and other soitware for controlling the
functions of the aircrait 22, including the engine 34, brakes
34,, navigation 34, climate control 34, exterior lighting 34.,
interior lighting 34 . and other functions (up to function 34,,).

The memory 28 could be RAM, ROM and may be supple-

US 8,789,051 B2

S

mented by a hard drive or any other electronic, magnetic,
optical or any other computer readable media.

FI1G. 2 schematically 1llustrates the architecture of the con-
trol system of FIG. 1. The operating system 30 1s within its
own partition 40 and communicates with board support pack-
age (BSP) interfaces 44, which communicates with BSP ser-
vices 46, for interfacing with hardware 48. Core support
services 50 (one shown), each 1n 1ts own partition, also com-
municate with the BSP interfaces 44. The operating system
30 and core support services 50 communicate with one
another and the application specific service 70 via core pro-
gramming interfaces 54, 56. The operating system 30 and
core support services 50 communicate with the application
programming interface (API) 60 for interfacing with a plu-
rality of application partitions 62, to 62,, each containing a
plurality of tasks 64, to 64,,. The application specific service
70 also communicates with the partitions 62 via an applica-
tion specific programming interface 72.

The application tasks 64,-64,, 1n each partition 62 run in
user mode and are certified to level of criticality required by
function hazard assessment and system safety assessment.
The application tasks 64 can have their own partitions 62 or
can share a partition 62 with one or more tasks 64 of the same
criticality level, as shown. The application tasks 64 interface
with the application specific support services 70, core support
services 50 and the operating system 30 through the APIs 60,
72. It should be noted that the application tasks 64 do not
interface with the hardware 48 directly. The core support
service 50 and application specific support service 70 run 1n
user mode, while the operating system 30 runs in supervisor
mode.

The tasks within the core support service 50 can each have
their own unique partitions or can share a partition with one or
more core support services of the same criticality level. The
tasks within the core support services 50 interface with the
application tasks 64, other application specific support ser-
vices 70, operating system 30 and the BSP services 46
through APIs 60, 72, 44.

The application specific support services 70 module con-
tains tasks that run 1n user mode. The services 70 are reserved
for services that change from aircrait to aircraft, such as
particular data formats and responses to certain safety critical
conditions that are tailored for a specific aircraft. The appli-
cation specific support services 70 tasks are certified to a level
of criticality required by functional hazard assessment and
system safety assessment. Application specific support ser-
vice 70 tasks can have their own unique partitions or can share
a partition with one or more tasks of the same criticality level.
The tasks 1in each application specific support services 70
interface with the applications 64, core support services 50,
operating system 30, and the BSP services 46 through APIs
60, 72 and 44. The tasks in the BSP services 46 run in user
mode. The interfaces will be particular to the product’s hard-
ware interfaces. The hardware interfaces can either be tasks or
device drivers. Tasks can have their own unique partitions or
can share a partition of one or more tasks of the same criti-
cality level (hardware access and partition needs must be
considered). Device drivers can be called by any tasks in any
partition to read data without delay. Device drivers can handle
writing to hardware 1/0, if an exclusive device driver (one per
task). The BSP services 46 interface with the core support
services 30 application specific support services 70 and oper-
ating system 30 through BSP interfaces 46.

The APIs comprise two types: message queues and device
drivers. Referring to FIG. 3, the message queues 60a-b (only
two shown for purposes of illustration) can have fixed length
messages or variable length messages and provide commu-

10

15

20

25

30

35

40

45

50

55

60

65

6

nication across partitions. The message queues 60a-b pass
multiple messages between an application task 64 in one
partition 62, and an application task 64 in another partition
62.. Message queues are controlled by the RTOS 30 (in terms
ol s1ze, shape, access, etc) and are implemented using system
calls. Each message queue 60a-b 1s dedicated to sending
messages Irom one specific task 64 to another specific task 64
in a single direction. Each queue 60a-b has one task 64 as the
sender and the other task 64 as the recerver. I the two tasks 64
require handshaking, then two queues must be created, such
as 1n the example shown. Message queue 60a sends messages
from task 64, to task 64, while message queue 605 sends
messages from task 64, to task 64, . Each task 64 has a queue
60 for each of the tasks 64 to which 1t has to send data and a
queue 60 for each of the tasks 64 from which 1t has to recerve
data.

Referring to FIG. 4, 1n use, a sending task 64, (such as the
“galley light switch task™) copies 1ts message to the queue 60qa
(“galley light to communications™ queue), which resides 1n
the RTOS 30 during the task’s execution slot. Referring to
FI1G. 5, I/O communications services 50a 1s one of the ser-
vices 50 shown generically 1n FIG. 2. During the task’s execu-
tion slot, the receiving task, I/O communications services 50a
(1n this example), copies the message from the queue 60a. In
this example, the I/O communications services 30a would
then map the output data to the hardware 48 (via BSP Inter-
faces 44 of FIG. 2, not shown 1n FIG. §).

Reterring to FIG. 6, device drivers (one device driver 60c¢ 1s
shown) can also be used to read information between task
partitions 62. Device drivers 60c have a single entry point and
are re-entrant and pre-emptive. The device drivers 60c¢ are
implemented using system calls and there 1s no data delay.
Thedevice drivers 60c are operated in user mode by the RTOS
and can traverse space partitions. The I/O communications
services 50a retrieves inputs from hardware 48 during its
period of execution and places an 1image of the data into a
memory map 73. As shown in FIG. 7, a task 64, (in this
example again, the “galley light switch task™) requests the
communication I/O device driver 60c¢. The request 1s handled
in the RTOS 30 executing 1n supervisor mode. RTOS 30 adds
code and data partition to the MMU for the device driver 60c.
Execution 1s then placed i user mode and the device driver
60c 1s mvoked. Referring to FIG. 8, the communication I/O
device driver 60c executes with memory that 1s partitioned for
both the galley light switch task 64, and the I/O communica-
tions services 50a. The device driver 60¢ copies the requested
inputs mto the galley light switch data partition. Referring to
FIG. 9, when the device driver 60c¢ 1s finished, execution
returns to the RTOS 30 in supervisor mode. The RTOS 30
removes the code and data partition from the MMU for the
device driver 60c. Execution 1s then returned to the requesting
task 64, and the total execution time required to run the device
driver 60c 1s charged to the requesting task 64, .

The space partitioming 1s illustrated conceptually in FIG.
10. A mask 69 1s defined by Block Address Translation (BAT)
registers 71, 76, 80, and 1s used for space partitioning. For
example, a task 64 1s assigned data BAT entry 71, which
defines a partition 74 1n RAM 28a of memory 28, for
example. Transition lookaside butfer 76 defines a partition 78
in RAM 28a for task 64. Further, instruction BAT entry reg-
ister 80 defines partition 82 1 ROM of memory 285 of
memory 28.

Tasks 64 are assigned to a partition 74, 78 and 82. Every
task 64 switch loads in the predefined registers 71, 80 of the
partition that task 64 belongs to. No searches are required if a
BAT miss 1s encountered. The miss 1s a space partitioning
tault. The transition lookaside buifer 76 on chip page table

US 8,789,051 B2

7

registers are used for stack protection. No searches are
required 1 a TLB miss occurs. The miss 1s a space partitioning,
fault. The BAT registers 71, 80 are defined at compile time.
All registers can be used for designer to allocate. The last
register 1s multiplexed with a device driver. For communica-
tion, all tasks 64 can write to the last register.

For the mstruction BAT's 80, the first register 1s assigned to
the operating system API instruction area (function call). The
second to the last registers can be used for a designer to
allocate. The last register 1s multiplexed with a device driver.
Switching tasks requires first a check that a Single Event
Upset (SEU) did not occur 1in the BAT registers. Then the BAT
registers 71, 80 are updated with the new tasks 64 partition
BAT values. The system then checks that the SEU did not
occur for the TLB registers for the stacked protection. The
current TLB registers are invalidated for the current task 64
and the TLB registers 76 are updated with the new tasks 64
values.

FI1G. 11 illustrates an example of the method of scheduling
used 1n the control system. The example consists of Tasks A,
B and C. In the example, Task A has a 3-unit WCET, a
deadline of 3 units and a period of 10 units. Task B has a 2-unit
WCET, a deadline of 5 units and a period of 10 units. Task C
has a 7-unit WCE'T, a deadline of 18 units and a period of 20
units. Using the deadline monotonic algorithm, the repeating,
schedule 88 1s created as shown. The three Task A execution
blocks 90 are scheduled betore the Task A deadline 92 (of 3
units) during every Task A period 94 (of 10 units). The two
Task B execution blocks 100 are scheduled before the Task B
deadline 102 (of 5 units) during every Task B period 104 (of
10 units). The seven Task C execution blocks 110 are sched-
uled before the Task C deadline 112 (of 18 units) during every
Task C period 114 (of 20 units). The seven Task C execution
blocks 102 are distributed such that five of the execution
blocks 102 are during what corresponds to the one period 94,
104 of Tasks B and C, and two are during what corresponds to
another period 94, 104 of Tasks B and C. This leaves three
unused execution blocks 120, which may then be used for the
task momitoring function.

Referring to FIG. 12, the schedule 88 does not change
during operation. For example, the first three execution
blocks 90 are always for Task A, even 1f A should terminate or
fail. A status register 130 has a plurality of registers 132 that
cach correspond to the time blocks in the schedule 88. The
status register 130 indicates the expected operation of the task
associated with that particular status register 130. For
example, the “1” may mark the beginning of a task for restart-
ing the task. The “0” may signily that the Task may continue
executing. The “2” indicates that the Task should end. An
index 134 of the deadline monotonic scheduler 136 1s incre-
mented at each timer interrupt 138. The index 134 indicates
which execution block in the schedule 88 1s currently being,
performed.

The DM scheduler 136 ensures that no task can starve or
block another task, because the DM scheduler 136 will only
give each task the exact execution blocks that are allotted 1t 1n
the schedule 88. Therefore, if Task A, for example, fails to
complete before the third execution block, where the status
register 132 of “2” indicates that the Task A should end, Task
A 1s terminated, put to sleep or restarted. In the fourth execu-
tion block, Task C begins on schedule. If necessary, the entire

control system 20 may be restarted.

A new schedule can be inserted when the index 134 reaches
the end of the current schedule 88. The index 134 is then set
to the beginning of the new schedule. For example, the system
20 may utilize a first, startup schedule for startup and another
normal schedule for normal operation. The startup schedule

10

15

20

25

30

35

40

45

50

55

60

65

8

may permit some of the various tasks more time to start up,
with different WCETSs, periods and deadlines. Once the sys-
tem 20 1s 1 full operation, the normal schedule may be
seamlessly switched into operation.

In this manner, tasks can also be added to the schedule. The
WCETs, periods and deadlines of the tasks to be added are
input and stored and the DM scheduler 136 creates a new
schedule including the new task(s). New space partitions can
also be added for the new task(s) as well. Therefore, when
new tasks are added, there 1s no need to thoroughly re-test the
entire system, since the operation of the prior tasks 1s known
to be within guidelines and the new task(s) 1s time and space
partitioned from the prior tasks.

In accordance with the provisions of the patent statutes and
jurisprudence, exemplary configurations described above are
considered to represent a preferred embodiment of the inven-
tion. However, 1t should be noted that the invention can be
practiced otherwise than as specifically illustrated and
described without departing from 1ts spirit or scope.

What 1s claimed 1s:

1. An operating system for an aircraft comprising:

at least one first partition and at least one second partition,
the at least one first and second partitions protected from
one another such that one of the at least one {first or
second partitions cannot corrupt another of the at least
one first or second partitions;

a plurality of first tasks in the at least one first partition,
wherein first tasks having different criticality levels run
on different first partitions and cannot share a first par-
tition, and wherein first tasks having the same criticality
level share a first partition;

a plurality of second tasks 1n the at least one second parti-
tion, wherein second tasks having different criticality
levels run on different second partitions and cannot
share a second partition, and wherein second tasks hav-
ing the same criticality level share a second partition,
wherein the plurality of first and second tasks are oper-
ated 1n a user mode, and wherein the at least one first
partition and the at least one second partition are further
protected from one another such that a failure in one of
the plurality of first tasks does not impede the execution
of one of the plurality of second tasks, and such that a
failure 1in one of the plurality of second tasks does not
impede the execution of one of the plurality of first tasks;
and

a first Application Programming Interface (API) for pro-
viding communication between a selected one of the
plurality of first tasks task and a selected one of the
second tasks on a computer, wherein the first API 1s a
device driver that 1s set up 1 a supervisor mode and
operated 1n the user mode.

2. The operating system of claim 1 wherein the first APl 1s

a first message queue.

3. The operating system of claim 2 wherein the first mes-
sage queue provides communication only 1n a single direc-
tion, from the first task to the second task.

4. The operating system of claim 3 further imncluding a
second message queue providing communication only 1n a
single direction, from the second task to the first task.

5. The operating system of claim 1 wherein execution of
the first task and the second task 1s time-partitioned, such that

the first task 1s executed in first period and the second task 1s
executed 1n a second period, the first task sending data to the

US 8,789,051 B2
9

message queue during the first period, the second task receiv-
ing the data from the message queue during the second
period.

10

	Front Page
	Drawings
	Specification
	Claims

