US008768886B2
a2y United States Patent (10) Patent No.: US 8.768.886 B2
Megginson 45) Date of Patent: *Jul. 1, 2014
(54) USING AMQP FOR REPLICATION (56) References Cited
(71) Applicant: Red Hat, Inc., Raleigh, NC (US) U.s. PATENT DOCUMENTS
. : 7,139,973 Bl 11/2006 Kirkwood et al.
(72) Inventor: Richard Allen Megginson, 8,037,023 B2* 10/2011 Liuetal. ..ooooovvovvevininn, 707/613
Albuquerque, NM (US) 8.301,718 B2* 10/2012 Mackencocooovvevenn... 709/216
2005/0203993 Al* 9/2005 Grobmanetal. 709/203
(73) Assignee: Red Hat, Illc_:J lialeigllrJ NC ([JS) 200/0063961 A o 3/200 Gllih@ﬂ@llf et Ell* 707/622
2010/0088187 Al 4/2010 Courtney et al.
. . : : : 2011/0125823 Al 5/2011 Macken
(*) Notice: SUbJeCt‘ 10 any dlselalmer,i the term of this 2011/0145320 Al* 6/2011 Megginson 709/203
patent 1s extended or adjusted under 35 2011/0153563 Al* 6/2011 Fittereretal. 707/623
U.S.C. 154(b) by O days. 2011/0161929 Al 6/2011 Keating
OTHER PUBLICATIONS

This patent 1s subject to a terminal dis-
claimer. USPTO Notice of Allowance mailed Jun. 22, 2012 for U.S. Appl. No.

12/814,671.
(21) Appl. No.: 13/662,806 ’

(Continued)

(22) Filed: Oct. 29, 2012 _ _ o
Primary Examiner — Fred I Ehichioya

(65) Prior Publication Data Assistant Examiner — Michelle Owyang
US 2013/0054525 A1 Feb 28 2013 (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(37) ABSTRACT

o A first directory server computer system subscribes to update
Related U.S. Application Data data published by directory servers via an advanced message
(63) Continuation of application No. 12/814,671, filed on cueumg protocol (AMQP) server. The first directory server
Tun. 14. 2010 now Pat. No. 8310 595 recerves update data that indicates an update for a LDAP-
| j S based database associated with the first directory server.
(51) Int.Cl. When the recerved update data 1s tfrom the AMQP server, the
GO6F 17/30 (2006.01) first directory server converts the recerved update data into an
(52) U.S.CL LDAP data format and updates the LDAP-based database
USPC 707/622: 707/609: 707/610: 707/635: using the LDAP formatted update data. When the recerved

707/640; 707/661: 707/672; 707/705; 707/790: update data 1s not from the AMQP server, the first directory
707/R02 server updates the LDAP-based database using the received

(58) TField of Classification Search update data, converts the recerved update data into a wire level
CPC GOGE 17/30569: GOGF 17/30575: data format, and publishes the wire level formatted update
"""""""""""" GOGF 17 /30578 GOGF 17 /30589 data to the AMQP server. The AMQP server allows a second
USPC 707/609—610, 620—623 734-765. 640, directory server that subscribes to the AMQP server to obtain
707/661, 672, 7035, 790, 802; 709/201 233 data representing the update.
See application ﬁle for complete seareh history. 20 Claims, 9 Drawing Sheets
) 1- 1 o e
- __ .
,_L | ;f?aa
- - | * ;,,m?
::::::::::-{-:::::::;Dg

CONVERT THE LUPGATE DATA
INTO A WIRE LEVEL FORMAT

7

PLIBLASH THE WARE LEVEL LIPDATE DATA |
TO AN EXCHANGE DOl AN AMOHP SERVER |
THAT CORRESPONDS O THELIST |

..............
Te. DLENTY LT

SEMD & REFLICATION MESSAGE ,
TOTHE LEGACSY SERVER THAT HAVE |
REPL.CATICN AGREEMENTS

US 8,768,386 B2

Page 2
(56) References Cited USPTO Office Action mailed Jul. 27, 2012 for U.S. Appl. No.
12/814,678.
OTHER PUBLICATIONS Carstoiu et al., “A new grid caching system based on AMQP proto-

USPTO Notice of Allowance mailed Feb. 22, 2012 for U.S. Appl. No. col,” 2008, IADIS International Conference WWW/Internet, 5 pages.
12/814,671.

USPTO Office Action mailed Apr. 18, 2012 for U.S. Appl. No.
12/814,678. * cited by examiner

L Ol

601
INIO
345V8 avJT-NON

L0}
AN
A3Sva-dva

—_— .

US 8,768,386 B2

L
UGEY
U-1anag
AI010OH(T
e | m foeboy
= m m m
© m m A~ |
™ B o T ;/_P
N m m T P
Z m G0l) x| ,,,
= N 0% £11 801
e O ONMOMLAN Y pvias
m ..m....m..‘-..—.., “ A wi},.. A N axnr : ﬂ m
- ¥3NGAS - e _ _ T
dONY | J e e
= s - N m I)
m) | h €11 esegele(-IOABS
- o PeEEevdl Aiopaug
= — foebo
= ITT
- e b jup sbmioigueisisiedi i T
)y~ S N e e —
= w - ovt (suwd 1
- - WBISAS uoHeodey
= - 051 Olenes - gSligensg | paseg-obessepy | |
S Aojoei(] m AJ010841(] _
- \q - peseg-obessopy . peseg-ebessepy | | YGI| yeMsS Aopeng
) S P paseg-abessapy m

¢ Ol

US 8,768,386 B2

A alie VIIZ
w (24 12 {24
= SullA SdiN SHIN
a " m
D 512 - ®iZ e
= IRSERVELS - gyINNIS V-HIAIS
7 AHOLOFUIC - AMOLO3MIa AYOLOTYICE
A zsias,s.msias{ A
D :
1 '
— A I AN X
“ me o Lem e |
— AT A AN
e 4 | m R
= e m ey m G
pm m Uit m aite " vite "
- uSQbunALens B g EeTTARNE m vSa Bulgiiens |

62c Buiyilisaa abuetnxa

102 ¥3AYIS dONY

00¢

U.S. Patent

US 8,768,386 B2

Sheet 3 of 9

Jul. 1, 2014

U.S. Patent

¢ Ol

00¢

0CC YOLVOITdTY
AJVOTT

[543
dIHSTEND JONY

0Z¢ YIDYNYIN
ASvVEvIv(

GiE 44143ANOD
v.IvQ3 dv{

01€ ¥3FOYNVIA
NOILYDITd3Y

L0¢
HOLVOIINOWINOD
AOVOTT

G0E
HOLVOINOWINOD
dONY

TOF (SYW) weisAs
tojedi|dey poseg-abessaiy

GPE 1. "
juawisalBy uoiesday !

e Losbueyn

| 1HE Duiphisao sy

N TR
T pun ebeiolg

JUBISISIO

U.S. Patent Jul. 1,2014 Sheet 4 of 9 US 8,768,886 B2

400
v

:': START

CONFIGURE COMMUNICATION
WITH AN AMQP SERVER
 TO PUBLISH MESSAGES THAT |
. DESCRIBE DATABASE CHANGES |

SUBSCRIBE TO
THE AMQP SERVER TO OBTAIN
MESSAGES THAT DESCRIBE

DATABASE CHANGES

MAINTAIN REPLICATION
AGREEMENTS WiTH LEGACY
SERVERS TO EXCHANGE
MESSAGES THAT DESCRIBE
DATABASE CHANGES

FIG. 4

U.S. Patent

Jul. 1, 2014 Sheet

A B B O B OB B OB OB N MO W NN N NN NN NN EE N R,

-\'—--------------------------—

:/501

OBTAIN UPDATE DATA
THAT DESCRIBES A
CHANGE TO A DATABASE

X
/ \H\/503

5019

500
N

509

e .
.~ UPDATE DATA ™
_ RECEIED FROM
“_AMQP SERVER? -~

L
~ .

f >

NO--or P

L3

UPDATE THE
LDAP-BASED DATABASE
USING THE UPDATE DATA

\ %
S -

B

CONVERT THE UPDATE DATA
FROM WIRE LEVEL FORMAT
TO AN LDAP FORMAT

PUBLISH A MESSAGE THAT
DESCRIBES THE DATABASE
CHANGE TO THE AMQP SERVER

UPDATE THE
LDAP-BASED DATABASE USING
THE CONVERTED DATA

FIG. 5

US 8,768,386 B2

U.S. Patent

~ STORE THE MESSAGE

Jul. 1, 2014 Sheet 6 of 9

=N H E B E N N EE N E NN NN NN NN NN NN NN NN N

OBTAIN A REPLICATION
MESSAGE FROM A QUEUE
ON AN AMQP SERVER

CONVERT THE MESSAGE

FROM WIRE LEVEL FORMAT
TO AN LDAP FORMAT

605

UPDATE THE

LDAP-BASED DATABASE USING

THE CONVERTED DATA

i/ .

DATA IN A CHANGELOG WITH
AN INDICATOR THAT THE
MESSAGE DATA IS RECEIVED
FROM THE AMQP SERVER

/f’ "a\x {/ 609
7 o

" REPLICATION ™
" AGREEMENTSWITH

NO

“\J\EGACY SERVER/S;?J”
'\) e
~

tag

YES

| 611

SEND A REPLICATION
MESSAGE IN LDAP FORMAT
TO THE LEGACY SERVERS

US 8,768,386 B2

600
v

FIG. 6

U.S. Patent

-------------------- NO-——v’ RECEIVEDFROMA >

Jul. 1, 2014 Sheet 7 0of 9
START
__________________ S L
RECEIVE UPDATE DATA FROM 5

A LDAP-BASED CLIENT OR A LEGACY
DIRECTORY SERVER

PERFORM UPDATE .
! 705

STORE DATA IN THE CHANGELOG
Y

ASSQCIATE THE UPDATE DATA WITH A

LIST THAT CORRESPONDS TO AN ;
EXCHANGE ON THE AMQP SERVER |

709

CONVERT THE UPDATE DATA
INTO A WIRE LEVEL FORMAT

I ;,.711

* PUBLISH THE WIRE LEVEL UPDATE DATA
- TO AN EXCHANGE ON AN AMQP SERVER
~ THAT CORRESPONDS TO THELIST

.

T 13

-"F.'r-
-’H

.~ {IPDATE DATA™~_

T,

“~_ CLENT? -

e L=
T -~

s -
- -
.J'H H‘"\.
el -
/’r' e

" REPLICATION ™.

N < AGREEMENTS WITH >

"\ LEGACY SERVERS?~
N o

SEND A REPLICATION MESSAGE
TO THE LEGACY SERVER THAT HAVE
REPLICATION AGREEMENTS

US 8,768,386 B2

700
v

FIG. 7

U.S. Patent Jul. 1, 2014 Sheet 8 of 9 US 8.768.886 B2

800
'

i START
_____________________________________ \ A 4 801
RECEIVE A REQUEST

TO SUBSCRIBE TO AN EXCHANGE

CREATE A QUEUE
THAT CORRESPONDS TO THE
EXCHANGE FOR THE SUBSCRIBER

v / 805

RECEIVE A MESSAGE THAT
DESCRIBES A CHANGE TO A
DATABASE FROM A PUBLISHER |
THAT IS ASSOCIATED WITH THE |

EXCHANGE ’

807

STORE THE MESSAGEIN
THE QUEUES THAT CORRESPOND |
TO THE EXCHANGE

"

/ 809

NOTIFY THE SUBSCRIBERS OF
THE STORED MESSAGE

. ™,
t\\ END ;

FIG. 8

U.S. Patent Jul. 1, 2014 Sheet 9 of 9 US 8.768.886 B2
802 o 900
PROCESSING 5 S 910
DEVICE
N . g
MESSAGE-BASED |
Rt 1 926 < » VIDEO DISPLAY
. SYSTEM | 5
N e et
904 908
- 912
MAIN MEMORY
A
- MESSAGE-BASED |)» < > ALPHA-NUMERIC
REPLICATION [~J__ 026 NPUT DEVICE
__________ SYSTEM
— 904 — 914
CURSOR
STATIC MEMORY i« < > CONTROL DEVICE
o
-
929 = : 916
NETWORK DATA STORAGE DEVICE
INTERFACE i«
DEVICE COMPUTER-READABLE 924
STORAGE MEDIUM [T
“ » '\\ ----------------------
NN | MESSAGE-BASED ~|926
VO 918 REPLICATION
/m\,{'“{yﬂ- f :,\ SYSTEM
F NETWO\RKQ)
<)}
AL
920
< N SIGNAL
GENERATION
DEVICE

FIG. 9

US 8,768,886 B2

1
USING AMQP FOR REPLICATION

RELATED APPLICATIONS

This application 1s a continuation of U.S. patent applica-

tion Ser. No. 12/814.,671, filed on Jun. 14, 2010 entitled
USING AMQP FOR REPLICATION, which 1s related to
U.S. patent application Ser. No. 12/814,678, filed on Jun. 14,

2010, entitled SERVICING DATABASE OPERATIONS
USING A MESSAGING SERVER.

TECHNICAL FIELD

Implementations of the present disclosure relate to data
replication. Specifically, the implementations of the present
disclosure relate to a method and system for replicating data
using an advanced message queuing protocol (AMQP)
Server.

BACKGROUND

Many enterprises have implemented a directory service to
store and manage enterprise data, such as user data, user
account data, group data, etc. The directory service can be
hosted by a directory server and can store the enterprise data
using a directory for all of the information 1n a single, net-
work-accessible repository. The directory can be a directory
that uses a lightweight directory access protocol (LDAP). The
enterprise data in an LDAP-based directory may be replicated
among a number ol directory servers. Replication 1s the
mechanism that automatically copies directory data from one
directory server to another. Replication enables an enterprise
to provide a highly available directory service and to distrib-
ute the enterprise data geographically. In practical terms,
replication can help ensure that the directory 1s available even
il some hardware, software, or network problem prevents
directory client applications from accessing a particular
directory server.

A directory server that holds a master copy of the informa-
tion can automatically copy any updates to all replicas in
other directory servers. However, replication that requires
cach directory server to communicate directly with every
other directory server 1n a replication environment can restrict
the resources of the directory server, which can negatively
alfect the performance of the directory server. In addition, a
replication environment where each directory server commu-
nicates with every other directory server 1s not easily scalable
and can limit the number of directory servers that can be
deployed 1n the replication environment. When the resources
of the directory servers that are currently deployed reach a
maximum capacity, a system administrator cannot easily
scale the replication environment.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s illustrated by way of example,
and not by way of limitation, 1n the figures of the accompa-
nying drawings in which like references indicate similar ele-
ments. It should be noted that different references to “an” or
“one” implementation 1n this disclosure are not necessarily to
the same implementation, and such references mean at least
one.

FIG. 1 illustrates example network architecture 1n which
implementations of the present disclosure may operate.

FIG. 2 1s a block diagram of one implementation of a
system 1ncluding an AMQP server for replicating database
updates.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 1s a block diagram of one implementation of a
message-based replication system for replicating database

updates using an AMQP server.

FI1G. 415 aflow diagram of one implementation of a method
for a message-based directory server configuring communi-
cation with an AMQP server to replicate a change made to an
LDAP-based database.

FIG. S1s atlow diagram of one implementation of a method
for replicating a change to a database using an AMQP server.

FIG. 6 1s atlow diagram of one implementation of a method
for obtaining a replication message from an AMQP server and
using the message to replicate a change to an LDAP-based
database.

FI1G. 71s aflow diagram of one implementation of a method
for receiving update data from a client and/or a legacy server
and replicating the update using an AMQP server.

FIG. 815 aflow diagram of one implementation of a method
for an AMQP server to publish messages for replicating a
change made to an LDAP-based database.

FIG. 9 15 a diagram of one implementation of a computer
system for a message-based replication system.

DETAILED DESCRIPTION

Implementations of the disclosure are directed to a method
and system for replicating database updates using an
advanced message queuing protocol (AMQP) server. A first
directory server computer system subscribes to update data
published by directory servers via an advanced message
queuing protocol (AMQP) server. The update data indicates
changes made to lightweight directory access protocol
(LDAP)-based databases managed by the directory servers.
The first directory server receives update data that indicates
an update for a LDAP-based database associated with the first
directory server. When the received update data 1s from the
AMQP server, the first directory server converts the recerved
update data into an LDAP data format and updates the LDAP-
based database using the LDAP formatted update data. When
the recetved update data 1s not from the AMQP server, the first
directory server updates the LDAP-based database using the
received update data, converts the received update data into a
wire level data format, and publishes the wire level formatted
update data to the AMQP server. The AMQP server allows a
second directory server that subscribes to the AMQP server to
obtain data representing the update.

Implementations of the present disclosure allow a direc-
tory server to use an AMQP server to replicate changes made
to LDAP-based databases. Using an AMQP server to repli-
cate changes made to LDAP-based databases reduces the
burden placed on the resources of a directory server and
enhances the scalability of the number of directory servers
that can be deployed 1n a replication environment.

FIG. 1 1llustrates example network architecture 100 1n
which implementations of the present disclosure may oper-
ate. The architecture 100 includes one or more directory
servers 115,135 that host a directory service to store data
using network 105. A directory server 115,135 can be any
type of computing device including server computers, desk-
top computers, laptop computers, gateway computers, or
similar computing device. The network 105 can be a public
network (e.g., Internet) or a private network (e.g., a local area
network (LAN)).

The network architecture 100 can include an advanced
message queuing protocol (AMQP) server 125 that hosts a
publisher/subscriber messaging service. AMQP 1s an open
Internet Protocol for messaging that uses a wire level protocol
for messaging. The AMQP server 125 allows publishers to

US 8,768,886 B2

3

distribute data to AMQP subscribers. An AMQP server 125
can be any type of computing device including server com-
puters, desktop computers, laptop computers, gateway com-
puters, or similar computing device.

A directory server 115,135 can store enterprise data, such
as user data, user account data, group data, etc, 1n a persistent
storage unit 117 using a directory that stores all of the infor-
mation in a single, network-accessible repository. The reposi-
tory can be a lightweight directory access protocol (LDAP)
based repository, such as an LDAP-based database 113. A
database may represent any type of data storage including, for
example, relational or hierarchical databases, flat files, appli-
cation or shared memory, etc. However, 1t 1s expressly con-
templated that any appropriate directory and directory service
can be enhanced for use 1n accordance with the replication
architecture described herein. A persistent storage unit can be
a local storage unit or a remote storage unit. Persistent storage
units can be a magnetic storage unit, optical storage unit, solid
state storage unit or similar storage unit. Persistent storage
units can be a monolithic device or a distributed set of devices.
A ‘set,” as used herein, refers to any positive whole number of
items.

A directory server, such as directory server 115, can
include a message-based replication system 140 to allow the
directory server 115 to publish data to the AMQP server 1235
and to subscribe to the AMQP server 125 to obtain data for
replicating database changes made to an LDAP-based data-
base 113. A directory server 115 that includes a message-
based replication system 140 1s hereinafter referred to as a
message-based directory server. Using an AMQP server 125
to replicate changes can help mimimize the burden placed on
the resources ol a message-based directory server 1135 and can
enhance the scalability of the number of directory servers that
can be deployed 1n a replication environment. In one 1mple-
mentation, the AMQP server 125 resides on a separate
machine from a message-based directory server 115. In
another implementation, the AMQP server 125 and a mes-
sage-based directory server 115 may be hosted by the same
machine.

A directory server, such as directory server 135, that does
not include a message-based replication system 140 1s here-
inafter referred to as a legacy directory server. A legacy direc-
tory server 135 does not use the AMQP server 1235 for repli-
cating updates to an LDAP-based database 113, butrather can
maintain replication agreements with other legacy directory
servers 135 and as well as with message-based directory
servers 115 for replicating changes made to the enterprise
data 1n an LDAP-based database 113.

Users 101 of an LDAP-based client 107 can change the
enterprise data that 1s stored in the LDAP-based databases
113. An LDAP-based client 107 1s a client that 1s compatible
with the lightweight directory access protocol. An LDAP-
based client 107 can be a smart hand-held device or any type
of computing device including desktop computers, laptop
computers, mobile communications devices, cell phones,
smart phones, hand-held computers or similar computing
device capable of transmitting certificate requests and receiv-
ing certificates.

For example, the LDAP-based databases 113 may store a
telephone number o1 (5535) 555-1234 for Joe Smith and a user
101 can use an LDAP-based client 107 to send update data to
request that the message-based directory servers 115 and the
legacy directory servers 135 update the user data for Joe
Smith in the respective LDAP-based databases 113 with a
new telephone number of (555) 555-3678. One of the direc-
tory servers 115,135 may receive the update data request from
the LDAP-based client 107 and can process the request to

5

10

15

20

25

30

35

40

45

50

55

60

65

4

update the telephone number for Joe Smith in the LDAP-
based database 113 which 1t manages.

If the directory server 115,135 that processes the update
request from the LDAP-based client 107 1s a message-based
directory server 115, 1t can use the AMQP server 125 to
replicate the change to the telephone number of Joe Smith in
the other message-based directory servers 1135 and can use
replication agreements to replicate the change to the legacy
directory servers 135. If the directory server 115,135 that
processes the update request from the LDAP-based client 107
1s a legacy directory server 133, 1t can use replication agree-
ments to replicate the change to other legacy directory servers
135 and to message-based directory servers 115 which 1t has
replication agreements with. In turn, a message-based direc-
tory server 115 can recerve update data from the legacy direc-
tory server 135 pertaining to the change to the telephone
number of Joe Smith and can use the AMQP server 125 to
replicate the change to the other message-based directory
servers 115.

The network architecture 100 can include non-LDAP
based clients 109. A non-LDAP based client 109 can be a
client that 1s using a protocol that 1s not compatible with
receiving and processing LDAP data. A non-LDAP based
client 109 can subscribe to the messaging service hosted by
the AMQP server 125 to obtain update data pertaining to the
updates made to the LDAP-based databases 117 and to pub-
lish requests to update an LDAP-based database. U.S. patent
application Ser. No. 12/814,678, filed on Jun. 14, 2010, and
1ssued as U.S. Pat. No. 8,719,338 on May 6, 2014, describes
a method and system for a directory server to obtain an
operation request to update an LDAP-based database from a
non-LDAP based.

FIG. 2 1s a block diagram of one implementation of a
system 200 for replicating database updates using an AMQP
server 201. The AMQP server 201 hosts a messaging service
that allows publishers to publish messages which are distrib-
uted to the subscribers of the AMQP server 201. For example,
directory servers 213 are publishers that can publish replica-
tion messages that describe changes made to LDAP-based
databases 217 using the AMQP server 201. Directory servers
215 can also be subscribers that subscribe to the AMQP server
201 to obtain replication messages that allow a directory
server 215 to update 1ts own LDAP-based database 217
according to the replication message. Message-based direc-
tory servers 215 include a message-based replication system
(MRS) 240 for communicating with the AMQP server 201 to
replicate changes made to the LDAP-based databases 217,
which 1s described in one implementation in greater detail
below 1n conjunction with FIG. 3.

The AMQP specification includes components, such as an
exchange, a queue, and bindings. An exchange, such as
exchange_everything 229, canreceive messages from AMQP
publishers. An example of a message 1s areplication message
that includes data describing a change made to an LDAP-
based database 217. For example, directory servers 215 are
publishers to the everything exchange 229 and can publish
replication messages to the everything_exchange 229.

An exchange 229 can have one or more corresponding
queues 231 that store messages that are published to the
exchange 229. A queue can be assigned to one subscriber. For
example, each subscriber of the everything exchange 229
can have 1ts own queue. For instance, directory server-A
215A has an everything. DSA queue 231A for obtaining
replication messages that are published to the everything ex-
change 229. Implementation of one subscriber to a queue can
help ensure that each message-based directory server 2151 a
replication environment obtains a replication message.

US 8,768,886 B2

S

An exchange 229 can route a replication message to the
queues 231 based on properties of the replication message or
the content of the replication message. An exchange 229 can
be a ‘topic’ or ‘match’ type of exchange for routing messages
to queues based on pattern. For example, the exchan-
ge everything 129 can automatically route update data to all
of the queues that match the pattern “everything.<server 1d>"
(e.g., everything. DSA, everything. DSB, everything. DSC).
Bindings define the relationship between a queue and an
exchange and provide the routing criteria. A queue 231 can
store a message, such as a replication message, until a sub-
scriber can obtain the message. An AMQP server 201 can
deliver (push) a message that 1s stored 1n a queue 231 to a
subscriber. Alternatively, an AMQP server 201 can send a
notification to a subscriber that a message 1s stored 1n a queue
and a subscriber may receive (pull) a message from the queue
231.

FIG. 3 1s a block diagram of one implementation of a
system 300 for replicating database updates using message-
based replication system 301. The message-based replication
system 301 includes an AMQP communicator 305, a legacy
communicator 307, areplication manager 310, an LDAP data
converter 315, a database manager 320, an AMQP publisher
325, and a legacy replicator 330.

The AMQP communicator 303 can configure communica-
tion with an AMQP server to publish messages to an
exchange on the AMQP server, such as replication messages
that describe changes made to an LDAP-based database. The
AMQP communicator 305 can configure communication
with an AMQP server to subscribe to the AMQP server to
obtain replication messages that are published to the
exchange by other publishers, such as other message-based
directory servers.

The legacy communicator 307 can configure communica-
tion with legacy directory servers, which do notuse an AMQP
server for replication, to exchange replication messages that
describe changes made to an LDAP-based database. The
legacy communicator 307 can establish and maintain repli-
cation agreements with legacy directory servers and can store
replication agreement data 345 1n a persistent storage unit that
1s coupled to the message-based replication system 301.

The replication manager 310 can recerve update data that
describes a change to an LDAP-based database. The update
data can be arequest from a client, a replication message from
a legacy directory server, and a replication message from an
AMQP server. The replication manager 310 can determine
where the update data 1s recerved from by examining the
content of the update data and/or the protocol used to obtain
the update data. For example, the replication manager 310 can
examine an IP address pertaining to the update data to deter-
mine whether the update data 1s from an AMQP server.

The format of the update data can be different depending
on whether the update data 1s received from the AMQP server,
or an LDAP-based client and legacy directory server. For
example, the update data from an LDAP-based client and a
legacy directory server can be in an LDAP data format. The
update data from an AMQP server can be 1n a wire level data
format. The LDAP data converter 315 can convert replication
messages that are obtained from an AMQP server from the
wire level data format into an LDAP data format.

The database manager 320 can update the LDAP-based
database according to the update data obtained by the repli-
cation manager 310. The database manager 320 can use the
data that 1s 1n an LDAP data format, such as data received
from an LDAP-based client and data received from a legacy
server to update an LDAP-based database. The database man-
ager 320 can also use data that the LDAP data converter 3135

10

15

20

25

30

35

40

45

50

55

60

65

6

converts from a wire level data format into an LDAP data
format, such as a replication message obtained from an
AMQP server, to update an LDAP-based database. The data-
base manager 320 can store data that describes a change made
to the LDAP-based database 1n a changelog 343 1n the per-
sistent storage unit 317. The database manager 320 can
include an indicator in the data that indicates whether the
update data for the change was recerved from an AMQP
server. An indicator that represents that update data was
received from an AMQP server allows the message-based
replication system 301 to determine that 1t does not need to
republish the change to the AMQP server since the data was
already obtained from the AMQP server.

The AMQP publisher 325 can publish update data, such as
replication messages, to the AMQP server. The AMQP pub-
lisher 325 can associate update data that 1s received from an
LDAP-based client and recerved from a legacy server with a
list, such as list_everything 341. The list 341 can be stored 1n
a persistent storage unit 317 that 1s coupled to the message-
based replication system 301. The list 341 corresponds to an
exchange on the AMQP server. The AMQP publisher 325
publishes update data that 1s recerved from an LDAP-based
client and from a legacy server to an exchange on the AMQP
server to allow subscribers that subscribe to the exchange to
obtain a replication message that describes the change that
was made to an LDAP-based database.

AMQP uses a wire level data format and can recerve mes-
sages that are 1n the wire level data format from publishers.
The AMQP publisher 325 can convert the update data that 1s
associated with the list_everything from an LDAP data for-
mat 1nto the wire level data format and can publish the data
that 1s converted into the wire level data format to the
exchange. Examples of wire level data formats can include
and are not limited to a Qpid data format, directory services
markup language (DSML) format, and LDAP data inter-
change format (LDIF). Qpid 1s an open source messaging
implementation built on AMQP sponsored by the Apache
Software Foundation. DSML 1s a data format that provides a
means for representing directory structural information as an
extensible markup language (XML) document. The LDIF
data format 1s a wire level data format used to import and
export directory information between LDAP-based directory
servers, or to describe a set of changes which are to be applied
to a directory. However, 1t 1s expressly contemplated that any
appropriate wire level data format can be used in accordance
with the replication architecture described herein.

The LDAP replicator 330 can exchange replication mes-
sages with legacy directory servers for replication changes to
LDAP-based databases without using an AMQP server. The
LDAP replicator 330 can determine whether a message-based
directory server maintains replication agreements with
legacy directory servers. The LDAP replicator 330 can exam-
ine the replication agreement data 345 1n the persistent data
unit to determine which legacy servers, if any, 1t maintains a
replication agreement with, and can send update data, such as
areplication message 1n an LDAP data format, to those legacy
servers which it has replication agreements with.

FIG. 4 1s a flow diagram which 1llustrates an implementa-
tion of a method 400 for a message-based directory server
configuring communication with an AMQP server to repli-
cate a change made to an LDAP-based database. Method 400
can be performed by processing logic that can comprise hard-
ware (e.g., circuitry, dedicated logic, programmable logic,
microcode, etc.), software (e.g., mstructions run on a process-
ing device), or a combination thereof. In one implementation,
method 400 1s performed by the message-based replication
system 140 1n a directory server 1135 of FIG. 1. In one imple-

US 8,768,886 B2

7

mentation, the method 400 starts with a user, such as a system
administrator, setting up an exchange (e.g., everything ex-
change) on an AMQP server to allow message-based direc-
tory servers to publish replication messages to the exchange.

At block 401, the message-based replication system con-
figures communication with an AMQP server to send (pub-
lish) update data to an exchange that has one or more corre-
sponding queues. An AMQP server can provide the available
exchanges to the message-based replication system. For
example, the AMQP server can provide a list that includes the
everything_exchange to a system administrator. The mes-
sage-based replication system can receive user input, such as
from the system adminstrator, of the selection of an exchange
for the message-based replication system to publish update
data to. For example, the message-based replication system
can configure communication with AMQP server to publish
update data to the exchange everything.

At block 403, the message-based replication system
requests the AMQP server to create a queue that corresponds
to the exchange_everything for storing update data to be
obtained by the message-based replication system. For
example, a user may request that the AMQP messaging sys-
tem create the queue everything. DSA to allow directory
server-A to obtain update data for updates made to LDAP-
based databases.

In one implementation, at block 405, the message-based
replication system can further establish a replication agree-
ment with a legacy directory server and can store replication
agreement data in a persistent storage unit. A replication
agreement allows the message-based replication system to
exchange replication messages that describe changes to an
LDAP-based database with legacy directory servers without
using an AMQP server.

FIG. 5 15 a flow diagram which 1llustrates an implementa-
tion of a method 500 for replicating a change to an LDAP-
based database using an AMQP server. Method 500 can be
performed by processing logic that can comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (e.g., instructions run on a processing
device), or a combination thereof. In one implementation,
method 500 1s performed by the message-based replication
system 140 1n a directory server 115 of FIG. 1.

In one implementation, the method 500 starts with the
message-based replication system configuring communica-
tion with an AMQP server to publish update data to an
exchange and to subscribe to the exchange to recerve update
data that 1s published by other message-based replication
systems. The message-based replication system can also
establish replication agreement with legacy directory servers
for exchanging replication messages with the legacy direc-
tory servers without using an AMQP server.

At block 501, the message-based replication system
obtains update data for updates pertaining to an LDAP-based
database. Update data can represent a change made or to be
made to an LDAP-based database (e.g., name changes, email
address changes, and telephone number changes, social secu-
rity number changes, etc.). The update data can include an
entry 1dentifier, a list of object classes for the entry, and data
that represents an entire database entry. For example, update
data may indicate a change to user data, such as a new tele-
phone number. LDAP databases may store a telephone num-
ber o1 (555) 555-1234 for Joe Smith. Update data can indicate
a new telephone number of (355) 555-5678 for Joe Smith.

At block 503, the message-based replication system deter-
mines whether the update data 1s obtained from an AMQP
server. A directory server can obtain update data from an
AMQP server, a legacy server, and an LDAP-based client.

10

15

20

25

30

35

40

45

50

55

60

65

8

The message-based replication system can examine the con-
tent of the update data and/or the protocol used to obtain the
update data to determine whether the update data 1s received
from. For example, the message-based replication system can
examine an IP address to determine whether the update data
1s from an AMQP server. I the update data 1s obtained from
an AMQP server (block 503), the update data 1s in a wire level
data format and the message-based replication system con-
verts the update data obtained from the AMQP server into an
LDAP data format at block 505. At block 507, the message-
based replication system updates the LDAP-based database
using the update data that 1s converted into the LDAP data
format.

If the update data 1s not obtained from an AMQP server
(block 503), for example, the update data 1s recerved from an
LDAP-based client or from a legacy directory server, the
update data 1s already 1n an LDAP data format. At block 509,
the message-based replication system updates the LDAP-
based database using the update data that 1s already 1n the
LDAP data format. At block 511, the message-based replica-
tion system publishes update data to the AMQP server to
replicate the change indicated by the update data received
from the LDAP-based client or the legacy server, which 1s
described 1in one implementation 1n greater detail below 1n
conjunction with FIG. 7.

FIG. 6 1s a flow diagram which 1llustrates an implementa-
tion of a method 600 for obtaining a replication message from
an AMQP server and using the message to replicate a change
to an LDAP-based database. Method 600 can be performed
by processing logic that can comprise hardware (e.g., cir-
cuitry, dedicated logic, programmable logic, microcode,
etc.), soltware (e.g., instructions run on a processing device),
or a combination thereof. In one implementation, method 600
1s performed by the message-based replication system 140 1n
a directory server 115 of FIG. 1.

In one implementation, the method 600 starts with the
message-based replication system subscribing to an
exchange hosted by an AMQP server to receive update data,
such as replication messages, that 1s published by other mes-
sage-based replication systems. The message-based replica-
tion system can obtain replication messages that are stored in
a queue, which corresponds to the message-based replication
system, on the AMQP server.

At block 601, the message-based replication system
obtains a replication message from 1ts corresponding queue
on the AMQP server. The queue can store a replication mes-
sage until the message-based replication system can obtain
the replication message. The AMQP server can deliver (push)
the replication message that 1s stored in the queue to the
message-based replication system. Alternatively, the AMQP
server can send a notification to the message-based replica-
tion system that a replication message 1s stored 1n the queue
and the message-based replication system may receive (pull)
the replication message from the queue.

Messages that are obtained from the AMQP server are 1n a
wire level data format (e.g., Qpid, DSML, LDIF), and at
block 603, the message-based replication system converts the
replication message into the LDAP data format. For example,
directory server-A may publish a replication message to the
everything exhange that indicates a change to a telephone
number to be made 1n an LDAP-based database. Directory
server-B may recerve a notification from the AMQP server
that a replication message that describes the change to the
telephone number 1s stored 1n the queue that corresponds to
directory server-B. Directory server-B may pull the replica-
tion message from the queue and convert the update data in
the replication message into an LDAP data format.

US 8,768,886 B2

9

At block 605, the message-based replication system
updates the LDAP-based database using the data that 1s con-
verted mto the LDAP data format. The converted replication
message can include an entry identifier, a list of objectclasses
for the entry, and data that represents an entire database entry.
The message-based replication system can identify the entry
identifier 1n the converted update data and search the data 1in
the LDAP-based database for a matching entry identifier. The
message-based replication system can replace the entry 1n the
LDAP-based database having the matching identifier with the
entry 1n the converted update data to replicate the change. The
update data can include all of the attributes for an entry and
the message-based replication system can replace the entire
entry 1n the LDAP-based database. For example, the update
data may include the name of Joe Smith, a different telephone
number, and an unchanged email address. The message-
based replication system can replace the entire entry (e.g., the
name, the telephone number, and the email address) 1n the
address book database with the entry 1n the converted update
data even though only the telephone number has changed.

At block 607, the message-based replication system stores
data 1n a changelog that describes the change made to the
LDAP-based database, including an indicator that the update
data for the change was obtained from the AMQP server. At
block 609, the message-based replication system determines
whether the message-based directory server maintains repli-
cation agreements with legacy servers. The message-based
replication system can examine the replication agreement
data to determine which legacy servers, 1f any, 1t maintains a
replication agreement with. If the message-based replication
system does not maintain any replication agreements with
legacy servers (block 609), the method ends. If the message-
based replication system maintains a replication agreement
with a legacy directory server (block 609), the message-based
replication system sends a replication message in an LDAP
data format to the legacy server at block 611.

FI1G. 7 1s a flow diagram which 1llustrates an implementa-
tion of a method 700 for recerving update data from a client
and/or a legacy server and replicating the update using an
AMQP server. Method 700 can be performed by processing,
logic that can comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (e.g.,
instructions run on a processing device), or a combination
thereot. In one implementation, method 700 1s performed by
the message-based replication system 140 i1n a directory
server 1135 of FIG. 1.

In one implementation, the method 700 starts with the
message-based replication system maintaining replication
agreements with legacy directory servers to receive update
data from a legacy server, and configuring communication
with an AMQP server to publish replication messages to an
exchange on the AMQP server.

At block 701, the message-based replication system
receives update data that 1s not from an AMQP server. For
example, the message-based replication system can receive
update data from an LDAP-based client or from a legacy
directory server. The update data that 1s not from an AMQP
server 1s already 1n an LDAP data format. At block 703, the
message-based replication system updates an LDAP-based
database that 1s coupled to the message-based replication
system using the update data that 1s already 1n the LDAP data
format. The message-based replication system can identify an
entry i1dentifier 1n the update data and search the data in the
LDAP-based database for a matching entry identifier. The
message-based replication system can replace the entry 1n the
LDAP-based database having the matching identifier with the
entry in the update data to replicate the change. At block 705,

10

15

20

25

30

35

40

45

50

55

60

65

10

the message-based replication system stores data in a
changelog that describes the change made to the LDAP-based
database.

At block 707, the message-based replication system asso-
ciates the update data that 1s recerved from a client or recerved
from a legacy server (at block 701) with a list, such as list_ev-
erything. The list corresponds to an exchange on the AMQP
server. At block 709, the message-based replication system
prepares update data to be published to the exchange to allow
subscribers of the exchange to obtain a replication message
that describes the change that was made to the LDAP-based
database. The message-based replication system converts the
update data that 1s 1n the LDAP data format into a wire level
data format (e.g., Qpid, DSML, LDIF) to allow a replication
message to be published on the exchange hosted by the
AMQP server. The update data that 1s converted into a wire
level data format can include an entry 1dentifier, a list of object
classes for the entry, and data that represents an entire data-
base entry (an entry that includes changed and un-changed
attributes). For example, a database entry may include three
attributes: a name, a telephone number, and an email address.
The message-based replication system can send update data
that includes all of the attributes even 1f only the telephone
number attribute has change. For deleted entries, the mes-
sage-based replication system can send an entry identifier
with an empty attribute list to the corresponding exchange.

At block 711, the message-based replication system pub-
lishes the replication message that 1s 1n the wire level data
format on the exchange. Publishing the replication message
on the exchange allows other message-based replication sys-
tems that subscribe to the exchange to obtain the replication

message. These message-based replication systems can
update the

LDAP-based databases to retlect the change.

At block 713, the message-based replication system deter-
mines whether the update data recerved at block 701 was
received from a client. The message-based replication system
can determine where the update data 1s recerved from by
examining the content of the update data and/or the protocol
used to obtain the update data. If the update data i1s not
received from a client, the method ends. If the update data 1s
received from a client (block 713), the message-based repli-
cation system determines whether the message-based direc-
tory server maintains replication agreements with legacy
servers at block 715. The message-based replication system
can e¢xamine the replication agreement data to determine
which legacy servers, 1f any, it maintains a replication agree-
ment with. If the message-based replication system does not
maintain any replication agreements with legacy servers
(block 715), the method ends. If the message-based replica-
tion system maintains a replication agreement with a legacy
directory server (block 715), the message-based replication
system sends a replication message in an LDAP data format
to the legacy server at block 717. A legacy directory server
can use the update data to replicate a change 1n an LDAP-
based database, which 1s manages, without using the AMQP
SErver.

FIG. 8 1s a flow diagram which 1llustrates an implementa-
tion of a method 800 for an AMQP server to publish messages
for replicating a change made to an LDAP-based database.
Method 800 can be performed by processing logic that can
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), soltware (e.g., instructions run
on a processing device), or a combination thereof. In one
implementation, method 800 i1s performed by the AMQP
server 125 of FIG. 1.

In one implementation, the method 800 starts with a user,
such as a system administrator, setting up an exchange on the

US 8,768,886 B2

11

AMQP server to allow message-based directory servers to
publish replication messages that describe changes made to
LDAP-based databases. For example, a user can configure an
everything_exchange on the AMQP server and have multiple
message-based directory servers as publishers for the every-
thing_exchange.

At block 801, the AMQP server recetves a request to sub-
scribe to an exchange, such as the everything_exchange. The
request can be from a message-based directory server, such as
directory server-A. The everything exchange may have more
than one subscriber. For example, the AMQP server may
receive a subscriber request for the everything exchange

from directory server-B and directory server-C.

At block 803, the AMQP server creates a queue for a
subscriber. The queue corresponds to the everything ex-
change and stores messages that are published to the every-
thing_exchange. The queue can be assigned to a single sub-
scriber. For example, the AMQP server creates an
everything. DSA queue for directory server-A, an every-
thing. DSB queue for directory server-B, and an every-
thing.DSC queue for directory server-C.

At block 805, the AMQP server recetves a message from a
publisher that 1s to be published on the exchange. The mes-
sage can be a replication message that describes a change
made to an LDAP-based database. For example, the AMQP
server recerves a replication message from directory server-B
that describes a change made to a telephone number 1n the
LDAP-based database that 1s coupled to directory server-B.

Atblock 807, the AMQP server stores the replication mes-
sage 1n the queues that correspond to the exchange to allow
subscribers to obtain the replication message. For example,
the AMQP server stores the replication message that
describes the changed telephone number in the every-
thing. DS A queue for directory server-A, the everything. DSB
queue for directory server-B, and the everything. DSC queue
tor directory server-C.

In one implementation, at block 809, the AMQP server
notifies the subscribers that subscribe to the exchange that a
replication message 1s stored 1n a corresponding queue. Sub-
sequently, a subscriber can receive the notification and obtain
the replication message from the queue. In another imple-
mentation, the AMQP server sends the replication message
that 1s stored 1n a queue to the corresponding subscriber.

FIG. 9 1s a diagram of one implementation of a computer
system for a message-based replication system. Within the
computer system 900 is a set of instructions for causing the
machine to perform any one or more of the methodologies
discussed herein. In alternative implementations, the
machine may be connected (e.g., networked) to other
machines 1n a LAN, an intranet, an extranet, or the Internet.
The machine can operate in the capacity of a server or a client
machine (e.g., a client computer executing the browser and
the server computer executing the automated task delegation
and project management) 1n a client-server network environ-
ment, or as a peer machine 1n a peer-to-peer (or distributed)
network environment. The machine may be a personal com-
puter (PC), a tablet PC, a console device or set-top box (STB),
a Personal Digital Assistant (PDA), a cellular telephone, a
web appliance, a server, a network router, switch or bridge, or
any machine capable of executing a set of instructions (se-
quential or otherwise) that specily actions to be taken by that
machine. Further, while only a single machine 1s 1llustrated,
the term “machine” shall also be taken to include any collec-
tion of machines (e.g., computers) that individually or jointly
execute a set (or multiple sets) of instructions to perform any
one or more of the methodologies discussed herein.

10

15

20

25

30

35

40

45

50

55

60

65

12

The example computer system 900 includes a processing
device 902, a main memory 904 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 906 (e.g., flash memory,
static random access memory (SRAM), etc.), and a secondary
memory 916 (e.g., a data storage device 1n the form of a drive
unit, which may include fixed or removable computer-read-
able storage medium), which communicate with each other
via a bus 908.

Processing device 902 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device 902 may be a complex instruction set computing
(CISC) microprocessor, reduced instruction set computing,
(RISC) microprocessor, very long nstruction word (VLIW)
microprocessor, processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. Processing device 902 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. Processing device 902 1s configured to execute the
message-based replication system 926 for performing the
operations and steps discussed herein.

The computer system 900 may further include a network
interface device 922. The computer system 900 also may
include a video display unit 910 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)) connected to the com-
puter system through a graphics port and graphics chipset, an
alphanumeric input device 912 (e.g., a keyboard), a cursor
control device 914 (e.g., a mouse), and a signal generation
device 920 (e.g., a speaker).

The secondary memory 916 may include a machine-read-
able storage medium (or more specifically a computer-read-
able storage medium) 924 on which 1s stored one or more sets
of instructions (e.g., the message-based replication system
926) embodying any one or more of the methodologies or
functions described herein. The message-based replication
system 926 may also reside, completely or at least partially,
within the main memory 904 and/or within the processing
device 902 during execution thereof by the computer system
900, the main memory 904 and the processing device 902 also
constituting machine-readable storage media. The a mes-
sage-based replication system 926 may further be transmitted
or received over a network 918 via the network interface
device 922.

The computer-readable storage medium 924 may also be
used to store the message-based replication system 926 per-
sistently. While the computer-readable storage medium 924
1s shown 1n an example implementation to be a single
medium, the term “computer-readable storage medium”™
should be taken to include a single medium or multiple media
(e.g., a centralized or distributed database, and/or associated
caches and servers) that store the one or more sets of istruc-
tions. The terms “computer-readable storage medium™ shall
also be taken to include any medium that 1s capable of storing
or encoding a set of instructions for execution by the machine
and that cause the machine to perform any one or more of the
methodologies of the present disclosure. The term “com-
puter-readable storage medium’™ shall accordingly be taken to
include, but not be limited to, solid-state memories, and opti-
cal and magnetic media.

The message-based replication system 926, components
and other features described herein (Tor example in relation to
FIG. 3) can be implemented as discrete hardware components
or mtegrated 1n the functionality of hardware components

US 8,768,886 B2

13

such as ASICS, FPGAs, DSPs or similar devices. In addition,
the message-based replication system 926 can be imple-
mented as firmware or functional circuitry within hardware
devices. Further, the message-based replication system 926
can be implemented 1n any combination hardware devices
and software components.

In the above description, numerous details are set forth. It
will be apparent, however, to one skilled in the art, that the
present disclosure may be practiced without these specific
details. In some instances, well-known structures and devices
are shown 1n block diagram form, rather than in detail, 1n
order to avoid obscuring the present disclosure.

Some portions of the detailed description which follows
are presented in terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
cifectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
result. The steps are those requiring physical manipulations
of physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “subscribing”’, “recerving”’, “‘converting”’, “updating”,
“publishing”, “examiming”’, “associating”’, “sending”, “stor-
ing”’, “maintaining,” or the like, refer to the actions and pro-
cesses of a computer system, or similar electronic computing
device, that manipulates and transforms data represented as
physical (e.g., electronic) quantities within the computer sys-
tem’s registers and memories into other data similarly repre-
sented as physical quantities within the computer system
memories or registers or other such information storage,
transmission or display devices.

Implementations of the disclosure also relate to an appa-
ratus for performing the operations herein. This apparatus can
be specially constructed for the required purposes, or it can
comprise a general purpose computer system specifically
programmed by a computer program stored in the computer
system. Such a computer program can be stored in a com-
puter-readable storage medium, such as, but not limited to,
any type of disk including tloppy disks, optical disks, CD-
ROMSs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems can be used with programs
in accordance with the teachings herein, or 1t may prove
convenient to construct a more specialized apparatus to per-
form the method steps. The structure for a variety of these
systems will appear from the description below. In addition,
implementations of the present disclosure are not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages

10

15

20

25

30

35

40

45

50

55

60

65

14

can be used to implement the teachings of implementations of
the disclosure as described herein.

A computer-readable storage medium can include any
mechanism for storing information 1n a form readable by a
machine (e.g., a computer), but 1s not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory

(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only memory (EPROM), Electri-
cally Frasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, tlash memory, or the like.

Thus, a method and apparatus for replicating database
updates using an AMQP server 1s described. It 1s to be under-
stood that the above description 1s intended to be illustrative
and not restrictive. Many other implementations will be
apparent to those of skill in the art upon reading and under-
standing the above description. The scope of the disclosure
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

The mnvention claimed 1s:
1. A method comprising:
subscribing to update data published by a plurality of direc-
tory servers via an advanced message queuing protocol
(AMQP) server, the update data indicating changes
made to lightweight directory access protocol (LDAP)-
based databases managed by the directory servers;

recerving update data, by a processor of a first directory
server, the recerved update data indicating an update for
a LDAP-based database associated with the first direc-
tory server;

when the received update data 1s from the AMQP server,

converting, by the processor, the received update data
into an LDAP data format and updating the LDAP-based
database associated with the first directory server using
the LDAP formatted update data; and

when the recerved update data 1s not from the AMQP

server, updating, by the processor, the LDAP-based
database associated with the first directory server using
the received update data, converting the recerved update
data into a wire level data format, and publishing the
wire level formatted update data to the AMQP server,
wherein the AMQP server allows a second directory
server that subscribes to the AMQP server to obtain data
representing the update.

2. The method of claim 1, wherein the first directory server
and second directory server are LDAP-based directory serv-
ers.

3. The method of claim 1, further comprising:

examining an Internet Protocol (IP) address corresponding,

to the recerved update data to determine whether the
received update data 1s from the AMQP server.

4. The method of claim 1, wherein converting the received
update data into the wire level data format comprises:

converting the received update data into at least one of a

Qp1d™ data format, a directory services markup lan-
guage (DSML) format, or an LDAP data interchange
format (LDIF).

5. The method of claim 1, wherein publishing the received
update data to the AMQP server comprises:

associating the recetved update data with a list stored on the

first directory server; and

sending the wire level formatted update data to an

exchange, hosted by the AMQP server, that corresponds
to the list.

US 8,768,886 B2

15

6. The method of claim 1, further comprising;

storing the recerved update data with an indicator that the
received update data 1s from the AMQP server when the
received update data 1s from the AMQP server.

7. The method of claim 1, further comprising:

maintaining a replication agreement with a legacy direc-
tory server; and

sending the LDAP formatted update data to the legacy
server when the recerved update data 1s from the AMQP
Server.

8. A system comprising:

a memory to store a lightweight directory access protocol
(LDAP)-based database associated with a first directory
server computer system; and

a processor of the first directory server computer system 1s
coupled to the memory and 1s configured to:

subscribe to update data published by a plurality of direc-
tory servers via an advanced message queuing protocol
(AMQP) server, the update data indicating changes
made to LDAP-based databases managed by the direc-
tory servers;

receive update data indicating an update to be made to the
LDAP-based database associated with the first directory
server computer system;

when the recerved update data 1s from the AMQP server,
convert the recerved update data into an LDAP data
format and update the LDAP-based database associated
with the first directory server computer system using the
LDAP formatted update data; and

when the recerved update data i1s not from the AMQP
server, update the LDAP-based database associated with
the first directory server computer system using the
received update data, convert the received update data
into a wire level data format, and publish the wire level
formatted update data to the AMQP server, wherein the
AMQP server allows a second directory server computer
system that subscribes to the AMQP server to obtain data
representing the update.

9. The system of claim 8, wherein the first directory server
computer system and the second directory server computer
system are LDAP-based directory server computer systems.

10. The system of claim 8, wherein the processor 1s further
configured to:

examine an Internet Protocol (IP) address corresponding to
the recerved update data to determine whether the update
data 1s recetved from the AMQP server.

11. The system of claim 8, wherein converting the recerved

update data into the wire level data format comprises:

converting the received update data into at least one of a
Qp1d™ data format, a directory services markup lan-
guage (DSML) format, or an LDAP data interchange
format (LDIF).

12. The system of claim 8, wherein publishing the recerved

update data to the AMQP exchange comprises:

storing a list, that 1s associated with an exchange hosted on
the AMQP server, in the persistent storage unit;

associating the recerved update data with the list; and

sending the wire level formatted update data to the
exchange corresponding to the list.

13. The system of claim 8, wherein the memory 1s further
to store a log for managing updates made to the LDAP-based
database and wherein the processor 1s further to add the
received update data to the log with an indicator that the

10

15

20

25

30

35

40

45

50

55

60

16

received update data 1s from the AMQP server when the
received update data 1s from the AMQP server.

14. The system of claim 8, wherein the processor 1s further
coniigured to:

maintain a replication agreement with a legacy directory

server; and send the LDAP formatted update data to the
legacy server when the received update data 1s from the
AMQP server.
15. A non-transitory computer-readable medium including
instructions that, when executed by a processor of a first
directory server, cause the processor to perform operations
comprising;
subscribing to update data published by a plurality of direc-
tory servers via an advanced message queuing protocol
(AMQP) server, the update data indicating changes
made to lightweight directory access protocol (LDAP)-
based databases managed by the directory servers;

recerving update data, by the processor of the first directory
server, the recerved update data indicating an update for
a LDAP-based database associated with the first direc-
tory server;

when the received update data 1s from the AMQP server,

converting, by the processor, the received update data
into an LDAP data format and updating the LDAP-based
database associated with the first directory server using
the LDAP formatted update data; and

when the recerved update data 1s not from the AMQP

server, updating, by the processor, the LDAP-based
database associated with the first directory server using
the recerved update data, converting the received update
data into a wire level data format, and publishing the
wire level formatted update data to the AMQP server,
wherein the AMQP server allows a second directory
server that subscribes to the AMQP server to obtain data
representing the update.

16. The non-transitory computer-readable medium of
claim 15, wherein the first directory server and second direc-
tory server are LDAP-based directory servers.

17. The non-transitory computer-readable medium of
claim 15, the operations further comprising;

examining an Internet Protocol (IP) address corresponding,

to the recerved update data to determine whether the
received update data 1s from the AMQP server.

18. The non-transitory computer-readable medium of
claim 15, wherein converting the received update data into the
wire level data format comprises:

converting the recerved update data 1into at least one of a

Qpi1d™ data format, a directory services markup lan-
guage (DSML) format, or an LDAP data interchange
format (LDIF).

19. The non-transitory computer-readable medium of
claim 15, the operations further comprising;:

storing the received update data with an indicator that the

received update data 1s from the AMQP server when the
received update data 1s from the AMQP server.

20. The non-transitory computer-readable storage medium
of claim 15, the operations further comprising:

maintaining a replication agreement with a legacy direc-

tory server; and

sending the LDAP formatted update data to the legacy

server when the recerved update data 1s from the AMQP
Server.

	Front Page
	Drawings
	Specification
	Claims

