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Code 21

void DoWorkA(Record * record)

{
/f perform steps of a first algorithm

!/ on the record

}

void DoWorkB(Record * record)
{

/f perform steps of a second algorithm
{/ on the record

}

void KemelFunction(Record * recordsArray)

{
const int unitld = get_global_Id(0);

DoWorkA(&recordsArray[unitld]);

DoWorkB( &recordsArray[unitld]);
!

INPUT=[1,3,2,7, 8
1,3,5,2,4

KERNEL Power2(INPUT,
RESULT) {

N =get_array index();
V = INPUT[N]:
RESULT[N] =V * V:

}

FIG. 2
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Code 230

void DoWorkA(Record * record)
d

// perform steps of a first algorithm
// on the record

)

vold DoWorkB(Record * record)

f
// perform steps of a second algorithm
// on the record

j

void KernelFunction(Record * recordsArray)
{

const int unitld = get global [1d(0);

If (EvaluateFunction(recordsArray[unitld})

{
DoWorkA(&recordsArray[unitld]);

;

else

f
DoWorkB( &recordsArray| unitld]);

;
i

FIG. 3
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AUTOMATIC LOAD BALANCING FOR
HETEROGENEOUS CORES

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention relates to computing systems, and more
particularly, to automatically scheduling the execution of
work units between multiple heterogeneous processor cores.

2. Description of the Relevant Art

The parallelization of tasks 1s used to increase the through-
put of computer systems. To this end, compilers or the soft-
ware programmer may extract parallelized tasks from pro-
gram code to execute 1n parallel on the system hardware. With
a single-core architecture, a single core may include deep
pipelines and multiple execution contexts configured to per-
form multi-threading. To further increase parallel execution
on the hardware, a multi-core architecture may include mul-
tiple processor cores. This type of architecture may be
referred to as a homogeneous multi-core architecture and
may provide higher istruction throughput than a single-core
architecture. However, particular instructions for a computa-
tionally intensive task may consume a disproportionate share
of a shared resource, which may 1n turn delay the deallocation
of the shared resource. Examples of such specific tasks may
include cryptography, video graphics rendering, and garbage
collection.

To overcome the performance limitations of conventional
general-purpose cores, a computer system may oitload spe-
cific tasks to special-purpose hardware. This hardware may
include a single instruction multiple data (SIMD) parallel
architecture, a field-programmable gate array (FPGA), and/or
other specialized types of processing cores. When an archi-
tecture mcludes multiple cores of different types 1t may be
referred to as a heterogeneous multi-core architecture.

Presently, an operating system (OS) scheduler or a user-
level scheduler, which may also be referred to as a “sched-
uler”, may schedule workloads running on a computer system
with a heterogeneous multi-core architecture using a variety
ol schemes—such as a round-robin scheme. Additionally, an
scheduler may schedule these workloads based on availabil-
ity of the cores. Alternatively, a programmer may schedule
the workloads 1n combination with the runtime system. In
such a case, the programmer may utilize a software platform
to perform the scheduling. For example, the OpenCL® (Open
Computing Language) framework supports programming
across heterogeneous computing environments and includes
a low-level application programming interface (API) for het-
cerogeneous computing. The OpenCL framework (generally
referred to herein as “OpenCL”) includes a C-like language
interface that may be used to define execution queues,
wherein each queue 1s associated with an OpenCL device. An
OpenCL device may be a CPU, a GPU, or other unit with at
least one processor core within the heterogeneous multi-core
architecture. In the OpenCL framework a function call may
be referred to as an OpenCL compute kernel, or simply a
“compute kernel”. A software programmer may schedule the
compute kernels 1n the execution queues. A compute kernel
may be matched with one or more records of data to produce
one or more work units of computation. Each work unit may
have a unique 1dentifier (ID).

The scheduling model described above may restrict port-
ability and performance when there 1s a mismatch between
the scheduling schemes and system resources. The program-
mer may trade portability for efficiency while attempting to
provide an application that spans varied system configura-
tions.
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SUMMARY OF EMBODIMENTS OF THE
INVENTION

Systems and methods for performing efficient automatic
scheduling of the execution of work units between multiple
heterogeneous processor cores are contemplated.

In one embodiment, a processing node includes a first
processor core with a first micro-architecture and a second
processor core with a second micro-architecture different
from the first micro-architecture. In one embodiment, the first
micro-architecture 1s a general-purpose micro-architecture
and the second micro-architecture 1s a single instruction mul-
tiple data (SIMD) micro-architecture. The processing node
includes a memory coupled to each of the first and the second
processor cores. The memory stores a computer program
comprising one or more compute kernels, or function calls.
As a compiler traverses the instructions of a given function
call, the compiler 1s configured to compute pre-runtime infor-
mation of the given function call. A scheduler within an
operating system (OS) produces one or more work units by
matching each of the one or more kernels with an associated
record of data. The scheduler also assigns the one or more
work units either to the first processor core or to the second
processor core based at least 1n part on the computed pre-
runtime information. In addition, the scheduler 1s able to
change an original assignment for a waiting work unit from
either the first or the second processor core to the other pro-
cessor core based on dynamic runtime behavior of other work
units corresponding to a same kernel as the waiting work unat.

These and other embodiments will be further appreciated
upon reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a generalized block diagram of one embodiment
of an exemplary processing node with a heterogeneous multi-
core architecture.

FIG. 2 1s a generalized block diagram of one embodiment
of source code defimng compute kernels.

FIG. 3 1s a generalized block diagram of one embodiment
of source code defining compute kernels with conditional
statements.

FIG. 4 15 a generalized block diagram of one embodiment
of the scheduled assignments between hardware resources
and compute kernels.

FIG. 35 1s a generalized block diagram of one embodiment
of a logical layout of micro-architectures for two types of
Processor cores.

FIG. 6 1s a generalized block diagram of one embodiment
of a general-purpose pipeline execution tlow.

FIG. 7 1s a generalized block diagram of one embodiment
of a SIMD pipeline execution flow.

FIG. 8 1s a generalized flow diagram illustrating one
embodiment of a method for scheduling work units to pro-
cessor cores utilizing static information.

FIG. 9 1s a generalized flow diagram illustrating one
embodiment of a method for scheduling work units to pro-
cessor cores utilizing dynamic information

While the invention 1s susceptible to various modifications
and alternative forms, specific embodiments are shown by
way ol example 1n the drawings and are herein described in
detail. It should be understood, however, that drawings and
detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the contrary,
the mvention 1s to cover all modifications, equivalents and
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alternatives falling within the spirit and scope of the present
invention as defined by the appended claims.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced with-
out these specific details. In some 1nstances, well-known
circuits, structures, and techniques have not been shown 1n
detail to avoid obscuring the present invention.

Referring to FIG. 1, one embodiment of an exemplary
processing node 110 with a heterogeneous multi-core archi-
tecture 1s shown. Processing node 110 may include one or
more processing units 115, which may include one or more
processor cores 112 and an associated cache memory sub-
system 114. In one embodiment, processor core 112 utilizes a
general-purpose micro-architecture.

Processing node 110 may also include one or more pro-
cessing units 170, which may comprise one or more processor
cores 172 and data storage bufiers 174. Processor core 172
may not be a mirrored silicon image of processor core 112.
Processor core 172 may have a micro-architecture different
from the micro-architecture used by processor core 112. In
one embodiment, the processor core 172 may be a different
generation of a same processor family as processor core 112.
In another embodiment, the processor core 172 may be a
voltage and/or frequency scaled version of processor core
112. In other words, the processor core 172 1s not a silicon
copy of the processor core 112 with a same functionality and
istruction set archutecture (ISA), a same clock frequency,
same cache sizes, a same memory model, and so forth.

Continuing with the micro-architecture of processor core
172, 1n yet another embodiment, the processor core 172 may
comprise a micro-architecture that provides high instruction
throughput for a computational intensive task. Processor core
172 may have a parallel architecture. For example, the pro-
cessor core 172 may be a single instruction multiple data
(SIMD) core. Examples of SIMD cores include graphics pro-
cessing units (GPUs), digital signal processing (DSP) cores,
or other. In one embodiment, the processing node 110 com-
prises a single istruction set architecture (ISA). Typically, as
1s well known 1n the art, single-ISA multi-core architectures
have been shown to provide higher power and throughput
performances for chip multiprocessors (CMP).

High instruction throughput on processing node 110 may
be achieved with measured power consumption within a
given power limit when threads of software applications are
elliciently scheduled. The threads may be scheduled on one of
processor cores 112 and 172 1n a manner that each thread has
the highest mstruction throughput based at least in part on the
runtime hardware resources of the processor cores 112 and
172.

Continuing with the components in the processing node
110, the processing node 110 may include memory controller
120, and interface logic 140. In one embodiment, the 1llus-
trated functionality of processing node 110 1s incorporated
upon a single integrated circuit. In one embodiment, proces-
sor cores 112 include circuitry for executing instructions
according to a predefined general-purpose instruction set. For
example, the SPARC® 1nstruction set architecture (ISA) may
be selected. Alternatively, the x86, x86-64®, Alpha®, Pow-
erPC®, MIPS®, PA-RISC®, or any other instruction set
architecture may be selected. Generally, processor core 112
accesses the cache memory subsystems 114, respectively, for
data and instructions. If the requested block 1s not found 1n
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4

cache memory subsystem 114 or in shared cache memory
subsystem 118, then a read request may be generated and
transmitted to the memory controller within the node to
which the missing block 1s mapped.

In one embodiment, processing umt 170 1s a graphics pro-
cessing unit (GPU). Modermn GPUs are very eflicient at
mampulating and displaying computer graphics. The highly
parallel structure of GPUs makes them more efiective than
general-purpose central processing units (CPUs), such as
processing unit 115, for a range of complex algorithms. Typi-
cally, a GPU executes calculations used for graphics and
video and a CPU executes calculations for many more system
processes than graphics alone. Conventional GPUs utilize
very wide single instruction multiple data (SIMD) architec-
tures to achieve high throughput in 1mage-rendering applica-
tions. Such applications generally entail executing the same
programs, such as vertex shaders or pixel shaders, on large
numbers of objects (vertices or pixels). Since each object 1s
processed independently of other objects, but the same
sequence of operations 1s used, a SIMD architecture provides
considerable performance enhancement. GPUs have also
been considered for non-graphical calculations.

In one embodiment, the GPU 170 may be located on a
video card. In another embodiment, the GPU 170 may be
integrated on the motherboard. In yet another embodiment,
the 1llustrated functionality of processing node 110 may be
incorporated upon a single integrated circuit. In such an
embodiment, the CPU 115 and the GPU 170 may be propri-
etary cores from different design centers. Also, the GPU 170
may now be able to directly access both local memories 114
and 118 and main memory via memory controller 120 from
the processing node 110, rather than perform memory
accesses oil-chip via interface 140. This embodiment may
lower latency for memory accesses for the GPU 170, which
may translate imto higher performance.

Continuing with the components ol processing node 110 1n
FIG. 1, cache subsystems 114 and 118 may comprise high-
speed cache memories configured to store blocks of data.
Cache memory subsystems 114 may be integrated within
respective processor cores 112. Alternatively, cache memory
subsystems 114 may be coupled to processor cores 114 1n a
backside cache configuration or an inline configuration, as
desired. Still further, cache memory subsystems 114 may be
implemented as a hierarchy of caches. Caches that are located
nearer processor cores 112 (within the hierarchy) may be
integrated into processor cores 112, 1f desired. In one embodi-
ment, cache memory subsystems 114 each represent L2 cache
structures, and shared cache subsystem 118 represents an L3
cache structure. Both the cache memory subsystem 114 and
the shared cache memory subsystem 118 may include a cache
memory coupled to a corresponding cache controller.

Generally, packet processing logic 116 1s configured to
respond to control packets recerved on the links to which
processing node 110 1s coupled, to generate control packets in
response to processor cores 112 and/or cache memory sub-
systems 114, to generate probe commands and response
packets 1n response to transactions selected by memory con-
troller 120 for service, and to route packets for which node
110 15 an intermediate node to other nodes through interface
logic 140. Interface logic 140 may include logic to recerve
packets and synchronize the packets to an internal clock used
by packet processing logic 116.

Tuning now to FIG. 2, one embodiment of source code
utilizing compute kernels 1s shown. OpenCL™ (Open Com-
puting Language) 1s one example of an application program-
ming interface (API) for heterogeneous computing. OpenCL
includes a C-like language interface that defines execution
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queues, wherein each queue 1s associated with an OpenCL
device. An OpenCL device may be a CPU, a GPU, or other
unit with at least one processor core within the heterogeneous
multi-core architecture. A function call may be referred to as
an OpenCL kernel, or simply a “compute kernel”. The
OpenCL framework may improve computing performance
for a wide variety of data-parallel applications used in gam-
ing, entertamnment, science and medical fields. For a hetero-
geneous architecture, a computer program typically com-
prises a collection of compute kernels and internal functions.
A soltware programmer may define the compute kernels,
whereas the internal functions may be defined 1n a given
library.

For a data-parallel software application, an N-Dimensional
computation domain may deflne an organization of an
“execution domain”. The N-Dimensional computation
domain may also be referred to as an N-Dimensional grid or
an N-Dimensional Range (“NDRange™). The NDRange may
be a one-, two-, or three-dimensional space. This dimensional
space may also be referred to as an index space. For example,
a solftware application may perform data processing on a
two-dimensional (2D) array of data, such as an image file.
The software application may perform an algorithm devel-
oped by a software programmer on a pixel-by-pixel basis of a
2D 1mage. A given compute kernel may be invoked over the
index space (the NDRange).

Typically after compilation, the arguments and parameters
of each compute kernel are set. Additionally, associated
memory objects and butlers are created. A given instance of
the compute kernel may be executed as 1ts own software
thread. A given instance of the compute kernel at a given point
in the index space may be referred to as a “work item™. A work
item may also be referred to as a work unit. A work unit may
operate with the one or more mstructions 1n the compute
kernel on a record of data corresponding to a given pixel (a
given 1ndex) of the 2D image. Typically, work units have an
associated unique 1dentifier (ID). In another example, an
introductory computer program processing the string “Hello
World” may have one work unit for computing each letter 1in
the string.

The NDRange may define a total number of work units that
execute 1n parallel 11 there 1s suificient hardware support. For
example, the NDRange may define a number of 280 work
units, but a GPU may support the simultaneous execution of
64 work units at any given time. The total number of work
units may define a global work size. As 1s well known to those
skilled 1n the art, the work units may be further grouped 1nto
work groups. Each work group may have a unique 1dentifier
(ID). The work units within a given work group may be able
to communicate with each other and synchronize execution
and coordinate memory accesses. A number of work units
may be clustered into a wave front for simultaneous execution
on a GPU 1n a SIMD manner. Regarding the example above
for 280 total work units, a wave front may include 64 work
units.

The OpenCL framework 1s an open programming standard
for various compute devices, or OpenCL devices. A software
programmer may avoid writing a vendor-specific code, which
may result 1n improved code portability. Other frameworks
are available and may offer more vendor-specific coding for
heterogeneous architectures. For example, NVIDIA oflers
Compute Unified Device Architecture (CUDA®) and AMD
offers ATI Stream®. With a CUDA framework, a compute
kernel 1s typically statically compiled when the computer
program 1s compiled. With an OpenCL framework, a com-
pute kernel 1s typically compiled with a Just-In-Time (JIT)
method. The JIT method may generate an appropriate binary
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code after obtaining the system configuration. With a JIT
compilation method, the compilation time 1s included with
the total execution time. Therefore, compiler optimizations
may increase the execution time. In addition, at run time the
OpenCL compiler may generate multiple versions of com-
pute kernels. One version of a compute kernel may be gener-

ated for each type of OpenCL device type, such as a general-
purpose CPU, a SIMD GPU, and so forth.

The two frameworks, OpenCL and CUDA, have a differ-

ence 1n terminology between their respective execution mod-
els. For example, a work unit, a work group, a wave front and
an NDRange 1n OpenCL have corresponding terms in CUDA
such as a thread, a thread block, awarp and a grid. Throughout
the rest of the description, the terms corresponding to
OpenCL are used. However, the systems and methods
described may apply to CUDA, ATT Stream and other frame-
works.

As shown 1n FIG. 2, code 210 defines two function calls

generally titled “doWorkA™ and “doWorkB”. Each function
call may be referred to as a “compute kernel”. A compute
kernel may be matched with one or more records of data to
produce one or more work units of computation. Therefore,
two or more work units may utilize the same instructions of
the single function call, but operate on different records of
data. For example, the function call “Power2” 1n code 220
may be used to execute 10 work units, one for each data value
in the array “INPUT”. Here, a record comprises a single data
value. In other examples, a record may comprise two or more
fields, wherein each field includes a data value. A SIMD
micro-architecture may etficiently execute the instructions of
the kernel “Power2”, calculate the power of 2 for the values in
the INPUT array and write the output to the RESULT array.
The OpenCL framework may 1invoke an instance of a com-
pute kernel multiple times 1n parallel. With a JIT compiling
method, these instances are compiled at runtime to be later
invoked. Each ivocation (call) to the compute kernel has one
associated unique ID (a work unit ID) that may be fetched by
calling an internal function named get_global_1d(0). Regard-
ing the above example 1n code 220, the compute kernel
“Power2” 1s invoked once for each data value in the INPUT
array. In this case, the compute kernel “Power2” 1s invoked 10
times. Accordingly, ten unique work unit IDs are fetched. The
OpenCL framework may differentiate between these differ-
ent instances by utilizing the unique work unit IDs. The data
to be operated on (a record) may also be specified, such as a
specific data value 1n the INPU'T array. Therefore, at runtime,
a work unit may be scheduled by default to a same OpenCL
device as the associated compute kernel 1s scheduled.
Tuning now to FIG. 3, one embodiment of source code
defining compute kernels with conditional statements 1is
shown. Similar to code 210, the code 230 shown 1n FIG. 3
defines two function calls generally titled “doWorkA™ and
“doWorkB”. Again, each function call may be referred to as a
“compute kernel”. Here, only one of the two compute kernels
1s executed during runtime. The selection of which compute
kernel 1s executed 1s based on a conditional test provided by
the function call “EvaluateFunction”. A result of a given
instruction or whether the given instruction 1s executed 1s
data-dependent on the execution of previous instructions and
data corresponding to an associated record. I1 the result of the
conditional test 1s not consistent among a wave front of work
units, the benelfits of a SIMD micro-architecture may be
reduced. For example, a given SIMD core may have 64 par-
allel computation units available for sitmultaneous execution
of 64 work units. However, 1f half of the 64 work units pass the
conditional test while the other half fails the conditional test,
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then only half of the parallel computation units are utilized
during a given stage of processing.

Turning now to FIG. 4, a generalized block diagram illus-
trating one embodiment of the scheduled assignments 400
between hardware resources and compute kernels 1s shown.
Here, the partitioning of hardware and soitware resources and
their interrelationships and assignments during the execution
ol one or more soitware applications 430 1s shown. In one
embodiment, an operating system 420 allocates regions of
memory for compute kernels 440a-440; and 4404-440¢.
When applications 430, or computer programs, execute, each
application may comprise multiple compute kernels. For
example, a first executing application may comprise compute
kernels 440a-440; and a second executing application may
comprise compute kernels 4404-440g. Within each of these
compute kernels may be one or more work units. For
example, compute kernel 440a comprises work units 442a-
442d, compute kernel 4407 comprises work units 442¢-4424,
compute kernel 440k comprises 4427-442m and compute ker-
nel 440 comprises work units 4427-442¢. A work unit may
execute mndependently of other work units and execute con-
currently with other work unaits.

Each of the compute kernels shown 1n FIG. 4 may own its
own resources such as an image of memory, or an instance of
instructions and data before application execution. Each of
the compute kernels may also comprise process-specific
information such as address space that addresses the code,
data, and possibly a heap and a stack; vaniables in data and
control registers such as stack pointers, general and tloating-
point registers, program counter, and otherwise; and operat-
ing system descriptors such as stdin, stdout, and otherwise,
and security attributes such as a set of permissions.

In one embodiment, hardware computing system 410
incorporates a general-purpose processor core 112 and a
SIMD processor core 172, each configured to process one or
more work umits. In another embodiment, system 410
includes two other heterogeneous processor cores. In general,
for a given application, operating system 420 sets up an
address space for the application, loads the application’s code
into memory, sets up a stack for the program, branches to a
given location inside the application, and begins execution of
the application, upon requests from the scheduler. Typically,
the portion of the operating system 420 that manages such
activities 1s the operating system (OS) compute kernel 422.
The OS compute kernel 422 1s referred to as “OS compute
kernel” in order not to contuse 1t with a compute kernel, or a
tunction call. The OS Compute kernel 422 may further deter-
mine a course of action when insuilicient memory is available
for the execution of the application. As stated before, an
application may be divided 1into more than one compute ker-
nel and system 410 may be running more than one applica-
tion. Therefore, there may be several compute kernels run-
ning in parallel. The scheduler, using the OS Compute kernel
422, may decide at any time which of the simultaneous
executing compute kernels 1s allocated to the processor cores
112 and 172. The OS Compute kernel 422 may allow a
process to run on a core of a processor, which may have one
Or more cores, for a given amount of time referred to as a time
slice. An scheduler 424 in the operating system 420 may
comprise decision logic for assigning compute kernels to
cores.

In one embodiment, only one compute kernel can execute
at any time on any one ol the hardware computation units
412a-412g and 412/-412r. These hardware computation
units comprise hardware that can handle the execution of a
given 1nstruction of a given work unit with associated data.
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This hardware may include an anthmetic logic unit that 1s
configured to perform addition, multiplication, zero detect, a
bit-wise shift, division, video graphics and multimedia
instructions or other operations known to those skilled in the
art of processor design. These hardware computation units
may include a hardware thread 1n a multi-threaded processor,
a parallel hardware column 1n a SIMD micro-architecture,
and so forth.

The dashed lines 1n FIG. 4 denote assignments and do not
necessarilly denote direct physical connections. Thus, for
example, hardware computation unit 412a may be assigned to
execute work unit 442d. However, later (e.g., alter a context
switch), the hardware computation unit 412a may be assigned
to execute work unit 442/. In one embodiment, the scheduler
424 may schedule the work units 442a-442¢ to the hardware
computation units 412q-4127 with a round-robin scheme.
Alternatively, the scheduler 424 may schedule the work units
442a-442g to the cores 112 and 172 with a round-robin
scheme. An assignment of a given work unit to a given hard-
ware computation unit may be performed by an associated
processor core. In another embodiment, the scheduler 424
may periform the scheduling based on availability of the pro-
cessor cores 112 and 172. In yet another embodiment, the
scheduler 424 may perform the scheduling according to
assignments created by a programmer utilizing the
OpenCL™ API or another similar API. These scheduling
schemes may restrict portability and performance when there
1s a mismatch between the work unit assignments and hard-
ware resources.

Referring to FIG. 5, a generalized block diagram 1llustrat-
ing one embodiment of a logical layout of micro-architec-
tures for two types ol processor cores 1s shown. Although
cach of a general-purpose core 510 and a single instruction
multiple data (SIMD) core 560 1s shown, other types of het-
erogeneous cores are possible and contemplated. Each of the
cores 510 and 560 have a dynamic random access memory
(DRAM) 550a and 55056 for storage of data and 1nstructions.
In one embodiment, the cores 510 and 560 share a same
DRAM. In another embodiment, a given level of a cache
memory subsystem (not shown) 1s shared 1n addition to the
DRAM. For example, referrmg again to FIG. 1, the cache
memory subsystem 118 1s shared by the cores 112 and 172.

Each of the cores 510 and 560 include a cache memory
subsystem 330. As shown, the general-purpose core 510 logi-
cally has the cache memory subsystem 530 separate from the
control logic 520 and the arithmetic logic units (ALUs) 540.
The data flow within the core 510 may be pipelined, although
storage elements, such as pipeline registers, are not shown 1n
order to simplify the illustration. In a given pipeline stage, an
ALU may be unused i1 instructions 1n this stage do not utilize
a certain type of ALU or 1f another work unit (or another
thread for a general-purpose core) consumes the AL Us during
this stage.

As shown, the SIMD core 560 has the cache memory
subsystem 530 grouped with control logic 520 for each row of
computation units 542. The data flow within the core 560 may
be pipelined, although storage elements, such as pipeline
registers, are not shown in order to simplify the 1llustration. In
a given pipeline stage, a computation unit may be unused if an
associated instruction in this stage 1s not executed based on a
previous failed test, such as a not-taken branch.

Referring now to FIG. 6, a generalized block diagram
illustrating one embodiment of a general-purpose pipeline
execution tlow 600 1s shown. Instructions 602-608 may be
tetched and enter a general-purpose pipeline. Instruction 606
may be a computation intensive instruction. During particular
stages of the pipeline execution flow, one or more of the
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instructions 602-608 consume resources in the general-pur-
pose processor core 112, such as decoder logic, instruction
scheduler entries, reorder bulfer entries, ALUs, register file
entries, branch prediction units, and so forth.

In a balanced scheme, each of the instructions 602-608
consume an equal amount of resources each stage. However,
typically, a general-purpose core does not replicate resources
for each instruction due to real-estate cost, power consump-
tion and other design considerations. Therefore, the workload
may become unbalanced. For example, the instruction 606
may consume more resources for one or more pipe stages due
to 1ts computation intensive behavior. As shown, the
resources 630 consumed by this mstruction may become far
greater than the resources consumed by other instructions. In
fact, the computation intensive instruction may block the
usage ol hardware resources by other instructions.

Some computation intensive tasks may place pressure on
shared resources within the general-purpose core 112. Thus,
throughput losses occur for both the computational intensive
process and other processes waiting for the shared resources.
In addition, some instructions occupy the shared resource and
other resources on the die to support the computation being
performed on the shared resource. Such a long latency
istruction may concurrently block other processes from
using several resources during a long latency.

Referring now to FIG. 7, a generalized block diagram
illustrating one embodiment of a SIMD pipeline execution
flow 700 1s shown. Instructions 702-708 may be fetched and
enter a SIMD pipeline with associated data. Instruction 704
may be a control flow transifer mstruction, such as a branch.
The instruction 706 may be a first instruction 1n a taken path.
For example, the branch instruction 704 may be associated
with an IF statement 1n a hugh-level language program. The
instruction 706 may be associated with a THEN statement 1n
the high-level language program. The mstruction 708 may be
a first instruction 1n a not-taken path. The instruction 708 may
be associated with an ELSE statement 1in the high-level lan-
guage program.

Each of the computation units within a given row may be a
same computation unmt. Each of these computation units may
operate on a same instruction, but different data associated
with a different work unit. As shown, some of the work unaits
pass the test provided by the branch mstruction 704 and other
work units fail the test. The SIMD core 172 may execute each
of the available paths and selectively disable the execution
units, such as the computation units, corresponding to work
items that did not choose the current path. For example,
during execution of an If-Then-Else construct statement,
within each column of a SIMD architecture are execution
units configured to execute the “Then” (Path A) and the
“Flse” (Path B) paths. The efliciency of parallel execution
may be reduced as the first and the second work units halt
execution and wait as the third work unit continues with 1ts
ongoing execution. Therefore, not all of the computation
units are active computation units 710 1n a given row after
execution of the branch instruction 704. If a large number of
computation units are mactive during a given pipe stage, the
eificiency and throughput of the SIMD core 1s reduced.

Turning now to FIG. 8, one embodiment of a method 800
for scheduling work units to processor cores utilizing static
information 1s shown. The components embodied in the pro-
cessing node 110 and the hardware resource assignments
shown 1 FIG. 4 described above may generally operate 1n
accordance with method 800. For purposes of discussion, the
steps 1n this embodiment and subsequent embodiments of
methods described later are shown 1n sequential order. How-
ever, some steps may occur 1n a different order than shown,
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some steps may be performed concurrently, some steps may
be combined with other steps, and some steps may be absent
in another embodiment.

In block 802, a software program or subroutine may be
located and analyzed. This software program may be written
for compilation and execution on a heterogeneous architec-
ture. Program code may refer to any portion of a software
application, subroutine, dynamic linked library, or otherwise.
A pathname may be entered at a command prompt by a user,
a pathname may be read from a given directory location, or
other, 1n order to begin compiling the source code. The pro-
gram code may be written by a designer in a high-level
language such as C, a C-like language such as OpenCL™,
and so forth. In one embodiment, the source code 1s statically
compiled. In such an embodiment, during a static front-end
compilation, the source code may be translated to an inter-
mediate representation (IR). A back-end compilation step
may translate the IR to machine code. The static back-end
compilation may perform more transformations and optimi-
zations. The compiler may identity a kernel in the program
code.

In block 804, the compiler may read one or more instruc-

tions of the kernel and analyze them. If a conditional state-
ment 1s 1dentified (conditional block 806), then 1n block 808,
a count of a number of conditional statements may be incre-
mented. The conditional statement may be a control flow
transier instruction, such as a branch. In one embodiment,
separate counts may be maintained for different types of
control flow transier mstructions such as forward/backward
branches, direct/indirect branches, jumps, and so forth. Itmay
be possible for a compiler or other tool to statically determine
a direction of a branch, a target of a branch or an address of a
memory access operation. However, in one embodiment,
some processing typically performed during runtime on asso-
cliated data may be performed during compilation. For
example, a simple test to determine a direction (taken, not-
taken) of a branch may be performed. Although, compilation
may be referred to as “static compilation™, one or more small
dynamic operations may be performed. This compilation may
also be referred to as “pre-runtime compilation”. Another
example of a dynamic step performed at this time 1s 1denti-
fying a next instruction to execute i each of a THEN,
ELSEIF and ELSE blocks of an If-Then-Elself-Else con-
struct.

If a memory access instruction 1s 1dentified (conditional
block 810), then 1n block 812, a corresponding access pattern
may be determined. Memory accesses may be sequential,
stride, direct, indirect, gather in groups, scattered and so forth.
Again, some dynamic computation may be performed with
data associated with a work unit during compilation. The
compiler may maintain counts of different categories of
Memory accesses.

In one embodiment, prior to code execution, static binary
instrumentation may be performed. An instruction may be
inspected 1n order to determine whether the mstruction quali-
fies for strumentation. Instrumentation allows measuring
and error-checking analysis to be performed 1n subsequent
execution by analysis routines. In addition, profiling data may
be collected. An application’s performance may be increased
based on an understanding of the dynamic behavior of the
resulting work units such as a memory profile. In addition,
dynamic scheduling of work units based on the dynamic
behavior of completed work units derived from a same kernel
may be performed. The use of static compile time control flow
graphs and data flow graphs may be used to detect initialized

variables and program behavior prior to runtime execution.
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However, the dynamic behavior may provide further infor-
mation. Therefore, at least control flow transfer instructions
and memory access instructions, such as load/read and store/
write operations, may be mstrumented. However, 1n order to
reduce an amount of measurement data to store and analysis
to perform, filtering may be used to reduce the number of
instrumented instructions even when a given instruction oth-
erwise qualifies for instrumentation.

If an 1nstruction does qualify for mstrumentation (condi-
tional block 814), then in block 816, during an instrumenta-
tion stage, analysis routines may be placed in-line or reside in
a Tunction call, wherein the function name 1s placed in-line
within the code either before or after the qualified instruction
to be mstrumented. If the last instruction 1s reached (condi-
tional block 818), then 1n block 820, the scheduler schedules
cach work unit to execute on a corresponding one of the cores
112 and 172 within a heterogeneous architecture according to
the pre-runtime, or static, information.

The scheduler 424 used 1n a heterogeneous multi-core
architecture may place priority on a match between the hard-
ware resources and organization within a core and the char-
acteristics of a work unit. For example, the work units corre-
sponding to a kernel with low thread-level parallelism may be
scheduled on the general-purpose processor core 112.

A work unit with a number of control tlow transier instruc-
tions greater than a given threshold may be scheduled on core
112. Alternatively, the work units of a kernel comprising a
relatively high number of control flow instructions with vary-
ing directions based on associated data may be scheduled on
corec 112. For example, 11 a kernel has a high number of
control flow transfer instructions, but the direction (taken,
not-taken) 1s consistent among a high number of work units,
then the work units may be scheduled on the SIMD core 172.
Otherwise, 1f the directions of the control flow transfer
instructions are mconsistent, or varying, then the associated
work units may be scheduled on core 112.

If a relatively high number of memory access mnstructions
perform accesses of memory locations 1n a sequential manner
or a stride manner, then the corresponding work units may be
scheduled on the SIMD core 172. I a relatively high number
of memory access instructions perform accesses of memory
locations 1n a scattered or indirect manner, then the corre-
sponding work units may be scheduled on the general-pur-
pose core 112. At run time the OpenCL™ compiler may
generate multiple versions of kernels for each OpenCL™
device type, such as the general-purpose core 112 and the
SIMD core 172. In one example, the scheduler 424 may
schedule the first 256 work units of a given kernel to execute
on the SIMD core 172. However, based on the monitored
dynamic behavior of those work units, the scheduler 424 may
schedule the last 16 work units of the given kernel to the
general-purpose core 112.

Turning now to FIG. 9, one embodiment of a method 900
for scheduling work units to processor cores utilizing
dynamic information is shown. The components embodied 1n
the processing node 110 and the hardware resource assign-
ments shown 1n FIG. 4 described above may generally oper-
ate 1 accordance with method 900. For purposes of discus-
sion, the steps 1 this embodiment and subsequent
embodiments of methods described later are shown 1n
sequential order. However, some steps may occur in a differ-
ent order than shown, some steps may be performed concur-
rently, some steps may be combined with other steps, and
some steps may be absent 1n another embodiment.

In block 902, an associated record of data 1s assigned to
cach work unit of a given kernel. In block 904, the scheduler
424 schedules the work units to heterogeneous cores. The
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method 700 may be used to perform the scheduling. In block
906, the processor cores 112 and 172 execute the correspond-
ing scheduled work units. In block 908, instrumentation code
and tools monitor and collect the dynamic behavior of the
executing work units. The collected data may be stored 1n one
or more tables. Entries of the one or more tables may utilize a
processor core 1dentifier (ID), a kernel ID and a work unit 1D
to indicate the current system topology being measured.

An event mndex may indicate a type of event being mea-
sured by the instrumented code. An actual measured value
may be stored along with a rate value. The rate may include a
corresponding frequency or percentage measurement. A sta-
tus field may be used to indicate whether the measured value
and rate value are valid. One or more configurable threshold
values may be stored. In one embodiment, these threshold
values are programmable.

If a scheduled work unit 1s waiting to be executed (condi-
tional block 910), then in block 912, the monitored dynamic
behavior of any executing work units corresponding to the
same kernel may be analyzed. In block 914, one of the het-
erogeneous cores 1s determined to be suitable for efficient
execution of the given work unit. For example, as a number of
instructions per work unit increases, there 1s a higher chance
the 1nstructions correspond to general-purpose functionality.
Theretfore, when the measured number passes a given thresh-
old, the general-purpose core 112 may be more suitable for
execution of the waiting work unit. Additionally, a count of
instructions between taken branches may be used.

A given loop 1n the code and a number of loops may
indicate efficient execution with a SIMD micro-architecture.
A number of executed branches and other types of control
flow transfer instructions beyond a given threshold may indi-
cate the general-purpose core 112 oflers more eificient execu-
tion. Similarly, a relatively high number of cache misses may
indicate the general-purpose core 112 may be more efficient
than the SIMD core 172 for execution of the work unit. A
relatively high number of executed tloating-point operations,
executed graphics processing operations, and pipeline stalls
due to write butier overtlow may indicate the SIMD core 172
offers more efficient execution for the waiting work unait.
Also, an execution time to determine the preferred OpenCL™
device type to execute the waiting work unit may be used.
Other runtime criteria are possible and contemplated. In addi-
tion, each of the criteria may have associated weights used in
a summing formula of all the criteria to determine the pre-
terred OpenCL™ device type for execution.

In block 916, a comparison 1s made between the processor
core determined above for eflicient execution of the waiting
work unit and a previously scheduled processor core. If there
1s a match (conditional block 918), then 1n block 920, the
scheduler 424 schedules the waiting work unit on the previ-
ously scheduled processor core. 11 there 1s not a match (con-
ditional block 918), then 1n block 922, the scheduler 424
schedules the waiting work unit on the processor core found
from the above analysis utilizing dynamic behavior of a cor-
responding kernel.

It 1s noted that the above-described embodiments may
comprise soitware. In such an embodiment, the program
instructions that implement the methods and/or mechanisms
may be conveyed or stored on a computer readable medium.
Numerous types of media which are configured to store pro-
gram 1nstructions are available and include hard disks, floppy
disks, CD-ROM, DVD, tlash memory, Programmable ROMs
(PROM), random access memory (RAM), and various other
forms of volatile or non-volatile storage. Generally speaking,
a computer accessible storage medium may include any stor-
age media accessible by a computer during use to provide
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instructions and/or data to the computer. For example, a com-
puter accessible storage medium may include storage media
such as magnetic or optical media, e.g., disk ({ixed or remov-
able), tape, CD-ROM, or DVD-ROM, CD-R, CD-RW, DVD-
R, DVD-RW, or Blu-Ray. Storage media may further include
volatile or non-volatile memory media such as RAM (e.g.
synchronous dynamic RAM (SDRAM), double data rate
(DDR, DDR2, DDR3, etc.) SDRAM, low-power DDR (LP-
DDR2, etc.) SDRAM, Rambus DRAM (RDRAM), static
RAM (SRAM), etc.), ROM, Flash memory, non-volatile
memory (e.g. Flash memory) accessible via a peripheral
interface such as the Umversal Serial Bus (USB) interface,
etc. Storage media may 1include microelectromechanical sys-
tems (MEMS), as well as storage media accessible via a

communication medium such as a network and/or a wireless
link.

Additionally, program instructions may comprise behav-
ioral-level description or register-transfer level (RTL)
descriptions of the hardware functionality 1n a high level
programming language such as C, or a design language
(HDL) such as Verilog, VHDL, or database format such as
GDS 11 stream format (GDSII). In some cases the description
may be read by a synthesis tool which may synthesize the
description to produce a netlist comprising a list of gates from
a synthesis library. The netlist comprises a set of gates which
also represent the functionality of the hardware comprising
the system. The netlist may then be placed and routed to
produce a data set describing geometric shapes to be applied
to masks. The masks may then be used 1n various semicon-
ductor fabrication steps to produce a semiconductor circuit or
circuits corresponding to the system. Alternatively, the
instructions on the computer accessible storage medium may
be the netlist (with or without the synthesis library) or the data
set, as desired. Additionally, the instructions may be utilized
for purposes of emulation by a hardware based type emulator
from such vendors as Cadence®, EVE®, and Mentor Graph-
1cs®.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure 1s fully appreciated. It 1s intended that the follow-

ing claims be mnterpreted to embrace all such vanations and
modifications.

What 1s claimed 1s:
1. A method for scheduling work units 1n a heterogeneous
multi-core architecture comprising:

scheduling a first compute kernel to a first processor core of
a plurality of processor cores based at least 1n part on
pre-runtime static information determined during com-
pilation of the first compute kernel that indicates the first
compute kernel includes a number of branch instruc-
tions less than a first threshold, wherein the first proces-
sor core has a first micro-architecture;

scheduling the first compute kernel to a second processor
core of a plurality of processor cores based at least in part
on the pre-runtime static information that indicates the
number of branch instructions 1s greater than the first
threshold, wherein the second processor core has a sec-
ond micro-architecture;

receiving measured runtime information corresponding to
runtime behavior of the first compute kernel on the first
or second processor core; and

rescheduling the first compute kernel from the first proces-
sor core to the second processor core of the plurality of
processor cores based at least 1n part on the measured
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runtime information indicating a number of branch
istructions executed 1s greater than a second threshold
number.

2. The method as recited 1n claim 1, further comprising,
during compilation of the first compute kernel, generating a
different version of binary code for the first compute kernel
for each of the first and the second processor cores.

3. The method as recited in claim 1, wherein the first
micro-architecture 1s a single instruction multiple data
(SIMD) micro-architecture.

4. The method as recited in claim 1, wherein said schedul-
INg COMprises:

determining a second compute kernel includes a first num-

ber of instructions with scattered or indirect memory
accesses;

determining the second compute kernel includes a second

number of instructions with sequential or stride memory
accesses;

scheduling the second compute kernel to the second pro-

cessor core, 1n response to determining said first number
of instructions 1s greater than the second number of
instructions; and

scheduling the second compute kernel to the first processor

core, 1 response to determining said first number of
istructions 1s not greater than the second number of
instructions.

5. The method as recited 1n claim 1, further comprising;:

scheduling a second compute kernel to the second proces-

sor core of the plurality of processor cores based at least
in part on pre-runtime static information determined
during compilation of the second compute kernel that
indicates the second compute kernel includes less than a
third threshold number of 1nstructions of a second type
corresponding to at least one of the following: crypto-
graphic, floating-point, garbage collection and video
grahics;

rescheduling the second compute kernel from the second

processor core to the first processor core based at least 1n
part on measured runtime information that indicates at
least a fourth threshold number of instructions of the
second type have been executed, wherein the first micro-
architecture 1s a single instruction multiple data (SIMD)
micro-architecture.

6. The method as recited 1n claim 5, wherein said schedul-
ing comprises scheduling the first compute kernel to the first
processor core based at least 1n part on memory accesses
included within the first compute kernel.

7. A computing system including a heterogeneous multi-
core architecture comprising:

a first processor core with a first micro-architecture;

a second processor core with a second micro-architecture
different from the first micro-architecture;
an operating system comprising a scheduler, wherein the
scheduler 1s configured to:
schedule a first compute kernel to the first processor core
based at least in part on pre-runtime static information
determined during compilation of the first compute
kernel, said pre-runtime static information indicating
that the first compute kernel includes a number of
branch 1nstructions less than a first threshold;
schedule the first compute kernel to a second processor
core of a plurality of processor cores based at least 1n
part on the pre-runtime static information that indi-
cates the number of branch instructions 1s greater than

the first threshold;
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receive measured runtime information corresponding to
runtime behavior of the first or second compute kernel
on the first processor core; and

reschedule the first compute kernel from the first pro-
cessor core to the second processor core based at least
in part on the measured runtime information indicat-
ing a number of branch instructions executed 1s
greater than a second threshold number.

8. The computing system as recited 1n claim 7, wherein,
during compilation of the first compute kernel, the compileris
turther configured to generate a different version of binary
code for the first compute kernel for each of the first and the
second processor cores.

9. The computing system as recited in claim 7, wherein the
first micro-architecture 1s a single nstruction multiple data
(SIMD) micro-architecture.

10. The computing system as recited in claim 9, wherein to
perform said scheduling, the scheduler 1s further configured
to:

determine a second compute kernel includes a first number

of instructions with scattered or indirect memory
accesses;

determine the second compute kernel includes a second

number of mstructions with sequential or stride memory
accesses;

schedule the second compute kernel to the second proces-

sor core, 1n response to determiming said first number of
instructions 1s greater than the second number of 1nstruc-
tions; and

schedule the second compute kernel to the first processor

core, 1n response to determining said first number of
instructions 1s not greater than the second number of
istructions.

11. The computing system as recited in claim 7, wherein
the scheduler 1s configured to:

schedule a second compute kernel to the second processor

core of the plurality of processor cores based at least 1n
part on pre-runtime static information determined dur-
ing compilation of the second compute kernel that indi-
cates the second compute kernel includes less than a
third threshold number of mnstructions of a second type
corresponding to at least one of the following: crypto-
graphic, tloating-point, garage collection and video
graphics;

reschedule the second compute kernel from the second

processor core to the first processor core based at least 1n
part on measured runtime information indicating at least
a fourth threshold number of 1nstructions of the second
type have been executed, the first micro-architecture 1s a
single mstruction multiple data (SIMD) micro-architec-
ture.
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12. The computing system as recited in claim 11, wherein
said scheduling comprises scheduling the first compute ker-
nel to the first processor core based at least 1n part on memory
accesses mncluded within the first compute kernel.

13. A non-transitory computer readable storage medium
storing program instructions configured to schedule compute
kernels 1n a heterogeneous multi-core architecture, wherein
the program instructions are executable to:

schedule a first compute kernel to a first processor core of

a plurality of processor cores based at least 1n part on
pre-runtime static information determined during com-
pilation of the first compute kernel that indicates the first
compute kernel includes a number of branch instruc-
tions less than a first threshold, wherein the first proces-
sor core has a first micro-architecture;

schedule the first compute kernel to a second processor

core ol a plurality of processor cores based at least in part
on the pre-runtime static information that indicates the
number of branch instructions 1s greater than the first
threshold, wherein the second processor core has a sec-
ond micro-architecture;

recetve measured runtime information corresponding to

runtime behavior of the first compute kernel on the first
or second processor core; and

reschedule the first compute kernel from the first processor

core to the second processor core of the plurality of
processor cores based at least 1in part on the received
runtime nformation indicating a number of branch
istructions executed 1s greater than a second threshold
number.

14. The non-transitory computer readable storage medium
as recited 1n claim 13, wherein the first micro-architecture 1s
a single mstruction multiple data (SIMD) micro-architecture.

15. The non-transitory computer readable storage medium
as recited 1n claim 14, wherein to perform said scheduling, the
program instructions are further executable to:

determine a second compute kernel includes a first number

of 1instructions with scattered or ndirect memory
accesses;

determine the second compute kernel includes a second

number of instructions with sequential or stride memory
accesses;

schedule the second compute kernel to the second proces-

sOr core, 1n response to determiming said first number of
istructions 1s greater than the second number of 1nstruc-
tions; and

schedule the second compute kernel to the first processor

core, 1 response to determining said first number of
istructions 1s not greater than the second number of
instructions.
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