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ZERO OVERHEAD BLOCK FLOATING
POINT IMPLEMENTATION IN CPU’S

BACKGROUND

1. Technical Field

The embodiments herein generally relate to dynamic range
detection, and, more particularly, to dynamic range detection
in CPUs 1n recervers.

2. Description of the Related Art

Typically central processing unit (CPU) architectures in
digital signal processors do not support etficient implemen-
tation of block floating point processing on arrays. Even in
architectures, where block tloating 1s supported, a lot of con-
trol code needs to be added to take care of pre and post scaling
ol data blocks based on a dynamic range of signals at each
stage. The problem with these existing methods 1s that the
overheads 1n the control code for detecting the dynamic range
of signals could be significant to the extent that 1t may run out
of the available MIPS or cycles for a given application.

In addition it needs to support arithmetic data-path widths
that are higher than the optimal. This potentially leads to
bigger designs, consequently increasing area and leading to
more than necessary power dissipation. Both fixed and tloat-
ing-point implementations have their respective advantages.
It 1s possible to achieve the dynamic range approaching that
of floating-point arithmetic while working with fixed-point
processors. This can be accomplished by using floating-point
emulation software routines.

Fixed point representation 1s a real data type for a number
that has a fixed number of digits after the radix point. Floating
point describes a system for representing real numbers which
supports a wide range ol values. Numbers are in general
represented approximately to a fixed number of significant
digits and scaled using an exponent. In fixed point processors
it 1s possible to achieve the dynamic range of signals similar
to that achieved 1n floating-point processors by using tloat-
ing-point emulation software routines. Emulating tloating-
point behavior on a fixed-point processor 1s very cycle inten-
stve, since the emulation routine manmipulates all arithmetic
computations to artificially implement tloating-point math on
a fixed-point device. This software emulation 1s only worth-
while 11 a small portion of the overall computation requires
extended dynamic range. Hence, a cost-effective alternative
for tloating-point dynamic range implemented on a fixed-
point processor 1s needed. This 1s where block floating point
algorithm plays a significant role.

The block floating point algorithm 1s based on the block
automatic gain control (AGC) concept. The AGC scales val-
ues at the input stage of a signal processing function and only
adjusts the mput signal power. The block floating point algo-
rithm takes 1t a step further by tracking the signal strength
from stage to stage to provide a more comprehensive scaling
strategy and extended dynamic range. The floating-point
emulation scheme discussed here 1s the block tloating-point
algorithm. The primary benefit of the block tloating-point
algorithm emanates from the fact that operations are carried
out on a block basis using a common exponent. Here, each
value 1n the block can be expressed 1 two components
namely a mantissa and a common exponent. The common
exponent 1s stored as a separate data word. This leads to a
mimmum hardware implementation compared to that of a
conventional floating-point implementation.

The value of the common exponent 1s determined by the
data element 1n the block with the largest amplitude. In order
to compute the value of the exponent, the number of leading,
zeros or leading ones bits has to be determined. This 1s deter-
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mined by the number of left shifts required for this data
clement to be normalized to the dynamic range of the proces-

sor. If a given block of data of the input signal consists entirely
of small values, a large common exponent can be used to shiit
the small data values leit and provide more dynamic range.
On the other hand, 11 a data block contains large data values,
then a small common exponent will be applied. Once the
common exponent 1s computed, all data elements 1n the block
are shifted up by that amount, 1n order to make optimal use of
the available dynamic range. Scaling each value up by the
common exponent increases the dynamic range of data ele-
ments 1n comparison to that of a fixed-point implementation.

In communication based applications an analog to digital
converter (ADC) 1s used for sampling the mput signals. The
ADC specifications like Effective number of Bits (ENOB) etc
are usually chosen on the basis of worst case channel condi-
tions which 1s why these have suflicient Headroom beyond
the required SNR requirements. This 1s shown 1n FIG. 1. FIG.
1 1s a typical block diagram illustrating how worst case
dynamic range 1s considered for ADC selection. However 1n
an actual application these worst case conditions will not
occur at all times. This will result 1n a variable and lesser than
the maximum required dynamic range of the incoming
sampled signals on an average while processing such samples
for any signal processing tunction (like filtering, FFT etc). In
a typical DSP CPU these sampled signals will be read for any
signal processing operation and at the end of the signal pro-
cessing tasks these will be written to a Data memory. Because
of the varying nature of dynamic range of the incoming signal
which 1s read, the output data from a signal processing is also
likely to have some variation of dynamic range. This 1s why
block floating point implementation of signal processing
functions 1s useful so that 1t consumes lesser power, without
sacrificing area.

There are some hardwired architectures for doing block
tfloating point implementations for FFT computations. Since,
they are hardwired blocks there 1s no overhead due in SW
cycles consumption, though they would consume finite
cycles. In addition, since these address only one class of
signal processing functions like FFT, they cannot be reused
for other classes.

SUMMARY

In view of the foregoing, an embodiment herein provides a
system for computing a block floating point (BFP) scaling
factor by detecting a dynamic range of an input signal 1n a
central processing unit (CPU) without additional overhead
cycles. The system includes a dynamic range monitoring unit
that detects the dynamic range of the input signal by snooping
(1) outgoing write data and (11) incoming memory read data of
the mput signal. The dynamic range monitoring unit includes
a leading zero and leading one detector and counter unit that
detects a count of leading zeros and leading ones for each
sub-word of the outgoing write data and the incoming
memory read data of the input signal, a registered maximum
count unit that stores the count of leading zeros and leading
ones for each sub word of the outgoing write data and the
incoming memory read data of the input signal, a least value
finder unit that determines a least value of the count of the
leading zeros and leading ones over a block of data, and a
running maximum count unit that stores the least value of the
count of the leading zeros and leading ones over the block of
data. The dynamic range 1s detected based on the least value
of the count of the leading zeros and leading ones over the
block of data and a least value of a count of trailing zeros over
the block of data. The system further includes a scaling factor
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computation module that computes a block floating point
(BEFP) scaling factor based on the dynamic range.

The dynamic range monitoring umt further includes a bus
swapper unit that bus-swaps each of the sub-word of the
outgoing write data and the incoming memory read data of the
input signal such that (1) a most significant bit (MSB) position
of each of the sub word occupies a least significant bit (LSB)
position, and (1) a LSB position of each of the sub-word
occupies a MSB position, a trailing zeros detector and counter
unit that detects a count of trailing zeros over the block of data
for each of the sub-word of the outgoing write data and the
incoming memory read data of the input signal, a registered
mimmum count unit that stores the count of trailing zeros for
cach of the sub-word of the outgoing write data and the
incoming memory read data, a least value finder unit that
determines the least value of the count of trailing zeros over
the block of data, and a running minimum count unit that
stores the least value of the count of trailing zeros over the
block of data.

The count of leading zeros and leading ones, the least value
of the counted leading zeros and leading ones, the count of
trailing zeros, and the least value of the count of trailing zeros
may be preset to a highest possible value before detecting the
dynamic range at a start of the load and store operations. The
system may further include a CPU control reglster (CCR) that
turns on and turns off the dynamic range using a specified
program. The dynamic range may be updated 1n a control
register file at an end of a signal processing operation when a
value of control bit signals 1s cleared to zero. The signal
processing operation 1s at least one of a load operation, a store
operation, an arithmetic operation, and a logical function
operation. The dynamic range 1s detected 1n at least one of a
load store unit, an arithmetic unit, and a logical function unait.

In another aspect, a method for implementing a block
floating point (BFP) scaling factor by detecting a dynamic
range of an input signal 1n a central processing unit (CPU)
without additional overhead cycles 1s provided. The method
includes detecting a count of leading zeros and leading ones
for each sub-word of the outgoing write data and the incom-
ing memory read data of the input signal using a leading zero
and leading one detector and counter unit, storing the count of
leading zeros and leading ones for each sub-word of the
outgoing write data and the incoming memory read data of the
input signal using a registered maximum count unit, deter-
mimng a least value of the count of the leading zeros and
leading ones over a block of data using a least value finder
unit, storing the least value of the count of the leading zeros
and leading ones over the block of data using a running
maximum count unit, detecting the dynamic range based on
(1) the least value of the count of the leading zeros and leading
ones over the block of data and (11) a least value of a count of
trailing zeros over the block of data by a dynamic range
monitoring unit, and computing the block floating point
(BFP) scaling factor based on the dynamic range.

The method further includes determining whether a signal
processing stage 1s a first stage, the BFP scaling factor 1s
obtained from a previous stage when the signal processing
stage 1s not the first stage, and computing a new BFP scaling
factor for a second stage based on the dynamic range, the
input data for the second stage 1s shifted using the new BFP
scaling factor along with a first signal processing operation,
an output of the first stage 1s shifted and written on a memory
addressed by the CPU using the new BFP scaling factor along
with a second signal processing operation.

The new BFP scaling factor may be set to zero when the
signal processing stage 1s the first stage. It may be determined
whether the second stage 1s a last signal processing stage.
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Arithmetic scaling and residue scaling components of the
new BFP scaling factor for the second stage may be deter-
mined. A residue exponent may be computed by scaling the
residue scaling components of the first stage till until the last
signal processing stage to obtain a required native precision
of the mput signal. Dummy load operations may be per-
formed on two data sets of the input signal. A dynamic range
ol two data sets may be detected. A scaling factor 1s computed
based on the dynamic range of the two data sets of the input
signal. The first signal processing operation and the second
signal processing operation is at least one of a load operation,
a store operation, an aritthmetic operation, and a logical tunc-
tion operation.

The method further includes bus-swapping using a bus
swapper unit, each sub-word of the outgoing write data and
the incoming memory read data of the input signal such that
(1) amost significant bit (MSB) position of the each sub-word
occupies a least significant bit (LSB) position, and (11) a LSB
position ol the each sub-word occupies a MSB position,
detecting the count of trailing zeros for the each sub-word of
the outgoing write data and the incoming memory read data of
the mput signal using a trailing zeros detector and counter
unit, storing the count of trailing zeros for the each sub-word
of the outgoing write data and the incoming memory read data
using a registered minimum count unit, determiming a least
value of the count of trailing zeros over the block of data using
a least value finder unit, and storing the least value of the
count of trailing zeros over the block of data using a running
minimum count unit.

These and other aspects of the embodiments herein will be
better appreciated and understood when considered in con-
junction with the following description and the accompany-
ing drawings. It should be understood, however, that the fol-
lowing descriptions, while indicating preferred embodiments
and numerous specific details thereot, are given by way of
illustration and not of limitation. Many changes and modifi-
cations may be made within the scope of the embodiments

herein without departing from the spirit thereof, and the
embodiments herein include all such modifications.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein will be better understood from
the following detailed description with reference to the draw-
ings, in which:

FIG. 1 1s a typical block diagram illustrating worst case
dynamic range consideration for an ADC;

FIG. 2 1llustrates a block diagram of a central processing,
unit (CPU) for detecting a dynamic range of an input signal
according to an embodiment herein;

FIG. 3A illustrates an exploded view of the load-store slot
with dynamic range detection for Load Store Unitl and Load
Store Unit2 of FIG. 2 for a memory store or load operation
and dynamic range monitoring according to an embodiment
herein;

FIG. 3B illustrates an exploded view of the Arithmetic Slot
of FIG. 2 for Arithmetic operations and dynamic range moni-
toring according to an embodiment herein;

FIG. 3C illustrates an exploded view of the Logic function
Slot of FIG. 2 for a logical functional operation and dynamic
range monitoring according to an embodiment herein;

FIG. 3D 1llustrate an input block data of a Q.J digit fixed
point number with one sign bit to the dynamic range monitor
block of FIG. 3A according to an embodiment herein;

FIG. 3E illustrate the input block data of the Q.J digit fixed

point number with one sign bit to the dynamic range monitor
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block of FIG. 3A when the sign bit 1s same as a first “K”
fractional bits according to an embodiment herein;

FI1G. 3F illustrates the input block data of the Q.J digit fixed
point number with one sign bit with last “L”" bits as zeros to
the dynamic range monitoring of FIG. 3A according to an
embodiment herein;

FIG. 3G 1llustrates the input block data of the Q.J digit
fixed point number with one sign bit to the dynamic range
monitoring of FIG. 3A when divided by 2* according to an
embodiment herein;

FIG. 3H illustrates the input block data of the Q.J digit
fixed point number with one sign bit to the dynamic range
monitoring of FIG. 3A when the sign bit 1s same as first
“L+K” fractional bits according to an embodiment herein;

FI1G. 4 illustrates an exploded view of the dynamic range
monitor block of FIG. 3A or FIG. 3B or FIG. 3C according to
an embodiment herein;

FI1G. 5 1s a flowchart 1llustrating a method of block floating
point Fast Fourier transtorm (FFT) using block floating point
algorithm according to an embodiment herein;

FIG. 6 1s a process tlow 1llustrating a block floating point
FFT with dynamic range monitoring according to an embodi-
ment herein;

FIG. 7 1s a table view 1illustrating pre-scaling of source
operand according to an embodiment herein;

FIGS. 8A and 8B are table views 1llustrating post scaling
with real multiplies operation according to an embodiment
herein;

FIG. 9A and FIG. 9B are table views illustrating post
scaling with complex multiply table according to an embodi-
ment herein;

FIG. 10 illustrates a method for implementing a block
tfloating point by detecting a dynamic range while performing
store operations in the CPU of FIG. 2 without additional
overhead cycles according to an embodiment herein;

FIG. 11 illustrates method for implementing a block tloat-
ing point by detecting a dynamic range while performing load
operations in the CPU of FIG. 2 without additional overhead
cycles according to an embodiment herein;

FI1G. 12 1illustrates a process flow of block floating point
method according to an embodiment herein; and

FI1G. 13 1llustrates an exploded view of a recerver having an
a memory having a set of computer instructions, a bus, a
display, a speaker, and a processor capable of processing the
set of computer mstructions to perform any one or more of the
methodologies herein, according to an embodiment herein.

DETAILED DESCRIPTION

The embodiments herein and the various features and
advantageous details thereol are explained more fully with
reference to the non-limiting embodiments that are illustrated
in the accompanying drawings and detailed in the following
description. Descriptions of well-known components and
processing techniques are omitted so as to not unnecessarily
obscure the embodiments herein. The examples used herein
are intended merely to facilitate an understanding of ways 1n
which the embodiments herein may be practiced and to fur-
ther enable those of skill in the art to practice the embodi-
ments herein. Accordingly, the examples should not be con-
strued as limiting the scope of the embodiments herein.

As mentioned, there remains a need for different types of
digital signal processors (e.g., CPUs) like very long instruc-
tion word (VLIW) processors or superscalar or single-issue
processors for Software defined radio subsystem or for
receivers. The embodiments herein achieve this by providing,
a method by which dynamic range of input signal ({or differ-
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6

ent classes) 1s detected with zero overhead using dynamic
range detection with load store operations 1n VLIW proces-
sors. The scheme 1s generic and can be extended to any type
of CPU architecture like single-1ssue or superscalar proces-
sors. Referring now to the drawings, and more particularly to
FIGS. 2 through 13, where similar reference characters
denote corresponding features consistently throughout the
figures, preferred embodiments are described herein.

FIG. 2 1llustrates a block diagram of a central processing,
umt (CPU) 200 for detecting a dynamic range of an input
signal according to an embodiment herein. In one embodi-
ment, the CPU 200 1s a Very Large Instruction Word (VLIW)
CPU (e.g., a digital signal processor (DSP)) used as an
example here but the scheme can be used for any CPU archi-
tecture with a capability to do Load-Store operations from the
memory. The CPU 200 includes a CPU control register
(CCR) 202, an mstruction fetch & program control unit
204 A, an mstruction dispatcher 204B, a load store unitl
(LSU1) decode and operand fetch 206A, a load-store slot
with dynamic range detection for load store unitl 206B, a
load store unit2 (LLSU2) decode and operand fetch 108A, a
load-store slot with dynamic range detection for load store
unmit2 208B for a memory store or load operation.

In a generic case, the CPU 1s likely to have one or more
Load-Store units. The instruction 1s first decoded after the
dispatch phase and then executed. In addition, the VLIW CPU
200 consists of a register file 210, an arithmetic slot 212, a
logical tunction decode and operand fetch slot 214 A, alogical
function slot 214B, and a pipeline and interrupt control unit
216. The contents to be written to the memory are fetched
from the register file 210 and along with the decoded bits and
are latched 1n an operand fetch phase.

The anithmetic slot 212 processes real or complex signals,
along with miscellaneous execution units like logic function
slot 2148 etc. The CPU control register (CCR) 202 turns on or
turns oif the dynamic range momtoring function as desired by
a programmer for load or store operations from the memory.
In one embodiment, the CPU control register (CCR) 202
turns on and turns oif the dynamic range using a specified
program (as desired by a programmer) for the load or store
operations. The load store unitl (LSU1) decode and operand
fetch 206 A and 208 A perform load and store operations in a
DSP processor (e.g., the CPU 200) for detecting the dynamic
range of the mput signal.

FIG. 3A 1illustrates an exploded view of the load-store slot
with dynamic range detection for unitl and unit2 206B-208B
of FIG. 2 for a memory store or load operation and dynamic
range monitoring according to an embodiment herein. The
load-store unit with dynamic range monitoring includes
writeback paths to the register file 210, and various signals
coming from a previous pipeline stage namely: an operand
tetch pipe 302, the signals being load store unit control 304
that signifies the type of memory operation (read or write), an
address mode 306, and an address operand 308.

The load-store unit with dynamic range monitoring 300A
further includes a memory launch pipe 310 which receives
data from an address generation unit 312, and a write data
operand signal 314 from the operand fetch pipe 302. The
address mode 306 signifies the various types of addressing
modes. The address operand 308 signifies the address of the
memory operation. The address generation unit 312 generates
an address based on an addressing mode of the input signal.

The load-store unit with dynamic range monitoring 300A
further includes a dynamic range momtor block 316 that
snoops on the write data operand 314 recerved from the oper-
and fetch pipe 302. In one embodiment, the dynamic range
monitor block 316 detects the dynamic range of the input
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signal by snooping (1) an outgoing write data and (11) an
incoming memory read data of the input signal.

The write back control 318 and the write back address 320
are latched 1n the write back control pipe 322 for a required
number of load-delay cycles for eventually writing back to
the register file 210. The memory read pipe 324 receives data
from the memory which 1s clocked using a rdclk_phase signal
326. In one embodiment, an incoming memory read data 1s
latched 1n a memory read pipe 324 and clocked using a
memory read clock (e.g., the rdclk_phase 326). Similarly, the
outgoing write data 1s obtained from the control register file
330 and written on a memory.

In one embodiment, a similar snooping operation 1s also
performed on the register write data bus when the loaded data
from the memory read pipe 324 1s being written back mto the
register file 210. The outgoing write data and one or more
decoded bits are latched 1n the operand fetch pipe 302. The
outgoing write data and the mcoming memory read data are
enabled using control bit signals that are generated from the
operand fetch pipe 302 (e.g., an operand fetch phase) and are
set at a start of the load and store operations (e.g., load or store
cycles) which needs to be monitored. The dynamic range
monitor block 316 snoops the outgoing write data and incom-
ing memory read data and 1s enabled using the control bit
CPU control register dynamic range control 332.

The signal “cpu control dynamic range update” 328 1s used
to update the value of dynamic range detected 1n the CPU
control register file 330. In one embodiment, the dynamic
range 1s updated in the control register file 330 at an end of
signal processing operations when a value of control bit sig-
nals 1s cleared to zero. In one embodiment, the signal pro-
cessing operation 1s at least one of a load operation, a store
operation, an arithmetic operation, and/or a logical function
operation. A maximum exponent value 1s computed and
latched into the CCR 202 when the control bit signals 1s
cleared to zero. The dynamic range monitoring is turned on
using the signal CPU control register dynamic range control
332 (e.g., ccr_dyn_range_ctrl).

The load store unit control signal 304, the address mode
signal 306, the address operand signal 308 generate the
appropriate address based on the addressing mode (e.g.,a
linear addressing mode, a circular addressing mode, a bit
reverse addressing mode, and an indirect addressing mode) in
the next phase. These signals are launched to the memory
interface from the memory launch pipe 310. The data block to
be written to the memory, consists of the signal named write
data operand 314 (e.g., the write_data_operand 214) which 1s
snooped to determine the dynamic range of a given block.

The signals the write back control 318 and the write back
address 320 are preserved throughout the load delay cycles 1n
the mtermediate pipeline stages namely write back control
pipe-1 322, write back control pipe-2. etc., upto write back
control pipe-N. The active to inactive transition of the CPU
control register dynamic range control bit signals of the
dynamic range monitoring 316 can be turned oif and the
previous value of dynamic range calculated can be latched. In
this manner, the load-store unit stores the dynamic range for
a block of data of the mnput signal without adding overhead
cycles. Similarly, the dynamic range can be detected 1n other

units (e.g., an arithmetic unit, and/or a logical function unit as
shown 1n FIG. 2).

With reference to FI1G. 3A, FIG. 3B illustrates an exploded
view of the arithmetic slot of FIG. 2 for an arithmetic opera-
tion and dynamic range monitoring according to an embodi-
ment herein. The arithmetic slot of FIG. 2 for an arithmetic
operation and dynamic range monitoring includes the
dynamic range monitor block 316 of FIG. 3A, an arithmetic
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slot operand fetch unit 334, an arithmetic control signal 336,
an arithmetic computation block 338, an arithmetic writeback
data and control pipe-1 block 340, an arithmetic write data
operand 342, an arithmetic control register dynamic range
update signal 344, and an arithmetic control register dynamic
range control signal 346.

The CPU 200 can perform the dynamic range monitoring,
in the arithmetic unit. During any CPU operation, the arith-
metic unit fetches the required operands (e.g., an arithmetic
write data operand 342) from the register file 210, where data
would be preloaded using any memory read operation. Dur-
ing the pipelined stages of CPU operation the required oper-
ands are fetched by the arithmetic slot through the arithmetic
decode and operand fetch unit 212 and propagated to the
arithmetic unit via the respective operand fetch pipe. The
dynamic range monitoring block 316 can snoop on the arith-
metic write data operand 342 (e.g., the anith_write_data_op-
crand 342) and compute an appropriate dynamic range while
other operations are concurrently ongoing in the arithmetic
unit. The active to inactive transition of the CPU control
register dynamic range control bit signals of the dynamic
range monitoring 316 can be turned oif and the previous value
of dynamic range calculated can be latched.

With reference to FIG. 3A, FIG. 3C 1llustrates an exploded
view ol the logic function slot of FIG. 2 for a logical func-
tional operation and dynamic range monitoring according to
an embodiment herein. The logic function slot of FIG. 2 for a
logic function operation and dynamic range monitoring
includes the dynamic range monitor block 316 of FIG. 3A, an
logic slot operand fetch unit 348, an logic control signal 350,
an logic operations block 352, a logic slot writeback data and
control pipe-1 block 354, a logic write data operand 356, an
logic control register dynamic range update signal 358, and a
logic control register dynamic range control signal 360.

The CPU 200 can perform the dynamic range monitoring,
in the logical function umt. During any CPU operation, the
logical function unit fetches the required operands (e.g., a
logic write data operand 356 ) from the register file 210, where
data would be preloaded using any memory read operation.
During the pipelined stages of CPU operation the required
operands are fetched by the logic slot through the logical
function decode and operand fetch unit 214 and propagated to
the logic function unit via the respective operand fetch pipe.
The dynamic range monitoring block 316 can snoop on the
logic write data operand 356 (¢.g., the logic_write_data_op-
erand 356) and compute an appropriate dynamic range while
other operations are concurrently ongoing in the arithmetic
unit. The active to inactive transition of the CPU control
register dynamic range control bit signals of the dynamic
range monitoring 316 can be turned oif and the previous value
of dynamic range calculated can be latched. Hence no addi-
tional overhead CPU cycles are required while dynamic range
of signals 1s computed 1n these units also. Thus, the dynamic
range 1s detected in at least one of a load store unit, an
arithmetic unit, and a logical function unit. In one embodi-
ment, the dynamic range can be detected 1n any of the load
store slot with dynamic range monitoring 206 A and 208B, the

arithmetic slot of FIG. 2 and/or in the logic function unit of
FIG. 2.

With reference to FIG. 3A, FIG. 3D illustrates an input
block data of a QQ.J digit fixed point number with one sign bit
to the dynamic range monitor block 316 of FIG. 3 A according
to an embodiment herein. In the block data of dynamic range
monitor 300D and 300E, a Q.J digit fixed point number with
one sign bit 1s shown. With reference to FIG. 3D, FIG. 3E
illustrates the mput block data of the Q.J digit fixed point
number with one s1gn bit to the dynamic range monitor block
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216 of FIG. 3A when the sign bit 1s same as a first “K”
fractional bits according to an embodiment herein. The sign
bit 1s same as first “K” fractional bits 1.e. s=b0=b1=b2=...=b
(k—1). In FIG. 3C, the first K bits from MSB side are same as
sign bit. The computation can be done considering the num-
ber as Q. (J-K) and later be scaled down by multiplying the
result with 27,

With reference to FIG. 3E, FIG. 3F illustrates the input
block data of the Q.J digit fixed point number with one s1gn bit
300F to the dynamic range monitoring 316 of FIG. 3A
according to an embodiment herein. With reference to FIG.
3E, FIG. 3G 1llustrates the input block data of the Q.J digit
fixed point number with one sign bit 300G to the dynamic
range monitoring 316 of FIG. 3A when divided by 2* accord-
ing to an embodiment herein. A Q.J digit fixed point number
with one sign bit1s shown below with last “L”" bits as zeros. In
this case, the sign bit 1s same as first “K” fractional bits 1.¢.
s=b0=b1=b2=...=b (k-1).To ensure that arithmetic units are
better utilized the above number is divided by 2°.

With reference to FIG. 3G, FIG. 3H illustrates the input
block data of the Q.J digit fixed point number with one s1gn bit
300H to the dynamic range monitoring 316 of FIG. 3A when
the sign bit 1s same as first “K” fractional bits according to an
embodiment herein. In the FIG. 3H, the data has all the first
L+K bits from MSB side same as sign bit. The computation
can be done considering the number as Q.(J-L-K) and later
be scaled down by multiplying the result with 2~*~*. For this
case, when a block of data of the input signal has L trailing
zeros, the computation 1s done such that the overall post
scaling factor used is 2-“** and finally after all steps are
done the result is multiplied by 2”. A logic circuit (not shown)
detects a maximum exponent (maxexp) which 1s equal to
L+K above and also stores the number of trailing zeros
(named trexp) which 1s equal to L.

FI1G. 4 illustrates an exploded view of the dynamic range
monitor block 316 of FIG. 3A according to an embodiment
herein. The dynamic range momitor block 316 includes a
leading zero and leading one detector and counter 402, a
registered maximum count indicator 404, a running maxi-
mum count indicator 406, a bus swapper 408, a trailing zeros
detector and counter 410, a registered minimum count 1ndi-
cator 412, a least value finder 414 A, a least value finder 414B,
and a running minimum count indicator 416. The data (e.g.,
read data or written data of the input signal) on which
dynamic monitoring 1s to be done 1s selected using a multi-
plexer. The data are split into “m” sub-words of significance
shown as sample_slice(1), sample_slice(2), . . . upto sample-
_slice(m). Each of these sub-words 1s acted upon with the
leading zero or leading one detector as well as a trailing zeros
detectors.

The leading zero or leading one detector 402 detects a
count of leading zeros and leading ones for each sub-word of
the outgoing write data and the incoming memory read data of
the mput signal. In one embodiment, the leading zero or
leading one detector 302 detects the dynamic range of the
input signal. The outgoing write data and incoming memory
read data are snooped by detecting the count of leading zeros
and leading ones for each sub-word of the outgoing write data
and the incoming memory read data of the mnput signal. The
registered maximum count 404 stores the count of leading
zeros and leading ones as a registered maximum count. In one
embodiment, the registered maximum count stores the count
of leading zeros and leading ones for each sub-word of the
outgoing write data and the incoming memory read data of the
input signal. A similar process 1s followed for different sub-
words and the least value amongst all and any previous least
value 1s found using the least value finder 414 A determines a
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least value of the count of said leading zeros and leading ones
over a block of data and stores 1n the runming maximum count
indicator 406. The running maximum count indicator 406
maintains the smallest possible value of K over a block of data
of the input signal. In one embodiment, the runming maxi-
mum count indicator 406 maintains a least value of the count
of the leading zeros and leading ones over the block of data of
the input signal.

The bus swapper 408 bus-swaps each sub-word of the
outgoing write data and the incoming memory read data such
that (1) a most significant bit (MSB) position of the each
sub-word occupies a least significant bit (LSB) position, and
(11) a LSB position of the each sub-word occupies a MSB
position. This swapped data bus 1s processed to find the lead-
ing zeros. A combination of the bus swapper 408 and the
trailing zeros detector and counter 410 enables determining
the number of trailing zeros. The trailing zeros detector and
counter 410 detects a count of trailing zeros for the each
sub-word of the outgoing write data and the incoming
memory read data of the mput signal. The registered mini-
mum count indicator 412 stores the count of trailing zeros for
cach sub-word of the outgoing write data and the mncoming
memory read data as a registered minimum count.

A similar process 1s followed for different sub-words and
the least value amongst them and any previous least value 1s
determined using the least value finder 414B and stored 1n the
running mimimum count indicator 416. The least value finder
414B determines a least value of the count of trailing zeros
over the block of data. The running minimum count indicator
416 maintains the smallest possible value of ‘L’ over a block
of data of the input signal. In one embodiment, the running
minimum count indicator 416 stores a least value of the count
of trailing zeros over a block of data of the input signal. The
value ‘L 1s stored as trexp and L+K 1s stored as a maximum
exponent value (e.g., maxexp). The computed value of max-
exp 1s latched into the CPU Control register 202 when the
CPU control register dynamic range control bit 1s cleared to
zero, using a high to low transition. In one embodiment, the
maximum exponent value i1s the dynamic range that i1s
detected by adding the least value of the count of the leading
zeros and leading ones over the block of data and the least
value of a count of trailing zeros over the block of data.

At the start of the operation, before turming on the dynamic
range monitoring for a given load-store unit, the registers
registered mimmum count indicator 412, the registered maxi-
mum count 404, the running maximum count indicator 306,
and the running mimmum count indicator 416 are preset to a
highest possible value so that the previous values are notused.
In one embodiment, the count of leading zeros and leading
ones, the smallest value of the count of the leading zeros and
leading ones, the count of trailing zeros, and the smallest
value of the count of trailing zeros are preset to a highest
possible value before detecting the dynamic range.

Using the contents of maxexp register, an optimum scaling
factor 1s calculated for required different types of operation
programmatically. The optimum scaling factor (e.g., a block
floating point (BFP) scaling factor) 1s computed based on the
dynamic range. In one embodiment, the block floating point
(BFP) scaling factor 1s computed using a scaling factor com-

putation module that may reside in the dynamic range moni-
tor block 316 of FIG. 3 or in the CPU 200 of FIG. 2. In one

embodiment, the scaling factor computation module 1s 1imple-
mented as a logically self contained part of a software pro-
gram that when executed computes a scaling factor (e.g.,
using the methods described herein or any other method
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known 1n the art). In another embodiment, the scaling factor

computation module 1s implemented as a self-contained hard-

ware component.

In one embodiment, a best dynamic range 1s programmati-
cally selected based on different classes of the input signal
and corresponding scaling factors. Some of these scaling
factors which are usually used in signal processing are as
follows:

1. Scaling by sum of magnitude of impulse response (L1
norm): In this method, the magnitude of a digital system
(e.g., a recerver) at any node should be less than 1 for a
system using Q.15 format. If the maximum nput signal
Xmax to the digital system is (1-27"°), the output of the
digital system is restricted to {y(n}}<1 provided that the
scaling factor 1s limited by:

G<1/{Xmax*Sigma[mod Hk/for k ranging from O to
N-1}.

Where Hk 1s the impulse response of a filter with length N.

The summation term sigma [mod Hk] for k ranges from 0 to

N-1 which 1s called L1 norm.

2. Scaling by square root of sum of squared magnitude of
impulse response (I.2 norm). The scaling factors which can
be used are as follows:

G<1/{Xmax*Sqrt(Sigma[H(k)2] for k ranging from 0
to N-1.)}.

The above norm 1s called L2 norm and 1s always lesser than

L1.

3. Scaling by maximum of frequency response (Chebyshev
norm). The preceding methods 1n 1 and 2 are usetul for
wideband signals. The third method to determine the scal-
ing factor 1s applicable when the 1nput 1s narrowband sig-
nal. In this method, the magnitude response at the 1nput
frequency 1s first determined which 1s multiplied by the
maximum input signal Xmax to determine the scaling gain
in accordance with the equation:

G<1/{Xmax*max[H(wk)]}

The term max [H (wk)] 1s known as the Chebyshev norm of
the frequency response H (w). This guarantees that the steady
state response of the system to a sine-wave input will never
overtlow.

Since the Xmax value are known, by using the maxexp
contents (e.g., maximum exponent) for a block of data, a
scaling factor (which could be scale-up or scale-down) may
be dertved which will ensure that the output is stable and does
not exceed the required precision range for a given class of
signal processing function. The value of trexp (e.g., number
of trailling zeros) 1s also maintained 1n a separate control
register for further processing at the end of all stage wise
signal processing functions. It 1s assumed that since Fre-
quency response 1s known 1n all such scenarios. Similarly,
scaling factors can be derived for spectral decomposition
operations like Fast Fourier transform on a stage by stage
basis.

FIG. 5 1s a flowchart 1llustrating a method of block floating,
point Fast Fourier transform (FFT) using block tloating point
algorithm according to an embodiment herein. For example,
a block floating point Fast Fourier transform operation is
considered. In step 502, an 1input data 1s provided to the Block
Floating Point Fast Fourier transform operation. In step 504,
the input data 1s scaled to the first stage of the complex FFT to
occupy the maximum possible dynamic range that allows for
a single bit growth 1n the upcoming stage. In one embodi-
ment, a maximum value (e.g., a maximum datum) 1s deter-
mined (e.g., a maximum value of a real or imaginary part).
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In step 506, it 1s checked whether the maximum datum lies
between 0.25 (8192 1n Q.15) to 0.5 (16384 1n Q.135). If the
maximum datum lies between 0.25 (8192 1 Q.15) to 0.5
(16384 1n (Q.15), then the input array 1s normalized by some
power of two that gives the maximum datum room for one bit
of growth. In step 508, 11 the maximum datum does not lie
between 0.25 (8192 1n Q.135) t0 0.5 (16384 1n Q.15), then the
iput data 1s shufted to occupy MSBs. In step 510, the first
stage data operation 1s performed. The data 1n the subsequent
radix-2 stage increases by either zero or one bit. If there 1s no
increase or only Iractional increase occurs, then scaling
operation 1s not performed.

In step 512, a maximum value of real or imaginary part 1s
identified. In step 514, 1t 1s checked whether the maximum
datum lies between 0.25 (8192 1 Q.15) to 0.5 (16384 1n
Q.15). If the maximum datum does not lie between 0.25
(8192 10 Q.15) to 0.5 (16384 1n Q.15), then the mput data 1s
shifted to occupy all but 2 MSB’s 1n step 516. If any real or
imaginary data increases by one bit, then all values are scaled
down by one bit to prepare for bit growth in a second stage
518. The data 1n the subsequent radix-2 stage then increases
by either zero or one bit. If no increase or only fractional
increase occurs, then scaling 1s not performed.

In step 520, 1t 1s checked whether 1f any real or imaginary
data increases by one bit from the maximum value of real or
imaginary outputs from previous step. In step 522, it is
checked whether the maximum datum lies between 14 (4096
in Q.15) t0 0.25 (4096 1n Q.15). If maximum datum does not
lie between 5 (4096 1n Q.15) to 0.25 (4096 1n Q.15), then
input data is shifted to occupy all but 2 MSB’s 1n step 524. If
maximum datum lies between 8 (409611 Q.15) 10 0.25 (4096
in Q.15), then the log,N stages (one stage per loop) 1s per-
formed 1n step 526.

The mput data 1s scaled by some factor of two that allows
for two bits of growth. In one embodiment, the maximum
datum must lie between 1z (4096 11 Q.15) and 0.25 (8192 1n
Q.15) to prevent overtlow yet maximize the dynamic range
and the block exponent of the output magnitude can be recov-
ered. In step 528, scaling factors are recorded from each stage
and 1t 1s checked whether 1t 1s the last stage. It it 1s the last
stage, the total number of shifts (e.g., the block common
exponent) 1s returned to allow the proper output magnitude to
be recovered 1n step 530. Else, the step 520 1s repeated.

With reference to FIG. 5, FIG. 6 1s a process flow 1llustrat-
ing a block floating point FFT with dynamic range monitor-
ing according to an embodiment herein. In particular, FIG. 6
illustrates block floating point FFT that scheduled on the CPU
200 with dynamic range monitoring where the different
phases are overlaid. In step 602, phase 1 depicts the stage
when maximum value 1s found for the incoming block of data.
This phase can be totally consumed, when the mput data 1s
being read by the load-store unit of the VLIW CPU (or any
DSP Processor) or when this data 1s being written out by the
previous signal processing stage. The dynamic range moni-
toring 1s performed 1n this phase and the value 1s registered in
CPU Control register 202 for use in next stage. Using this
value, the evaluation of the condition Va<|Max|<V4 1s done 1n
arithmetic or logical functional slot as shown 1n FIG. 2. The
result of evaluation decides the pre-scaling or post-scaling
value for the next arithmetic computation.

In step 604, the phase 2 15 carried out using the arithmetic
slot which 1s capable of embedding such scaling operations
along with arithmetic functions. Finally, the phase when data
1s written out as the operation of Stage 1 and, the max value of
this block of data that has to be determined are combined as
part of phase 3 1n step 606. The load-store unit performs the
dynamic range monitoring as a part of the store operations
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embedded as part of stage 1. In step 608, the phase 4 the stage
2 15 carried out using the arithmetic slot which 1s capable of
embedding such scaling operations along with arithmetic
functions. Finally, the phase when data 1s written out as the
operation of stage 2 and the max value of this block of data
that has to be determined are combined as part of Phase 5 in

step 610.

In step 612, the phase 6 1s carried out using the arithmetic
slot which 1s capable of embedding such scaling operations
along with arithmetic functions. Finally, the phase when data
1s written out as the operation of stage 3 and the max value of
this block of data that has to be determined are combined as
part of phase 7 1n step 614. In step 616, 1t 1s checked whether
it 1s the last stage. If 1t 1s the last stage, the total number of
shifts (e.g., the block common exponent) 1s returned to allow
the proper output magnitude to be recovered in step 618. Else,
if 1t 15 not the last stage the step 614 1s repeated. Note that, 1n
all intermediate stages where the task of finding out, 1f the
data 1s within a range like Va<|Max|<l2 or Ys<|[Max|<Vi4 1s
required, this 1s done 1n the arithmetic unit using the scaling,
factors found 1n the previous stages. Thus the block tloating
point FFT can be etficiently done on the CPU 200 without any
overhead cycles.

The 1nstruction set support for handling block floating
point 1s 1implemented in an arithmetic execution slot. The
arithmetic execution slot performs operations on both real
and complex blocks of data or signals. It has 3 dedicated
scaling registers (SCALEREGI1,SCALEREG2 and SCAL-
EREG3) which are selectable for any arithmetic operation.
Each of the scaling registers has the following 3 fields, which
can be used to pre-scale the sources of post-scale the final
result. The most frequently used operation 1s post-scaling the
result.

a) Dest_po (Bits 4-0) 1s used for post-scaling the result
betfore writing them to the destination register.

b) Src2_pre (Bits 9-5) 1s used for pre-scaling the second
source ol an arithmetic operation.

c) Srcl_pre (Bits 14-10) 1s used for pre-scaling the first
source of an arithmetic operation.

The following arithmetic operations are supported with 2
source operands and 1 destination operand. Both the source
operands are capable each being pre-scaled using the fields
Srcl_pre and Src2_pre. In addition, the destination output
can be post-scaled using the field Dest_po.

A) Complex Multiply and Complex Conjugate Multiply
Operations and the SIMD versions (with 2-way simd).

a) CMUL srcl,src2,dest,#sc_ollset

This 1nstruction 1s used for complex multiply. Assume that
/.1 and Z2 are 2 complex numbers. Then Z1xZ2=[Real
part (srcl_hi)+] Imag part (srcl_lo)]x[Real part
(src2_hi1)+)] Imag part (src2_lo)]==>[Real_ 32bit
(dest1H)+) Imag_ 32bit(dest1L)].

Real 32bit(destl1 H)=(srcl_hi*src2_hi)-
(src1_lo*src2_lo);

Imag  32bit(destl1L)=(srcl_lo*src2_hi)+
(src1_hi*src2_lo);

The Real and Imaginary parts of the 32 bit result are down-
scaled using the contents of the post-scale register to

generate a 16 bit Real and 16 bit Imaginary value.
Scale {Re_Resultl_ 32(dest1H)}==>dest1_hi;

Scale {Im_Resultl__32(dest1L)}==>destl_lo;
The immediate #sc_oflset field (2 bit) 1s used to select the

post-scale register of choice.

b) CNMUL srcl,src2,dest,#sc_ollset
This 1nstruction 1s similar to CMUL except that it multiply

7.1 and conjugate of Z2.
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c) CMUL2 [srcl_o:srcl_e],[src2_o:src2_e],[dest]l_o:
dest]l _e], #sc_ollset
This mstruction 1s a 2Zway SIMD version of CMUL instruc-
tion.
CNMUL2[srcl_o:srcl_e],[src2_o:src2_e],[dest]l_o:
destl_e], #sc_oilset
This istruction 1s a 2way SIMD version of CNMUL
instruction.
B) Real Multiply Operations and SIMD versions (with 2-way
and 4-way simd)
a) RMUL srcl,src2,dest, #sc_ollset
This 1nstruction 1s used for Real Multiplication of two

numbers.
Rel_16(srcl)xRe2  16(src2)]==>Post-Scale{[Result]l__

d)

32}=>[Resultl__16(destl)].

In case of this instruction the post-scale values are chosen
based on the post-scale register specified by #sc_olfset
(2 bits).

b) RMUL?2 srcl,src2,dest, #sc_olfset

This mstruction 1s a 2Zway SIMD version of RMUL instruc-
tion.

c) RMUL4 [srclo:srle],[src2o:src2e],[dest_o:dest_eg],

ftsc offset

This mstruction 1s a 4way SIMD version of RMUL instruc-
tion.

C) Radix-2 DIT (Decimation 1n Time) Butterfly Operation

a) BTRT [src_o:src_e], TwiddleReg, dest_hi, dest_lo,
ftsc_offset

This 1nstruction 1s used to perform a Buttertly operation

using DIT algorithm.
dest_hi=src_e+(src_o*TwiddleReg);
dest_lo=src_e-(src_o*TwiddleReg);

The final dest_hi1 and dest_lo values will be post-scaled to
fit 1n a 16 bit format.

The sources registers are 1n a 64 bit ODD:EVEN Register
pair. The Twiddle Reg used here includes the Twiddle
values used for FFT computation. The immediate
offset#sc_ollset field (2 bit) 1s used to select the post-
scale and pre-scale register of choice.

The lower sample 1s expected to be placed 1n the even
register while the upper sample 1s expected to be placed
in the Odd register. The contents of srcl_pre and
src2_pre fields are used to uniformly pre-scale only
src_o and src_e sources.

D) Radix-2 DIF (Decimation in Frequency) Buttertly Opera-
tion

a) BTRF srcl, src2, TwiddleReg, dest_lo_o:dest_hi_e,
ftsc offset

This 1nstruction 1s used to perform a Butterfly operation
using DIF algorithm.

dest_hi_e=srcl+src2;

dest_lo_o=(src1-src2)*TwiddleReg;

The final dest_hi and dest_lo values will be post-scaled to {it
in a 16 bit format. The destination registers are 1 a 64 bit
ODD:EVEN register pair. The Twiddle Reg used here
includes the relevant Twiddle value used for FFT computa-
tion. The field #sc_oilset 1s used to select the post-scale and
pre-scale register of choice. The contents of srcl_pre and
src2_pre fields are used to uniformly pre-scale only srcl and
Src2 sources.

FIG. 7 1s a table view illustrating pre-scaling of source
operand 700 according to an embodiment herein. The table
view ol pre-scaling of source operand 700 includes an input
assumed field 702, a pre-scale factor field 704, and an output
of pre-scale operation field 706. The input assumed field 702
includes one or more values that are assumed to be Q.15

numbers of the type S.d0-d1-d2-d3-d4-d5-d6-d7-d8-d9-d10-
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d11-d12-d12-d14. The pre-scale factor field 704 includes one
or more value ranges from minus one (-1) to 15. The pre-
scaling operation ficld 706 includes one or more outputs
based on source operands that are equivalent to a left shift
operation with the sign bit itact, except for the case when
pre-scale factor 1s minus one (output pre-scale
operation=Input assumed*(2"(+prescale_factor)).

FIGS. 8A and 8B are table views 1llustrating post scaling
with real multiplies operation 800A and 800B according to an
embodiment herein. The table view of the post scaling with
real multiply 800A and 800B includes an mput assumed field
802, a post-scale factor field 804, and an output of post scale
operation field 806. The mnput assumed field 802 includes one
or more values that are 32 bits of the format S S .d0-d1-d2-
d3-d4-ds-d6-d7- . . . -d13-d14-d15- . . . -d24-d25-
d26- . . . -d27-d28-d29. The post-scale factor field 704
includes one or more values that ranges from —16 to +13. The
output of post scale operation field 706 includes output that 1s
equivalent to a left shift operation 1f positive and right shaft
operation if 1t 1s negative, with the sign bit intact. The results
shown as outputs 1n the FIG. 8A and FIG. 8B depict how the
sign position of the intermediate result transforms when
inputs to the multiplier are both 1n Q.15 format. The final
result taken as 16 bits 1s to be mterpreted 1 Q.15 format
(output post-scale operation=Input assumed (in last 31
bits)*(2 (postscale_factor)).

FIG. 9A and FIG. 9B are table views illustrating post
scaling with complex multiply table 900 A and 900B accord-
ing to an embodiment herein. The table view of post scaling
with complex multiply table 900A and 900B includes an
iput assumed field 902, a post-scale factor field 904, and an
output of post-scale operation field 906. The mput assumed
field 902 includes one or more values that are 32 bits of the
format S_Ix_d0-d1-d2-d3-d4-d5-d6-d7- . . . d13-d14-
d15- . . . d24-d25-d26-d27-d28-d29. The post-scale factor
field 904 1includes one or more values that ranges from —16 to
+15. The output of post-scale operation field 906 includes
output that 1s equivalent to a left shift operation i1f positive and
right shift operation if 1t 1s negative, with the sign bit intact
(output post-scale operation=Input assumed (1in last 31 bits)
*(2"(postscale_factor)).

FIG. 10 1llustrates a method for implementing a block
floating point by detecting a dynamic range while performing
store operations 1n the CPU 200 of FIG. 2 without additional
overhead cycles according to an embodiment heremn. The
example of dynamic range monitoring 1000 used during store
operations shows a signal processing stage( 1002A, a signal
processing stagel 10028, a signal processing stage2 1002C,
and subsequent signal processing stages upto stage N 1002D.
Each of these stages has dynamic range monitoring feature
1004 A-1004C as shown. Consider a filtering operation where
the dynamic range of coelficients 1s already known. One or
more store units of the load-store slot with dynamic range
detection for unitl 206B, and the load-store slot with dynamic
range detection for unit2 2088 are configured for a memory
store or load operation. The signal chain shows several filters
in cascade which can be scheduled either on one DSP pro-
cessor (e.g., 1n the CPU 200 of FIG. 2) or multiple digital
signal processors (DSPs)(e.g., using the same CPU 200 by
cascading). For the filtering operations occurring in stage(
1002A, a known scaling factor obtained 1s computed from
previous stage. I the scaling factor 1s unknown then a fixed
scaling factor 1s used for data.

The output of the stage0 1002A signal processing stage 1s
stored 1n the last stage and during this process the dynamic
range 1n monitored. Since, the dynamic range of coellicient 1s
known the required scaling factor of the result can be easily
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computed based on the type of signal processing operation 1n
stagel 1002B. The outgoing write data of the input signal 1s
snooped to detect the dynamic range. In one embodiment, a
count of leading zeros and leading ones for each sub-word of
the outgoing write data of the mput signal 1s detected for
detecting the dynamic range. The outgoing write data is
latched 1n an operand fetch phase by writing on a memory of
the CPU 200. This scaling factor 1006 computed (BFPScal-
ingFactor) 1s then used for stagel 1002B operations to maxi-
mally utilize the available arithmetic bit width. In one
embodiment, 1t 1s determined whether stagel 1s a first stage.

A block floating point (BFP) scaling factor 1s obtained
from a previous stage when the stage 1s not the first stage (e.g.,
stage 11002B). A new BFP scaling factor 1s computed for a
second stage based on the dynamic range. An mput data for
the second stage 1s shifted using the new BFP scaling factor
along with a load operation. Arithmetic scaling and residue
scaling components of the new BFP scaling factor may be
determined, and the BFP scaling factor 1s set to zero when the
stage 1s the first stage. The new BFP scaling factor 1s com-
puted based on the dynamic range that 1s detected by snoop-
ing an outgoing write data of the input signal and latching the
outgoing write data in an operand fetch phase by writing on a
memory of the DSP (e.g., the CPU 200 of FIG. 2). The BFP
scaling factor and the new BFP scaling factor are computed
using a scaling factor computation module.

It may be determined whether the second stage 1s a last
stage. If the second stage 1s the last stage then arnthmetic
scaling and residue scaling components of the new BEFP scal-
ing factor are determined for the last stage. A residue expo-
nent 1008 may be computed by scaling the residue scaling
components of the first stage until the last stage. While storing
the final outputs of stagel 1002B, the store unit performs the
dynamic monitoring of the processed outputs. This process 1s
then used iteratively across different stages upto stage N of
subsequent processing. The different scale factors corre-
sponding to maxexp values used at each stage (sl, s2,
s3, ..., sN) are used 1n the final stage to scale up the result
with the exponent value (281+52+53+ - - - =My 1(8§.

FIG. 11 1illustrates method for implementing a block float-
ing point by detecting a dynamic range while performing load
operations in the CPU 200 of FIG. 2 without additional over-
head cycles according to an embodiment herein. The dynamic
range monitoring with load operations 1100 illustrates an
example of correlation of 2 sets of data samples that includes
a dummy load operations merged with previous signal pro-
cessing operations 1n software pipelined loop 1102, a corre-
lation processing stage 1104, a signal processing stage 1106,
a dynamic range monitoring 1108, and a residue exponent
1112. In such cases, the dummy loads of the 2 data sets are
performed and may be hidden as a part of the software pipe-
lined loop 1102 execution of a previous signal processing
step. In one embodiment, one or more load units of the load-
store slot with dynamic range detection for unitl 206B, and
the load-store slot with dynamic range detection for unit2
208B are configured for a memory store or load operation. An
incoming read data of the mput signals 1s snooped to detect
the dynamic range. In one embodiment, a count of leading
zeros and leading ones for each sub-word of the mmcoming
read data of the input signal 1s detected for detecting the
dynamic range.

Using such dummy loads 1102, the dynamic range of the
data sets can be 1dentified and used subsequently to compute
the required scaling factor using a scaling factor computation
module 1110. Once the required scaling factor (BFPScaling
Factor) 1s ascertained, it 1s used for subsequent stages of
correlation processing 1104. For all stages, the dynamic
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range monitoring can be done with load or store operations. It
1s determined whether a stage 1s a first stage. In one embodi-
ment, the BEFP scaling factor 1s set to zero when the stage 1s the
first stage. A block floating point (BFP) scaling factor is
obtained from a previous stage when the stage is not the first >
stage.

A new BFP scaling factor 1s computed for a second stage
based on the dynamic range. An output of the first stage 1s
shifted and written on a memory addressed by a DSP (e.g., the
CPU 200 of FIG. 2) using the new BFP scaling factor along
with a store operation. The new BFP scaling factor 1s com-
puted based on a coeflicient of the dynamic range. The
dynamic range 1s detected by snooping an incoming read data
of the input signals and latching in a memory read pipe of the

CPU 200 of FIG. 2. The BFP scaling factor and the new BFP

scaling factor are computed using a scaling factor computa-
tion module 1110. Anthmetic scaling and residue scaling
components of the new BFP scaling factor may be deter-
mined. It may be determined whether the second stage1s alast ¢
stage. If the second stage 1s the last stage, then arithmetic
scaling and residue scaling components of the new BFP scal-
ing factor may be determined for the last stage. A residue
exponent may be computed by scaling the residue scaling
components of the first stage until the last stage. Dummy load 25
operations on two data sets of the input signal may be per-
formed, and a dynamic range of the two data sets 1s detected.
The dynamic range of the two data sets 1s detected based on
the least value of the count of the leading zeros and leading
ones and the least value of the count of trailing zeros over the 30
block of data. A scaling factor may be computed based on the
dynamic range of the two data sets of the input signal.

FIG. 12 1illustrates a process flow of block floating point
method 1200 according to an embodiment herein. In step
1202, the load and store units are configured for enabling 35
dynamic range monitoring. In one embodiment, other units
such as an arithmetic unit and a logical function unit of FIG.

2 may be configured for detecting the dynamic range of the
input signal 1n the arithmetic umt and the logical function
unit. The outgoing write data and incoming memory read data 40
ol an input signal are snooped to detect the dynamic range
using the dynamic range monitor block 316. In step 1204, 1t 15
checked whether a signal processing stage 1s a first stage. If
yes, the BFP scaling 1s set to zero in step 1206. A block
floating point (BFP) scaling factor 1s obtained from a previous 45
stage when the signal processing stage 1s not the first stage. A
new BFP scaling factor for a second stage may be computed
based on the dynamic range. Input data for the second stage 1s
shifted using the new BFP scaling factor along with a first
signal processing operation. An output of the first stage 1s 50
shifted and written on a memory addressed by the CPU 200 of
FIG. 2 using the new BFP scaling factor along with a second
signal processing operation. In one embodiment, the first
signal processing operation and the second signal processing
operation 1s at least one of a load operation, a store operation, 55
an arithmetic operation, and/or a logical function operation.
The first signal processing operation 1s different from the
second signal processing operation. For example, 1f the first
signal processing operation 1s a load operation, then the sec-
ond signal processing operation 1s a store operation. Simi- 60
larly, the first signal processing operation can be an arithmetic
operation, and the second signal processing operation can be

a logical function operation. Similarly, the first signal pro-
cessing operation and the second signal processing operation
can be a combination of any of the above signal processing 65
operations. Arithmetic scaling and residue scaling compo-
nents of the new BFP scaling factor may be determined.
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Else, 1t 1s checked whether 1t 1s the last stage 1n step 1208.
In one embodiment, 1t 1s checked whether the second stage 1s
a last stage. IT 1t 1s last stage, the process 1s terminated. Else (If
No), a specific signal processing operation for that stage 1s
performed in step 1210. In one embodiment, arithmetic scal-
ing and residue scaling components of the new BFP scaling
tactor for the second stage are determined. In step 1212, for
the subsequent signal processing stages dynamic range moni-
toring 1s performed in a hidden or interleaved manner with
store or load processes to find out a BFPScaling factor for
cach stage. Such scaling factors are subsequently used either
completely or partially with the arithmetic operations of the
next stage and the residue scaling factor can be used to scale
up the final computed value 1n the chain of signal processing
steps. In one embodiment, a residue exponent 1s computed by
scaling the residue scaling components of the first stage till
until the last stage. The residue scaling components of the first
stage 111l until the last stage are scaled to get back required
native precision of the mput signal. Dummy load operations
on two data sets of the input signal may be performed, and a
dynamic range of the two data sets 1s detected. A scaling
factor may be computed based on the dynamic range of the
two data sets of the mnput signal. The dynamic range 1s
detected based on the least value of the count of the leading
zeros and leading ones and the least value of the count of
trailing zeros over the block of data.

FIG. 13 illustrates an exploded view of a recewver 1300
having an a memory 1302 having a set of computer instruc-
tions, a bus 1304, a display 1306, a speaker 1308, and a
processor 1310 capable of processing the set of computer
instructions to perform any one or more of the methodologies
herein, according to an embodiment herein. The processor
1310 may also enable digital content to be consumed 1n the
form of video for output via one or more displays 1306 or
audio for output via speaker and/or earphones 1308. The
processor 1310 may also carry out the methods described
herein and 1n accordance with the embodiments herein. Digi-
tal content may also be stored in the memory 1302 for future
processing or consumption. The memory 1302 may also store
program specific iformation and/or service information
(PSI/SI), including information about digital content (e.g.,
the detected information bits) available in the future or stored
from the past.

A user of the receiver 1300 may view this stored informa-
tion on display 1306 and select an item for viewing, listening,
or other uses via mput, which may take the form of keypad,
scroll, or other input device(s) or combinations thereof. When
digital content 1s selected, the processor 1310 may pass infor-
mation. The content and PSI/SI may be passed among func-
tions within the receiver 1300 using bus 1304. In one embodi-
ment, the CPU 200 1s the same processor 1310.

The CPU 200 includes the dynamic range monitor block
316 that detects a dynamic range of the mput signal while
performing load and store operations 1n the CPU 200 of FIG.
2 without additional overhead cycles when implemented 1n a
software defined radio (SDR) subsystem. In one embodi-
ment, the dynamic range of the input signal may be detected
while performing load and store operations 1n the CPU 200
when the CPU 200 1s implemented 1n the recewver (e.g., the
receiver 1300 of FIG. 13) or any other such recervers. The
BFP scaling factors may be determined based on coefficient
of the dynamic range.

The CPU 200 allows programmatically selecting the best
dynamic range for different class of mput signals and corre-
sponding scaling factors (e.g., L1 norm, L.2 norm, Chebyshev
norm, and Euclidean norm). The CPU 200 allows detecting
the dynamic range 1n other slots such as the arithmetic slot
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and the logical function slot of FI1G. 2. The CPU 200 provides
support 1n other computation slots (e.g., the anithmetic slot,
and the logical function slot of FIG. 2) within the CPU 200 for
eilicient block tloating point operations by using the dynamic
range. This support 1s enabled by providing pre-scaling and
post-scaling operations in conjunction with all Real and
Complex Multiply and MAC operations.

Further, in a multi-processor system with multiple DSP
(e.g., using more than one CPU 100) which have such type of
Load-Store Units (e.g., the load store unitl (LSU1) decode
and operand fetch 206A, the load-store slot with dynamic
range detection for unitl 206B, the load store unit2 (LSU2)
decode and operand fetch 208A, and the load-store slot with
dynamic range detection for unit2 208B for amemory store or
load operation) 1t 1s possible to efficiently utilize the arith-
metic data-path to maximize a Signal to Quantization Noise
Ratio. (SQNR). Alternately 1n such a scenario for a given
SOQNR 1t 15 possible to use an arithmetic data-path with
reduced precision. Thus for a given target SQNR 1t 15 possible
to turn off bit-slices based on the required precision and save
dynamic power dissipation. Further, the CPU 200 enables to
communicate the scale-up or scale-down factors required in a
signal processing chain for optimally using the arithmetic
resources.

The CPU 200 requires minimal interference from software
tor block floating point (BFP) DSP operations. The method of
detecting dynamic range as discussed above can be used for
all classes of signal processing operations like correlation,
and filtering operations such as a Finite Impulse Response
(FIR) filtering, an Infinite Impulse Response (1IR) filtering,
an interpolation, and a sample rate conversion {iltering, etc.,
and not just limited to a fast fourier transform (FFT) alone.
Further, for a fixed width arithmetic data-path this method of
detecting the dynamic range enables to maximize the Signal
to Quantization Noise Ratio (SQNR). For a fixed Signal to
Quantization Noise Ratio this method allows using the mini-
mum arithmetic data-path width and thus reduces the power
dissipation.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the embodiments herein
that others can, by applying current knowledge, readily
modily and/or adapt for various applications such specific
embodiments without departing from the generic concept,
and, therefore, such adaptations and modifications should and
are intended to be comprehended within the meaning and
range of equivalents of the disclosed embodiments. It 1s to be
understood that the phraseology or terminology employed
herein 1s for the purpose of description and not of limitation.
Theretore, while the embodiments herein have been
described in terms of preferred embodiments, those skilled 1n
the art will recognize that the embodiments herein can be
practiced with modification within the spirit and scope of the
appended claims.

What 1s claimed 1s:

1. A system for computing a block floating point (BFP)
scaling factor by detecting a dynamic range of an input signal
in a central processing unit (CPU) without additional over-
head cycles, said system comprising;:

a dynamic range monitoring unit that detects said dynamic
range of said input signal by snooping (1) outgoing write
data and (11) incoming memory read data of said input
signal, wherein said dynamic range monitoring unit
COmprises:

a leading zero and leading one detector and counter unit
that detects a count of leading zeros and leading ones
for each sub-word of said outgoing write data and said
incoming memory read data of said mnput signal;
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a registered maximum count unit that stores said count
of leading zeros and leading ones for each sub-word
of said outgoing write data and said incoming
memory read data of said input signal;

a least value finder unit that determines a least value of
said count of said leading zeros and leading ones over
a block of data; and

a running maximum count unit that stores said least
value of said count of said leading zeros and leading
ones over said block of data,

wherein said dynamic range 1s detected based on (1) said
least value of said count of said leading zeros and
leading ones over said block of data and (11) a least
value of a count of trailing zeros over said block of
data; and

a scaling factor computation module that computes said
block floating point (BFP) scaling factor based on said
dynamic range.

2. The system of claim 1, wherein said dynamic range

monitoring unit further comprises

a bus swapper unit that bus-swaps said each sub-word of
said outgoing write data and said incoming memory read
data of said mput signal such that (1) a most significant
bit (MSB) position of said each sub-word occupies a
least significant bit (LSB) position, and (11) a LSB posi-
tion of said each sub-word occupies a MSB position;

a trailing zeros detector and counter unmit that detects said
count of trailing zeros over said block of data for said
cach sub-word of said outgoing write data and said
incoming memory read data of said input signal;

a registered mimimum count unit that stores said count of
trailing zeros for said each sub-word of said outgoing
write data and said incoming memory read data;

a least value finder unit that determines said least value of
said count of trailing zeros over said block of data; and

a running minimum count umt that stores said least value of
said count of trailing zeros over said block of data.

3. The system of claim 2, wherein said count of leading
zeros and leading ones, said least value of said count of
leading zeros and leading ones, said count of trailing zeros,
and said least value of said count of trailing zeros are preset to
a highest possible value betfore detecting said dynamic range
at a start of said load and store operations.

4. The system of claim 1, further comprising a CPU control
register (CCR) that turns on and turns off said dynamic range
using a specified program.

5. The system of claim 4, wherein said dynamic range 1s
updated 1n a control register file at an end of a signal process-
ing operation when a value of control bit signals 1s cleared to
Zero.

6. The system of claim 35, wherein said signal processing
operation 1s at least one of a load operation, a store operation,
an arithmetic operation, and a logical function operation.

7. The system of claim 1, wherein said dynamic range 1s
detected 1n at least one of a load store unit, an arithmetic unat,
and a logical function unit.

8. A method for computing a block floating point (BFP)
scaling factor by detecting a dynamaic range of an imnput signal
in a central processing unit (CPU) without additional over-
head cycles, said method comprising:

detecting, using a leading zero and leading one detector
and counter unit, a count of leading zeros and leading
ones for each sub-word of said outgoing write data and
said incoming memory read data of said iput signal;
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determiming arithmetic scaling and residue scaling compo-
nents of said new BFP scaling factor for said second
stage.
12. The method of claim 11, further comprising computing
5 a residue exponent by scaling said residue scaling compo-
nents of said first stage until said last signal processing stage
to obtain a required native precision of said input signal.

13. The method of claim 8, further comprising:

performing dummy load operations on two data sets of said

input signal; and

detecting a dynamic range of said two data sets, wherein a

scaling factor 1s computed based on said dynamic range
of said two data sets of said input signal.

14. The method of claim 8, wherein said first signal pro-
cessing operation and said second signal processing opera-
15 tion is at least one of a load operation, a store operation, an

arithmetic operation, and a logical function operation.
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storing, using a registered maximum count unit, said count
of leading zeros and leading ones for each sub-word of
said outgoing write data and said incoming memory read
data of said mput signal;

determining, using a least value finder unit, a least value of
said count of said leading zeros and leading ones over a
block of data;

storing, using a running maximum count unit, said least
value of said count of said leading zeros and leading
ones over said block of data; and

detecting, by a dynamic range monitoring unit, said
dynamic range based on (1) said least value of said count
of said leading zeros and leading ones over said block of
data and (11) a least value of a count of trailing zeros over
said block of data; and computing said block floating

10

point (BFP) scaling factor based on said dynamic range.

9. The method of claim 8, further comprising

determining whether a signal processing stage 1s a first
stage, wherein said BFP scaling factor 1s obtained from
a previous stage when said signal processing stage 1s not
said first stage; and

computing a new BFP scaling factor for a second stage
based on said dynamic range, wherein input data for said
second stage 1s shifted using said new BFP scaling factor
along with a first signal processing operation, wherein
an output of said first stage 1s shifted and written on a
memory addressed by said CPU using said new BEFP
scaling factor along with a second signal processing

operation.
10. The method of claim 9, turther comprising setting said

new BFP scaling factor to zero when said signal processing,
stage 1s said first stage.

11. The method of claim 9, further comprising:
determining whether said second stage 1s a last signal pro-
cessing stage; and
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15. The method of claim 8 further comprising

bus-swapping, using a bus swapper unit, each sub-word of
said outgoing write data and said incoming memory read
data of said iput signal such that (1) a most significant
bit (MSB) position of said each sub-word occupies a
least significant bit (LSB) position, and (11) a LSB posi-
tion of said each sub-word occupies a MSB position;

detecting, using a trailing zeros detector and counter unit,
said count of trailing zeros for said each sub-word of said
outgoing write data and said incoming memory read
data of said input signal;

storing, using a registered minimum count unit, said count
of trailing zeros for said each sub-word of said outgoing
write data and said mncoming memory read data;

determining, using a least value finder unit, a least value of
said count of trailing zeros over said block of data; and

storing, using a running minimum count unit, said least
value of said count of trailing zeros over said block of

data.
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