US008760457B2
a2y United States Patent (10) Patent No.: US 8.760.,457 B2
Bourd et al. 45) Date of Patent: Jun. 24, 2014
(54) DATA ACCESS TOOL FOR PROGRAMMABLE 6,407,736 B1* 6/2002 Regancccocoenn.... 345/422
GRAPHICS HARDWARE 6,996,694 B1* 2/2006 Muthukkaruppan 345/543
7,215,344 B2* 5/2007 Baldwin 345/620
: : _ 7,256,788 B1* 82007 Luuetal 345/501
(75) Inventors: AlexeiV. B_ourd,, San.Dlegoj CA (US),- 2005/0049779 Al 3/2005 Culbert of al
Guofang Jiao, San Diego, CA (US); Lin 2005/0122334 Al 6/2005 Boyd et al.
Chen, San Diego, CA (US) 2005/0166007 Al1* 7/2005 Onocccooeeviviiiiinnnnnn, 711/105
(73) Assignee: QUALCOMM Incorporated, San FOREIGN PATENT DOCUMENTS
Diego, CA (US)
EP 0969370 1/2000
EP 1594091 A2 11/2005

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 OTHER PURLICATIONS
U.S.C. 1534(b) by 982 days.

Strengert Magnus et al., “A Hardware-Aware Debugger for the
(21) Appl. No.: 11/782,509 OpenGL Shading Language,” Institute for Visualization and Interac-
tive Systems, University of Stuttgart, 2007, <http://www.
graphicshardware.org/previous/www__ 2007 /presentations/

(22) Filed: Jul. 24, 2007
strengert-opengldebugger-gh07.pdf>.

(65) Prior Publication Data Taiwanese Search report—097128159— TIPO—Dec. 26, 2011.
US 2009/0027407 A1l Tan. 29 2009 International Search Report and Written Opinion—PCT/US2008/
! 070917, International Search Authority—FEuropean Patent Office—
(51) Int.Cl. Dec. 23, 2008.
G09G 5/39 (2006.01) % cited by examiner
GO6T 1/00 (2006.01) J
GO6T 15/00 (2011.01)
GO6F 15/16 (2006.01) Primary Examiner — Ke Xiao
(52) U.S.CL. Assistant Examiner — Robert Craddock
USPC 345/531; 345/574; 345/522; 345/502; (74) Attorney, Agent, or Firm — James R. Gambale, Jr.
345/503
(58) Field of Classification Search (57) ABSTRACT
CPC e G09G 5/363; GO9G 5/393 _ .
UsPC 345/544. 556, 574, 501-506, 522. 531, Methods and apparatuses for accessing data within program-

345/539- 34/544 mable graphics hardware are provided. According to one
’ aspect, a user inserts special log commands 1nto a software

See application file for complete search history.
PP P ry program, which 1s compiled into instructions for the program-

(56) References Cited mable graphics hardware to execute. The hardware writes
data to an external memory during runtime according to a
U.S. PATENT DOCUMENTS flow control protocol, and the software driver reads the data
from the memory to display to the user.
4920481 A * 4/1990 Binkleyetal. 703/26
5,450,543 A * 9/1995 Vargacoooeeiiiinnnnn, 345/556
6,008,782 A * 12/1999 Chien ..coooveeveviiveeeeinininnns 345/28 32 Claims, 3 Drawing Sheets
00 Set memory buffer access parameters
4
202 Calculatc writc memory address

Sleep for number of

Has cntry been
cycles

rcad?

204 >

NO

206

YES

h 4

208 Write data to write memory address

U.S. Patent Jun. 24, 2014 Sheet 1 of 3 US 8,760,457 B2

BUS 114
Programmable hardware 100 /
User 112
Shader 102
ALU 102.1 I

User interface
110

ALU 102.n CPU/

software
driver 108

Shader 104

«——»| Memory
106

FIGURE 1

U.S. Patent Jun. 24, 2014 Sheet 2 of 3 US 8,760,457 B2

200 Set memory buffer access parameters
202 Calculate write memory address

Sleep for number of
NO cycles

206

Has entry been

204
rcad?

YES

A4

208 Write data to write memory address

FIGURE 2

U.S. Patent Jun. 24, 2014 Sheet 3 of 3 US 8.760.457 B2

300 Software initializes memory buffer

302 Software driver instructs ALU to log data

NO

304 rlas Hew cniry Perform other
been written?
tasks
310
YES
306 Stream data to user-accessible file;

format data type

A4

308 Clear dirty bit of entry

FIGURE 3

US 8,760,457 B2

1

DATA ACCESS TOOL FOR PROGRAMMABLLE
GRAPHICS HARDWARE

TECHNICAL FIELD

The disclosure relates to programmable graphics hard-
ware. In particular, the disclosure relates to techniques for
eificient debugging of software that runs on programmable
graphics hardware.

BACKGROUND

A recent trend 1n the manmipulating and displaying of real-
time 3D graphics 1s the increasing use of programmable
graphics hardware. Such hardware 1s characterized by the
presence of multiple programmable hardware stages, known
as “shaders,” arranged 1n a pipeline. In contrast with “fixed,”
or non-programmable hardware, each hardware stage 1n a
programmable hardware pipeline can be programmed to per-
form a desired computational function, allowing {for
increased flexibility in the design of graphics algorithms.
Examples of shaders include geometry shaders, vertex shad-
ers, and pixel shaders.

When designing and debugging shader programs, a pro-
grammer may find 1t useful to access and view the runtime
values of a shader’s internal register and ALU (arithmetic
logic unit) variables. This may be difficult, however, as there
1s usually no mechanism by which a shader’s internal values
can be transferred to an external location accessible to the
programmer, such as an external memory module.

One possible approach 1s to purposefully assign the value
of an 1nternal variable of interest to the color of an outgoing
pixel, send this pixel to the pixel blender block, wait until the
pixel 1s drawn on a screen, and then mspect the color of the
drawn pixel. While this approach takes advantage of an
already existing pathway mside the shader, it has several
disadvantages. First, 1t would be easier for the programmer 1f
the value of the internal variable were displayed 1n 1ts native
format (e.g., floating point, integer, etc.), rather than as the
color of a pixel on a screen. Second, the internal graphics
pipeline might not be able to deliver the value of the pixel
color unmodified to the screen buffer, leading to a problem
with precision. For example, the pixel color could be 32-bit
floating point, while the screen butfer for a particular monitor
might only support 8-bit integer precision. In this case, it may
be 1mpossible to ascertain the actual value of an internal
shader variable based solely on pixel color. Third, the above
technique may be very cumbersome for a vertex shader, since
the vertex shader 1s usually followed by a fragment shader. In
this case, the fragment shader would need to be replaced by a
“dummy” pass-through shader so that the values generated
within the vertex shader can be passed unmodified to a screen
buftfer.

What 1s needed 1s a debugging tool having a simple user
interface that allows programmers to easily and reliably
ascertain the values of 1nternal shader variables during runt-
ime 1n programmable graphics hardware.

SUMMARY

One aspect of the present disclosure provides a method for

transierring graphics processor unit (GPU) data to a memory
builer, the method comprising determining a base address

and a number of sleep cycles; counting a number of vertices

or pixels processed to derive an ofiset; derving a memory
address based on the base address and said offset; checking 1f

the entry corresponding to said memory address has been

10

15

20

25

30

35

40

45

50

55

60

65

2

read; 1t the entry has been read, writing data to said memory
address; and 1f the entry has not been read, waiting said
number of sleep cycles before performing said checking
again.

Another aspect of the present disclosure provides an appa-
ratus comprising a counter for counting a number of vertices
or pixels processed to derive an offset; and a processor con-
figurable to determine a memory address based on a base
address and said offset, the processor further configurable to
verily that an entry corresponding to said memory address has
been read before writing data to said memory address, the
processor Iurther configurable to wait a number of sleep
cycles 11 1t 1s determined that the entry has not been read.

Another aspect of the present disclosure provides a com-
puter program product, comprising computer-readable
medium comprising code for causing a computer to deter-
mine a base address and a number of sleep cycles; code for
causing a computer to count a number of vertices or pixels
processed to derive an offset; code for causing a computer to
derive a memory address based on the base address and said
olfset; code for causing a computer to check 1 the entry
corresponding to said memory address has been read; code
for causing a computer to write data to said memory address
if the entry has been read; and code for causing a computer to
wait said number of sleep cycles 1f the entry has not been read.

Another aspect of the present disclosure provides a method
for transferring a runtime variable of a graphics processing
unit to a user, the method comprising compiling software
code 1to 1nstructions for the graphics processing unit, the
software code comprising a log command specifying a vari-
able name; transferring the value of a variable corresponding
to said variable name from the graphics processing unit to an
external memory according to a memory tflow control proto-
col; retrieving the value of said variable from said external
memory; formatting said retrieved value of said vanable;
displaying said formatted value of said variable to the user.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an embodiment of a programmable graphics
hardware system.

FIG. 2 shows an embodiment 1n which a shader ALU,
running hardware istructions derived from the software code
written by user 112 1n FIG. 1, transfers values from internal
ALU vanables to an externally accessible memory buiier.

FIG. 3 shows an embodiment 1n which a software driver
accesses the memory butler entries written to by the shader

ALUs.

DETAILED DESCRIPTION

Disclosed herein are tools and techniques for allowing
programmers easier access to internal shader variables during,
runtime. These include techniques for transferring data from
internal shader variables to an externally accessible memory
butler. Disclosed also are a structure and a protocol for han-
dling the memory butler to allow reliable butiered delivery of
data from the shader ALU to a software driver.

FIG. 1 shows an embodiment of a programmable graphics
hardware system. A programmable graphics hardware unit
100 can have several shaders 102, 104. In one embodiment,
there can be a pixel shader and a fragment shader. In other
embodiments, there may be more than two shaders. Each
shader may include multiple internal AL Us 102.1 through
102.7, each ALU processing multiple internal variables. For
example, ALU 102.1 processes internal variables 102.1a and

102.15. The ALU 102.1 may interface to an off-chip memory

US 8,760,457 B2

3

106 via a bus 114. The AL U 102.1 may be configured to read
and write data to the memory 106 via the bus 114.

Via the bus 114, off-chip memory 106 1s also accessible by
a software driver 108, which can read the data stored in
memory 106. The software driver 108 communicates with a
user interface 110, which 1s provided to a programmer or user
112. The software driver 108 also communicates directly with
programmable hardware 100 via the bus 114.

In an embodiment, the user 112 programs soitware code
through user imnterface 110. The code defines the functionality
to be performed by the shader 102, and i1s written using
commands as specified 1n a high-level shader language speci-
fication such as Open GL ES Shading Language. A compiler
(not shown) compiles the code nto low-level hardware
instructions that can be supplied to the shader 102 via soft-
ware driver 108.

In an embodiment, the user 112 can embed special log
commands 1nto the software code which instruct the shader to
output the values of specified internal shader variables during
runtime to an externally accessible location for access by the
user 112. In an embodiment, the log command allows the user
112 to specily the name of the internal shader variable to be
logged, the data type of the variable (e.g., whether the variable
1s 32-bit tloating point or 8-bit integer), as well as a character
string that can be used to attach descriptive information to the
logged varnable.

In an embodiment, the log command 1s called an “shprintt™
function, and takes the following format:

void shprinti(char*label, int data_type, variable);

where “label” points to a character string which can be up
to 3 characters long 1n an embodiment, and can describe the
variable to be logged;

where “data_type™ 1s an integer specifying one of the fol-
lowing data types: unsigned char (8-bit), signed char (8-bit),
unsigned short (16-bit), signed short (16-bit), unsigned int
(32-bit), signed int (32-bit), floatl6, tloat24, float32, or any
other data type(s) that might be supported by the architecture;

and where “variable” refers to any attribute, varying or
temporary, that exists i the shader.

FIG. 2 shows an embodiment 1n which a shader ALU,
running hardware instructions derived from the software code
written by user 112 1n FIG. 1, transfers values from internal
ALU vanables to an externally accessible memory butier.

In step 200, the ALU 1s mitially provided with certain
parameters relating to memory butler access. In one embodi-
ment, these parameters include the address of the butler (BU-
F_ADDR), the length of a block (BLK_LEN) as measured 1n
number of builer entries, the total length of the butier (BU-
F_ILLEN) as measured 1n buffer entries, and the number of
cycles to sleep between attempts to write to the bulfer
(SLEEP_CYCLE_CNT). In one embodiment, these param-
cters may be automatically generated uniforms, 1.e., run-time
objects with the same global state, provided from the software
driver to the shader. In one embodiment, the compiler auto-
matically generates these uniforms when 1t detects the pres-
ence of the special log commands 1n the software code.

In an embodiment, each entry of the memory bufler array
can hold a 64-bit word. In other embodiments, each entry can
be 128 bits, 256 bits, or any other size. In one embodiment, the
number of 64-bit words 1n the array 1s a power of two to
simplify bit handling 1n the shader. In an embodiment, the
software driver 1nitializes the butler to all zeroes. The buffer
may be subdivided into equally-sized blocks. The size of the
butiler and the size of blocks may be controlled at run-time by
the soltware driver as described earlier. The collection of
blocks can treated in a circular manner, 1.e. the last block may

be followed by the first block.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

In an embodiment, each entry of the memory buller array
contains mformation on a dirty bit, a carriage return, a data
type, a string label, and data contents. The dirty bit of an entry
can indicate whether the contents of the entry have already
been read out. The carnage return can indicate whether the
corresponding variable 1s to be displayed 1n the same line as
a subsequent variable. The data type can indicate the data type
of the corresponding data contents for display formatting.
The string label can 1dentity the data contents. The data con-
tents contain the actual value of the variable of interest.

In an embodiment, the bits of an entry can be allocated as
follows:

[

Carriage

Dirty Bit Return Data Type String label Data Contents

1 bit 1 bit 6 bits 24 bits 32 bits

Subsequent to being provided the memory builer access
parameters in step 200, the shader AL U can proceed to imple-
ment a flow control algorithm to make sure the shader
memory accesses do not overtake the software driver memory
accesses, as 1llustrated 1n steps 202-208.

In step 202, the ALU determines an address 1n the memory
buifer to which data will be written. The address may be

determined as an offset value from the parameter
BUF_ADDR, and may be calculated by simply adding the

offset to BUF_ADDR. The offset may be derived from a
special counter register in the ALU 102.1 that tracks the
number of vertices (or pixels, depending on the function of
the shader) for which data has already been written to the
memory bulfer. This may be useful because a single ALU
may process multiple vertices (or pixels) in parallel threads,
and thus a call to shprintf for one variable may generate
multiple instances of data corresponding to the multiple
instances of that variable 1n the parallel threads. The vertex or
pixel counter can provide a way to separate each istance of
a variable within the memory butfer.

In an embodiment, the programmer can then determine
which data 1n the memory corresponds to which vertex or
pixel according to the following. For the vertex shader, the
programmer can readily determine the order in which the
vertices are processed by the shader, since the order 1n which
vertices are sent to the shader 1s generally pre-determined by
the application. For a pixel shader, however, the programmer
might not know the order of pixels processed. In this case, 1T
the programmer needs to know which pixel corresponds to
which value stored 1n memory, the programmer can simply
use the aforementioned log command to display the pixel data
along with a field identitying the pixel, such as pixel position.
For instance, in Open GL ES Shading Language, there are
special variables that hold pixel position such as glFragCo-
ord.x and glFragCoord.y.

The vertex or pixel counter could, for instance, be a 32-bit
number that 1s 1mitialized to zero at power up. In an embodi-
ment, the value held by the counter 1s referred to as pixelCnt.
In one embodiment, the offset value 1s calculated as pixelCnt
& (BUF_LEN-1), where pixelCnt 1s the counter value
referred to earlier, & 1s a logical AND operation, and
BUF_LEN 1s the total length of the builer in entries. Note that
performing a logical AND operation on the value of
BUF_LEN-1 allows circular addressing of the memory
buifer up to BUF_LEN-1.

In step 204, the shader ALU checks the dirty bit of the entry
corresponding to the memory address to be written to. If the
dirty bit 1s set, this means that the entry has not been pro-

US 8,760,457 B2

S

cessed, and so the shader AL U stalls. In an embodiment, the
shader ALU stalls by entering a sleep state, during which
execution of the shader program 1s halted for a period of time.
At the end of SLEEP_CYCLE_CNT number of cycles, the
shader ALU wakes up and checks the dirty bit again. It the
dirty bit 1s cleared, this means that the entry has been pro-
cessed, and the shader ALU can proceed to step 208, where
the shader ALU writes new data to that memory address.

In an embodiment, the steps depicted in FIG. 2 can be

implemented using the following pseudo-code, wherein
BUF_LEN and BLK_LEN are assumed to be powers of two:

offset = pixelCnt & (BUF__LEN-1);
if ((offset & (BLK_LEN-1))==0) {
Dirty = LOAD (BUF__ADDR + offset);
While (Dirty & 1)
Sleep SLEEP__ CYCLE__CNT;
Dirty = LOAD (BUF__ADDR + offset);

h
h

STORE (BUF__ADDR+offset, value)

In the pseudo-code, the function LOAD returns the bits of
the entry corresponding to the memory address specified, and
the function STORE writes a specified value to the corre-
sponding memory address. The line “if ((offset &
(BLK_LEN-1))=—=0)" 1n the pseudocode instructs the
shader to perform the dirty-bit check on a per-block basis
rather than on a per-entry basis, which may be usetul as the
L.OAD operation for the check may tend to slow the process
down. In an alternative embodiment, however, the check can
also be performed on a per-entry basis.

FIG. 3 shows an embodiment 1n which a software driver
accesses the memory bufler entries written to by a shader
ALU 1 FIG. 2.

In step 300, the software driver initializes the memory
butler to all zeroes. In step 302, the software driver 1nstructs
the ALU to log the desired data. In step 304, the software
driver checks the entry corresponding to the memory address
written to determine if the dirty bit 1s set. If the bit 1s not set,
this indicates that the memory address has not yet been writ-
ten to, and the software driver will perform some other tasks
310, and check back at a later time.

If the bit 1s set, then the algorithm proceeds to step 306,
where the software driver accesses the contents of the
memory and streams the data to a user-accessible file. In an
embodiment, the facility that saves the log file can be an
on-board file system, network communication layer for trans-
mitting the mformation to a server, etc. In one embodiment,
the soitware driver also converts the data into an appropnate
format based on the data type of the value. In step 308, the
software driver clears the dirty bit of the first entry of the
block, indicating to the shader that that block of the memory
butler can be stored with new data.

The previous description of the disclosed embodiments 1s
provided to enable any person skilled 1n the art to make or use
the present invention. Various modifications to these embodi-
ments will be readily apparent to those skilled 1n the art, and
the generic principles defined herein may be applied to other
embodiments without departing from the spirit or scope of the
invention. Thus, the present mvention i1s not intended to be
limited to the embodiments shown herein but is to be
accorded the widest scope consistent with the principles and
novel features disclosed herein.

In one or more exemplary embodiments, the functions
described may be implemented 1n hardware, software, firm-
ware, or any combination thereof. If implemented 1n soft-

10

15

20

25

30

35

40

45

50

55

60

65

6

ware, the functions may be stored on or transmitted over as
one or more instructions or code on a computer-readable
medium. Computer-readable media includes both computer
storage media and communication media including any
medium that facilitates transfer of a computer program from
one place to another. A storage media may be any available
media that can be accessed by a computer. By way of
example, and not limitation, such computer-readable media
can comprise RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that can be used to carry
or store desired program code 1n the form of istructions or
data structures and that can be accessed by a computer. Also,
any connection 1s properly termed a computer-readable
medium. For example, 1 the software 1s transmitted from a
website, server, or other remote source using a coaxial cable,
fiber optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and microwave,
then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio, and microwave
are 1included 1n the definition of medium. Disk and disc, as
used herein, includes compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), tloppy disk and blu-ray disc
where disks usually reproduce data magnetically, while discs
reproduce data optically with lasers. Combinations of the
above should also be included within the scope of computer-
readable media.

The mvention claimed 1s:

1. A method comprising:

transierring, by a graphics processor unit (GPU), shader

variable data to a memory builer external to the GPU,

wherein transierring the shader variable data comprises:
determining, by the GPU, a base address and a number
of sleep cycles;

counting, by the GPU, a number of vertices or pixels
processed to dertve an offset;

deriving, by the GPU, a memory address based on the
base address and said offset:;

checking, by the GPU, 1f an entry corresponding to said
memory address has been read by a second, different
processor unit;

i the entry has been read by the second processor unit,
writing, by the GPU, the shader variable data to said
memory address; and

if the entry has not been read by the second processor
unit, waiting, by the GPU, said number of sleep cycles
belfore performing said checking again.

2. The method of claim 1, the memory buffer being a
circular buffer having a butler length.

3. The method of claim 1, the memory buifer divided 1nto
equally sized blocks, each block having a number of entries
which 1s an mteger power of two.

4. The method of claim 3, the shader variable data written
to a representative memory address within each block, the
shader variable data written to said representative memory
address comprising a dirty bit to indicate whether the corre-
sponding block has been read, the checking comprising
checking the value of said dirty bit of said representative
memory address, the method further comprising resetting the
value of said dirty bit when the shader variable data 1s written
to said block.

5. The method of claim 1, the shader variable data written
to said memory address comprising a dirty bit to indicate
whether an entry has been read, the checking comprising
checking the value of said dirty bit, the method further com-
prising resetting the value of said dirty bit when the shader
variable data 1s written to said memory address.

US 8,760,457 B2

7

6. The method of claim 1, the shader variable data written
to said memory address comprising a carriage return bit.

7. The method of claim 1, the shader variable data written
to said memory address comprising shader variable data con-
tents, a data type corresponding to said shader variable data
contents, and a string label corresponding to said shader
variable data contents.

8. The method of claim 1, wherein writing the shader
variable data to the said memory address comprises writing,
the shader variable data 1n a native data format.

9. The method of claim 1, wherein the shader variable data
comprises at least one of an integer value and a tloating point
value.

10. The method of claim 1, wherein the shader variable data
comprises at least one of:

internal register data of a GPU shader and arithmetic logic

umt (ALU) variable data of the GPU shader.

11. An apparatus comprising:

a counter for counting a number of vertices or pixels pro-

cessed to derive an offset:;

a processor configurable to determine a memory address of

a memory buller based on a base address and said offset,
the processor further configurable to verity that an entry
corresponding to said memory address has been read, by
a second, different processor, before writing shader vari-
able data to an entry 1n said memory bufler, the processor
further configurable to wait a number of sleep cycles 11 1t
1s determined that the entry has not been read by the
second processor, wherein the memory buffer 1s external
to a graphics processing unit (GPU) from which the
shader variable data 1s written.

12. The apparatus of claim 11, the memory buffer being a
circular buffer having a builer length.

13. The apparatus of claim 11, the memory buifer divided
into equally sized blocks, each block having a number of
entries which 1s an mteger power of two.

14. The apparatus of claim 13, the shader variable data
written to a representative memory address within each block
comprising a dirty bit to indicate whether that block has been
read, the processor configurable to verity by checking the
value of said dirty bit of said representative memory address,
the apparatus further configurable to reset the value of said
dirty bit when the shader variable data 1s written to said block.

15. The apparatus of claim 11, the shader variable data
written to said memory address comprising a dirty bit to
indicate whether an entry has been read.

16. The apparatus of claim 11, the shader varniable data
written to said memory address comprising a carriage return
bit, shader vaniable data contents, a data type corresponding,
to said shader variable data contents, and a string label cor-
responding to said shader variable data contents.

17. The apparatus of claim 11, wherein to write the shader
variable data, the processor 1s further configured to write the
shader variable data 1n a native data format.

18. The apparatus of claim 11, wherein the shader variable
data comprises at least one of an integer value and a floating
point value.

19. The apparatus of claim 11, wherein the shader variable
data comprises at least one of:

internal register data of a GPU shader and arithmetic logic

umt (ALU) variable data of the GPU shader.

20. A graphics processor umt (GPU) comprising;:

a counter for counting a number of vertices or pixels pro-

cessed to derive an offset:

a processor configured to determine a memory address of a

memory buflfer based on a base address and said offset,
the processor further configured to verily that an entry

5

10

15

20

25

30

35

40

45

50

55

60

65

8

corresponding to said memory address has been read, by
a second, different processor unit, before writing shader
variable data to an entry i1n said memory buifer, the
processor further configured to wait a number of sleep
cycles 111t 1s determined that the entry has not been read
by the second processor unit, wherein the memory

buffer 1s external to the GPU, from which the shader
variable data 1s written.

21. The graphics processor unit (GPU) of claim 20 com-

prising:

means for generating an oflset address for writing the
shader variable data to said memory butfer; and

means for writing the shader variable data to said memory
butfer according to a flow control protocol.

22. The GPU of claim 20, wherein to write the shader

variable data, the processor 1s further configured to write the
shader variable data 1n a native data format.

23. The GPU of claim 20, wherein the shader variable data

comprises at least one of an integer value and a floating point
value.

24. The GPU of claim 20, wherein the shader variable data
comprises at least one of:

internal register data of a GPU shader and arithmetic logic

unit (ALU) variable data of the GPU shader.

25. A non-transitory computer-readable storage medium
encoded with 1nstructions that, when executed, cause one or
more processors to:

transfer graphics processor unit (GPU) shader vanable

data to a memory bulfer external to the GPU, wherein

the instructions that cause the one or more processors to

transier the shader vanable data comprise nstructions

that cause the one or more processors to:

determine a base address and a number of sleep cycles;

count a number of vertices or pixels processed to derive
an offset;

derive a memory address based on the base address and
said offset;

check 1f an entry corresponding to said memory address
has been read by a second, different processor;

write the shader variable data to said memory address i
said entry has been read by the second processor; and

wait said number of sleep cycles 11 the entry has not been
read by the second processor.

26. The non-transitory computer-readable medium of 25,
wherein the instructions that cause the one or more processors
to write the shader vaniable data to the said memory address

turther comprise mstructions that cause the one or more pro-
cessors to write the shader variable data 1n a native data
format.

277. The non-transitory computer-readable medium of 25,
wherein the shader variable data comprises at least one of an
integer value and a floating point value.

28. The non-transitory computer-readable medium of 25,
wherein the shader variable data comprises at least one of:

internal register data of a GPU shader and arithmetic logic

unit (ALU) vanable data of the GPU shader.

29. An apparatus comprising:

means configured for transferring graphics processor unit

(GPU) shader vanable data to a memory buifer external

to the GPU comprising:

means configured for determiming, by the GPU, a base
address and a number of sleep cycles;

means configured for counting, by the GPU, a number of
vertices or pixels processed to dertve an offset;

means configured for dertving, by the GPU, a memory
address based on the base address and said offset:

US 8,760,457 B2

9

means configured for checking, by the GPU, 11 an entry
corresponding to said memory address has been read
by a second, different processor means;
means configured for writing, by the GPU, the shader
variable data to said memory address 11 the entry has
been read by the second processor means; and
means configured for waiting, by the GPU, said number of
sleep cycles before performing said checking again 11 the
entry has not been read by the second processor means.

30. The apparatus of claim 29, wherein the means config-
ured for writing the shader vaniable data to the said memory
address further comprises means configured to write the
shader variable data 1n a native data format.

31. The apparatus of claim 29, wherein the shader variable
data comprises at least one of an integer value and a floating
point value.

32. The apparatus of claim 29, wherein the shader variable
data comprises at least one of:

internal register data of a GPU shader and arithmetic logic

umt (ALU) variable data of the GPU shader.

G e x Gx s

5

10

15

20

10

	Front Page
	Drawings
	Specification
	Claims

