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DETECTION AND PREDICTION OF
PHYSIOLOGICAL EVENTS IN PEOPLLE

WITH SLEEP DISORDERED BREATHING
USING A LAMSTAR NEURAL NETWORK

RELATED APPLICATIONS

The present application claims priority to U.S. Provisional
Patent Application No. 61/106,027 entitled “Detection and
Prediction of Physiological Events in People with Sleep Dis-
ordered Breathing Using a LAMSTAR Neural Network”™,
filed Dec. 19, 2008, which 1s entirely incorporated by refer-
ence herein for all purposes.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to medical devices, and more par-
ticularly, to prediction and detection of physiological events.

2. Background

Many diagnostic and therapeutic medical devices are
equipped to detect physiological events. For example, a
widely respected diagnostic test for sleep-related disorders,
such as obstructive sleep apnea syndrome, 1s polysomnogra-
phy, 1n which respiratory, cardiac, muscular, and neurological
parameters are monitored during sleep by a polysomnogram.

The polysommogram will typically record data from a
number of different data sources requiring a number of wire
attachments to the patient—oiten more than 20 different
wires are used. These data sources typically include:

one or more electroencephalogram (EEG) channels to

monitor brain activity,

one or more pressure transducers, thermocouples, and/or

thermistors, fitted in or near the nostrils, for monitoring
nasal airtlow and/or temperature,

one or more microphones to monitor breathing sounds,

including snoring,

one or more electromyogram (EMG) channels for measur-

ing chin and/or leg movements,

one or more electrooculogram (EOG) channels to monitor

eye movements,

one or more electrocardiogram (EK(G) channels for detect-

ing heart rate and rhythm, including heart rate variability
(HRV),

a pulse oximeter to measure oxygen saturation of arterial

hemoglobin, and/or

belts placed around the patient to measure chest wall and

abdominal wall movement.

In conjunction with assessment of daytime symptoms,
using a polysomnogram to measure the frequency of sleep-
related apnea (cessation of breathing) and/or hypopnea
(marked reduction in tidal volume) represents the standard of
care for diagnosing obstructive sleep apnea (OSA) syndrome.

Obstructive sleep apnea syndrome 1s the most common
sleep-related breathing disorder, with a prevalence of at least
4% 1n men and 2% in women aged 20 to 60 years, and thus 1s
a major public health problem with a societal impact compa-
rable to that of smoking Studies have revealed associations
with cardiovascular disease, stroke, and diabetes and people
with obstructive sleep apnea syndrome commonly experi-
ence excessive daytime sleepiness and cognitive dysiunction,
placing them at risk for motor vehicle accidents and work
related 1njuries.

The most common therapy for obstructive sleep apnea
syndrome 1s continuous positive airway pressure (CPAP),
which attempts to overcome mechanical collapsing forces in
the airways by continuously blowing air into the nose.
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Although largely effective, for many CPAP 1s cumbersome
and difficult to tolerate, resulting 1n poor long-term compli-
ance. To reduce pressure exposure, auto-adjusting positive
airway pressure (APAP) devices are used in some cases.
APAP devices typically rely on early detection of respiratory
events to make pressure adjustments.

These conventional therapies for obstructive sleep apnea
syndrome are largely effective but suffer from poor patient
compliance. In some patients, the conventional therapies do
not fully alleviate all adverse consequences, ncluding
obstructive-sleep-apnea-associated cardiovascular risk fac-
tors, daytime sleepiness, and decreased quality of life. Meth-
ods and devices capable of detecting and predicting 1ndi-
vidual physiological events, such as apneas and hypopneas,
are needed to provide improved treatment, compliance, and
cifectiveness of these conventional therapies.

SUMMARY

This application provides methods and 1instruments
capable of detecting and predicting individual physiological
events, such as apneas and hypopneas, and methods for pro-
viding improved treatment, compliance, and effectiveness of
these conventional therapies directed towards sleep-related
disorders.

In one aspect of the application, methods are provided.
Physiological data related to a patient are received at a physi-
ological event processor, and the data gathered from an 1nput
data source of one or more input data sources. The physiologi-
cal data are segmented at the physiological event processor
into a plurality of segments. The plurality of segments repre-
sent a predetermined duration of data. The data are gathered
from an mput data source of the one or more mput data
sources. At the physiological event processor, the plurality of
segments are transformed 1nto a plurality of transtormed seg-
ments by using at least one transformation on the plurality of
segments. An exemplary transformation 1s a wavelet transior-
mation applied to each segment of the plurality of segments.
A physiological event result based on the plurality of trans-
formed segments 1s generated at the physiological event pro-
cessor. The physiological event result includes information
relating to a physiological event. The physiological event
result also includes a significance value for at least one sig-
nificant input data source of the one or more mput data

sources. The physiological event result 1s output from the
physiological event processor to an output device.

In another aspect of the application, one or more apparatus
are provided. The one or more apparatus includes a process-
ing unit, a source data interface configured to communicate
with one or more mput data sources, an output interface, data
storage, and machine-language instructions. The machine-
language instructions are stored at least 1n the data storage.
Upon execution by the processing unit, the machine-language
instructions cause the processing unit to perform functions.
The functions include: (a) receiving physiological data
related to a patient via the source data interface, (b) segment-
ing the physiological data into a plurality of segments, where
one or more segments of the plurality of segments represents
a predetermined duration of data gathered from one or more
input data sources, (¢) transtorming the plurality of segments
into a plurality of transformed segments by using at least one
transiformation on the plurality of segments, (d) generating a
physiological event result based on the plurality of trans-
formed segments, where the physiological event result
includes a significance value of at least one significant input




US 8,775,340 B2

3

data source of the one or more input data sources, and (e)
outputting the physiological event result via the output inter-

face.

In yet another aspect of the application, a tangible com-
puter-readable medium i1s provided. The tangible computer-
readable medium has instructions stored thereon. Upon
execution by a computing device, the instructions cause the
computing device to perform functions. The functions
include: (a) recerving, at the computing device, physiological
data related to a patient via one or more input data sources, (b)
segmenting, at the computing device, the physiological data
into a plurality of segments, where one or more segments of
the plurality of segments represent a predetermined duration
of data gathered from one or more mput data sources, ()
transforming, at the computing device, the plurality of seg-
ments mto a plurality of transformed segments by using at
least one transformation on the plurality of segments, (d)
generating, at the computing device, a physiological event
result based on the plurality of transformed segments, where
the physiological event result includes information related to
a physiological event and also includes a significance value
for a significant input data source of the one or more 1nput
data sources, and (¢) outputting the physiological event result
from the computing device.

One advantage of this application 1s that the physiological
event processor can predict and/or detect individual physi-
ological events, such as specific episodes of onset sleep apnea
for a particular patient. A related advantage 1s a neural net-
work of the physiological event processor can be elffectively
trained to recognize patterns in training data sequences
related to physiological events. Once trained, the neural net-
work can advantageously receive patient-related input data
and accurately predict and/or detect individual physiological
events for a patient. Yet another advantage of this application
1s that the physiological event processor, configured with an
appropriately trained neural network, can enable a number of
treatment and diagnostic applications.

BRIEF DESCRIPTION OF THE DRAWINGS

Various examples of particular embodiments are described
herein with reference to the following drawings, wherein like
numerals denote like entities, 1n which:

FIG. 1 1s a block diagram of an exemplary physiological
event processing system;

FIG. 2A 1s a block diagram of an exemplary data prepro-
CEeSSOr;

FIG. 2B 1s a block diagram of an exemplary physiological
event detection/prediction engine;

FIG. 3 1s a block diagram of an exemplary computing
device;:

FIG. 4 1s a block diagram of an exemplary physiological
event processing system with a data preprocessor and a
L Arge Memory STorage And Retrieval (LAMSTAR) neural
network:;

FIGS. 5A and 5B provide an expanded illustration of part
of the LAMSTAR neural network;

FIGS. 6 A and 6B show exemplary signals extracted from a
polysomnogram (PSG);

FIGS. 7A and 7B show results of sleep apnea syndrome
prediction during Non-Rapid Eye Movement (NREM) sleep
and Rapid Eyve Movement (REM) sleep, respectively;

FIGS. 8A and 8B show results of hypopnea prediction
during NREM sleep and during REM sleep, respectively;

FIGS. 9A and 9B show results of sleep apnea syndrome
prediction for varying prediction lead times during NREM
sleep and REM sleep, respectively;
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FIGS. 10A and 10B show results of hypopnea prediction
for varying prediction lead times during NREM sleep and

REM sleep, respectively;

FIG. 11A 1s a graph of sums of LAMSTAR link-weights as
a Tunction of prediction lead time for true positive decisions;

FIG. 11B 1s a graph of sums of LAMSTAR link-weights as
a function of prediction lead time for false negative decisions;

FIG. 12A shows results of detection of sleep apnea syn-
drome events during both NREM sleep and REM sleep;

FIG. 12B shows results of detection of hypopnea events
during both NREM sleep and REM sleep; and

FIG. 13 1s a flowchart depicting exemplary functional
blocks of an exemplary method for generating physiological
event results.

DETAILED DESCRIPTION

Methods and apparatus are described for detecting and
predicting physiological events based on physiological data
related to a patient using a physiological event processor. A
physiological event 1s an episode related to a condition of a
patient. For example, if a patient 1s sullering from a heart-
related condition, a heart attack 1s a physiological event
related to the heart-related condition. In another example, 1f a
patient 1s suffering from a sleep-related condition, an episode
ol onset sleep apnea 1s a physiological event related to the
sleep-related condition.

Physiological data includes any data related to the patient.
In particular embodiments, the physiological data are gath-
cred from a number of sources, such as medical devices (e.g.,
polysomnograms, electrocardiograms (EKGs), electroen-
cephalograms (EEGs), heart rate monitors, magnetic reso-
nance 1maging (MRI) devices, X-ray machines, thermom-
cters and other temperature measuring devices, blood
pressure or blood flow measuring devices, other pressure-
detecting devices, volume measuring devices, blood chemis-
try devices, pressure transducers, thermocouples, ther-
mistors, electromyograms, electrooculograms, pulse
oximeters, other oxygen and/or other gas sensors, movement
sensors, scales, devices configured to provide data related to
a patient, diagnostic devices, medical devices, and/or other
devices) and/or patient mput devices (e.g., mobile and/or
stationary computers). In particular embodiments, the physi-
ological data includes data related to physiological param-
eters, such as, but not limited to, body temperature, EKG
activity (e.g., heart rate, heart rhythm, heart rate vaniability),
EEG activity, galvanic skin response (GSR), movement rates,
breathing data (e.g., nasal pressure, nasal temperature,
breathing rates, tidal volume), oxygen saturation, blood
chemistry parameters, drug dosages, blood pressure, blood
flow, and height/weight of a patient. Physiological data are
generated locally and/or remotely. I physiological data are
generated remotely, the physiological data are recerved at the
physiological event processor via one or more networks in
some embodiments.

In particular embodiments, the physiological event proces-
sor includes a data preprocessor and a physiological event
detection/prediction engine. The data preprocessor prepares
the physiological data for use by the physiological detection/
prediction engine, which then generates physiological event
results based on the preprocessed physiological data. An
exemplary physiological detection/prediction  engine
includes computer hardware and/or soiftware configured to
detect patterns 1n the preprocessed physiological data, such as
an artificial neural network (or neural network for short). A
neural network 1s computer hardware and/or software that,
through a supervised training procedure, learns to map input
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patterns to desired outputs. One such neural network,
described 1n detail below, 1s an appropriately trained LArge
Memory STorage And Retrieval (LAMSTAR) neural net-
work.

Physiological event results include informative and direc-
tive physiological event results. Informative physiological
event results are data or other information about a physiologi-
cal event, such as data predicting and/or detecting a physi-
ological event. Directive physiological event results provide
instructions, commands, and/or directions to various output
devices, such as medical treatment and/or diagnostic devices.

The physiological event processor can be configured to
predict and/or detect physiological events. The techniques for
preprocessing data and training the LAMSTAR neural net-
work are applicable to many different physiological condi-
tions affecting one or more physiological systems of a patient.

Thus, the physiological event processor enables a number
of treatment and diagnostic applications. One such applica-
tion, described 1n detail below, 1s detection and prediction of
physiological events related to sleep-related conditions, such
as obstructive sleep apnea and hypopnea syndrome. In such
an application, predictions of obstructive sleep apnea and/or
hypopnea indicate an impending episode of abnormal breath-
ing, such as a prediction of a sleep-related physiological event
within the next 60 seconds. Once abnormal breathing 1s
anticipated, the physiological event processor sends com-
mands to one or more therapeutic devices. Exemplary com-
mands include commands to control air pressure levels gen-
crated by a CPAP or APAP device and commands to a
stimulator of an appropriate modality to provide sensory and/
or motor stimuli to the patient to prevent or ameliorate an
episode of abnormal breathing. Finer control of such thera-
peutic devices leads to better treatment of sleep-related con-
ditions, including improvement of patient compliance and
therapeutic outcomes.

Using the physiological event processor to predict physi-
ological events complements current detection systems. For a
sleep-related example, predictions made by the physiological
event processor can enhance performance of the detection
devices used 1n current generation APAP devices to reduce
the frequency of abnormal breathing events 1n patients using,
such APAP devices. In addition, adjusting pressure levels less
frequently and more gradually allows the average pressure
exposure to decrease and 1s less disruptive to the sleep pro-
cess, mcreasing patient comfort and adherence with APAP
treatment. Also, prediction of physiological events enables
carlier responses to more events and complete avoidance of
other events.

A sleep-related physiological event processor improves
alternative sleep apnea therapies, for imnstance, percutaneous
or transcutaneous stimulation of various muscles and/or
nerves. In particular embodiments, the prediction of an
impending event triggers stimulation, and an estimate of the
proximity to an impending event determines stimulation
parameters.

An Exemplary Physiological Event Processing System

Turning to the drawings, FIG. 1 1s a block diagram of an
exemplary physiological event processing system (PEPS)
100 with input data source(s) 110, data preprocessor 122,
physiological event detection/prediction engine 126, and out-
put device(s) 140. As shown with a dashed line in FIG. 1, data
processor 122 and physiological event detection/prediction
engine 126 are configured as components of a physiological
event processor 120.

In operation, input data source(s) 110 can be configured to
provide physiological data 112 to data preprocessor 122. Data
preprocessor 122 can be configured to generate preprocessed
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data 124 upon receiving physiological data 124 and provide
preprocessed data 124 to physiological event detection/pre-
diction engine 126. Physiological event detection/prediction
engine 126 can be configured to generate physiological event
results 130 based on preprocessed data 124.

Exemplary physiological event results 130 include, but are
not limited to, informative physiological event results and
directive physiological event results. In some embodiments,
physiological event results 130 are both informative and
directive; e.g., provide informative text, video, and/or audio
concerning a physiological event with a command to output
device(s) 140 to display the mnformative text, video, and/or
audio. In some embodiments, output device(s) 140 further
process physiological event results 130, such as by storing,
formatting, collating, parsing, transmitting, and/or otherwise
processing physiological event results 130. Examples
include, but are not limited to, storing a plurality of physi-
ological event results 130 1n a database (including embodi-
ments that involve additional processing), formatting physi-
ological event results 130 for remote display via the Internet
or other network, and/or parsing physiological event results
130 to generate commands for output device(s) 140.

In particular embodiments, physiological event results 130
include a significance value for one or more mput data
source(s) 110. For example, suppose physiological data 112
are derived from input data sources 1 and 2 (IDS1 and IDS2,
for short). To indicate a significance value, physiological
event results 130 can indicate that: IDS1 (or IDS2) was solely
relied upon for physiological event results 130 and/or IDSI1
provided more (or less) significant information for generating
physiological event results 130. In some embodiments, the
significance value includes numerical data for a significance
of IDS1 and/or IDS2 1n arriving at physiological event results
130. In other scenarios beyond this example, significance
values can be used with more or fewer than two 1nput data
sources.

In some embodiments, the output device(s) 140 1s config-
ured to act upon physiological event results 130, such as by
formatting and/or displaying part or all of physiological event
results 130, by generating additional notification(s) based on
physiological event results 130, and/or to treat physiological
event results 130 as commands for further action. Exemplary
commands include activating or deactivating output device(s)
140, to change behaviors of output device(s) 140, providing
alarms or other warning indication(s), and/or outputting
information regarding the commands.

For example, 1n the context of an adjustable positive airway
pressure (APAP) output device used for treatment of sleep
apnea syndrome, commands for further action can instruct the
APAP output device to be activated/deactivated, to increase or
decrease airtlow to the patient, to alarm that an episode of
sleep apnea and/or hypopnea has been predicted or detected,
and/or to provide a notification of the commands provided to
the APAP output device.

FIGS. 2A and 2B show additional details of physiological
event processor 120 of physiological event processing system
100. FIG. 2A shows a block diagram of an exemplary data
preprocessor 122 with data segmenter 210, data transformer
220, and data encoder 230. Data segmenter 210 can be con-
figured to receive physiological data from one or more data
sources. FIG. 2A shows data segmenter 210 receiving data
from n 1mput data sources 110a-1107.

Data segmenter 210 segments physiological data. In some
embodiments, segmenting data includes dividing the data
into “segments” or blocks of data of representing information
from a particular input data source for a pre-determined dura-
tion (1.e., amount of time). For example, data from a medical
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device, such as an electrocardiograph (EKG) or electroen-
cephalograph (EEG), are segmented into blocks of data rep-
resenting 30-second intervals of EKG or EEG data.

In some embodiments, a segment includes other informa-
tion along with a block of data from an input data source. In
some embodiments, a segment 1includes information 1denti-
tying a patient monitored by the iput data source and/or
identifying a particular data source that generated a corre-
sponding block of data; e.g., an EKG or EEG. In some sce-
narios, corresponding timing information (start time, stop
time, and/or duration information) and/or an i1dentifier that
uniquely 1dentifies the segment are included with the seg-
ment. An example unique i1dentifier for a segment can be
constructed by concatenation of patient identification, data
source, and timing information for the segment.

As shown 1n FIG. 2 A, the generated segments are passed as
segmented data 212 to data transformer 220. In particular
embodiments, data transformer 220 1s configured to apply
one or more transformations to the segments of segmented
data 212. Example transformations include application of
Fourier transform(s), wavelet transform(s), chirplet trans-
torm(s), and/or other transform(s) to the block of data. In
some embodiments, data transtformer 220 gathers statistics of
a transformed segment as well; e.g., frequency maxima and/
or minima values. In some scenarios, each transformed seg-
ment and/or statistics for transformed segment(s) are part of
transformed data 222.

FIG. 2A shows transformed data 222 sent {from data trans-
former 220 to data encoder 230. Data encoder 230 encodes
transformed data 222 into a format suitable for use by physi-
ological event detection/prediction engine 126. Example for-
mats included binary formats, textual (alphanumeric) for-
mats, graphical formats, audio formats, and/or other formats.
FIG. 2A shows the resulting encoded data sent as prepro-
cessed data 124 to physiological event detection/prediction
engine 126.

FIG. 2B shows a block diagram of an exemplary physi-
ological event detection/prediction engine 126. Physiological
event detection/prediction engine 126 applies input process-
ing 240 to the received preprocessed data 124. In some
embodiments, mput processing 240 includes selecting and/or
weighting of preprocessed data 124. In these embodiments,
the selection and/or weighting 1s performed by storing input
coellicients 1n an mnput weighting matrix and performing a
matrix-vector multiplication between the input weighting
matrix and preprocessed data 124 (treated as a vector) to
generate a vector to act as received data 242.

After applying input processing 240 to preprocessed data
124, recerved data 242 are provided to event detection/pre-
diction processing 250. Event detection/prediction process-
ing 250 can be configured to examine received data 242 for
patterns related to physiological events. As such, event detec-
tion/prediction processing 250 can be performed by a suitably
trained neural network, a genetic algorithm, an expert system,
one or more digital signal processors, and/or other computer
soltware and/or hardware designed to detect and/or predict
physiological events.

After performing event detection/prediction processing
250, event detection/prediction data 252 1s provided to output
processing 260. In some embodiments, the event detection/
prediction data 252 1s weighted by an output weighting
matrix by output processing 260 using similar techniques to
those discussed above with respect to the input weighting,
matrix.

Upon performing output processing 260, one or more
physiological event results 130a-130d are output for each of
one or more conditions. FIG. 2B shows output processing 260
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generating outputs for a number j of conditions, where a
number m1 of physiological event results are output for con-
dition 1 and a number 71 of physiological event results are
generated for condition j. Example physiological event
results 130a-130d include, but are not limited to, informative
physiological event results and directive physiological event
results as described above 1n more detail with respect to FIG.
1.

An Exemplary Computing Device

FIG. 3 1s a block diagram of an exemplary computing
device 300, comprising processing unit 310, data storage 320,
user interface 330, network-communication interface 340,
and source data interface 350, 1n accordance with embodi-
ments of the invention. Computing device 300 can be a desk-
top computer, laptop or notebook computer, personal data
assistant (PDA), mobile phone, embedded processor, or any
similar device that 1s equipped with at least one processing
unit capable of executing machine-language mstructions that
implement at least part of the herein-described methods,
including but not limited to method 1300 described 1n more
detail below with respect to FIG. 13, and/or herein-described
functionality of an iput data source, a physiological event
processor, a data preprocessor, a physiological event detec-
tion/prediction engine, an output device, a data segmenter, a
data transformer, a data encoder, input processing, event
detection/prediction processing, output processing, a data
preprocessor, a segmenter, a wavelet transformer, a binary
encoder, a LAMSTAR neural network, an input layer, a SOM
node layer, and/or an output layer,

Processing unit 310 can include one or more central pro-
cessing units, computer processors, mobile processors, digi-
tal signal processors (DSPs), microprocessors, computer
chips, and similar processing units configured to execute
machine-language instructions and process data.

Data storage 320 comprises one or more storage devices
with at least enough combined storage capacity to contain
machine-language instructions 322 and data structures 324.
Data storage 320 can include read-only memory (ROM),
random access memory (RAM), removable-disk-drive
memory, hard-disk memory, magnetic-tape memory, flash
memory, and similar storage devices.

Machine-language instructions 322 and data structures
324 contained 1n data storage 320 include instructions execut-
able by processing unit 310 and any storage required, respec-
tively, to perform at least part of herein-described methods,
including but not limited to method 1300 described 1n more
detail below with respect to FIG. 13, and/or herein-described
functionality of an input data source, a physiological event
processor, a data preprocessor, a physiological event detec-
tion/prediction engine, an output device, a data segmenter, a
data transformer, a data encoder, input processing, event
detection/prediction processing, output processing, a data
preprocessor, a segmenter, a wavelet transformer, a binary
encoder, a LAMSTAR neural network, an input layer, a SOM
node layer, and/or an output layer,

The terms tangible computer-readable medium and tan-
gible computer-readable media refer to any tangible medium
that can be configured to store instructions, such as machine-
language nstructions 322, for execution by a processing unit
and/or computing device; e.g., processing unit 310. Such a
medium or media can take many forms, 1icluding but not
limited to, non-volatile media and volatile media. Non-vola-
tile media includes, for example, read only memory (ROM),
flash memory, magnetic-disk memory, optical-disk memory,

removable-disk memory, magnetic-tape memory, hard drive
devices, compact disc ROMs (CD-ROMs), direct video disc

ROMs (DVD-ROMSs), computer diskettes, and/or paper
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cards. Volatile media include dynamic memory, such as main
memory, cache memory, and/or random access memory
(RAM). Many other types of tangible computer-readable
media are possible as well. As such, herein-described data
storage 320 can comprise and/or be one or more tangible
computer-readable media.

User interface 330 comprises input unit 332 and/or output
unit 334. Input unit 332 can be configured to receive user
input from a user of computing device 300. Input unit 332 can
comprise a keyboard, a keypad, a touch screen, a computer
mouse, a track ball, a joystick, and/or other similar devices
configured to receive user input from a user of the computing
device 300.

Output unit 334 can be configured to provide output to a
user of computing device 300. Output unit 334 can comprise
a visible output device for generating visual output(s), such as
one or more cathode ray tubes (CRT), liqud crystal displays
(LCD), light emitting diodes (LEDs), displays using digital
light processing (DLP) technology, printers, light bulbs, and/
or other similar devices capable of displaying graphical, tex-
tual, and/or numerical information to a user ol computing,
device 300. Output unit 334 alternately or additionally can
comprise one or more aural output devices for generating
audible output(s), such as a speaker, speaker jack, audio out-
put port, audio output device, earphones, and/or other similar
devices configured to convey sound and/or audible informa-
tion to a user of computing device 300.

Optional network-communication interface 340, shown
with dashed lines 1 FIG. 3, can be configured to send and
receive data over a wired-communication interface and/or a
wireless-communication interface. The wired-communica-
tion interface, 1f present, can comprise a wire, cable, fiber-
optic link and/or similar physical connection to a data net-
work, such as a wide area network (WAN), a local area
network (LLAN), one or more public data networks, such as
the Internet, one or more private data networks, or any com-
bination of such networks. The wireless-communication
interface, 1f present, can utilize an air interface, such as a
Zi1gBee, Wi-Fi1, and/or WiMAX 1nterface to a data network,
such as a WAN, a LAN, one or more public data networks
(¢.g., the Internet), one or more private data networks, or any
combination of public and private data networks. In some
embodiments, network-communication interface 340 can be
configured to send and/or receive data over multiple commu-
nication frequencies, as well as being able to select a com-
munication frequency out of the multiple communication
frequency for utilization.

Optional source data interface 350, shown in FIG. 3 with
dashed lines, permits communication with one or more 1nput
data source devices. Exemplary mput data source devices
include polysomnograms, electrocardiograms (EKGs), elec-
troencephalograms (EEGs), heart rate monitors, magnetic
resonance i1maging (MRI) devices, X-ray machines, ther-
mometers and other temperature measuring devices, blood
pressure devices, other pressure-detecting devices, volume
measuring devices, blood chemistry devices, pressure trans-
ducers, thermocouples, electromyograms, electrooculo-
grams, pulse oximeters, other oxygen and/or other gas sen-
sors, movement sensors, scales, devices configured to provide
data related to a patient, diagnostic devices, medical devices,
and/or other devices. Many other types of source data devices
are possible as well. In particular embodiments, the source
data devices provide data related to physiological parameters.

Source data mterface 350 can include a wired-sensor inter-
face and/or a wireless-sensor interface. In some embodi-
ments, the wired-sensor interface and the wireless-sensor
interface utilize the technologies described above with
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respect to the wired-communication interface ol network-
communication interface 340 and the wireless-communica-
tion 1interface of network-communication interface 340,
respectively. In other embodiments, one or more 1nput de-
vice(s) communicate with computing device 300 via source
data interface 350.

An Exemplary Embodiment of the Physiological Event
Processing System

FIG. 4 1s a block diagram of an exemplary physiological

event processing system 400 with a data preprocessor 402 and
a LAMSTAR neural network 440. Data preprocessor 402

includes a segmenter 410 and wavelet transformer 420. Data

preprocessor 402 may include an optional binary encoder
430, shown 1n FIG. 4 with dashed lines. LAMSTAR neural

network 440 1s shown 1 FIG. 4 with input layer 450, seli-
organizing map (SOM) layer 460, and output layer 470.

In particular embodiments, preprocessor 402 1s configured
to produce a set of inputs for LAMSTAR neural network 440
that capture the time-frequency spectral dynamics of physi-
ological data 112. In some embodiments, segmenter 410 seg-
ments physiological data 112 based on time. For example,
segmenter 410 can segment physiological data into 30, 60,
90, and/or 120 second data segments.

In particular embodiments, wavelet transformer 420 1s
configured to generate a set of statistics using a wavelet trans-
form of segmented data generated by segmenter 410. Some
embodiments of wavelet transformer 420 use a discrete wave-
let transtorm of the Daubechies 4 family of wavelet functions.
In other embodiments, wavelet transtormer 420 uses another
wavelet transform (e.g., Haar wavelets, higher-level famailies
of wavelet functions, continuous wavelet transforms) and/or
other similar transformation transforms/functions (e.g.,
short-time Fourier transforms, other Fourier transforms,
Wigner transforms, multiresolution analysis).

In the particular embodiments, the wavelet transform used
by wavelet transformer 420 1s configured to provide informa-
tion about the frequency content as a function of time for one
or more segments in the segmented data. In the particular
embodiments, wavelet transtormer 420 1s configured to apply
a shiding window of differently scaled wavelet functions
along the given segment. Wavelet transformer 420 can be
configured to calculate a set of wavelet coellicients, or levels,
for each scale of wavelet. Each wavelet level conveys the
evolution of the correlation between the wavelet at that scale,
or frequency band, and the given segment.

In particular embodiments, wavelet transformer 420 gen-
crates statistics for a given “raw’” (pre-transformation) seg-
ment transformed into a transformed segment. Exemplary
statistics include, but are not limited to:

minimum amplitude values of the transtformed segment at

a given wavelet level,

times (indices) of the minimum amplitude values at the

given wavelet level,

maximum amplitude values of the transformed segment at

the given wavelet level,

times/indices of the maximum amplitude values at the

given wavelet level,

a ratio between maxima and minima of the transformed

segment at the given wavelet level,

a root-mean-square (RMS) of the transformed segment at

the given wavelet level, and/or

a ratio of the RMS of the transformed segment to the RMS

of the raw segment.

In these embodiments, binary encoder 430 1s configured to
encode each statistic 1n the set of statistics into binary codes.
In the particular embodiments, binary encoder 430 computes
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histograms for each statistic. For example, the Freedman-
Diaconis rule can be used to calculate an optimal bin width:

Bin Width=2*IQR*» '/~ (1)

where IQR 1s the inter-quartile range of the data, and n 1s
the total number of data points. In some circumstances, Equa-
tion (1) can produce a zero bin width. In those cases, the Scott
method can be used:

Bin Width=3.49 ¥~/ (2)

where o 1s the standard deviation of the data.

For each statistic, a common histogram for all segments 1s
constructed. The histogram for the statistic 1s divided into a
number of subsegments, perhaps after screening based on a
threshold value of the statistic. For example, the area of the
histogram 1n which all values exceeds a threshold of 10% of
the maximum value of the statistic 1s located and then divided
into five subsegments. Each subsegment boundary for a sta-
tistic 1s assigned a unique binary code. In particular embodi-
ments, binary segmenter 430 i1dentifies a subsegment in
which a statistical value was located 1n its respective histo-
gram and outputs the corresponding binary code for the sta-
tistical value. In these particular embodiments, transformed
data 432 are a sequence of binary codes corresponding to
histogram subsegments for each statistical value that are input
to LAMSTAR neural network 440. In other embodiments,
LAMSTAR neural network 440 does not use binary encoded
data; 1n such embodiments, optional binary encoder 430 1s not
required to be part of data preprocessor 402.

LAMSTAR neural network 440 can be configured to
handle large-scale storage-retrieval tasks while grossly cap-
turing the input-output relationships of biological neural net-
works. In particular embodiments, LAMSTAR neural net-
work 440 can be configured to learn a mapping between an
arbitrary set ol inputs, such as transformed data 432, and a set
of outputs, showni1n FIGS. 4, 5A, and 5B as output layer 470,
using a supervised training process.

A portion of the architecture of LAMSTAR neural network
440 for processing transformed data 432, which includes
statistics for each wavelet level of a single signal (1.e., input
from a single data source) 1s schematically depicted in F1G. 4.
In some embodiments, LAMSTAR neural network 440 con-
tains 1dentical structures for each signal.

As 1llustrated 1n FIGS. 4, 5A, and 5B, LAMSTAR neural
network 440 includes three types ofnodes, arranged as layers.
Input layer 450 recerves input to LAMSTAR neural network
440 (1.e., transformed data 432) as an mput word. FIG. 4
shows an mput word of transformed data 432 composed of
subwords (SWs) subwords 432a through 4329 and presented
to mput nodes 452a through 452# 1n mnput layer 450. Each
subword represents a separate attribute of transformed data
430. In some embodiments, each subword 432q-432g 1s a
binary code corresponding to a histogram subsegment for
cach statistic for each wavelet level, generated by wavelet
transformer 420, for each signal.

As shown in FIG. 4, one or more self-organizing map
(SOM) modules 462a through 4627 in SOM node layer 460
are associated with each subword. Each of the SOM modules
462a thorough 4627 includes one or more SOM nodes. In
particular embodiments, the SOM nodes of SOM modules

462a through 462n are arranged as one or more layers of
SOM nodes.

FI1G. 4 shows LAMSTAR neural network 440 with output
layer 470. Output layer 470 consists of output nodes 472q and
4'72b. In some embodiments, output nodes 472a and 4725 are
tully interconnected with the SOM modules 462a-462.
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FIGS. 5A and 5B provide an expanded illustration of part
of LAMSTAR neural network 440. For simplicity, only four
input subwords 432a, 43256, 432¢, and 4324 and correspond-
ing SOM modules 462a, 462b, 462¢, and 462d are shown 1n
FIGS. 5A and 5B. Each SOM module 462a, 46256, 462¢, and
462d 1s shown i FIGS. 5A and 5B with seven SOM nodes.
The seven SOM nodes are arranged 1nto seven SOM sub-
layers. In other embodiments than shown 1n FIGS. SA and 5B,
LAMSTAR neural network 440 includes SOM modules with
tewer than seven SOM nodes or more than seven SOM sub-
layers.

The links between input nodes 1n input layer 450 and SOM
nodes 1n mput SOM modules 462a-4624d 1n input SOM layer
460 are weighted by the input-weight matrices W, and the
links between input SOM node and output nodes are
weilghted by the matrices L,. FIG. SA shows the W, matrices
as mput-weight matrices W1 552q, W2 5525, W3 552¢, and
W4 5524 and shows the L, matrices as link-weight matrices
[.1554a, L2 554b, .3 554¢, and L4 554d. Note that the solid
lines 1n FIG. 5A represent one or more connections between
individual nodes in mput layer 450, input SOM layer 460,
and/or output layer 470.

In operation, outputs of 1put nodes, each related to a
subword, are fed into an associated input SOM module. The
input SOM nodes operate using the following winner-takes-
all rules as expressed 1n Equations (3) and (4) below:

N; (3)
S(i, k)= ) Wilj. k)

=1
SU, k) = S, kY k (4)

Equation 3 indicates that, for each input SOM node k 1n
input SOM sub-layer 1, the sum S(1, k) of the input-weights W,
for input SOM node k 1s computed, where N, 1s the number of
nodes 1 input SOM sub-layer 1. Equation 4 indicates that, the

input SOM node k. * with the highest sum of input-weights
over all mmput SOM nodes k for input SOM sub-layer 1 1s the

winning node for input SOM sub-layer 1. Each winning SOM
node represents the category the network has assigned to the
associated subword. The set of all winning nodes represents
the category the network has assigned to the entire input
word.

By adjusting or training the input-weight matrices, W,
cach mput SOM module can learn to classily 1ts respective
subword. In some embodiments, the mput sub-words are
predefined; e.g., binary codes generated by binary encoder
430. In such embodiments, the input-weight matrices W, are
predefined to ensure a unique mapping between each input
subword and corresponding input SOM node. In specific
embodiments, predefined input-weight matrices W, are 1den-
tity matrices ol an appropriate size.

The output, or decision D(m*), of the LAMSTAR network

1s determined using Equations (5) and (6) below:

M ()
D(m) = Z Lk, m)
i=1

D(m*) = Dm)¥ m (6)

where: M 1s the number of mput SOM modules (layers),
m 1s an output node 1n the output (decision) layer, and



US 8,775,340 B2

13

L.(k.*m) 1s the link weight between the winning node
(denoted k *) in the i”” input SOM module and the m™ output
(decision) node. Hence the output node, denoted by m*, 1s the
winning output node over all output nodes. Thus, the output
node m™* represents an output decision of LAMSTAR neural
network 440 based on the input word.

FI1G. 5B shows the link-weights and links associated with a
scenario regarding a hypothetical set of winning SOM nodes.
Upon the presentation of subwords 432a, 4325, 432¢, and
432d to input nodes 450 of LAMSTAR neural network 440,
each SOM module 462a, 4625, 462¢, and 462d determines a
winning node. In this scenario, SOM module 462a has chosen
a third node, depicted 1n black in FIG. 5B, as the winning
node. The winning node 1s chosen, as described above, based
on the input-weight matrix and the link-weight matrix for
cach SOM module. As shown 1 FIG. 5B, mput-weight
matrix entry W1(3,3) and link-weight matrix entry L1(3,2) are
the input-weight and link-weight associated with the winming,
node 1n SOM module 462a.

Similarly, FIG. 5B shows that a winning node for SOM
module 4625 1s a fifth node of SOM module 4625, a winning,
node for SOM module 462c¢ 1s a sixth node of SOM module
462¢, and a winning node for SOM module 4624 1s a second
node of SOM module 462d. F1G. 3B also shows the related
input-weight matrix and link-weight matrix values associated
with the winning nodes of SOM modules 46256, 462¢, and
462d. Further, FIG. 5B shows the winning node in output
layer 470 1s output node 2 472b.

Eachnode in the output layer indicates a different result. As
an example, output node 1 472a can indicate a prediction that
a patient will not experience a physiological event and output
node 2 472b can indicate a prediction that a patient waill

experience the physiological event.

“Most Significant” Nodes of a LAMSTAR Neural Net-
work

As mentioned above, the winning output node has the
highest sum of link-weights 1n link-weight matrix L that
connect that output node to the winning SOM nodes. There-
fore, the link-weight matrix L of interconnections between
memory-storing nodes of LAMSTAR neural network 440
and various layers or modules directly and meaningiully
relates to physiological data 112. The link-weights are con-
figured to be tracked in real-time to indicate precisely how
and why LAMSTAR neural network 440 makes decisions. In
some scenarios, the link-weight matrix L 1s used to determine
the structure of physiological data 112 as presented to LAM-
STAR neural network 440.

The most significant node (MSN) 1s defined as the SOM
node or set of SOM nodes that have the highest link-weight to
a particular output node m. That 1s, where

LAk m)=L(km)Vi k (7)

Similarly, the SOM nodes that have the second or third
highest link-weights (second and third MSNSs) can be deter-
mined. The MSNs indicate which input subwords (i.e., signal
features) were most important for making a partlcular deci-
sion. In particular, the MSNSs that have the largest difference
between the link from a SOM node to one output node and the
link from the same SOM node to the other output node are
identified. This eliminates nodes 1n common between both
outputs to choose MSNs most associated with a particular
decision. Determining sets of the most significant nodes (e.g.,
the set of MSNs, or the set of first, second, and third MSNs)
allows for identification of important signals and signal fea-
tures for physiological events.
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LAMSTAR Neural Network Training Examples

In particular embodiments, link-weights in the link-weight
matrix L between nodes 1n SOM layer 460 and output nodes
470 are adjusted by numerical values representing punish-
ments and rewards depending on the response of the network
to the mput word. For example, when LAMSTAR neural
network 440 produces a desired output, link-weights in the
link-weight matrix L from each winning SOM node to a
correct output node are incremented (rewarded). When LAM -
STAR neural network 440 produced an incorrect output, link-
weights 1n the link-weight matrix L from each winning SOM
node to the incorrect output node are decremented (pun-
1shed), and link-weights from each winning SOM node to the
correct output node are incremented. In some of the particular
embodiments, the increments and decrements are of the same
magnitude; e.g., rewards 1nvolve an increment of 1 and pun-

iIshments 1nvolve a decrement of 1.
Thus, the operation of LAMSTAR neural network 440

includes:
1. Recerving an mput word consisting of a set of subwords

at LAMSTAR neural network 440.

2. Determining winning nodes for each SOM module
according to winner-take-all rules; e.g., the rules expressed in
Equations (3) and (4) above.

3. Summing the link-weights from the winmng SOM
nodes to each output node; e.g., using Equation (5).

4. Determining the output node with the highest sum of
SOM-output link-weights; e.g., using Equation (6).

5. Adjusting the SOM-output link-weights according to the
above-mentioned training rules regarding rewards and pun-
ishments.

The order in which mputs are presented to LAMSTAR
neural network 440 during training can affect subsequent
performance. This 1s because, as with biological neural net-
works, the order of presentation can favor the reinforcement
of certain features and the degradation of others.

This 1s particularly true if different output categories share
teatures. For instance, suppose LAMSTAR neural network
440 1s trained on a successive set of mputs of Type A. By
reinforcing some set of link-weights, LAMSTAR neural net-
work 440 will learn to associate Type A inputs with the output
node designated for Type A outputs. Now suppose a set of
Type B inputs are presented to LAMSTAR neural network
440 for Type B prediction. In some scenarios, the Type B
inputs share features with the Type A 1mputs (1.e., some of the
Type B mputs are uncorrelated with a condition related to the
Type B inputs). In such scenarios, LAMSTAR neural network
440 will, at first, classity Type B mputs as Type A until the
teatures that ditfer between the two are sufliciently learned.

Later, 11 another set of Type A inputs are presented to
LAMSTAR neural network 440, the features common to
Types A and B will again be reinforced. If enough Type A
inputs are successively presented, the sum of the link-weights
that encode common features of Types A and B can exceed the
sum of the link-weights that encode differing features
between Types A and B. In such scenarios, the “memory” of
differences between Type A and Type B can be degraded, and
the performance of LAMSTAR neural network 440 can sutier
in differentiating between Type A and Type B inputs. In this
example, one technique to avoid such memory degradation 1s

to alternately present Type A and Type B mnputs during the
training phase of LAMSTAR neural network 440.

To ensure that LAMSTAR neural network 440 1is
adequately trained, the accuracy of LAMSTAR neural net-
work 440 1s computed based on the number of training imnputs
used. In some embodiments, LAMSTAR neural network 440
1s considered to be fully trained once the computed accuracy
indicates asymptotic performance was achieved. See Tables
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7, 8,9, and 10 for numbers of segments used to train LAM-
STAR neural network 440 1n different scenarios.

Exemplary Use of the Physiological Event Processor to
Predict and Detect of Sleep-Related Physiological Events

FIGS. 6 A through 12B relate to an exemplary use of physi-
ological event processor 400 as applied to sleep-related
physiological events. In particular, physiological event pro-
cessor 400 can be configured to generate physiological event
results including detection and prediction of sleep apnea syn-
drome and hypopnea events. The physiological event proces-
sor 400 can be configured to detect and predict sleep-related
physiological events 1n real time, as well as 1n near-real time
and/or non-real-time scenarios. In some embodiments, the
physiological event processor 400 1s configured to detect
and/or predict apnea and hypopnea events 30 to 120 seconds
in advance. As part of prediction of sleep apnea syndrome and
hypopnea events, an estimated proximity to an impending
event 1s determined 1n some embodiments. Further, examina-
tion of LAMSTAR neural network 440 indicates which sig-
nals were most important for event prediction.

Exemplary Sleep Study Data

Overmght polysomnogram data were collected from 21
women and 53 men (averagexstandard deviation age was
48.1x£10.8 years) with known or suspected obstructive sleep
apnea syndrome. All subjects were treatment naive or had
discontinued CPAP at least 7 days prior to polysomnography.
None had a history of surgical treatment for obstructive sleep
apnea syndrome, bariatric surgery, or medically-managed
weilght loss intervention. Subjects arrived at the Sleep Center
at 8 PM and were connected to a standard clinical recording
montage. Subjects went to bed at 11 PM and were awoken at
7 AM. Recording was performed continuously throughout
the night. Polysomnograms were scored by trained individu-
als using standard criteria. Apnea severity ranged from mild
to severe, with an averagexstandard deviation apnea-hypop-
nea index (abnormal respiratory events per hour) of
36.8+£30.5.

FIGS. 6A and 6B show example signals 600a and 6005,
respectively extracted from a polysomnogram. Signals 600a
detect an apnea episode during an interval outlined using a
grey bar 1n FIG. 6A. Signals 6005 detect a hypopnea episode
during an interval outlined using a grey bar 1n FIG. 6B.

Signals 600a include electroencephalography signals
(EEG) 610a, heart rate variability (HRV) signals 620a, nasal
pressure signals 630a, oronasal temperature signals 640a,
submental electromyography (EMG) signals 650a, and right
clectrooculography (EOG) signals 660a. Similarly, signals
6006 include EEG signals 6105, HRV signals 6205, nasal
pressure signals 63056, oronasal temperature signals 6405,
EMG signals 6505, and rnight EOG signals 6605b. In particular,
right EOG signals 660a and 6605 are measurements of a right
eye of a patient.

Preprocessing of Sleep Study Data

Signals such as example signals 600a and 60056 are pre-
sented to physiological event preprocessor 400 and then pre-
processed. For testing prediction, segmenter 410 extracted
data segments of 30, 60, 90, and 120 seconds 1n duration that
contained a scored isolated apnea or hypopnea or the first
event 1n a series. Segments of equal duration preceding each
event were also extracted. Finally, segments of each duration
contaiming normal breathing, defined as the absence of scored
respiratory events regardless of the presence of snoring, were
extracted. Segments containing snoring were chosen as snor-
ing 1s a common natural context within which apnea/hypop-
nea prediction and detection must be performed. For testing,
detection, all 30-second segments containing a scored apnea
or hypopnea were extracted. Segmenter 410 also normalized
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cach signal from each segment by dividing data within a
segment by the mean value of the segment.

Wavelet transformer 420 applied a discrete wavelet trans-
form, such as the Daubechies 4 wavelet transform, to each
segment generated by segmenter 410. The resulting trans-
formed segments included a set of new signals, called levels,
cach of which quantified the frequency content of the original
signal for a different frequency band as a function of time. For
cach level, wavelet transformer calculated the amplitude and
timing for each of the three mimima and three maxima, the
ratio between the mean of the three maximum amplitudes and
the mean of three minimum amplitudes, the root-mean-
square value, and the root-mean-square value relative to that
of the original signal.

Binary encoder 430 generated binary codes related to the
transformed segments suitable for use with LAMSTAR neu-
ral network 440 as described above with respect to FIG. 4.

Training and Testing

For each segment duration, separate LAMSTAR neural
networks 440 were trained to predict sleep-related physi-
ological events for varying lead times (30, 60, 90, and 120
seconds into the future) and to detect sleep-related physi-
ological events. To train networks, random sets containing
equal numbers (117 to 383) of apnea/hypopnea segments and
normal segments were constructed. Based on network
responses to training inputs, incremental adjustments were
made to the link-weights of each LAMSTAR neural network
allowing convergence to optimal network performance.

Once a network was trained, 50 random test sets of differ-
ent data segments were constructed, and averagexSD sensi-
tivities, specificities, positive predictive values, and negative
predictive values for event prediction and event detection
were determined. Statistical tests were performed using
unequal variance T-tests.

Apnea and Hypopnea Prediction: Varying Segment Dura-
tion

FIGS. 7A and 7B show results of sleep apnea syndrome
prediction during Non-Rapid Eye Movement (NREM) and
Rapid Eye Movement (REM), respectively. For apnea predic-
tion using 30-second segments and a 30-second lead time
during NREM sleep, the sensitivity was 80.6+5.6%, the
specificity was 72.78+6.6%, the positive predictive value
(PPV) was 75.1£3.6%, and the negative predictive value
(NPV) was 79.4+3.6%. REM apnea prediction demonstrated
a sensitivity of 69.3+£10.5%, a specificity of 67.4£10.9%, a
PPV o1 67.4+£5.6%, and a NPV of 68.8+5.8%.

The most significant nodes of LAMSTAR neural network
440 were analyzed. Based on the most significant node analy-
s1s, the most important signal for predicting apnea using
30-second segments and distinguishing an impending apnea
from normal breathing 1s a submental electromyogram sig-
nal. Specifically, the most important feature of the submental
clectromyogram signal 1s a root-mean-square value of a first
wavelet level. For predicting apnea using 60-second seg-
ments, nasal pressure was also an important signal. See
Tables 1, 2, and 3 below for additional details regarding most
significant nodes used for apnea predictions.

FIGS. 8A and 8B show results of hypopnea prediction
during NREM sleep and during REM sleep, respectively.
During NREM sleep, hypopnea prediction using 30-second
segments and a 30-second lead time had a sensitivity of
74.4+35.9%, a speciiicity of 68.8+7.0%, a PPV o1 70.8+3.1%,
and a NPV of 73.2+3.1%. REM hypopnea prediction had a
sensitivity of 63.4+£9.2%, a specificity of 65.1£9.3%, a PPV
0f 65.0+4.0%, and a NPV of 64.5+4.0%.

Based on a most significant node analysis of LAMSTAR
neural networks, the most important signals for predicting
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hypopnea 1n 30-second segments and distinguishing hypop-
nea from normal breathing were determined to be heart rate
variability and submental electromyogram signals. The most
important heart rate vanability signal feature was a relative
root-mean-square value of a first wavelet level. The most
important submental electromyogram signal feature was a
root-mean-square value of a first wavelet level. For predicting,
hypopnea 1n 60-second segments, the most important signal
was nasal pressure. See Tables 4, 5, and 6 below for additional
details regarding most significant nodes used for hypopnea
predictions.

FIGS. 9A and 9B show results of sleep apnea syndrome
prediction for varying prediction lead times during NREM
sleep and REM sleep, respectively. As would be expected, as
the lead time increased, performance decreased. Apnea pre-
diction was best for events occurring in the next 30 seconds.

FIGS. 10A and 10B show results of hypopnea prediction
for varying prediction lead times during NREM sleep and
REM sleep, respectively. For hypopnea prediction, prediction
using 30-second and 60-second lead times performed equally
well.

Each most significant node reported 1n the tables 1s denoted
by 1ts associated signal name, signal feature name, wavelet
level, and winning SOM node. The signals are electroen-
cephalography (EEG), heart rate variability (HRV), nasal
pressure, oronasal temperature, submental electromyography
(EMG), and right electrooculography (EOG). The signal fea-
tures are the indices of the maximum and minimum peaks in
a signal, the amplitudes of maximum and minimum peaks 1n
the signal, the root-mean-square (RMS) value of a signal, and
a “relattve RMS” value, which 1s the RMS value of a signal at
a wavelet level relative to the RMS value of the signal.

The most frequent first, second, and third most significant
nodes for apnea and hypopnea prediction and detection are
indicated in Tables 1-6 below. Tables 1 and 2 show results for
LAMSTAR neural networks 440 trained to distinguish nor-
mal breathing from obstructive sleep apnea syndrome and to
make apnea predictions using 30-second and 60-second long,
segments, respectively. Table 1 also shows results for apnea
predictions 30 seconds in the future (“30-Second Lead
Times”). Table 3 shows results for apnea predictions and 60
seconds 1nto the future (“60-Second Lead Times”).

TABL

L]
[

Apnea Prediction Using 30-Second Segments
and for 30-Second Lead Times

Most
Significant Signal Feature for Most Significant Fre-
Output Node Node quency
Normal First EMG RMS, Level 1, Node 1 74%
Breathing Second EMG, maximum peak amplitudes, 22%
Level 1, Node 2
Third EMG, maximum peak amplitudes, 12%
Level 1, Node 2
Apnea First EMG RMS, Level 1, Node 6 T8%
Prediction Second EMG RMS, Level 2, Node 6 22%
Third EMG RMS, Level 2, Node 6 20%
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TABLE 2

Apnea Prediction Using 60-Second Segments

Most
Significant Signal Feature for Most Significant Fre-
Output Node Node quency
Normal First Nasal pressure, indices of maximum 78%
Breathing peak amplitudes, Level 6, Node 5
Second Nasal pressure, indices of maximum 38%
peak amplitudes, Level 6, Node 5
Third Oronasal temperature, indices of 20%
maximum peak amplitudes, Level 6,
Node 3
Apnea First EMG RMS, Level 1, Node 6 60%
Prediction Second Nasal pressure, minimum peak 18%
amplitudes, Level 5, Node 3
Third EMG RMS, Level 1, Node 6 149%
TABLE 3
Apnea Prediction for 60-Second [.ead Times
Most
Significant Signal Feature for Most Significant Fre-
Output Node Node quency
Normal First EMG RMS, Level 1, Node 1 26%
Breathing Second EMG RMS, Level 1, Node 1 18%
Third EMG RMS, Level 2, Node 2 16%
Apnea First EMG RMS, Level 1, Node 6 56%
Prediction Second EMG RMS, Level 2, Node 6 34%
Third EMG RMS, Level 2, Node 6 12%
Table 3

Tables 4 and 5 show results for LAMSTAR neural net-
works 440 tramned to distinguish normal breathing from
hypopnea to make hypopnea predictions using 30-second and
60-second long segments, respectively. Table 4 also shows
results for 30-second lead time apnea predictions. Table 6
shows results for 60-second lead time apnea predictions.

TABL.

(Ll

4

Hypopnea Prediction for 30-Second Segments
and for 30-Second Lead Times

Most
Significant Signal Feature for Most Significant Fre-
Output Node Node quency
Normal First EMG RMS, Wavelet Level 1, Subword 92%
Breathing 1, Node 1
Second EMG maximum peak amplitudes, Level 30%
2, Subword 2, Node 2
Third EEC RMS, Level 1, Subword 1, Node 1 32%
Hypopnea First HRYV Relative RMS, Level 1, Subword 58%
Prediction 1, Node 1
Second HRYV Relative RMS, Level 1, Subword 28%
1, Node 1
Third EMG Relative RMS, Level 7, Subword 16%
1, Node 6
TABLE 5
Hvypopnea Prediction Using 60-Second Segments
Most
Significant Signal Feature for Most Significant Fre-
Output Node Node quency
Normal First Nasal pressure, indices of maximum 94%

Breathing peak amplitudes, Level 6, Node 3
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TABLE 5-continued

Hyvpopnea Prediction Using 60-Second Segments

Most
Significant Signal Feature for Most Significant Fre-
Output Node Node quency
Second Nasal pressure, indices of maximum 42%
peak amplitudes, Level 6, Node 3
Third EMG RMS, Level 1, Node 1 34%
Hypopnea First Nasal pressure, indices of minimum 24%
Prediction peak amplitudes, Level 5, Node 3
Second EMG RMS, Level 1, Node 6 1 8%
Third Nasal pressure, indices of minimum 14%
peak amplitudes, Level 5, Node 3
TABLE 6
Hvypopnea Prediction for 60-Second [Lead Times
Most
Significant Signal Feature for Most Significant Fre-
Output Node Node quency
Normal First EMG RMS, Level 1, Node 1 78%
Breathing Second EEG RMS, Level 1, Node 1 18%
Third EMG, maximum peak amplitudes, 16%0
Level 1, Node 4
Hypopnea First EMG RMS, Level 2, Node 6 32%
Prediction Second EMG RMS, Level 1, Node 6 22%
Third EEG RMS, Level 1, Node 6 16%

Tables 7-10 show total numbers of segments of physiologi-
cal data used to train and test LAMSTAR neural network 440
for varying segment durations and lead times. Table 7 shows

counts for the number of segments used to train and test
LAMSTAR neural network 440 for sleep apnea syndrome
prediction ranging over diflerent segment durations.

TABLE 7
Seg-
ment  NREM Apnea NREM Normal REM Apnea REM Normal
Dura- Segment Segment Segment Segment
tion Count Count Count Count
30 454 20811 103 2643
60 322 10413 45 1340
90 250 6937 29 889
120 208 5222 26 667

The “NREM Apnea Segment Count” column of data in
Table 7 indicates a number of segments used to train and test
LAMSTAR neural network 440 based on physiological data

recorded during non-rapid eye movement (NREM) sleep
associated with sleep apnea syndrome. Similarly, the “NREM
Normal Segment Count” column of data 1n Table 7 indicates
anumber of segments used to train and test LAMSTAR neural
network 440 based on physiological data recorded during
NREM sleep associated with normal breathing. Further, the
“REM Apnea Segment Count” and “REM Normal Segment
Count” columns of data in Table 7 indicate a number of
segments used to train and test LAMSTAR neural network
440 based on physiological data recorded during rapid eye
movement (REM) sleep associated with sleep apnea syn-
drome and normal breathing, respectively.

For example, Table 7 indicates that 454 30-second NREM
apnea segments and 20811 30-second NREM normal seg-
ments tramed LAMSTAR neural network 440 to predict
obstructive sleep apnea syndrome during NREM sleep. Also,
Table 7 indicates that 103 30-second REM apnea segments
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and 2643 30-second REM normal segments trained LAM-
STAR neural network 440 to predict obstructive sleep apnea
syndrome during REM sleep. Table 7 also shows counts for

60-second, 90-second, and 120-second long segments used to
train LAMSTAR neural network 440.

Table 8 shows counts for the number of segments used to
train and test LAMSTAR neural network 440 for sleep apnea
syndrome prediction ranging over different lead times.

TABLE 8
NREM Apnea NREM Normal REM Apnea REM Nommal
Lead Segment Segment Segment Segment
Time Count Count Count Count
30 454 20811 103 2643
60 322 20811 45 2643
90 250 20811 29 2643
120 208 20811 26 2643

For example, Table 8 indicates that 322 NREM apnea
segments and 20811 NREM normal segments trained LAM-
STAR neural network 440 to make predictions of obstructive
sleep apnea syndrome during NREM sleep 60 seconds 1n
advance.

Table 9 shows counts for the number of segments used to
train and test LAMSTAR neural networks 440 for hypopnea
prediction for different segment durations.

TABLE 9
Seg-
ment NREM Hypopnea NREM Normal REM Apnea REM Normal
Dura- Segment Segment Segment Segment
tion Count Count Count Count
30 921 20811 246 2643
60 650 10413 154 1340
90 512 6937 111 8RY
120 426 5224 82 064

The “NREM Hypopnea Segment Count” column of data in
Table 9 indicates a number of segments used to train and test

LAMSTAR neural network 440 based on physiological data

recorded during NREM sleep associated with hypopnea.
Similarly, the “NREM Normal Segment Count™ column of
data in Table 9 1indicates a number of segments used to train

and test LAMSTAR neural network 440 based on physiologi-
cal data recorded during NREM sleep associated with normal

breathing. Further, the “REM Hypopnea Segment Count™ and
“REM Normal Segment Count” columns of data in Table 9
indicate a number of segments used to train and test LAM-
STAR neural network 440 based on physiological data
recorded during REM sleep associated with hypopnea and
normal breathing, respectively.

For example, Table 9 indicates that 512 90-second NRE
hypopnea segments and 6937 90-second NREM normal seg-
ments trammed LAMSTAR neural network 440 to predict

hypopnea during NREM sleep. Also, Table 9 indicates that
111 90-second REM apnea segments and 889 90-second
REM normal segments trained LAMSTAR neural network
440 to predict hypopnea during REM sleep. Table 9 also
shows counts for 30-second, 60-second, and 120-second long,
segments used to train LAMSTAR neural network 440.

Table 10 shows counts for the number of segments used to
train LAMSTAR neural networks 440 for hypopnea predic-
tion for ditferent lead times.
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TABLE 10
NREM Apnea NREM Normal REM Apnea REM Normal
Lead Segment Segment Segment Segment
Time Count Count Count Count
30 921 20811 246 2643
60 650 20811 154 2643
90 512 20811 111 2643
120 426 20811 82 2643

For example, Table 10 indicates that 426 NREM apnea
segments and 20811 NREM normal segments trained L AM-
STAR neural network 440 to make predictions of obstructive
sleep apnea syndrome during NREM sleep 120 seconds 1n

advance.

FIGS. 11A and 11B sums of link-weights leading from
every winmng SOM node of LAMSTAR neural network 440
to an output node of LAMSTAR neural network 440 as a
function of lead time. FIG. 11A 1s a graph of sums of link-
weights of LAMSTAR neural network 440 as a function of
prediction lead time for true positive decisions; that 1s, deci-
sions where LAMSTAR neural network 440 correctly pre-
dicted apnea or hypopnea. Similarly, FIG. 11B 1s a graph of
sums of link-weights of LAMSTAR neural network 440 as a
function of prediction lead time for false negative decisions;
that 1s, decisions where LAMSTAR neural network 440 indi-
cated breathing was normal, even though the patient had an
episode of apnea or hypopnea. Both FIGS. 11A and 11B use
open boxes to depict sums of link weights related to apnea and
use filled diamonds to depict sums of link weights related to
hypopnea.

As discussed above for FIGS. 4, 5A, and 3B, particular
embodiments of LAMSTAR neural network 440 adjust link-
weights 1n the link-weight matrix L between nodes in SOM
layer(s) and the output layer by incrementing link weights
during training for desired outputs and decrementing link
welghts during training for incorrect outputs. In these particu-
lar embodiments, sums of link weights of LAMSTAR neural
network 440 during operation estimate an “event proximity”
or duration of time in the future before an event will occur.

FIG. 11A 1indicates that sums for true positive decisions
increase as lead time decreases. Similarly, FIG. 11B 1ndicates
that sums of link weights for false negative decisions increase
as lead time decreases.

Since sums of link-weights increase the closer to an
impending event, even for false negative events, the sum of
link-weights provides an estimate ol event proximity. Fur-
thermore, T-tests of the sums of link-weights for true positive
results shown 1n FIG. 11A indicates the results within FIG.
11A are nearly all statistically distinguishable over all lead
times. That 1s, the lead times can be statistically differentiated
from each other based on sums of link-weights. Similarly,
T-tests indicate the sums of link-weights for false negative
results as shown 1n FIG. 11B are nearly all statistically dis-
tinguishable over all lead times.

A duration of event proximity can be estimated by deter-
miming a sum of link-weights and comparing the sum of
link-weights to one or more thresholds. For example, for true
positive results, FIG. 11A shows sum of link weights for
30-second lead time apnea prediction 1112 1s approximately
4’7, sum of link weights for apnea prediction for a 60-second
lead time 1120 1s approximately 40, sum of link weights for
apnea prediction for a 90-second lead time 1130 1s approxi-
mately 34, and sum of link weights for apnea prediction for a
30-second lead time 1140 1s approximately 32. Similarly,
FIG. 11B shows, for false negative results, sum of link
welghts for 30-second lead time apnea prediction 1160 1s
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approximately 45, sum of link weights for apnea prediction
for a 60-second lead time 1120 1s approximately 38, sum of
link weights for apnea prediction for a 90-second lead time
1130 1s approximately 32, and sum of link weights for apnea
prediction for a 30-second lead time 1140 1s approximately
30.

Continuing this example, a sum of link weights greater
than or equal to 41 indicates an apnea-event proximity of 30
seconds. Similarly, a sum of link weights greater than or equal
to 33 indicates an apnea-event proximity within 60 seconds.
In this example, a 30-second apnea-event-proximity thresh-
old with a value o1 41 1s used, and a 60-second apnea-event-
proximity threshold with a value of 35 1s used.

In an example technique to determine an event proximity,
a sum of link weights S 1s determined. In this example, an
apnea-event proximity of 30 seconds 1s determined when S
exceeds the 30-second apnea-event-proximity threshold. IT'S
does not exceed the 30-second apnea-event-proximity thresh-
old but does exceed the 60-second apnea-event-proximity
threshold, an apnea-event proximity of 60 seconds 1s deter-
mined. IT' S 1s less than the 60-second apnea-event-proximity
threshold, the event proximity would be undetermined at that
time.

In other scenarios and examples, more or fewer event-
proximity thresholds with different numerical data can be
used. In still other scenarios and examples, event proximities
for different events than the example of apnea events can be
determined using the techmique mentioned above of deter-
mining sums of link weights and comparing those sums to
thresholds.

In some embodiments, event proximities equal or exceed
segment sizes. For example, 11 30-second long segments were
used by LAMSTAR neural network 440 to generate a predic-
tion of sleep apnea syndrome with an apnea-event proximity
of 90 seconds, the apnea-event proximity would exceed the
30-second segment duration.

Apnea and Hypopnea Detection

FIG. 12A shows results of detection of sleep apnea syn-
drome events during both NREM sleep and REM sleep. Sleep
apnea detection was tested during 30-second segments only,
based on experience with sleep apnea prediction. For REM
apnea detection, the sensitivity was 82.7+1.9%, the specific-
ity was 86.1x1.3%, the PPV was 85.6x1.0%, and the NPV
was 83.3x1.4%. For NREM apnea detection, the sensitivity
was 88.6x1.2%, the specificity was 85.3+1.2%, the PPV was
85.8+0.9%, and the NPV was 88.3+1.0%.

FIG. 12B shows results of detection of hypopnea events
during both NREM sleep and REM sleep. As with sleep apnea
events, hypopnea detection was tested during 30-second seg-
ments only, based on hypopnea prediction experiences.
NREM hypopnea detection had a sensitivity of 82.8+3.5%, a
specificity o1 77.2+£5.2%,a PPV o1 78.6+3.3%, and a NPV of
81.9+2.4%. REM hypopnea detection had a sensitivity of
69.8+6.7%, a specificity o1 74.5+5.0%, a PPV o1 73.5£2.9%,
and a NPV of 71.5+£3.8%.

The most significant signals for apnea and hypopnea detec-
tion differed from apnea and hypopnea prediction. For apnea
detection, the most important signal was oronasal tempera-
ture. For hypopnea detection, the most important signal was
nasal pressure.

An Exemplary Method for Generating Physiological Event
Results

FIG. 13 1s a flowchart depicting exemplary functional
blocks of an exemplary method 1300 for generating physi-
ological event results.

Initially, as shown at block 1310, physiological data are
received at a physiological event processor from one or more
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input data sources. In some embodiments, the physiological
event processor 1s a computing device, such as described
above with respect to FIG. 3, and includes the functionality of
a physiological event processor as described with respect to
FIGS. 1, 2A, and 2B and/or the functionality of the data
preprocessor and LAMSTAR neural network described
above with respect to FIGS. 4, 5A, and 3B. In some scenarios,
the physiological data are related to a patient. The physiologi-
cal data are gathered from one or more mnput data sources.

As shown at block 1320, the physiological data are seg-
mented at the physiological event processor into a plurality of
segments. In some embodiments, each segment represents a
predetermined duration of physiological data. The physi-
ological data in each given segment of the plurality of seg-
ments are gathered from an nput data source of the one or
more mput data sources. In some embodiments, the given
segment includes an 1dentification of an mput data source for
the given segment. Example segmentations of data are dis-
cussed above with respect to FIGS. 2A and 4.

As shown at block 1330, a plurality of segments are trans-
formed into a plurality of transformed segments by using a
transformation at the physiological event processor. In some
embodiments, the plurality of segments are transformed
using at least one transformation on the plurality of segments.
Examples of generating segments and transformations are
discussed above with respect to FIGS. 2A, 4, and 6 A-6B.

As shown at block 1340, a physiological event result 1s
generated at the physiological event processor based on the
plurality of transformed segments. In some embodiments, the
physiological event result includes information related to a
physiological event. In particular embodiments, the physi-
ological event result comprises a significance value of a sig-
nificant input data source of the one or more mput data
sources. Significance values are discussed above in more
detail with respect to FIG. 1. In other embodiments, physi-
ological event result comprises an event proximity. Event
proximities are discussed above 1n more detail with respect to
FIGS. 11A and 11B.

Example physiological event results, such as predictions of
physiological events and detection of physiological events,
are discussed above with respect to FIGS. 1, 2B, 4, SA, and
5B. A specific example of generating physiological event
results for sleep-related physiological events 1s discussed
above with respect to FIGS. 6 A through 12B, inclusive.

As shown at block 1350, the physiological event result 1s
output from the physiological event processor to an output
device. Example outputs are discussed above with respect to
FIGS. 1, 2B, 4, SA, and 5B.

Thus, physiological event results are generated and subse-
quently output. The output physiological event results are
suitable for use 1n patient diagnosis, treatment (including but
not limited to the control of medical devices), therapy, and/or
monitoring.

It should be understood that the programs, processes,
methods and systems described herein are not related or lim-
ited to any particular type of computer or network system
(hardware or software), unless indicated otherwise. Various
types of general purpose or specialized computer systems can
be used with or perform operations 1n accordance with the
teachings described herein.

It should be turther understood that this and other arrange-
ments described herein are for purposes of example only. As
such, those skilled in the art will appreciate that other arrange-
ments and other elements (e.g., machines, interfaces, func-
tions, orders, and groupings of functions, etc.) can be used
instead, and some elements can be omitted altogether accord-
ing to the desired results. Further, many of the elements that
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are described are functional entities that can be implemented
as discrete or distributed components or 1n conjunction with
other components, 1n any suitable combination and location.

In view of the wide variety of embodiments to which the
principles of the present application can be applied, it should
be understood that the illustrated embodiments are examples
only, and should not be taken as limiting the scope of the
present application. For example, the steps of the flow dia-
grams can be taken in sequences other than those described,
and more or fewer elements can be used in the block dia-
grams. While various elements of embodiments have been
described as being implemented 1n software, 1n other embodi-
ments hardware or firmware implementations can alterna-
tively be used, and vice-versa.

The claims should not be read as limited to the described
order or elements unless stated to that efiect. Therefore, all
embodiments that come within the scope and spirit of the
following claims and equivalents thereto are claimed.

What 1s claimed 1s:

1. A method, comprising:

receving, at a physiological event processor, physiological

data related to a patient, the physiological data recerved
from one or more mput data sources;

segmenting, at the physiological event processor, the

physiological data into a plurality of segments, wherein
one or more segments of the plurality of segments rep-
resent a predetermined duration of physiological data
gathered from an input data source of the one or more
input data sources;

transforming, at the physiological event processor, the plu-

rality of segments nto a plurality of transformed seg-
ments by using at least one transformation on the plu-
rality of segments;
determining a value of a statistic for each transtformed
segment in the plurality of transformed segments;

determining a histogram of the plurality of values of the
statistic, wherein the histogram comprises a plurality of
subsegments;

for each value of the plurality of values of the statistic:

determining a subsegment of the histogram associated
with the value and

determining a code value for the associated subsegment
of the histogram;

generating, at the physiological event processor, a physi-

ological event result based on the plurality of code val-
ues, wherein the physiological event result comprises
information related to a physiological event, and
wherein the physiological event result further comprises
a significance value of a significant input data source of
the one or more iput data sources; and

outputting the physiological event result from the physi-

ological event processor to an output device.

2. The method of claim 1, wherein generating the physi-
ological event result comprises generating the physiological
event result using a system selected from the group consisting
of a neural network, a digital signal processor, and/or an
expert system.

3. The method of claim 1, wherein the physiological event
processor comprises a neural network.

4. The method of claim 3, wherein the physiological event

processor comprises a LArge Memory STorage And
Retrieval (LAMSTAR) neural network.

5. The method of claim 1, wherein the code value 1s asso-

ciated with a boundary of a subsegment of the histogram.
6. The method of claim 1, wherein the at least one trans-

formation comprises a wavelet transformation.
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7. The method of claim 1, wherein generating, at the physi-
ological event processor, the physiological event result com-
prises predicting or detecting, at the physiological event pro-
cessor, an occurrence of the physiological event.

8. The method of claim 7, wherein the physiological event
processor comprises a neural network, and wherein predict-
ing or detecting, at the physiological event processor, the
occurrence of the physiological event comprises predicting
the occurrence of the physiological event using the neural
network.

9. The method of claim 8, wherein the neural network
comprises a LAMSTAR neural network, and wherein pre-
dicting the occurrence of the physiological event using the
neural network comprises generating a prediction of the
occurrence of the physiological event using the LAMSTA
neural network.

10. The method of claim 9, wherein generating the predic-
tion of the occurrence of the physiological event using the
LAMSTAR neural network comprises determining the sig-
nificance of the significant input data source via the LAM-
STAR neural network.

11. The method of claim 9, wherein the prediction of the
occurrence of the physiological event 1s an output decision of
the LAMSTAR neural network.

12. The method of claim 1, wherein the physiological event
processor comprises a data preprocessor, the data preproces-
sor comprising a digital signal processor, and wherein gener-
ating the plurality of transformed segments by using at least
one transformation on the plurality of segments comprises
generating the plurality of transformed segments using the
data preprocessor.

13. The method of claim 12, wherein the data preprocessor
comprises a wavelet transformer.

14. The method of claim 12, wherein transforming the
plurality of segments into the plurality of transformed seg-
ments comprises generating parameters of individual fre-
quency bands of a wavelet transform using the wavelet trans-
former.

15. The method of claim 1, wherein generating the physi-
ological event result comprises detecting an occurrence of the
physiological event.

16. The method of claim 1, wherein outputting the physi-
ological event result comprises displaying the physiological
event result.

17. The method of claim 1, wherein outputting the physi-
ological event result comprises sending a command to an
output device, the command based on the physiological event
result.

18. An apparatus, comprising:

a processing unit;

a source data interface, configured to communicate with

one or more mput data sources;

an output 1nterface;

data storage; and

machine-language instructions, stored in the data storage,

that upon execution by the processing unit cause the

processing unit to perform functions comprising:

receiving physiological data related to a patient via the
source data interface,

segmenting the data mto a plurality of segments,
wherein one or more segments of the plurality of
segments represent a predetermined duration of
physiological data gathered from an mput data source
of the one or more 1nput data sources,

transforming the plurality of segments into a plurality of
transformed segments by using at least one transior-
mation on the plurality of segments,
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determining a value of a statistic for each transtormed
segment 1n the plurality of transformed segments,
determining a histogram based on the plurality of values
of the statistic, wherein the histogram comprises a
plurality of subsegments,
for each value of the plurality of the values of the statis-
tic:
determining a subsegment of the histogram associ-
ated with the value and
determining a code value for the associated subseg-
ment of the histogram,
generating a physiological event result based on the
plurality of code values, wherein the physiological
event result comprises a significance value of a sig-
nificant input data source of the one or more input data
sources, and
outputting the physiological event result via the output
interface.

19. The apparatus of claim 18, wherein the physiological
event result comprises an event proximity comprising an
event-proximity duration, wherein the event-proximity dura-
tion 1s greater than or equal to the predetermined duration.

20. The apparatus of claim 19, wherein the event-proximity
duration 1s a multiple of 30 seconds.

21. The apparatus of claim 19, wherein the physiological
data are associated with a physiological condition related to
sleep of the patient.

22. The apparatus of claim 21, wherein the physiological
condition 1s a sleep apnea syndrome.

23. The apparatus of claim 22, wherein the physiological
event result comprises a prediction of a sleep-apnea-syn-
drome event.

24. The apparatus of claim 22, wherein the physiological
event result comprises a detection of a sleep-apnea-syndrome
event.

25. The apparatus of claim 22, wherein the physiological
event result comprises a prediction of a hypopnea event.

26. The apparatus of claim 22, wherein the physiological
event result comprises a detection of a hypopnea event.

277. The apparatus of claim 18, wherein the at least one
transformation 1s a wavelet transformation.

28. The apparatus of claim 18, further comprising a net-
work-communication device, wherein recerving physiologi-
cal data related to a patient further comprises receiving the
physiological data via the network-communication device.

29. A non-transitory tangible computer-readable medium
having instructions stored thereon that, upon execution by a
computing device, cause the computing device to perform
functions comprising:

receving, at the computing device, physiological data

related to a patient, the physiological data received from
one or more mput data sources;

segmenting, at the computing device, the data 1nto a plu-

rality of segments, wherein a segment of the plurality of
segments represents a predetermined duration of physi-
ological data gathered from an 1nput data source of the
one or more mnput data sources;

transforming, at the computing device, the plurality of

segments mto a plurality of transformed segments by
using at least one transformation on the plurality of
segments;

determining, at the computing device, a value of a statistic

for each transformed segment 1n the plurality of trans-
formed segments;

determining a histogram of the plurality of values of the

statistic using the computing device, wherein the histo-
gram comprises a plurality of subsegments;
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for each value of the plurality of the values of the statistic,
the computing device:
determining a subsegment of the histogram associated
with the value and
determining a code value for the associated subsegment
of the histogram;
generating, at the computing device, a physiological event
result based on the plurality of code values, wherein the
physiological event result comprises information related
to a physiological event, and wherein the physiological
event result further comprises a significance value of a
significant iput data source of the one or more 1nput
data sources; and
outputting the physiological event result from the comput-
ing device.
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