United States Patent

US008776223B2

(12) (10) Patent No.: US 8,776,223 B2
Balakrishnan et al. 45) Date of Patent: Jul. 8, 2014
(54) DYNAMIC EXECUTION PREVENTION TO 7,540,026 Bl 5/2009 Szor et al.
INHIBIT RETURN-ORIENTED 2003/0088515 Al1* 5/2003 Cooperetal. 705/50
2007/0198777 Al* 8/2007 Remnertsen 711/118
PROGRAMMING 2008/0133858 Al 6/2008 Enbody et al.
_ 2009/0158012 Al* 6/2009 Hansenetal. 712/222
(75) Inventors: Arun Balakrishnan, San Diego, CA 2009/0183261 Al* 7/2009 Peinado etal. 726/24
(US); Alexander Gantman, Poway, CA 2009/0222923 A1 9/2009 Dixon
(US); Renwei Ge, San Diego, CA (US); 2010/0031360 Al 2/2010 Seshadr et al.
: ’ o " 2011/0138476 Al 6/2011 Black et al.
Daniel Komaromy, San Diego, CA 2011/0314460 Al* 12/2011 Wischik etal. 717/151
(US); Yinian Mao: San DlegO:_CA (US): 2011/0320681 Al* 12/2011 Borntraeger etal. 711/6
Anand Palanigounder, San Diego, CA 2011/0321165 Al* 12/2011 Capalik etal. 726/25
(US); Brian M. Rosenberg, San Diego, 2012/0304160 Al1* 11/2012 Soederoocoovvvvvnniiinnns, 717/148
CA (US) 2012/0331303 Al* 12/2012 Anderssonetal. 713/189
OTHER PUBLICATIONS
(73) Assignee: QUALCOMM Incorporated, San
Diego, CA (US) International Search Report and Written Opinion—PCT/US2013/
| | o | 021591—ISA/EPO—Apr. 3, 2013.
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 112 days.
Primary Examiner — Edward Zee
(21) Appl. No.: 13/351,006 Assistant Examiner — Chi Nguy
(22) Filed Jan. 16. 2017 (74) Attorney, Agent, or Firm — Won Tae Kim
1led: an. 16,
(65) Prior Publication Data (57) ABSTRACT

(1)
(52)

(58)

(56)

US 2013/0185792 Al Jul. 18, 2013

Int. CIl.

GO6F 21/00 (2013.01)

U.S. CL

USPC i, 726/22:; 726/23; 713/188
Field of Classification Search

USPC i, 726/22-25;7713/187-189

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

7,287,283 B1 10/2007 Szor
7,475,220 Bl 1/2009 Hastings

A method, apparatus, and/or system for execution prevention
1s provided. A state indicator for a first subset of a plurality of
memory pages of executable code in a memory device 1s setto
a non-executable state. A state indicator for a second subset of
the plurality of memory pages 1s set to an executable state,
where the second subset of the plurality of memory pages
includes indirection stubs to functions in the first subset ot the
plurality of memory pages. Upon execution of an application,
a function call 1s directed to a corresponding indirection stub
in the second subset of the plurality of memory pages which
modifies the state indicator for a corresponding function in
the first subset of the plurality of memory pages prior to
directing execution of the called function from the first subset
of the plurality of memory pages.

40 Claims, 13 Drawing Sheets

S04 —=»Viriyal Merory é

_ - : . A
302 S44gd Incoming/Quigoeing 542
UL \!\ £ &= £
i Stub T » 4
E-a - - -
- e ot 1 re vete gt e Jo N [ncoming Outgoimg | Page 1
:vlf\ PROGCESSING CIRCUBY Stob 3 \J ¥ flag]
‘ 508 354 lncoromngAudgomy | Y
Applicationis) . 5 .. Stub J i
- = Erang -__--""'- . '
i IS EN ! ‘ i
-Remeve NXpage Hag 350 g ‘ ‘,1 517
742 Functiont ¥ i %
\‘\: 1 1 PRt b, P .
(&) Call gadget within page g \ Page &
; [NX flagi
Punction [{4
746 336 704 :
- A , : - N — - / ™ 348
() Teraunaie gadget call/peocess NX Fin g (b) beich gadget Functon |
Check 45 <y
SUNG : Page (.
. ' N Tlayg)
Cacne) .) B
| Foneton M
3 !\: _/

a
-
-

“'E‘)li{g.cijgg.S-H.. ;
-Set NX page flag

US 8,776,223 B2
Page 2

(56) References Cited Tan et al.,“Buffer Overflow Protection Based on Adjusting Code

Segment Limit”< IEEE International Symposium on Communica-

OTHER PUBLICATIONS tions and Information Technology [Online] , vol. 2, pp. 916-919

Kcetal.,, “e-NeXSh: Achieving an Effectively Non-Executable Stack (2005).
and Heap via system-Call Policing”, 21st Annual Computer Security
Applications Conference [Online] See pp. 7, 9, and 11, (2005). * cited by examiner

US 8,776,223 B2

= HEBIOIN
ITSISISISd

b IUSINISIS g

~

P

e

i

72

_4

e

—

)

)

—

=

pum

{ATOTUON

SPIRIOA -UON PUR S[HEIOA }

{8)301A0(] ATOWBIN TROISAY]

U.S. Patent

A

SO

Qb

{

|

|

_ IOk
0 daudg
ATOUIOWN

¢ soedg
AJOREA

SHOLSNIISTH
BRINOOXT]

1By
PeaiBiiitg

818{} HEOIE
1UBISUO) AUISSID0OL]

AL

AIOTUDIA]
[BIH A

U.S. Patent

Stack pointer Tn»
206

Jul. 8, 2014

Top of Stack

FA Returmn Address

FB Parameters

FC Return Address

FC Local
Variables

FC Parameters

FiGe. 2

Sheet 2 of 13

US 8,776,223 B2

- 2U02A

funciion A {FA)

2U21

Function B (FB)
<T Frame poinler
204

202C

Function € (FO)

U.S. Patent Jul. 8, 2014 Sheet 3 of 13 US 8,776,223 B2

. Ve 306 7 308
prme enes cmse cscel smme cnse - m— I s bas watin aanine it ninnia smnincs I
| .
 Communication €Y Trterfageaf
i Interface(s) | 1 /O Interface(s) |
e e o o o e e . e e e |
302
310 __ Processing Circuit
Processor(s)
312
3272 v orutior e o
{ ecluiion Cache Memory System
Prevention
Module 310 - 318
r T e -
| Li Imtmumni (.f Data |

Cache |1 Cache |

infinfigfly pfigfigfep ipfigfigfhp 00 wfigfigfhy 0 gyt pfigfigfit it pfingfiafiad Mgl Mgl

|

|

|

|

|

L R I | |
! 7 I :
: L2 Unified Cache I :
N T T T T T T T T T T T |
| Virtual M |
L““LiT“ngLﬂﬂl

a——— A o S—— ““mmvl

U.S. Patent

P“

7 306

Communication | I
fnterface(s) | I

Jul. 8, 2014 Sheet 4 of 13

/ 30%

/O Interface(s)

US 8,776,223 B2

{Cache Memory System
316 ~318

[o e wane asan amay w— —

i1 Instruction| : 1.1 Data
Cache | {_ache

|
| |
b . e - o 2 J L_.._._....I

L
ipgEgigl

322N Data Execution

Prevention

“““““““““ﬂ

S A

0¢S |
mﬁm%@m.x._z mmmmw

feyy ofed YN 0%
g suodin

US 8,776,223 B2

J HOHOUR Y
WO} WIngoy (§)

S N N
A LONoUn g m /1 O1s Les
[Seyy Xl TS /!
'3 uwm& b @%ﬁ& ﬁmﬁm Aﬂw \\.\
| g m /
- 4 /wm A7
LS SraR” _ h
- x m > \ / J HOTOUN.Y RICH 1Wimay (9)
g A0S /7 /wbmm
. | e J uonounyg |38 XN/ 4 RO 0085 (p)
A {Bey xN] m peo g (o) | F 7 \
. opa N AL N[o
~ . _ = | _ 4 QONDUN g
P Cis - 1 Seyq ofd 1) (7)
) y _ XN) 7, N " m
m nM M. ﬁm..m.ﬂwmm h\fm. \\\ \ . m.‘i.wmm A@wgﬁmmwﬁwuwwma.@ﬂ
| SWOEING/SUToauy _ _\\
DrT X y — |
[8uy X1 ,, . Tamg v_ LINDYUID ONISSTO0OUd ane
1 28egd SUIOB 1IN/ SUONU] L — —

2N 1S

. P 2 | | AY
74 G BUIOBINQY/SUTWOdUY

:uw AIGTISIA TP A s $0¢

U.S. Patent

U.S. Patent

608 ~_|

616

614

640~

622

67 (e

\ GE Return Addr,

Jul. 8, 2014

600
N

Top of Stack

Function 7

| GB Return Addr. [

Puncion Y

FX Return Addr.

Function X

Sheet 6 0of 13

Function U

A1 GadgetE

’ L |
. ;
’ .
#, ‘t L
F 4
F , ' ¥
; . ’ F
P '
“ -

US 8,776,223 B2

6072

N

Memory

Gadget D

{zadget B
618

624

Gad g.et- C

FIG. 6

=
‘.‘.‘
-
-

8320 TS

. -w.,.mﬂ.m.. OBy

US 8,776,223 B2

JUOE }

I uououng |
S XN _ m
\ >

{ VEOTION Y = w@%ﬁﬁm i) {q) S f%ﬁ_ XN mm@ﬂ@&@.& 20 w_-m.wm.ﬁm..m SIBUIRLIY | AU,V

W\ A

12418 W T 00/,

Sheet 70f 13

J GOII0UNRY o m _
w\‘ USS 58 i ddnd. KN SATD ¥~

qrag-Ruroay]

—" Fre y NN |

L

e
a=?”
="

w w i bo wu_w-ﬂﬁ 3

SR XN .
4. m M N
M - m 0L
e s ﬂ

o

=

—

T s - N
b FuIoSIng/Buiwodu] N sU¢
Eidind \'g |
/ X 1 QS _
TG . “ SUIOFINO/BUnuodu] | N g _

U.S. Patent

U.S. Patent Jul. 8, 2014 Sheet 8 of 13 US 8,776,223 B2

. .. RO7Z
fag arecas of exccutable code in memaory as non-executable.
Monttor for requests to execuie one or more structions from — R{14
Memory, '
No is a request 1o executie one or more 806
mstructions detected?
L Yes
Tag a memory area where the one or more instructions reside as | — 808
executable.
e . ‘ | - RI10
Execute the one or more mstructions from the memory area.
5172

Tag the memory area where the one or more mstructions reside

back o non-executable.

U.S. Patent Jul. 8, 2014 Sheet 9 of 13 US 8,776,223 B2

: : - ™ . ~ : o » ")
Load a plurality of memaory pages of executable code into a — 902
memory device.

Set & state indicator for a first subset of the phurality of memory 204
pages o a non-cxecutable state,
Set the state indicator for a second subset of the plurality of 906

MEMmory pages to an executable state, where the second subset of
the plurahity of memory pages wmcludes indirection stubs 1o
tunctions m the tirst subset of the plurality of memory pages.

Direct a function call to a corresponding indirection stub in the N
second subset of the plurality of memory pages which modifies - Sl
the state mdicator for a corresponding function 1o the firsi subset
of the plurality of memory pages prior to directing execution of
the called function from the first subset of the plurality of
MEermory pages.

Pertorm execution prevention of executable code restding mthe | 919
first subset of the plurality of memory pages. i

Return to the corresponding indivection stub m the second subset | 912
of the plurality of memory pages upon completion of the
function call, where the corresponding mdirection stub then
modifies the state mdicator for the corresponding function 1n the
1rst subset of the plarality of memory pages.

FiG. 9

U.S. Patent Jul. 8, 2014 Sheet 10 of 13 US 8,776,223 B2

Arrange executable code of nested or related tunctions i a same - 1000
memory page prior to execution.

Load a plurality of memory pages of executable code into a < 12
DICDUNY.
Set a state indicator tor each memory page 10 a non-executable |—=— Hou4
siate, |

| By . | 1600
Detect a tunction call from an application prior to fetching a 10
corresponding executable code rom memory.
Set the state indicator for a first memory page, where the first - 1008
cxecutable code resides i memory, 10 an executable state.
Fetch the first memory page tor execution from mermory. — 110
_ Is the first memory page state 1012
- _indicator set o the executable state?
1014 —— s -
Abort loading/execution of the Vs
Hrst memory page. S
— 116
Execute the first executable code.
(Optional) Upon fimishing execution of the first executable code, 101X
flush the hirst memory page from an mnternal cache memory.
Upon finishing execution of the first execulable code, set the 1020

state indicator in the memory o non-cxecutable.

Fi(. 16

U.S. Patent Jul. 8, 2014 Sheet 11 of 13 US 8,776,223 B2

i1 %
SIOry State

################################

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
**

_ 'Iﬂ'dlmw{m 1 HO4 Executable
J Code/Sub A

1102

Processing
{Circuit

U6 gxecutable

E ’1 ‘[|
“xecutable |
|]
instructions
' . ' . . k
o\ NN

Non-Executable

| Executable ~111D /

N Code A /
\ | {Function A} Fxecutable
N
\Y Exceutable |14 \00-ExCCUtaDIE

Code B Fxecutable

(Function B}

U.S. Patent Jul. 8, 2014 Sheet 12 of 13 US 8,776,223 B2

L _ . . . o 12002
Intercept function calls during execution of an application.
Prior to loading/executing a called function, change a mermory .
state associated with an executable code for the called function 1204
from non-executable to exccutable,

N , . , e 1206
Fetch and/or execute the executable code for the called function.

Track nested eniries and exits from the executable code to 1203

ascertain when the function call is completed.
Lipon compietion of the called tunction, change the memory — 1710

state associated with the executable code for the called function
from executable {0 non-executable.

FIG. 12

U.S. Patent Jul. 8, 2014 Sheet 13 of 13 US 8,776,223 B2

Generate an application source code comprising a plurality of s~ 1302
functions and funciion calls.

(renerate an indirection code (stub) for each function in the t304
source code.
Add mstructions o cause the source code 1o be wdentified as _s— 1306
“non-¢xecutable” when loaded nto memory,
Add instructions o cause the indirection ¢code 1o be 1dentified as s 1308
“executable” when loaded nto memaory. :
1310

Transiorm the source code and mndirection code 1o generate an

executable code.

FiG. 13

US 8,776,223 B2

1

DYNAMIC EXECUTION PREVENTION TO
INHIBIT RETURN-ORIENTED
PROGRAMMING

BACKGROUND

1. Field

One feature generally relates to imhibiting operation of
malicious code 1n software systems, and more particularly, to
methods and devices that implement execution prevention
and mark memory pages as non-executable by default so as to
reduce the number of instructions available to return-oriented
programming exploitations 1n software systems.

2. Background

Computing systems executing software are under a grow-
ing array of attacks. Such attacks often insert malicious code
into a computing system, and then cause the computing sys-
tem to execute the malicious code. The malicious code may
perform many different operations, such as, cause the com-
puting system to run slower than normal, monitor activity on
the computing system, cause the computing system to trans-
mit or receive information that a user may not want commu-
nicated, corrupt data in persistent and non-persistent memory,
and crash the computing system.

Recently, attack mechanisms sometimes called Return-
Oriented Programming (ROP) exploits have been proposed.
One class of ROP exploit 1s often referred to as a return-to-
libc attack (or return-into-libc attack). A return-to-libc (or
return-into-libc) attack may be identified by two attributes:
(a) 1t uses a standard C library resident 1n many software
systems, and (b) 1t jumps directly to the entry point of a libc
function, notinside 1t. An ROP exploit1s a powertul technique
that allows the attacker to exploit valid code sequences in
soltware programs without injecting any new malicious code
into the processor’s address space. By exploiting some bug or
weakness, an attack may gain control over the next memory
address from which to execute an instruction. In one example,
this can happen by overwriting a return address saved on the
stack. For instance, such attack may utilize butfer overtlows
to specily return addresses to legitimate code blocks on the
stack, which have the desired effect when legitimate func-
tions return. Other ways of attacking an instruction pointer
and/or obtaining control over the next memory address are
also possible. Small snippets of valid code sequences, often
referred to as gadgets, may be found by the attacker, then
strung together to form new malicious code sequences,
thereby sidestepping defenses against code 1njection.

In traditional ROP exploits, the small code snippets are
portions of code that end with a return or jump 1nstruction, for
example. Other instructions may also be used as gadget ter-
minating instructions. When a function 1s called, an address
of the mstruction after the call 1s pushed onto a stack as an
address to return to after the called function completes. Thus,
the stack may include many return addresses for the processor
to jump to when called functions complete. I the attack can
write information to the stack, it can overwrite an intended
return address with a malicious return address. This return
address may correspond to one of the gadgets identified by the
attack.

By manipulating multiple return addresses, the attack con-
trolling the call stack can chain multiple gadgets together to
create a malicious code sequence without ever 1injecting any
new code 1nto the processors address space. Through a choice
of these malicious code sequences and their arrangement, the
attack can induce arbitrary behavior for a malicious program
composed of the string of gadgets. This type of attack 1is
successiul because 1n most systems code and data addresses

10

15

20

25

30

35

40

45

50

55

60

65

2

are predictable. That 1s, attacks can load particular code 1n a
first computer, view the stack of the first computer to deter-
mine how the code 1s being loaded, and use this information
to exploit the return stack when such code 1s loaded 1n a
second (target) computer. Such attack may generally rely on
code being loaded the same way across different computers.

Therefore, there 1s a need for robust counter-measures that
can 1nhibit return-oriented programming attacks.

SUMMARY

Embodiments of the present disclosure include appara-
tuses, methods, and computer readable for inhibiting exploi-
tation of vulnerabilities in stacks and/or memory.

A method operational 1n a processing circuit 1s provided to
thwart return oriented attacks by execution prevention of
executable code. A state indicator for a first subset of a plu-
rality of memory pages of executable code 1n a memory
device may be set to a non-executable state. For instance, this
state indicator may serve to perform execution prevention of
executable code residing 1n the first subset of the plurality of
memory pages. Similarly, the state indicator for a second
subset of the plurality of memory pages may be set to an
executable state, where the second subset of the plurality of
memory pages includes indirection stubs to functions in the
first subset of the plurality of memory pages. Note that the
plurality of memory pages of executable code may be loaded
into the memory device betore and/or after the state indicator
for at least one of the first subset or second subset of the
plurality of memory pages has been set to the non-executable
state. The memory device into which the executable code
resides may implement a virtual memory. A function call 1s
then directed to a corresponding indirection stub 1n the sec-
ond subset of the plurality of memory pages which modifies
the state indicator for a corresponding function in the first
subset of the plurality of memory pages prior to directing
execution of the called function from the first subset of the
plurality of memory pages. The indirection stub may modify
the state indicator for the corresponding function 1n the first
subset of the plurality of memory pages from the non-execut-
able state to the executable state to enable execution of the
function. Upon completion of the function call, the method
may return to the corresponding indirection stub in the second
subset of the plurality of memory pages, where the corre-
sponding indirection stub then modifies the state indicator for
the corresponding function 1n the first subset of the plurality
of memory pages. The indirection stub may then modily the
state indicator for the corresponding function 1n the first sub-
set of the plurality of memory pages from the executable state
to the non-executable state to disable execution of the func-
tion.

In one example, performing execution prevention may
include aborting execution of any executable code which
resides 1n a memory page that 1s in the non-executable state
when the executable code 1s fetched by the processing circuit
for execution.

In one example, the first mstruction may be part of the
function call and the second 1nstruction an 1nitial instruction
of the corresponding function. The indirection stub may be
implemented by binding the first instruction to the second
instruction such that execution i1s aborted unless the first
instruction 1s followed by the second 1nstruction.

The executable code may correspond to a single applica-
tion and/or process. In some implementations, the method
may also 1nclude flushing an mternal cache memory of the
processing circuit upon completion of the function call. In

US 8,776,223 B2

3

some 1implementations, the indirection stubs may be gener-
ated at a compiling stage or pre-compiling stage of the execut-
able code.

According to one example, code for the function may
reside 1n a first memory page within the first subset of the
plurality of memory pages. Usage of the first memory page
that 1s in the executable state may be tracked to ascertain when
all ongoing function calls have completed execution of cor-
responding code within the first memory page. The state
indicator for the first memory page 1s then set to non-execut-
able state upon completion of a last ongoing function call.

A processing device comprising a memory device and a
processing circuit may also be provided. The processing cir-
cuit may be configured to: (a) set a state indicator for a first
subset of a plurality of memory pages of executable code 1n
the memory device to a non-executable state; (b) set the state
indicator for a second subset of the plurality of memory pages
to an executable state, where the second subset of the plurality
of memory pages includes indirection stubs to functions 1n
the first subset of the plurality of memory pages; and/or (c)
direct a function call to a corresponding indirection stub 1n the
second subset of the plurality of memory pages which modi-
fies the state indicator for a corresponding function 1n the first

subset of the plurality of memory pages prior to directing
execution of the called function from the first subset of the
plurality of memory pages.

According to another aspect, the corresponding 1indirection
stub may include at least a first mstruction and a second
instruction that are restricted to being executed 1n sequence
by the processing circuit. If the first instruction 1s followed by
any 1nstruction other than the second instruction then execu-
tion of the function call 1s aborted.

Another method operational 1n a processing circuit 1s pro-
vided. An application source code i1s generated including a
plurality of functions. An indirection code for each function
in the source code 1s also obtained and/or generated. Instruc-
tions may be added to cause the source code to be 1dentified as
non-executable when loaded mto memory. Instructions may
also be added to cause the indirection code to be 1dentified as
executable when loaded mto memory. The source code and
indirection code may be transformed at the processing circuit
to generate an executable code. The executable code may
correspond to a single application and/or process. The 1ndi-
rection stubs may be generated at the compiling stage or a
pre-compiling stage of the executable code. The source code
and indirection code may be compiled so that they reside 1n
separate memory pages when loaded into memory. In one
example, a first indirection code may cause a memory state
indicator for a corresponding first function to be switched
from a non-executable state to an executable state when the
first function 1n invoked for execution. In another example, a
first indirection code may cause a memory state indicator for
a corresponding first function to be switched from an execut-
able state to a non-executable state when the first function
terminates execution. In yet another example, a first indirec-
tion code associated with a first function may be adapted to
point to the first function, wherein when the executable code
1s generated, the first indirection code and first function are
compiled to be loaded 1n different memory pages.

According to one aspect, the indirection code may include
at least a first instruction and a second instruction that is
restricted to being executed 1n sequence by a processing
circuit. The method may further comprise adding instructions
to cause aborting execution of the indirection code i1 the first
instruction 1s followed by any instruction other than the sec-
ond instruction.

10

15

20

25

30

35

40

45

50

55

60

65

4
DRAWINGS

FIG. 1 1s a block diagram 1llustrating an exemplary oper-
ating environment, device, and/or system 1n which one or
more features for inhibiting ROP attacks may be imple-
mented.

FIG. 2 illustrates an exemplary general call stack that may
be implemented 1in memory.

FIG. 3 1llustrates an exemplary processing circuit that may
be adapted to perform execution prevention by mitially tag-
ging all or most memory space where executable code resides
as non-executable.

FIG. 4 illustrates an alternative configuration for an exem-
plary processing circuit in which the data execution preven-
tion module 1s located between a cache memory system and a
memory device.

FIG. 5 1s a block diagram illustrating an example of a
processing circuit that 1s adapted to perform an enhanced data
execution prevention feature.

FIG. 6 1llustrates an example of a corrupted call stack for
generating a malicious code sequence including gadgets
strung together to form a Return Ornented Programming,
(ROP) exploit.

FIG. 7 1s a block diagram 1llustrating what happens to a
gadget fetch 1n the context of the processing unit of FIG. 5.

FIG. 8 1s a flow diagram 1llustrating a general exemplary
method for inhibiting execution of code 1n a processing cir-
cuit.

FIG. 9 1s a flow diagram illustrating another exemplary
method operational 1n a processing circuit, for protecting
memory from ROP exploits.

FIG. 10 1s aflow diagram 1llustrating an exemplary method
for protecting memory from ROP exploits.

FIG. 11 1s ablock diagram illustrating an exemplary imple-
mentation of an 1indirection layer that permits moditying the
state of memory areas as they are needed or called.

FIG. 12 1llustrates a method for implementing an indirec-
tion layer that permits modifying the state of memory areas as
they are needed or called.

FIG. 13 illustrates a method for implementing an indirec-
tion layer within an application which allows moditying the
state of memory areas where application executable code
resides to protect access to such memory areas.

DETAILED DESCRIPTION

In the following description, reference 1s made to the
accompanying drawings in which 1s shown, by way of 1llus-
tration, specific embodiments 1n which the disclosure may be
practiced. The embodiments are intended to describe aspects
of the disclosure 1n suflicient detail to enable those skilled 1n
the art to practice the invention. Other embodiments may be
utilized and changes may be made to the disclosed embodi-
ments without departing from the scope of the disclosure. The
tollowing detailed description 1s not to be taken 1n a limiting
sense, and the scope of the present invention 1s defined only
by the appended claims.

The term “data” may be used herein interchangeably to
refer to computing instructions that may be used by a proces-

sor and data that may be operated on by the processor. The
context of the use of the term “data” should make 1t clear
when “data” 1s referring to instructions. Where needed,
instructions may be referred to explicitly as instructions or
instruction data.

Overview

The present disclosure refers to apparatuses, methods, and
machine-readable for inhibiting exploitation of vulnerabili-

US 8,776,223 B2

S

ties 1n memory stacks by marking both executable and non-
executable memory pages as “non-executable” by default

while not 1n use. Therefore, a processing circuit may 1imple-
ment execution prevention on functions/instructions in
memory pages marked “non-executable”, thus inhibiting
calls for instructions from ROP attack from being executed.
According to one feature, an indirection layer 1s imple-
mented where all function calls to executable code are redi-
rected first to a stub code that changes the memory state where
such executable code resides. The stub code may change the
memory state of a memory region where such executable
code resides from a default “non-executable” state to an
“executable” state. The stub code then points to the actual
executable code. In one example, such feature may be imple-
mented 1n source code of an application and/or when compil-
ing such application mto an executable. That 1s, the indirec-
tion layer (e.g., stub code) may be generated natively within
the source code and/or 1t may be generated at compile time.
According to one aspect, a processing circuit may imple-
ment execution prevention of code/instructions found in
“non-executable” memory pages. Memory pages containing
executable 1nstructions are mitially loaded into memory and
all pages (except those where stub code for the indirection
layer reside) are marked as “non-executable” by default.
Function calls mitiated from legitimate applications operat-
ing on the processing circuit pass through the indirection
layer (1.e., stub code) that changes the state ol a memory page
from “non-executable” to “executable” prior to, or concurrent
with, retrieving and/or executing instructions/code from such
memory page(s). Prior to execution of an instruction/code,
the processing circuit may check and/or ascertain that 1t origi-
nates in memory page marked “executable”. Calls from an
ROP attack bypass the indirection layer (stub codes). Thus, an
ROP attack attempting to use instructions (e.g., gadgets) from
memory pages marked “non-executable” would fail since the
processing circuit would prevent or abort their execution.
According to yet another aspect, the indirection code may
include at least a first instruction and a second instruction that
1s restricted to being executed 1n sequence by a processing
circuit. I the first mstruction 1s followed by any instruction
other than the second instruction then execution of the func-
tion call 1s aborted. In one exemplary implementation, this
aspect may avoid the need for additional instructions to
implement a separate indirection layer. Instead, when the
paired corresponding instructions (e.g., first mstruction and
second 1nstruction) are used, they may cause the processor to
switch a memory page between an executable and non-ex-
ecutable state and/or execute the code that follows. In some
implementations, because the first and second instructions
are bound to be executed in sequence, there may be no need to
switch between the executable and non-executable state since
the processor aborts all subsequent execution 1f anything
other than the second instruction follows the first instruction.

Exemplary Operating Environment

FIG. 1 1s a block diagram 1illustrating an exemplary oper-
ating environment, device, and/or system 100 1n which one or
more features for inhibiting ROP attacks may be imple-
mented. The operating environment 100 may include a pro-
cessing circuit 102 (e.g., one or more processors) coupled to
one or more memory and/or storage devices. In one example,
the operating environment 100 may implement a memory
management technique known as virtual memory. Virtual
memory 1s a technique developed for multitasking kernels.
Virtual memory virtualizes various forms of data and/or
executable code storage, such as random-access memory and

10

15

20

25

30

35

40

45

50

55

60

65

6

disk storage, allowing a program to be designed as though
there 1s only one kind of memory, “virtual” memory, which
behaves as directly addressable read/write memory (RAM).
Many operating systems that support virtual memory may
also run each process 1n its own dedicated address space (e.g.,
its own virtual memory), allowing a program or application to
be designed as though 1t has sole access to the virtual memory.
For instance, a plurality of dedicated address spaces 120a,
1025, 120¢ are shown here, where each of these address
spaces may be associated with a difference process, program,
and/or application.

In this example, the virtual memory 104 1s representative of
an addressable memory space within one or more physical
memory devices 108 and/or a persistent storage device 106.
The processing circuit 102 may be adapted to access the
virtual memory 104 (or memory addresses mapped by the
virtual memory) to read 1n executable instructions in the form
of code and/or data that 1s loaded in the physical memory
device(s) 108 and/or the persistent storage device 106.

According to one example, the virtual memory 104 may be
arranged into a heap 110, a stack 112, constant data 114,
initialized data 116, and executable instructions 118. The
heap 110 may be used for dynamic allocation for various
software programs while they may be active within the pro-
cessing environment 100. Various data, such as constant data
114 and mitialized data 116 may be stored in the main
memory device 104 for access by one or more programs
running on the processing environment 100. Executable
instructions 118 associated with various programs may be
stored 1n an 1nstruction area 118, the heap 110, or combina-
tions thereol.

Unless otherwise specifically noted, the term “memory™ 1s
used heremafter to refer to virtual memory and/or any other
addressable memory space from where executable instruc-
tions and/or data are accessed (e.g., read from and/or written
to) by the processing circuit 102. The concepts described
herein operate 1n various types of memory architectures. For
example, virtual memory may be implemented 1n a memory
device (e.g., main memory) external to the processing circuit
102 and/or 1t may be implemented 1n a memory device (e.g.,
an internal cache memory) within the processing circuit 102.

According to one feature, data execution prevention 1s
implemented by the processing circuit 102 to help prevent
return-oriented programming attacks. According to one
aspect, prior to execution, executable 1nstructions may be
loaded 1nto virtual memory 104, along with corresponding
indirection code (stubs) that the processing circuit 102 may
use when executing code. The processing circuit 102 may
then read instructions/data from, and/or write instructions/
data to, the virtual memory 104.

In this feature, all (or most) memory pages where the
executable code resides may be marked as non-executable as
they are loaded (or mapped) mto virtual memory 104 by
default. An NX bit, which stands for “No eXecute”, may be
used by some processing circuits to segregate areas of
memory for use by either storage of instructions (or code) or
for storage of data. An operating system (runmng on the
processing circuit 102), with support for the NX bit, may
mark all areas of virtual memory 104 where the executable
code resides as non-executable. In one example, areas of
virtual memory 104 where indirection code (stubs) resides
may be may be marked as executable. This indirection code
(stubs) may be 1inserted in source code or generated at compile
time of the application. Function calls from the application
may call (or may be redirected to) the indirection code, which
changes the memory state between “non-executable” and

US 8,776,223 B2

7

“executable”, and then directs execution to a corresponding
portion of the executable code.

Every time a memory page 1s loaded/fetched by the pro-
cessing circuit 102 from the virtual memory 104, the indirec-
tion layer (e.g., stub) operating within the processing circuit
102 changes the NX bit from “non-executable” to “execut-
able” prior to (or concurrent with) loading/fetching. That is,
when a function 1n a memory page 1s invoked by an applica-
tion/program being executed by the processing circuit 102,
the memory page 1s changed (by an indirection layer) from
“non-executable” to “executable” by the indirection layer. If
the memory page 1s already marked “executable (i.e., the
memory page has been previously switched from non-execut-
able to executable), then the indirection layer need not change
NX bit to non-executable.

The processing circuit 102 may include an execution pre-
vention module that blocks execution of any code residing in
memory pages marked “non-executable” 1n virtual memory
104. Upon finishing execution of the desired function(s), the
memory page where the corresponding executable code
resides in virtual memory 104 may be switched from “execut-
able” back to “non-executable”.

An ROP attack attempting to access instructions from
memory pages in virtual memory that are marked as “non-
executable” would fail. By imitializing all executable code
(e.g., mstructions) 1n those memory pages (e.g., areas 1in
memory) as “non-executable” and only changing the status of
those memory pages (e.g., areas, or segments) to “execut-
able” when they are called/fetched by the processing circuit
102 via the indirection layer, an ROP attack 1s limited to
calling instructions from those memory pages (1n virtual
memory 104) currently marked “executable”. Calls from an
ROP attack would bypass the indirection layer (stubs). Thus,
an ROP attack attempting to use instructions (e.g., gadgets)
from other memory pages (1n virtual memory 104) would fail
since those memory pages are marked “non-executable”.
Thus, upon retrieval of such “non-executable” pages, the
execution prevention feature/module of the processing circuit
102 would prevent or reject execution of instructions 1n such
memory pages. Marking all memory pages “non-executable”™
greatly reduces the number of memory pages from which the
ROP attack can use instructions. To further reduce the
“executable” instructions available to the ROP attack, once a
function terminates, the corresponding memory page 1s set
back to “non-executable” in virtual memory 104.

Note that execution prevention by using NX bits 15 typi-
cally done on an application stack and other memory regions/
areas containing data. However, according to the present fea-
ture, memory regions or pages contaimng the legitimate
executable instructions (e.g., code, functions, etc.) of an
application are marked as non-executable.

FI1G. 2 illustrates an exemplary general call stack 200 that
may be implemented 1n memory. The call stack 200 may be
used to store various information that may be used when a
function 1s called. Each function that i1s pushed on the stack
occupies a frame 202 as indicated by the frames 202A, 202B,
and 202C for called functions A, B, and C, respectively.

As anon-limiting example, each frame 202 of the call stack
200 may include imformation such as parameters that are
passed from the caller function to the called function. The call
stack 200 may also include an area of memory for storing
various local varniables that may be used by the called pro-
gram. A return address indicating where 1n the calling func-
tion execution should continue after the called function has
completed execution may also be included 1n the call stack
200. The call stack 200 may operate as a Last In First Out
(LIFO) butler meaning that the last data pushed on the stack

10

15

20

25

30

35

40

45

50

55

60

65

8

1s the first data popped from the stack. The call stack 200 may
be quite deep indicating that many function calls are nested

within other functions.

A frame pointer 204 generally points to the frame 202 of
the currently executed function. A stack pointer 206 points to
the next position of data on the stack 200 that 1s available to be
popped oll and returned to a processor.

ROP exploits take advantage of the stack data structure by
writing a malicious address to the return address portion of
various Iframes 202A, 202B, and 202C. An attacker may
examine code that would be resident in memory, such as, for
example, the standard C library, or portions of the operating
system. The attacker can then identify many of these gadgets
(1.e., small code snippets) to create a library of ROP instruc-
tions. These ROP instructions may then be strung together to
create a useful, unintended, and malicious code sequence
without mserting any code into memory. Rather, the attacker
only has to change return addresses on the call stack 200 to
point to the start of the desired gadgets. Operations related to
the call stack may thus be corrupted by ROP exploits. How-
ever, since gadgets used by such ROP exploits are retrieved by
bypassing the indirection layer used by the processing circuit,
these gadgets are likely to be found 1n memory pages marked
“non-executable”. Thus, the processing circuit would refuse
or abort their execution.

Exemplary Processing Circuit with Data Execution
Prevention

FIG. 3 illustrates an exemplary processing circuit 302 that
may be adapted to perform execution prevention by initially
tagging all or most memory space where executable code
resides as non-executable. The processing circuit 302 may
include one or more processors 310 and, optionally, a cache
memory system 312. The processing circuit 302 may be
coupled to external devices, such as a memory device 304,
various communication interfaces 306, and/or one or more
Input/Output (I/O) interfaces 308. As non-limiting examples,
communication interfaces 306 may include interfaces for
communication over a bus, cellular networks, serial ports,
parallel ports, Ethernet connections, universal serial bus
(USB) connections, IEEE 1394 (*firewire”) connections,
Bluetooth wireless connections, 802.1 a/b/g/n type wireless
connections, and other suitable communication protocols and
interfaces. As non-limiting examples, I/O interfaces 308 may
include interfaces to devices such as keyboards, mice, track-
balls, haptic devices, audio 1inputs and outputs, and displays.

Some cache memory systems 312 include a multi-level
cache including two or more levels 314 of cache memory. In
this example, a first level of cache may include a separate
instruction cache 316 and a data cache 318. Separating
instructions from data may create performance enhancements
by creating parallel paths for fetching information and taking
advantage of temporal and spatial proximity that may be
different for instructions and data. A second level of cache
may be configured as a unified cache 320 including both
instructions for the instruction cache 316 and data for the data
cache 318. In addition, the cache memory system 312 may
include different configuration for the caches, such as, for
example set-associative caches and various replacement pro-
tocols for caches that are full, as would be known by a person
of ordinary skill in the art of cache design.

Caches allow faster retrieval of instructions and data rela-
tive to having to go to fetch such data and/or instructions from
a main memory 304. The tradeoil compared to traditional
memory 1s 1n size. In general, smaller memory has higher
bandwidth, lower latency or a combination of both. The

US 8,776,223 B2

9

memory device 304 i1s typically implemented as Dynamic
Random Access Memory (DRAM), which can have relatively
good bandwidth, but can have relatively long latencies. By
caching frequently used data and instructions in the cache
memory system 312, fetches by the processor 312 can be
received much more quickly and at a higher bandwidth. As a
general rule, level 1 caches (1.e., caches closest to the proces-
sor 316 and 318) are smaller, faster, and have lower latency.
Level 2 caches 320 are generally larger, may be slower, and
may have longer latencies. However, they are still faster than
the memory device 304 such that performance improvements
are possible by including the second level of cache.
According to various examples of cache memory systems,
one or more levels may be used and each level may be imple-
mented as a unified cache or separate mstruction caches and
data caches. Embodiments discussed herein are mostly con-
cerned with instructions. As a result, discussions may refer
specifically to the mnstruction cache 316 and/or the unified
cache 320. However, a person of ordinary skill 1n the art will

appreciate that embodiments may be practiced on any level of
cache and 1n both the mstruction cache 316 and the unified
cache 320.

According to one feature, the virtual memory used by the
one or more processors 310 may reside within the cache
memory system 312 (e.g., any level within the cache memory
system) and/or within the memory device 304. The process-
ing circuit 302 may also include or implement an execution
prevention module 322. In this example, the execution pre-
vention module 322 may be coupled between the processor(s)
310 and the memory device 304 and cache memory system
312. In this example, the virtual memory may be imple-
mented on the memory device 304 and/or the cache memory
system 312. FIG. 4 1llustrates an alternative configuration for
an exemplary processing circuit 402 1n which the execution
prevention module 322 1s located between the cache memory
system 312 and the memory device 304. In this example, the
virtual memory may be implemented 1n the memory device
304.

According to one feature, all or most memory pages are
mitially marked as non-executable as they are fetched or
mapped into virtual memory. The processing circuit 302 then
refuses to execute any code residing 1n these arecas marked
“non-executable” 1n main memory 304. Instead, every time a
page 1s loaded/fetched from the main memory 304 to the
cache memory 312, the execution prevention module 322
changes (or causes to change) the NX bit from non-execut-
able to executable prior to loading 1t into the cache memory
312. Once loaded into cache memory 312, the functions 1n
that page may be executed.

An ROP attack attempting to access instructions from
pages in virtual memory that are marked as “non-executable”™
would fail. By imitializing all instructions pages as “non-
executable” and only changing a memory page status to
“executable” when 1t 1s fetched via the execution prevention
module 322, an ROP attack 1s limited to calling instructions
from those memory pages currently marked “executable”.
Note that while “memory pages™ are used 1n many examples
described herein, any memory unit, segment, region of equal
or different s1zes may be marked as “non-executable™ and/or
“executable”. Because calls from an ROP attack bypass the
data execution prevention module 322, the instructions (e.g.,
gadgets) they seek to execute would fail since those memory
pages are marked “non-executable”. Marking all memory
pages 1n virtual memory as “non-executable” by default
greatly reduces the number of memory pages from which the
ROP attack can use instructions. To further reduce the
“executable” instructions available to the ROP attack, once a

10

15

20

25

30

35

40

45

50

55

60

65

10

function terminates, 1ts corresponding memory page may be
flushed from cache memory and/or 1t 1s set back to non-
executable in virtual memory.

FIG. 5 1s a block diagram 1illustrating an example of a
processing circuit that 1s adapted to perform an enhanced
execution prevention feature. The processing circuit 502 may
implement an indirection layer comprising an incoming stub
508 and/or an outgoing stub 510 along with a non-execute bit
module 536 (denoted “NX Flag Check 5336 1n FIG. 5). In one
example, the incoming stub 508 and/or outgoing stub 510
may be part of the application which gets loaded nto
memory. However, such incoming stub 508 and/or outgoing
stub 510 may be loaded into a different region of memory that
1s marked “executable” (denoted by “X flag™) while the cor-
responding executable code of the application may be loaded
into memory regions marked “non-executable” (denoted by
“NX flag”) by default. In this example, the indirection stubs
540 are loaded into a first memory page 542 which has the NX
flag set to executable by default. The corresponding execut-
able code 1s loaded into memory pages k512, and q548. It can
be appreciated here that each executable function has a cor-
responding incoming/outgoing stub. For instance, Function F
in memory page k 512 has a corresponding incoming/outgo-
ing stub F 544. Similarly, Function I 1n page k 512 has a
corresponding incoming/outgoing stub I 552 and Function J
in page q 5348 has a corresponding incoming/outgoing stub J
5354. In this example, the incoming stub 508 and outgoing stub
510 1s a logical representation of the incoming/outgoing stub
F 544.

According to one example, the stubs 508/510 may serve as
an 1indirection layer and may be part of the application being
executed by the processing circuit 502. The stubs 508/510
may serve to mtercept function calls from/to the application
514 and/or may be specifically associated with one or more
corresponding functions (executable code) of the application.

For purposes of 1llustration, the incoming stub 508 and the
outgoing stub 510 are shown within the processing circuit 502
and serve to represent incoming/outgoing stubs loaded from
virtual memory 504 (e.g., from memory page 1 542). Note
that, depending on the number of function calls active/open at
any one time, multiple incoming/outgoing stubs (e.g., from
memory page 1 542) may be loaded by the processing circuit
502. The incoming stub 508 may serve to change the non-
executable (NX) flag (usually a bit) for a memory page to an
executable (X) flag, then transferring control to the called
function within the memory page, and reversing the process
(e.g., setting the memory page from executable (X) to non-
executable (NX)) once the called function has been com-
pleted.

In the example illustrated 1n FIG. 5, upon executing an
application 514 by the processing circuit, a call to a Function
F 520 (where Function F 350 resides in memory page k 512
within virtual memory 504) may be made. Rather than fetch-
ing the called function (Function F) from the virtual memory
504 directly, the function call 520 1s sent to the incoming stub
508 1nstead. For instance, upon the call to function F being
invoked, the incoming stub F 344 1s fetched and executed
(e.g., 1llustrated as mcoming stub 508). The incoming stub
508 (e.g., ncoming stub F 544) causes a non-executable (NX)
flag/bit to be cleared/removed 522 (1.¢., set to executable (X)
flag/bit set) from the memory page k 512 where Function F
550 resides prior to fetching and/or loading 524 of Function F
550 by the processing circuit 302. A non-execute (NX) flag
checking module 536 may ascertain whether a memory page
1s marked as executable (X) or non-executable (NX) prior to
loading and/or execution of Function F 550 by the processing
circuit 502. Only mstructions found 1n memory pages (or

US 8,776,223 B2

11

memory areas/segments) marked “executable” (X) in the vir-
tual memory 504 are allowed to be executed by the processing
circuit 502.

Once a memory page and/or instructions therein have been
verified to be marked “executable” in virtual memory 504 and
tetched 1nto the processing circuit 502, these instructions may
be executed normally by the processing circuit 502. Here,
Function F 550 15 executed 526 from the loaded memory page
k 512. Upon finishing execution of Function F 350, the return
528 from Function F 1s sent to the outgoing stub 510 (i.e.,
outgoing stub F 544). The outgoing stub 510 may return
execution control to the calling application 514. Additionally,
the outgoing stub 510 may also set the non-executable (NX)
page flag 530 (1.e., switch from executable state to non-ex-
ecutable state) for page k 512 1n virtual memory 504 as well
as flush 534 page k from any optional cache memory that may
be used by the processing circuit 502. Flushing a page from
cache memory 506 once a function call ends minimizes the
number of executable instructions available for an ROP
attack.

In an alternative implementation, an incoming stub may
move a function/instruction into a memory page already
marked as executable and then transfers control to the called
function (e.g., calls the intended Function F). After the called
function (e.g., Function F) has finished execution, the return
1s diverted to the outgoing stub 330 which reverses the pre-
vious operations (1.€., removes the function/instruction from
the memory page already marked as executable and/or flushes
any copy ol memory page k 512 from cache).

The performance of this system may be improved by plac-
ing “caller” and “callee” functions on the same or nearby
memory pages, setting and clearing the non-executable flag
on a set or block of memory pages at a time, and/or switching
between executable and non-executable states less frequently
than every function entry and exit. For instance, if Function F
calls Function M which calls Function P, it would be advan-
tageous for these functions be located in the same memory
page or block of pages that may be loaded or fetched together
from virtual memory 3504. Therefore, changing the non-ex-
ecute (NX) page flag when Function F 1s invoked may also
serve to make subsequently called Functions M and P execut-
able without additional page loads and NX state changes.

ROP exploits generally have poor spatial proximity and
poor temporal proximity, due to the nature of the short snip-
pets of instructions (e.g., gadgets) that may be located in
many different arecas of memory that are not necessarily
accessed often.

FIG. 6 illustrates an example of a corrupted call stack 600
for generating a malicious code sequence including gadgets
strung together to form a Return Oriented Programming
(ROP) exploit. The corrupted call stack 600 1s 1n a corrupted
form due to an attacker modifying one or more of the return
addresses on the corrupted call stack 600. Also 1llustrated 1n
FIG. 6 are a portion of the memory 602 containing instruc-
tions.

The corrupted call stack 600 may include frames (function
calls) for Functions U, V, W, X, Y and Z. Solid arrows from the
corrupted call stack 600 to the memory 602 indicate return
addresses popped off the stack causing the processing circuit
to begin execution at the beginning of a particular gadget.
Dashed arrows from the memory 602 to the corrupted call
stack 600 1indicate return instruction executed at the end of the
particular gadget to fetch the return address from the stack.

In the corrupted call stack 600, the return address for Func-
tion Z 608 has been modified to point to a start address 610
(1.e., GA Return Address) of Gadget A 612. Similarly, the

return address for Function'Y 614 has been modified to point

10

15

20

25

30

35

40

45

50

55

60

65

12

to a start address 616 (1.e., GB Return Address) of gadget B
618, the return address for function W 620 has been modified

to point to a start address 622 (1.e., GE Return Address) of
Gadget E 624, the return address for Function V 626 has been
modified to point to a start address 628 (i.e., GD Return
Address) of Gadget D 630, and the return address for Func-
tion U 632 has been modified to point to a start address 634
(1.e., GC Return Address) of Gadget C 636. In this example,
the return address 638 for Function X 640 has not been
modified.

Because of these modifications, when Function Z 608 com-
pletes 1ts operation and the return instruction 1s performed,
rather than return to the proper place, control continues at the
beginning of Gadget A 612, for which the address has been
placed in the return address 610 of Function 7Z 608. Every
gadget ends with a return mstruction. Thus, when Gadget A
612 1s completed, its return instruction points to the return
address 616 of FunctionY 614. However, the return address
616 of Function Y 614 has been modified to point to the
beginning of Gadget B 618. As a result, rather than return to
the proper place, control continues at the beginning of Gadget
B 618. Continuing with the gadget executions, after Gadget B
618 completes, rather than return to the proper place for
Function U 632, control continues at the beginning of Gadget
C 636. After Gadget C 636 completes, rather than return to the
proper place for Function V 626, control continues at the
beginning of Gadget D 630. After Gadget D 630 completes,
rather than return to the proper place for Function W 620,
control continues at the beginning of Gadget E 624. This
stringing together ol Gadgets A-E can perform significant
functions forming at least a part of an ROP exploit.

However, because the processing circuits discussed herein
utilize data execution prevention and all memory pages are in
memory are marked as “non-executable” by default, only
functions/instructions that have been called via the indirec-
tion layer (e.g., mcoming stub 508 and outgoing stub 510) are
guaranteed to reside on memory pages that are marked
“executable”. Consequently, any gadget that 1s located 1n a
memory area marked as “non-executable” would fail to be
executed by the processing circuit since such gadget calls
bypass the indirection layer.

FIG. 7 1s a block diagram 1llustrating what happens to a
gadget fetch 1n the context of the processing umit of FIG. 5. In
this example, various functions have been loaded into the
virtual memory 504. The stack may have been hacked such
that a call to load a gadget 702 from Page q 548 occurs.
However, such gadget call 702 does not occur through the
incoming stub 508. That 1s, unlike a function call which has a
corresponding incoming/outgoing stub in virtual memory
504, a gadget call starts at an arbitrary point in memory (e.g.,
selected to achieve execution of certain instructions) without
an incoming/outgoing stub. Consequently, since an incoming
stub 1s not called, the state of page q 548 1s still marked as
“non-executable”. When the gadget 1s fetched 704 from page
q 548, the non-executable (NX) flag check module 536 rejects
or blocks the loading of page q 548 since it 1s marked “non-
executable”. This may also cause termination of the gadget
call and/or process 706.

Exemplary Methods for Inhibiting Execution within
a Processing Circuit

FIG. 8 1s a flow diagram 1llustrating a general exemplary
method for mnhibiting execution of code 1n a processing cir-
cuit. This method may be implemented, for example, by a
processing circuit that fetches instruction from memory (e.g.,
virtual memory, internal/external memory, etc.). Areas of

US 8,776,223 B2

13

executable code in memory are tagged (e.g., marked) as non-
executable 802. The processing circuit may monitor for
requests to execute one or more instructions from memory
804. If a request to execute one or more mnstructions detected
806, then a memory area where the one or more instructions
reside 1s tagged as executable 808. The processing circuit may
then execute the one or more instructions from the memory
arca 810. Upon completion, the memory area where the one
or more structions reside 1s tagged back to non-executable
812.

FIG. 9 1s a flow diagram 1llustrating another exemplary
method operational 1 a processing circuit, for protecting
memory ifrom ROP exploits. This method may be imple-
mented upon execution of an application or process by the
processing circuit. The application or process may include
instructions which cause 1ts executable code to be loaded into
memory and/or be protected in the following way. A plurality
of memory pages of executable code may be loaded 1nto a
memory device 902. The executable code may correspond to
a single application and/or process. The memory device into
which the executable code 1s loaded may implement a virtual
memory. A state indicator for a first subset of the plurality of
memory pages may be set to a non-executable state 904.
Likewise, the state indicator for a second subset of the plu-
rality of memory pages 1s set to an executable state, where the
second subset of the plurality of memory pages includes
indirection stubs to functions in the first subset of the plurality
of memory pages 906. Note that loading the plurality of
memory pages of executable code into the memory device
may occur before and/or after the state indicator for at least
one of the first subset and/or second subset of the plurality of
memory pages has been set to the non-executable state.

The indirection stubs may be generated at a compiling
stage or pre-compiling stage of the executable code. Then, a
tfunction call may be directed to a corresponding indirection
stub 1n the second subset of the plurality of memory pages
which modifies the state indicator for a corresponding func-
tion 1n the first subset of the plurality of memory pages prior
to directing execution of the called function from the first
subset of the plurality of memory pages 908. The processing
circuit may also perform execution prevention of executable
code residing in the first subset of the plurality of memory
pages 910. For instance, performing execution prevention
may include aborting execution of any executable code which
resides 1n a memory page that 1s in the non-executable state
when the executable code 1s fetched by the processing circuit
for execution. The processing circuit may also return to the
corresponding indirection stub in the second subset of the
plurality of memory pages upon completion of the function
call, where the corresponding indirection stub then modifies
the state indicator for the corresponding function 1n the first
subset of the plurality of memory pages 912.

In one example, the indirection stub may modity the state
indicator for the corresponding function in the first subset of
the plurality of memory pages from the non-executable state
to the executable state to enable execution of the function. The
indirection stub may also modify the state indicator for the
corresponding function in the first subset of the plurality of
memory pages from the executable state to the non-execut-
able state to disable execution of the function.

According to one aspect, an internal cache memory of the
processing circuit may be flushed (cleared) of the function
call upon completion of the function call. In another example,
where code for the function call resides 1n a first memory page
within the first subset of the plurality of memory pages, the
method may further comprise: (a) tracking usage of the first
memory page that 1s in the executable state; (b) ascertaining,

10

15

20

25

30

35

40

45

50

55

60

65

14

when all ongoing function calls have completed execution of
corresponding code within the first memory page; and/or (c)
setting the state indicator for the first memory page to non-
executable state upon completion of a last ongoing function
call.

FIG. 10 1s aflow diagram illustrating an exemplary method
for protecting memory from ROP exploits. This method may
be operational 1n a processing circuit that accesses executable
code or instructions from memory (e.g., virtual memory).

According to an optional feature, executable code of nested
or related functions may be arranged in a same memory page
prior to execution 1000. For instance, this arrangement may
take place during compiling of the executable code or when
loading executable code mto the memory. Pre-arranging code
in this manner may position related code closely together 1n
memory, thereby avoiding excessive memory page fetches,
and by extension, minimizing changes in page state (e.g.,
between executable and non-executable).

The processing circuit may load a plurality of memory
pages ol executable code into memory 1002 and set a state
indicator for each memory page to a non-executable state
1004. In one example, such memory may be referred to as
virtual memory, which may be a mapping of physical
memory addresses of a main memory and/or cache memory
device. Upon executing an application, the processing circuit
and/or operating system may detect, monitor, and/or intersect
a Tunction call from the application prior to fetching a corre-
sponding executable code from memory 1006. The state indi-
cator for a first memory page, where the first executable code
resides 1n memory, 1s set and/or changed to an executable
state 1008. The first memory page may then be fetched from
memory 1010. Prior to executing an 1nstruction from the first
memory page, a determination 1s made as to whether the first
memory page state indicator set to the executable state 1012.
If the memory page state 1s not the executable state, then
loading/execution of the first memory page (by the processing
circuit) 1s aborted 1014. Otherwise, 11 the first memory page
state 1s 1n fact the executable state, the first executable code 1s
executed 1016 (by the processing circuit). Upon finishing
execution of the first executable code, the processing circuit
may flush the first memory page from any internal cache
memory (1f present) 1018.

Additionally, the processing circuit may also set the state
indicator 1n the memory back to non-executable 1020. In this
manner, calls occurring from outside an application are not
intercepted and their corresponding instructions would likely
be found 1n memory pages having “non-executable” state.

In some 1implementations, there may be multiple nested
calls to functions 1n one or more memory pages. According to
one aspect, one or more counters may be maintained by the
processing circuit executing application, where each counter
serves to track whether execution of a function and/or instruc-
tions 1 a particular memory page has terminated. For
instance, with nested function calls, where a function 1n a first
memory page may call a function 1n a second page, multiple
memory pages may remain open at the same time. The one or
more counters may serve to track, for example, the number of
entries into a particular memory page as well as the number of
exits, thereby ascertaiming when use of a memory page has
been completed and can be flushed or changed back to “non-
executable”. In some implementations, a compiler may
arrange related executable code together so that 1t resides 1n
the same memory page(s). This permits executing instruc-
tions from a memory page without have to frequently clear
and set the “non-executable” state of that memory page.

According to another aspect, boot-up code and/or certain
startup operating system executable code may be excluded

US 8,776,223 B2

15

from the execution prevention feature described herein. That
1S, memory pages containing such code may be marked
“executable” by default (rather than “non-executable”). This
would permit quicker boot-up until a minimal operating func-
tionality has been achieved at the processing circuit or oper-
ating system executed thereon.

Exemplary Indirection Layer

FI1G. 11 1s a block diagram illustrating an exemplary imple-
mentation of an indirection layer that permits moditying the
state of memory areas as they are needed or called. In this
example, a processing circuit 1102 may be coupled to a
memory module 1110 (e.g., virtual memory, memory device,
etc.) which includes executable 1nstructions/code 1108 and/
or corresponding indirection code 1104/1106 (1.e., indirec-
tion layer). In one example, the indirection code 1104/1106
may be separate instructions that have been specifically added
or inserted (e.g., at pre-compiling, at compiling, and/or at
post-compiling) nto executable code. In another example,
the indirection code 1104/1106 may be existing instructions
that are configured/interpreted by a processor to achieve the
desired functions of securing access to certain instructions
residing 1n memory.

In one example, the indirection code 1104/1106 may serve
to set/clear memory states for the executable instructions
1108. For instance, when a function A 1s called {from within an
application executed by the processing circuit, a correspond-
ing indirection code A 1104 1s actually called. The indirection
code A 1104 sets the state of the corresponding memory
region 1112 for the executable code A (function A) from
“non-executable” to “executable” so the instructions can be
executed by the processing circuit 1102. Upon completion of
the instructions, the indirection code 1104 sets the state of the
corresponding memory region 1112 for the executable code A
(function A) from “executable” to “non-executable” so the
instructions are not available for execution (e.g., by an ROP
attach). The same process may be repeated for other func-
tions. For instance, a second function B may have a corre-
sponding indirection code B 1106 which 1s used to access the
executable code B (function B) 1114.

In contrast to the memory space where the executable
instructions 1108 reside (which 1s marked “non-executable™
by default), the indirection code 1104 and/or 1106 may reside
in a memory space that 1s marked “executable” so that the
processing circuit 1102 can execute such code. The indirec-
tion code 1104 and/or 1106 may be generated at compile time
of a particular application, where such indirection code 1s
organized separately from the executable instructions. Alter-
natively, the indirection code 1104 and/or 1106 may be
dynamically generated upon loading of the executable
instructions 1108 into memory.

In one example, each executable code 1112/1114 (or func-
tion) may have a corresponding indirection code 1104/1106.
Consequently, each indirection code (stub) 1104/1106 may
know where its corresponding executable code 1112/1114
resides in memory and may be able to point to such memory
address. Such memory address may be knowable at compile
time (of the application) as well as the size of the executable
code associated with each function. Consequently, the indi-
rection code 1104/1106 1s able to determine 1n which and how
many memory pages the corresponding executable code
1112/1114 resides. Depending on the size of the executable
code for any one function and the size of a memory page, one
Or more memory pages may be switched from “non-execut-
able” to “executable” (or kept 1n the “executable™ state) at any
one time for a given function call. Additionally, in some

10

15

20

25

30

35

40

45

50

55

60

65

16

implementations, only the memory region/page(s) where
executable code corresponding to the most current, outstand-
ing, and/or pending function call resides are kept in the
“executable” state. In yet other implementations, to improve
performance, the memory page(s) used in the last n function
calls are kept 1n the “executable” memory state.

FIG. 12 illustrates a method for implementing an indirec-
tion layer that permits modifying the state of memory areas as
they are needed or called. This method may be implemented
at the operating system level or at an application level. Func-
tion calls (e.g., calls to executable code 1n memory) may be
intercepted during execution of an application 1202. Prior to
loading/executing a called function, the indirection layer may
change amemory state associated with an executable code for
the called function from non-executable to executable 1204.
The processing circuit may then fetch and/or execute the
executable code for the called tunction 1206. According to
one feature, the processing circuit may track nested entries
and/or exits from the executable code to ascertain when the
function call 1s completed 1208. Upon completion of the
called function, the indirection layer may change the memory
state associated with the executable code for the called func-
tion from executable to non-executable 1210.

FIG. 13 illustrates a method for implementing an indirec-
tion layer within an application which allows modifying the
state of memory areas where application executable code
resides to protect access to such memory areas. An applica-
tion source code, including a plurality of functions, may be
generated 1302. An indirection code may also be generated
for each function in the source code 1304. Instructions may be
added to cause the source code to be 1dentified as non-execut-
able when loaded into memory 1306. Instructions may also be
added to cause the indirection code to be 1dentified as execut-
able when loaded into memory 1308. The source code and
indirection code may be transformed (e.g., compiled) at a
processing circuit to generate an executable code 1310. The
executable code may correspond to a single application and/
or process. The idirection stub may be generated at a com-
piling stage or a pre-compiling stage of the executable code.
The source code and indirection code may be compiled so that
they reside 1n separate memory pages when loaded into
memory for execution. For instance, a first indirection code
associated with a first function 1s adapted to point to the first
function, wherein when the executable code 1s generated, the
first indirection code and first function are compiled to be
loaded 1n different memory pages.

In one example, a first indirection code may cause a
memory state indicator for a corresponding first function to
be switched from a non-executable state to an executable state
when the first function in invoked for execution.

In another example, a first indirection code causes a
memory state indicator for a corresponding first function to
be switched from an executable state to a non-executable state
when the first function terminates execution.

In an exemplary implementation, one or more features
disclosed 1n FIGS. 8, 9, 10, 12, and/or 13 may be imple-
mented 1n parallel (e.g., concurrently), and/or 1n series (e.g.,
sequentially) 1n one or more processors. Where multiple pro-
cessors execute one or more steps, each of the multiple pro-
cessors may implement different steps, the same steps, and/or
a subset of the steps.

In some of the exemplary implementations noted herein,
the functions of the indirection layer may be implemented as
distinct instructions/code that are added to an application
betore, during, and/or after compiling of the application.
However, other implementations may reuse existing istruc-

US 8,776,223 B2

17

tions 1n an instruction set and/or avoid switching between
executable and non-executable states.

In another exemplary implementation, the “indirection
layer’” may be implemented as a set of two (or more) comple-
mentary 1nstructions 1n the mstruction set. For instance, the 5
processor may be configured such that when the first instruc-
tion 1s executed, the processor rejects to fetch anything but the
second 1nstruction next. Such configuration may be done
internally (e.g., hardwired ito the processor) or by instruc-
tions loaded into the processor (e.g., loader configuration), 10
for example. If the second instruction 1s what comes after
execution of the first instruction, the processor continues
execution. Otherwise, the processor may abort or reset execus-
tion. In this approach, setting a “non-executable” status for
memory segments containing executable code may be 15
optional and/or unnecessary. For instance, rather than having
separate incoming/outgoing stubs 540 in FIG. 5, the function
call instruction (1.e., first instruction) within the application 1s
restricted to be followed only by the initial instruction of the
called function (1.e., second 1instruction). If the processor 20
notes that any other instruction than the initial instruction
follows the function call instructions, 1t aborts execution.
Such function call mstruction (first istruction) and initial
instruction (second 1nstruction) may be new/special mstruc-
tions added to an struction set. Alternatively, ordinary 25
instructions already part of an instruction set may be used for
this purpose, but with a bit or marker may be used to note that
the first instruction must be followed by the second 1nstruc-
tion. This way, the processor may check for such instruction
sequence and abort execution 1f anything other than the sec- 30
ond instruction follows the first instruction (e.g., as would be
the case 1n a return oriented attack).

In one example of such complementary instruction pairs,
the first instruction may function as a “call” (e.g., to call a
particular function) while the second instruction may func- 35
tion as a “land” which may be placed at function entries. In
one stance, such instruction pair may be specifically defined
within the nstruction set to be complementary instructions,
where the second instruction must follow the first instruction,
otherwise the processor aborts execution. In one example, 40
there may be two sets of such instructions, a first pair of
instructions for mitiating a function call (e.g., incoming stub)
and a second pair of instructions for exiting/terminating a
function call (e.g., outgoing stub).

In an alternative example, 1nstead of using two dedicated 45
instructions (e.g., complementary first and second instruc-
tions), ordinary instructions may be encoded or marked with
a bit dedicated which 1s used to indicate whether they are a
stub instruction or not. For mstance, an ordinary {irst instruc-
tion (e.g., “call” mstruction) may have a bit/marker set if it1s 50
used to load a function. Similarly, an ordinary second nstruc-
tion (e.g., a “land” instruction) may have a similar bit/marker
set 1 1t1s used as part of the function load. Thus, the processor
may check such bit/marker when executing the first and/or
second 1nstructions to make sure that they are being executed 55
in sequence, otherwise execution s aborted. Note that the first
instruction (e.g., “call” mstruction) may be various types of
instructions, including a jump (JMP) instructions, a load
instruction, etc. Similarly, in the reverse operation (e.g., when
a Tunction 1s completed), the first instruction may be various 60
types of instructions, including a return 1nstructions, an end
istruction, etc.

Note that, 1n one example, the execution of the “call”
instruction may cause the processor to automatically switch
the state of a memory segment/page, where the called func- 65
tion resides, from a non-executable state to an executable
state. Upon finishing execution of the called function, the

18

operation 1s reversed and the memory segment/page 1s set
back to the non-executable state. In an alternative embodi-
ment, the memory segment/page 1s not marked as non-execut-
able at all. Instead, return oriented programming attacks may
be thwarted by the restriction that the function call instruction
(first instruction) must be followed by the mnitial instruction of
the called function (second instruction). This imnhibits a return
oriented programming attack from selectively jumping into a
particular instruction in memory since the calling instructions
1s restricted to be followed by a landing 1nstructions.

Specific implementations shown and described are only
examples and should not be construed as the only way to
implement the present disclosure unless specified otherwise
herein. It 1s readily apparent to one of ordinary skill in the art
that the various examples in the present disclosure may be
practiced by numerous other partitioning solutions.

One or more of the components, acts, features and/or func-
tions described herein and 1llustrated in the drawings may be
rearranged and/or combined into a single component, act,
feature, or function or embodied 1n several components, acts,
features, or functions. Additional elements, components,
acts, and/or functions may also be added without departing
from the invention. The algorithms described herein may also
be efficiently implemented in software and/or embedded in
hardware.

In the description, elements, circuits, and functions may be
shown 1n block diagram form in order not to obscure the
present disclosure 1n unnecessary detail. Conversely, specific
implementations shown and described are exemplary only
and should not be construed as the only way to implement the
present disclosure unless specified otherwise herein. Addi-
tionally, block definitions and partitioning of logic between
various blocks 1s exemplary of a specific implementation. It1s
readily apparent to one of ordinary skill in the art that the
present disclosure may be practiced by numerous other par-
titioning solutions. For the most part, details concerning tim-
ing considerations and the like have been omitted where such
details are not necessary to obtain a complete understanding
of the present disclosure and are within the abilities of persons
of ordinary skill 1n the relevant art.

Also, 1t 1s noted that the embodiments may be described as
a process that 1s depicted as a flowchart, a flow diagram, a
structure diagram, or a block diagram. Although a flowchart
may describe the operations as a sequential process, many of
the operations can be performed 1n parallel or concurrently. In
addition, the order of the operations may be re-arranged. A
process 1s terminated when its operations are completed. A
process may correspond to a method, a function, a procedure,
a subroutine, a subprogram, etc. When a process corresponds
to a function, its termination corresponds to a return of the
function to the calling function or the main function.

Those of ordinary skill 1in the art would understand that
information and signals may be represented using any of a
variety of different technologies and techniques. For
example, data, instructions, commands, information, signals,
bits, symbols, and chips that may be referenced throughout
this description may be represented by voltages, currents,
clectromagnetic waves, magnetic fields or particles, optical
fields or particles, or any combination thereof. Some draw-
ings may 1llustrate signals as a single signal for clarity of
presentation and description. It will be understood by a per-
son of ordinary skill in the art that the signal may represent a
bus of signals, wherein the bus may have a variety of bit
widths and the present disclosure may be implemented on any
number of data signals, including a single data signal.

It should be understood that any reference to an element
herein using a designation such as “first,” “second,” and so

US 8,776,223 B2

19

forth does not limit the quantity or order of those elements,
unless such limitation 1s explicitly stated. Rather, these des-
ignations may be used herein as a convenient method of
distinguishing between two or more elements or instances of
an element. Thus, a reference to first and second elements
does not mean that only two elements may be employed there
or that the first element must precede the second element 1n
some manner. In addition, unless stated otherwise, a set of
clements may comprise one or more elements.

Moreover, a storage medium may represent one or more
devices for storing data, including read-only memory (ROM),
random access memory (RAM), magnetic disk storage medi-
ums, optical storage mediums, flash memory devices and/or
other machine-readable mediums and, processor-readable
mediums, and/or computer-readable mediums for storing
information. The terms “machine-readable medium,” “com-
puter-readable medium,” and/or “processor-readable
medium”™ may include, but are not limited to non-transitory
mediums such as portable or fixed storage devices, optical
storage devices, and various other mediums capable of stor-
ing, containing or carrying instruction(s) and/or data. Thus,
the various methods described herein may be fully or partially
implemented by 1nstructions and/or data thatmay be stored 1n
a “machine-readable medium,” “computer-readable
medium,” and/or “processor-readable medium™ and executed
by one or more processors, machines and/or devices.

Furthermore, embodiments may be implemented by hard-
ware, software, firmware, middleware, microcode, or any
combination thereof. When implemented 1n software, firm-
ware, middleware or microcode, the program code or code
segments to perform the necessary tasks may be stored 1n a
machine-readable medium such as a storage medium or other
storage(s). A processor may perform the necessary tasks. A
code segment may represent a procedure, a function, a sub-
program, a program, a routine, a subroutine, a module, a
soltware package, a class, or any combination of 1instructions,
data structures, or program statements. A code segment may
be coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments,
parameters, data, etc. may be passed, forwarded, or transmit-
ted via any suitable means including memory sharing, mes-
sage passing, token passing, network transmission, etc.

The various 1llustrative logical blocks, modules, circuits,
clements, and/or components described 1n connection with
the examples disclosed herein may be implemented or per-
formed with a general purpose processor, a digital signal
processor (DSP), an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA) or other
programmable logic component, discrete gate or transistor
logic, discrete hardware components, or any combination
thereol designed to perform the functions described herein. A
general-purpose processor may be a microprocessor, but 1n
the alternative, the processor may be any conventional pro-
cessor, controller, microcontroller, or state machine. A pro-
cessor may also be implemented as a combination of com-
puting components, €.g., a combination of a DSP and a
microprocessor, a number of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any other
such configuration. A general-purpose processor, configured
for executing embodiments described herein, 1s considered a
special purpose processor for carrying out such embodi-
ments. Similarly, a general-purpose computer 1s considered a
special purpose computer when configured for carrying out
embodiments described herein.

The methods or algorithms described 1n connection with
the examples disclosed herein may be embodied directly in

5

10

15

20

25

30

35

40

45

50

55

60

65

20

hardware, 1n a software module executable by a processor, or
in a combination of both, 1n the form of processing unit,
programming instructions, or other directions, and may be
contained 1n a single device or distributed across multiple
devices. A software module may reside in RAM memory,
flash memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of storage medium known in the art. A
storage medium may be coupled to the processor such that the
processor can read mformation from, and write information
to, the storage medium. In the alternative, the storage medium
may be integral to the processor.
Those of skill in the art would further appreciate that the
various 1illustrative logical blocks, modules, circuits, and
algorithm steps described in connection with the embodi-
ments disclosed herein may be implemented as electronic
hardware, computer soitware, or combinations of both. To
clearly illustrate this interchangeability of hardware and soft-
ware, various 1illustrative components, blocks, modules, cir-
cuits, and steps have been described above generally 1n terms
of their functionality. Whether such functionality 1s 1mple-
mented as hardware, software, or a combination thereof
depends upon the particular application and design selections
imposed on the overall system.
The various features of the invention described herein can
be implemented 1n different systems without departing from
the invention. It should be noted that the foregoing embodi-
ments are merely examples and are not to be construed as
limiting the mvention. The description of the embodiments 1s
intended to be illustrative, and not to limit the scope of the
claims. As such, the present teachings can be readily applied
to other types of apparatuses and many alternatives, modifi-
cations, and variations will be apparent to those skilled in the
art.
What 1s claimed 1s:
1. A method operational in a processing circuit, compris-
ng:
setting a state indicator for a first subset of a plurality of
memory pages of executable code 1n a memory device to
a non-executable state;

setting the state indicator for a second subset of the plural-
ity of memory pages to an executable state, where the
second subset of the plurality of memory pages includes
indirection stubs to functions 1n the first subset of the
plurality of memory pages; and

directing a function call for one of the functions 1n the first

subset of the plurality of memory pages to a correspond-
ing indirection stub in the second subset of the plurality
of memory pages, wherein the corresponding indirec-
tion stub modifies the state indicator for the first subset
of the plurality of memory pages prior to directing
execution of the called function from the first subset of
the plurality of memory pages.

2. The method of claim 1, wherein the executable code
corresponds to a single application and/or process.

3. The method of claim 1, further comprising;

loading the plurality of memory pages of executable code

into the memory device after the state indicator for at
least one of the first subset or second subset of the
plurality of memory pages has been set to the non-
executable state.

4. The method of claim 1, further comprising:

loading the plurality of memory pages of executable code

into the memory device before the state indicator for at
least one of the first subset or second subset of the
plurality of memory pages has been set to the non-
executable state.

US 8,776,223 B2

21

5. The method of claim 1, wherein the memory device mnto
which the executable code resides implements a virtual
memory.

6. The method of claim 1, further comprising;

performing execution prevention of executable code resid-

ing in the first subset of the plurality of memory pages.

7. The method of claim 6, wherein performing execution
prevention includes:

aborting execution of any executable code which resides in

a memory page that 1s 1n the non-executable state when
the executable code 1s fetched by the processing circuit
for execution.

8. The method of claim 1, wherein the corresponding 1ndi-
rection stub modifies the state indicator for the first subset of

the plurality of memory pages from the non-executable state
to the executable state to enable execution of the called func-
tion.

9. The method of claim 1, further comprising;

returning to the corresponding indirection stub 1n the sec-

ond subset of the plurality of memory pages upon
completion of the called function, where the corre-
sponding 1indirection stub then modifies the state indica-
tor for the first subset of the plurality of memory pages.

10. The method of claim 9, wherein the corresponding
indirection stub modifies the state indicator for the first subset
of the plurality of memory pages from the executable state to
the non-executable state to disable execution of the called
function.

11. The method of claim 1, further comprising:

flushing an 1nternal cache memory of the processing circuit

upon completion of the function call.

12. The method of claim 1, wherein the indirection stubs
are generated at a compiling stage or pre-compiling stage of
the executable code.

13. The method of claim 1, wherein the corresponding
indirection stub includes at least a first mstruction and a
second instruction that are restricted to being executed 1n
sequence by the processing circuit.

14. The method of claim 13, further comprising:

aborting execution of the function 1f the first instruction 1s

followed by any instruction other than the second
instruction.

15. The method of claim 13, wherein the first instruction 1s
part of the function call and the second instruction an 1nitial
instruction of the called function.

16. The method of claim 15, wherein the corresponding
indirection stub 1s implemented by binding the first mstruc-
tion to the second instruction such that execution 1s aborted
unless the first mstruction 1s followed by the second 1nstruc-
tion.

17. The method of claim 1, wherein code for the called
function resides 1n a first memory page within the first subset
of the plurality of memory pages, the method further com-
prising;:

tracking usage of the first memory page that 1s i1n the

executable state;

ascertaining when all ongoing function calls have com-

pleted execution of corresponding code within the first
memory page; and

setting the state indicator for the first memory page to the

non-executable state upon completion of a last ongoing
function call.

18. A processing device, comprising:

a memory device; and

a processing circuit coupled to the memory device, the

processing circuit configured to

10

15

20

25

30

35

40

45

50

55

60

65

22

set a state indicator for a first subset of a plurality of
memory pages ol executable code in the memory
device to a non-executable state;

set the state indicator for a second subset of the plurality
of memory pages to an executable state, where the
second subset of the plurality of memory pages
includes indirection stubs to functions 1n the first sub-
set of the plurality of memory pages; and

direct a function call for one of the functions 1n the first
subset of the plurality of memory pages to a corre-
sponding indirection stub 1n the second subset of the
plurality of memory pages, wherein the correspond-
ing indirection stub modifies the state indicator for the
first subset of the plurality of memory pages prior to
directing execution of the called function from the
first subset of the plurality of memory pages.

19. The processing device of claim 18, wherein the pro-
cessing circuit 1s further configured to:

perform execution prevention of executable code residing

in the first subset of the plurality of memory pages.

20. The processing device of claim 19, wherein performing,
execution prevention, the processing circuit 1s further config-
ured

abort execution of any executable code which resides 1n a

memory page that 1s 1n the non-executable state when
the executable code 1s fetched by the processing circuit
for execution.

21. The processing device of claim 18, wherein the corre-
sponding 1indirection stub modifies the state indicator for the
first subset of the plurality of memory pages from the non-
executable state to the executable state to enable execution of
the function.

22. The processing device of claim 18, wherein the pro-
cessing circuit 1s further configured to:

return to the corresponding indirection stub 1n the second

subset of the plurality of memory pages upon comple-
tion of the called function, where the corresponding
indirection stub then modifies the state indicator for the
first subset of the plurality of memory pages.

23. The processing device of claim 18, wherein the corre-
sponding indirection stub modifies the state indicator for the
first subset of the plurality of memory pages from the execut-
able state to the non-executable state to disable execution of
the function.

24. The processing device of claim 18, wherein the corre-
sponding 1ndirection stub includes at least a {irst instruction
and a second instruction that are restricted to being executed
in sequence by the processing circuit, wherein the processing
circuit 1s Turther configured to:

abort execution of the function call 11 the first instruction 1s

followed by any instruction other than the second
istruction.

25. A processing device, comprising:

means for loading a plurality of memory pages of execut-

able code 1nto a memory device;
means for setting a state indicator for a first subset of the
plurality of memory pages to a non-executable state;

means for setting the state indicator for a second subset of
the plurality of memory pages to an executable state,
where the second subset of the plurality of memory
pages ncludes indirection stubs to functions 1n the first
subset of the plurality of memory pages; and

means for directing a function call for one of the functions

in the first subset of the plurality of memory pages to a
corresponding indirection stub 1n the second subset of
the plurality of memory pages, wherein the correspond-
ing indirection stub modifies the state indicator for the

US 8,776,223 B2

23

first subset of the plurality of memory pages prior to
directing execution of the called function from the first
subset of the plurality of memory pages.
26. A non-transitory processor-readable medium having
instructions stored thereon, which when executed by at least
one processor causes the at least one processor to:
set a state indicator for a first subset of a plurality of
memory pages ol executable code 1n a memory device to
a non-executable state:

set the state indicator for a second subset of the plurality of
memory pages to an executable state, where the second
subset of the plurality of memory pages includes 1ndi-
rection stubs to functions 1n the first subset of the plu-
rality of memory pages; and

direct a function call for one of the functions 1n the first

subset of the plurality of memory pages to a correspond-
ing indirection stub 1n the second subset of the plurality
of memory pages, wherein the corresponding indirec-
tion stub modifies the state indicator for the first subset
of the plurality of memory pages prior to directing
execution of the called function from the first subset of
the plurality of memory pages.

27. A method operational 1n a processing circuit, compris-
ng:

generating an application source code including a plurality

of functions;

generating an indirection code for each function in the

source code;

adding 1nstructions to cause the source code to be identified

as non-executable when loaded into memory;

adding 1instructions to cause the indirection code to be

identified as executable when loaded into memory; and
transforming the source code and idirection code at the
processing circuit to generate an executable code.

28. The method of claim 27, wherein the executable code
corresponds to a single application and/or process.

29. The method of claim 27, wherein the indirection code
1s generated at a compiling stage or a pre-compiling stage of
the executable code.

30. The method of claim 27, wherein the source code and
indirection code are compiled so that they reside 1n separate
memory pages when loaded into memory.

31. The method of claim 27, wherein a first indirection
code causes amemory state indicator for a corresponding first
function to be switched from a non-executable state to an
executable state when the first function in 1nvoked for execu-
tion.

5

10

15

20

25

30

35

40

45

24

32. The method of claim 27, wherein a first indirection
code causes a memory state indicator for a corresponding first
function to be switched from an executable state to a non-
executable state when the first function terminates execution.

33. The method of claim 27, wherein a first indirection
code associated with a first function points to the first func-
tion, wherein when the executable code 1s generated, the first
indirection code and first function are compiled to be loaded
in different memory pages.

34. The method of claim 27, wherein the indirection code
includes at least a first instruction and a second 1nstruction
that 1s restricted to being executed in sequence by a process-
Ing circuit.

35. The method of claim 34, further comprising:

adding instructions to cause aborting of execution of the

indirection code 11 the first instruction 1s followed by any
instruction other than the second instruction.

36. A non-transitory processor-readable medium having
instructions stored thereon, which when executed by at least
one processor causes the at least one processor to:

generate an application source code including a plurality of

functions;

generate an indirection code for each function in the source

code;

add 1nstructions to cause the source code to be 1dentified as

non-executable when loaded 1nto memory;

add 1nstructions to cause the indirection code to be 1denti-

fied as executable when loaded into memory; and
transform the source code and indirection code at the pro-
cessing circuit to generate an executable code.

37. The non-transitory processor-readable medium of
claim 36, wherein the executable code corresponds to a single
application and/or process.

38. The non-transitory processor-readable medium of
claim 36, wherein the indirection code 1s generated at a com-
piling stage or a pre-compiling stage of the executable code.

39. The non-transitory processor-readable medium of
claim 36, wherein a first indirection code causes a memory
state 1ndicator for a corresponding first function to be
switched from a non-executable state to an executable state
when the first function 1 ivoked for execution.

40. The non-transitory processor-readable medium of
claim 36, wherein a {irst indirection code causes a memory
state 1ndicator for a corresponding first function to be
switched from an executable state to a non-executable state
when the first function terminates execution.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

