(12)

United States Patent

Potakamuri

US008756338B1

US 8.756,338 B1
Jun. 17, 2014

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(1)
(52)

(58)

(56)

STORAGE SERVER WITH EMBEDDED

COMMUNICATION AGENT

Inventor: Sreenivasa Potakamuri, Sunnyvale, CA
(US)

Assignee: NetApp, Inc., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 572 days.

Appl. No.: 12/770,501

Filed: Apr. 29, 2010

Int. CI.

GO6F 15/173 (2006.01)

U.S. CL

USPC 709/238:; 711/154; 709/217; 709/202
Field of Classification Search

None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

7,725,473 B2* 5/2010 Lambetal. 707/758
7,913,300 B1* 3/2011 Flanketal. 726/12
7,970,907 B2* 6/2011 Grovesetal. 709/226
7,984,253 B1* 7/2011 Gladeetal. 711/154

8,190,816 B2* 5/2012 Balasubramanian etal. 711/114
2005/0114595 Al1* 5/2005 Karretal.oooovviinin, 711/114
2006/0041580 Al1* 2/2006 Ozdemiretal. 707/102
2007/0299951 Al1* 12/2007 Krithivascoovvvviinnnn, 709/223
2008/0098321 Al1* 4/2008 Krithivasoooovvvviinnnn, 715/771
2008/0155169 Al1* 6/2008 Hiltgenetal. 711/6
2008/0155223 Al1* 6/2008 Hiltgenetal. 711/173
2010/0198972 Al1* &/2010 Umbehocker 709/226
2010/0199276 Al1* 8/2010 Umbehocker 718/1

* cited by examiner

Primary Examiner — Greg C Bengzon
(74) Attorney, Agent, or Firm — DelLizio Gilliam, PLLC

(57) ABSTRACT

A storage server receives a data access request 1n a standard
communication format, such as the Storage Management Ini-
tiative-Specification (SMI-S). A single mode request 1s
received at a disk module of the storage server and a cluster
mode request 1s recerved at a management host of the storage
server. The request 1s forwarded to a communication agent 1n
a management module of the storage server. The communi-
cation agent translates the request from the standard commu-
nication format to a proprietary format used by the storage
server to communicate with an attached storage subsystem.
The storage server services the request from the attached
storage subsystem through a disk module. In cluster mode,
the request 1s forwarded to corresponding disk modules in
cach storage server in the cluster.

21 Claims, 9 Drawing Sheets

ancess SMI-S request in single m“‘D’L 300

|

Receive single mode request at interface on D-module

|

Forward request to agent in M-Host

L J

Translate request to proprietary format

|

Select AP| from API| server

|

Execute request in single mode API tunnel

|

Forward request to D-module

|

Service request from mass storage device

l

< End

D

U.S. Patent Jun. 17, 2014 Sheet 1 of 9 US 8,756,338 B1

Client
101

N-module

o M

D-module
105

D-module

—
O
LN

N-module M-host

D-module
107

—
-
@)

N-module M-host

D-module
109

—
-
Qo

Fig. 1A

U.S. Patent Jun. 17, 2014 Sheet 2 of 9 US 8,756,338 B1

A
Cluster-mode
logical interface

STORAGE SERVER 100
v
M-Host 130
N-Module AP]
110 28 Server
— 132
AP SMF
Tunnel 136
134 =
Single-mode
logical
Interface
D-Module
120

Mass

Storage 170

Fig. 1B

U.S. Patent Jun. 17, 2014 Sheet 3 of 9 US 8,756,338 B1

To Cluster
Mode client

Communication Agent 200

Provider
To CIMOM 210 DLLs To AP
D-Module — Server
CMPI 220

Schema Repository
212 214

Fig. 2

U.S. Patent Jun. 17, 2014 Sheet 4 of 9 US 8,756,338 B1

Process SMI-S requeSt@L 300

A 4

Receive single mode request at interface on D-module — 310

Forward request to agent in M-Host "L 390
Y
Translate request to proprietary format "L 330

Select APl from API server "L 340
Y
Execute request in single mode API tunnel ¢ 350

Forward request to D-module "L 360

Service request from mass storage device 2 370

Fig. 3

U.S. Patent Jun. 17,2014 Sheet 5 of 9 US 8,756,338 B1

Process SMI-S request Iin cluster mode 400

y
Recelve cluster mode request at interface on M-Host 410
Forward request to SMI-S agent "2 490
Translate request to proprietary format 7 430

Select AP| from API server " 440

Execute request in Simple Management Framewaork 2. 450

Forward request to D-module of each server in cluster [460

Service request from mass storage device 2 470

End

Fig. 4

US 8,756,338 B1

Sheet 6 of 9

d0.6G
AS1d

d0.6G
ASI(

VS b

V0.G
ASIQ

Jun. 17, 2014

U.S. Patent

d0lG VYOLG
Jon1ag abelolQ lanIag aberloIS

v/ 00S

US 8,756,338 B1

Sheet 7 0of 9

Jun. 17, 2014

U.S. Patent

d0.6
ASI(

d0.S
ASI(

V045
ASId

GZs
olge
buiyoums
Jaisn|n

gg "bi

d01lS 9PON

d9cs

LWB]SAS 9|14 paseg-1Xajuo’)

\AdAS
ddd

dccs
S[NPON-C

8€25
ISOH-IN

dlLcs
9INPON-N

GeS
ouge

bulyoums

181sN|D

Vces

9[NPOA-d

V1S
9INPON-N

A dAS
ddd

VECY
}SOH-

LUB]ISAS 9|l -

\ferar

paseg-1Xajuon

VOLSG @PON

20G
JusID

v/ 025

U.S. Patent Jun. 17, 2014 Sheet 8 of 9 US 8,756,338 B1

STORAGE SERVER 610

MEMORY 624

OPERATING SYSTEM

64
SMI-S AGENT
PROCESSOR 26
621 _
BUS
630

NETWORK
INTERFACE
620

STORAGE ADAPTOR
628

TO NETWORK TO MASS STORAGE

Fig. 6

US 8,756,338 B1

)
S
&
=)
~
-
-
=
75
m@h xx
dIAY3IS ¢
< JOVHOLS
A
—
&
r~
o—
=
—
-

U.S. Patent

I E

102

©Z WILSAS SIDIAHIS HILSNTD ” 1 QOH-IN
AW
06Z INFLSAS HIAINA MSIA 212 SS300V VIAIN SSIDOV
VIQ3an
087 NALSAS AIvH o viZ dl viZ di
0E/
oE
o1/ Gz 917 Gel
—_— d01 INISON
ZZ ONILNOY SSTIIV VLVA dOl ddf 7 1050104
— — -l LN
82/ 0Z/
|SOSH T2 777 | 077 /A
097 WILSAS 3114 St7 I1NA0N dllH | Sdl10 | SdIN a1z
139HVL ISOS S4vQ

q0v L d0V4ddLNI 40 €0, AOVIddLNI 43

™
......._,,..,,.........

0G24 TNAON-A 012 31NAON-N

US 8,756,338 Bl

1

STORAGE SERVER WITH EMBEDDED
COMMUNICATION AGENT

TECHNICAL FIELD

This mvention relates to the field of data storage systems
and, 1n particular, to a storage server having an embedded
communication agent.

BACKGROUND

Various forms of network storage systems are known
today. These forms include network attached storage (NAS),
storage area networks (SANs), and others. Network storage
systems are commonly used for a variety of purposes, such as
providing multiple users with access to shared data, backing
up critical data (e.g., by data mirroring), etc.

A network storage system can include at least one storage
system, which 1s a processing system configured to store and
retrieve data on behalf of one or more storage client process-
ing systems (“clients™). In the context of NAS, a storage
system may be a file server, which 1s sometimes called a
“filer.” A filer operates on behalf of one or more clients to
store and manage shared files 1n a set of mass storage devices,
such as magnetic or optical disks or tapes, or tlash drives. The
mass storage devices may be organized into one or more
volumes of a Redundant Array of Inexpensive Disks (RAID).
In a SAN context, the storage server provides clients with
block-level access to stored data, rather than file-level access.
Some storage servers are capable of providing clients with
both file-level access and block-level access.

In a typical storage system, client devices and storage
servers from different manufacturers may be used together.
To enable effective communication between the different
devices, a storage communication standard may be used. One
example 1s the Storage Management Initiative-Specification
(SMI-S) maintained by the Storage Networking Industry
Association (SNIA). A communication agent (1.e., SMI-S
agent) 1s used to translate standard SMI-S commands 1nto a
proprictary format used by the storage server. In conventional
systems, the communication agent runs outside the storage
server on a host computing device running an operating sys-
tem such as Windows™ or Linux. This host machine requires
additional hardware increasing the cost of the system. In
addition, being outside the storage server limits the scalability
of the agent and limits the number of nodes in the storage
system that it can support. As the communication agent on the
host machine communicates with one or more nodes in the
storage system, a latency may develop 1n communications
between the different devices. The latency may be increased
especially 1f the host machine and storage servers are in
different subnets. In addition, if the storage system includes
storage devices from a number of different vendors, there
may need to be a different communication agent for each
storage vendor. Runming multiple communication agents on a
single host machine may cause conflicts and result 1n
decreased performance. Having a separate host machine for
cach communication agent can lead to increased costs.

SUMMARY OF THE INVENTION

A storage server receives a data access request in a standard
communication format, such as the Storage Management Ini-
tiative-Specification (SMI-S). A single mode request 1s
received at a disk module of the storage server and a cluster
mode request 1s recerved at a management host of the storage
server. The request 1s forwarded to a communication agent 1n

10

15

20

25

30

35

40

45

50

55

60

65

2

a management module of the storage server. The communi-
cation agent translates the request from the standard commu-
nication format to a proprietary format used by the storage
server to communicate with an attached storage subsystem.
The storage server services the request from the attached
storage subsystem through a disk module. In cluster mode,

the request 1s forwarded to corresponding disk modules 1n
cach storage server in the cluster.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, 1n the figures of the accompanying
drawings.

FIG. 1A 1s a block diagram illustrating a clustered storage
system according to an embodiment.

FIG. 1B 1s a block diagram illustrating a storage server
according to an embodiment.

FIG. 2 1s a block diagram 1illustrating a communication
agent according to an embodiment.

FIG. 3 15 a flow chart 1llustrating a method for processing a
single mode SMI-S data access request according to an
embodiment.

FIG. 4 1s a flow chart illustrating a method for processing a
cluster mode SMI-S data access request according to an
embodiment.

FIG. 5A 1s a block diagram 1llustrating a network storage
system according to an embodiment.

FIG. 3B 1s a block diagram 1illustrating a distributed or
clustered architecture for a network storage system according
to an embodiment.

FIG. 6 15 a block diagram illustrating a hardware architec-
ture of a storage system according to an embodiment.

FI1G. 7 1s a block diagram 1llustrating the architecture of the
operating system of the storage system according to an
embodiment.

DETAILED DESCRIPTION

In the following detailed description of embodiments of the
invention, reference 1s made to the accompanying drawings in
which like references indicate similar elements, and 1n which
1s shown by way of 1illustration specific embodiments 1n
which the invention may be practiced. These embodiments
are described 1n sufficient detail to enable those skilled in the
art to practice the mvention, and 1t 1s to be understood that
other embodiments may be utilized and that logical, mechani-
cal, electrical, functional and other changes may be made
without departing from the scope of the present invention.
The following detailed description 1s, therefore, not to be
taken 1n a limiting sense, and the scope of the present inven-
tion 1s defined only by the appended claims.

Embodiments are described for a communication agent
embedded 1n a storage server. In one embodiment, the com-
munication agent may be a Storage Management Initiative-
Specification (SMI-S) agent configured to use data in the
SMI-S format. The SMI-S agent translates a recerved data
access request from the SMI-S format to a proprietary format
used by the storage server to communicate with an attached
storage subsystem. An internal architecture of the storage
server enables a single SMI-S agent to handle data access
requests 1 both a single mode and a cluster mode.

For a single mode data access request, the request 1s
received at a logical interface 1n a disk module (D-module) of
the storage server. The disk module forwards the single mode
request to the SMI-S agent which resides in a management
module (M-host) of the storage server. The SMI-S agent

US 8,756,338 Bl

3

translates the request and selects and calls the corresponding,
application programming interfaces (APIs) so that the request
may be serviced from the attached storage subsystem through
the D-module.

For a cluster mode request, the request from client 101 1s
received directly at a logical interface of a management mod-
ule, such as M-host 103, of storage server 102, as shown in
FIG. 1A. Therequestis processed by M-host 103 as discussed
below with respect to FIG. 1B. A communication agent, such
as an SMI-S agent, (not shown) 1n M-host 103 performs the
translation and calls a different set of APIs. In the cluster
mode, the storage server 102 1s arranged 1n a clustered con-
figuration with one or more other storage servers 104, 106 and
108, which together make up a storage cluster. The cluster
mode request 1s forwarded by the M-host 103 of storage
server 102 to a disk module, such as D-modules 105, 107 and
109, 1n each storage server 104, 106 and 108 so that the
request may be executed on a storage subsystem attached to
cach storage server 1n the cluster. Each of storage servers 102,
104, 106 and 108 may have attached mass storage devices,
which the D-module 1n each storage server may access using,
for example, the commands and protocols discussed below
with respect to FIG. 7.

FI1G. 1B 1s a block diagram 1llustrating a storage server 100
according to an embodiment of the present invention. In this
embodiment storage server 100 includes a network module
(N-module) 110, a disk module (D-module) 120, and a man-
agement module (M-host) 130. Storage server 100 1s config-
ured to recerve and process data access requests from one or
more client devices, such as client 101. In this embodiment,
storage server 100 1s configured to operate as a single storage
server (1.¢., “single mode™) or as part of a cluster (1.e., “cluster
mode™), as shown 1n FIG. 53B. As will be described further
below, single mode requests are received at a logical interface
in the D-module 120 and cluster mode requests are recerved at
a logical interface 1n the M-host 130.

The logical interfaces at each of D-module 120 and M-host
130 have a separate Internet Protocol (IP) address, which may
be known to the clients 1n the storage system. The clients may
be configured (e.g., through user-configurable or default set-
tings) to send data access requests to one of the IP addresses,
depending on whether the request 1s a single mode request or
a cluster mode request.

A single mode request received at D-module 120 1s routed,
for example by data access routing module 775 as shown 1n
FIG. 7, to communication agent 36 running 1n M-host 130. In
one embodiment communication agent 36 1s an SMI-S agent
run by a processor such as processor 621 as shown in FIG. 6,
which translates standard SMI-S commands into a propri-
ctary format used by the storage server to access data 1n mass
storage device 170. Additional details of communication
agent 36 will be described below with respect to FIG. 2. A
cluster mode requestrecerved at M-host 130 1s passed directly
from the logical interface to communication agent 36.

Communication agent 36 makes an application program-
ming interface (API) call through API server 132. API server
132 may include a known set of APIs corresponding to the
SMI-S standard. For a single-mode request communication
agent 36 calls an interface module 134. In one embodiment,
interface module 134 1s a single mode API tunnel module
configured to form an API tunnel between M-Host 130 and
D-Module 120. Interface module 134, 1n turn, makes an API
call back to D-module 120. Using the modules described
below with respect to FIG. 7, such as for example RAID
system 780 and disk driver system 790, D-module 120 may
service the request (e.g., read data or write data) to mass
storage device 170. For a cluster mode request, communica-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion agent 36 calls simple management framework (SMF)
module 136. SMF module 136 may include tables and
schema to store mnformation pertaining to the APIs including
APInames, API parameters and API values. SMF module 136
makes an API call to D-module 120 of storage server 100, as
well as the corresponding D-modules 1n each of the other
storage servers in the cluster, as shown in FIG. 1A.

FIG. 2 1s a block diagram illustrating a communication
agent according to an embodiment. In one embodiment, com-
munication agent 200 1s an SMI-S agent run on a processing
device. SMI-S agent 200 may run in the M-host of a process-
ing system as shown in FIG. 1B. SMI-S agent 200 translates
standard SMI-S commands into a proprietary format used by
the storage server to access data in the attached mass storage
devices.

In one embodiment, SMI-S agent 200 includes Common
Information Model Object Manager (CIMOM) 210. CIMOM
210 receives data access requests 1n single mode, routed
through the D-module and directly from the logical interface
of the M-host 1n cluster mode. The Common Information
Model (CIM) 1s a standard that defines how elements 1n a
storage system are represented as a common set of objects and
the relationships between them. CIMOM 210 accesses
schema 212 to define the specific set of objects (e.g., disks,
clients, networks, etc.) managed by the storage server as well
as the relationships between them. Repository 214 1s a com-
pilation of the data in schema 212. CIMOM 210 determines
the information 1n the request based on the contents of schema
212 and repository 214. For example, CIMOM 210 may
determine what client the data access request was recerved
from, what the type of the data access request 1s (e.g., read or
write), and what data 1n the storage system the data access
request pertains to. This information 1s passed to the provider
dynamic link library (DLL) 220 which uses application spe-
cific APIs from the APIserver 132 to complete the data access
request.

In one embodiment, SMI-S agent 200 identifies whether a
received data request 1s a single mode request or a cluster
mode request. The type of data access request can be deter-
mined based on the interface at which it 1s received. Single
mode data access requests are received at a logic interface in
D-module 120 and forwarded to the agent 200 1n M-Host 130.
Cluster mode data access requests are received at a logical
interface directly in M-Host 130. Each of the logical inter-
faces may have a unique IP address so that they can be
distinguished by storage clients, such as client 101. As dis-
cussed above, CIMOM 210 may parse the received message
to determine which logical interface 1t was received at, and
thus, whether the request 1s single mode or cluster mode.

Once the type of data access request 1s determined, pro-
vider DLLs 220 selects the appropriate API from API server
132 to complete the data access request. The request may
include an 1dentifier specifying a known action (e.g., read or
write) as well as one or more mput parameters specifying a
particular piece of data 1n mass storage 170. Provider DLLs
220 may include a list of APIs 1n API server 132, and may
select one or more of the APIs based on information 1n the
data access request. API server 132, may include separate
APIs for single mode request and for cluster mode requests.
As discussed above, the APIs for single mode requests may be
executed through API tunnel 134 while APIs for cluster mode
requests may be executed through SMF 136.

FIG. 3 15 a flow chart 1llustrating a method for processing a
single mode SMI-S data access request according to an
embodiment. The method 300 may be performed by process-
ing logic that comprises hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (e.g.,

US 8,756,338 Bl

S

instructions run on a processing device to perform hardware
simulation), or a combination thereotf. In one embodiment,
method 300 1s performed by storage server 100 of FIG. 1B.

At block 310, method 300 receives a single mode data
access request at the logical interface of D-module 120. The
request may be in the SMI-S format and may include for
example, a request to read from or write to a data block 1n a
storage device managed by the storage server. At block 320,
method 300 forwards the data access request to an SMI-S
agent in M-host 130. In one embodiment, a data access rout-
ing module 775 1n D-module 120 routes the request to the
SMI-S agent, such as SMI-S agent 36. At block 330, SMI-S
agent 36 translates the request from the SMI-S standard into
the proprietary format used by the storage server 100. The
translation 1s described above with respect to FIG. 2 and may
include 1dentifying data in the request such as an action to be
performed and data on which the action may be performed.

At block 340, method 300 selects the appropriate APIs for
servicing the single mode data access request from API server
132. The appropriate APIs may be selected by determining
whether the request 1s a single mode access request or a
cluster mode access request. Provider DLLs 220 may select
APIs from API server 132, based on the type of request and
the data i1dentified 1n the translation at block 330. At block
350, method 300 makes the API call through the single mode
API tunnel. In one embodiment, API tunnel 134 encodes the
APIs from API server 132 in an extensible markup language
(XML) format for communication between M-Host 130 and
D-module 120. At block 360, through the API call, method
300 forwards the request to D-module 120. Using the mod-
ules described below, such as for example RAID system 780
and disk driver system 790, at block 370, method 300 services
the request (e.g., read data or write data) to the attached mass
storage device. In the case of a read request, data 1s returned
from the storage device to the D-module 120, forwarded to
the M-host where it 1s translated to the SMI-S format by
SMI-S agent 36, and routed back to the requesting client
through D-module 120.

FI1G. 4 1s a flow chart illustrating a method for processing a
cluster mode SMI-S data access request according to an
embodiment. The method 400 may be performed by process-
ing logic that comprises hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (e.g.,
instructions run on a processing device to perform hardware
simulation), or a combination thereof. In one embodiment,
method 400 1s performed by storage server 100 of FIG. 1B.

At block 410, method 400 receives a cluster mode data
access request at the logical interface of M-host 130. The
request may be in the SMI-S format and may include for
example, a request to read from or write to a data block 1n a
storage device managed by the storage server. At block 420,
method 400 forwards the data access request to an SMI-S
agent, such as SMI-S agent 36, in M-host 130. At block 430,
SMI-S agent 36 translates the request from the SMI-S stan-
dard into the proprietary format used by the storage server
100. The translation 1s described above with respect to FIG. 2.

At block 440, method 400 seclects the appropriate APIs for
servicing the cluster mode data access request from API
server 132. The appropriate APIs may be selected by deter-
mimng whether the request 1s a single mode access request or
a cluster mode access request. Provider DLLs 220 may select
APIs from API server 132, based on the type of request and
the data i1dentified 1n the translation at block 330. At block
450, method 400 makes the API call through the Simple
Management Framework 136. In one embodiment, SMF 136
encodes the APIs from API server 132 in an extensible
markup language (XML) format for communication between

10

15

20

25

30

35

40

45

50

55

60

65

6

M-Host 130 and D-module 120. At block 460, through the
API call, method 400 forwards the request to D-module 120
as well as the D-module of each storage server in the cluster.
Using the modules described below, such as for example
RAID system 780 and disk driver system 790, at block 470,
method 400 services the request (e.g., read data or write data)
to the attached mass storage device. In the case of a read
request, data 1s returned from the storage device to the
D-module 120, forwarded to the M-host where 1t 1s translated
to the SMI-S format by SMI-S agent 36, and routed back to
the requesting client through D-module 120.

FIG. 5A shows a network storage system 500 1n which the
present mvention can be implemented 1n one embodiment.
Storage servers 510A, 510B each manage multiple storage
umts S70A, 570B that may include mass storage devices.
These storage servers provide data storage services to one or
more clients 502 through a network 530. Network 530 may
be, for example, a local area network (LAN), wide area net-
work (WAN), metropolitan area network (MAN), a global
area network such as the Internet, a Fibre Channel fabric, or
any combination of such interconnects. Each of clients 502
may be, for example, a conventional personal computer (PC),
server-class computer, workstation, handheld computing or
communication device, or other special or general purpose
computer.

Storage of data 1n storage units S70A, 570B 1s managed by
storage servers 510A, 510B which recerve and respond to
various read and write requests from clients 502, directed to
data stored 1n or to be stored in storage umts 570A, 5S70B.
Storage units 570A, 570B may constitute mass storage
devices which can include, for example, flash memory, mag-
netic or optical disks, or tape drives. The storage devices in
storage units 370A, 570B can further be organized into arrays
(not shown in this figure) implementing a Redundant Array of
Inexpensive Disks/Devices (RAID) scheme, whereby storage
servers 310A, 510B access storage units 570A, 5708 using
one or more RAID protocols known 1n the art.

Storage servers 510A, 510B can provide file-level service
such as used 1n a network-attached storage (NAS) environ-
ment, block-level service such as used 1n a storage area net-
work (SAN) environment, a service which 1s capable of pro-
viding both file-level and block-level service, or any other
service capable of providing other data access services.
Although storage servers 510A, 510B are each 1illustrated as
single units 1n FIG. 5A, a storage server can, 1n other embodi-
ments, constitute a separate network element or module (an
“N-module’) and disk element or module (a “D-module™). In
one embodiment, the D-module includes storage access com-
ponents for servicing client requests. In contrast, the N-mod-
ule includes functionality that enables client access to storage
access components (e.g., the D-module) and may include
protocol components, such as Common Internet File System
(CIFS), Network File System (NFS), or an Internet Protocol
(IP) module, for facilitating such connectivity. Details of a
distributed architecture environment involving D-modules
and N-modules are described further below with respect to
FIG. 5B.

In yvet other embodiments, storage servers S10A, 510B are
referred to as network storage subsystems. A network storage
subsystem provides networked storage services for a specific
application or purpose. Examples of such applications
include database applications, web applications, Enterprise
Resource Planning (ERP) applications, etc., e.g., imple-
mented 1n a client. Examples of such purposes include file
archiving, backup, mirroring, etc., provided, for example, on
archive, backup, or secondary storage server connected to a
primary storage server. A network storage subsystem can also

US 8,756,338 Bl

7

be implemented with a collection of networked resources
provided across multiple storage servers and/or storage units

[lustratively, one of the storage servers (e.g., storage server
510A) functions as a primary provider ol data storage ser-
vices to client 502. Data storage requests from client 502 are
serviced using disks S70A organized as one or more storage
objects. A secondary storage server (e.g., storage server
510B) takes a standby role 1n a protection relationship with
the primary storage server, replicating storage objects from
the primary storage server to storage objects organized on
disks of the secondary storage server (e.g., disks 570B). In
operation, the secondary storage server does not service
requests from client 302 until data in the primary storage
object becomes 1naccessible such as 1n a disaster with the
primary storage server, such event considered a failure at the
primary storage server. Upon a failure at the primary storage
server, requests from client 101 intended for the primary
storage object are serviced using replicated data (i.e. the
secondary storage object) at the secondary storage server.

It will be appreciated that 1n other embodiments, network
storage system 100 may include more than two storage serv-
ers. In these cases, protection relationships may be operative
between various storage servers 1n system 300 such that one
or more primary storage objects from storage server 510A
may be replicated to a storage server other than storage server
510B (not shown 1n this figure). Secondary storage objects
may further implement protection relationships with other
storage objects such that the secondary storage objects are
replicated, e.g., to tertiary storage objects, to protect against
fallures with secondary storage objects. Accordingly, the
description of a single-tier protection relationship between
primary and secondary storage objects of storage servers 510
should be taken as 1llustrative only.

FI1G. 5B illustrates a distributed or clustered network stor-
age system 3520 which may implement the principles of the
present invention in one embodiment. System 520 may
include storage servers implemented as nodes 510A, 5108,
which are each configured to provide access to storage
devices S70A, 570B. In the 1llustrative example, nodes 510A,
510B are interconnected by a cluster switching fabric 5235
which may be embodied as an Ethernet switch in one embodi-
ment.

Nodes 510A, 510B may be operative as multiple functional
components that cooperate to provide a distributed architec-
ture of system 520. To that end, each node 510A, 510B may
be organized as a network element or module (N-module
521A, 521B), a disk element or module (D-module 522A,
522B), and a management element or module (M-host 523 A,
523B). In one embodiment, each module includes a processor
and memory for carrying out respective module operations.
For example, N-module 521A, 521B may include function-
ality that enables node 510A, 510B to connect to client 502
via network 530 and may include protocol components such
as a media access layer, Internet Protocol (IP) layer, Transport
Control Protocol (TCP) layer, User Datagram Protocol
(UDP) layer, and other protocols known 1n the art.

In contrast, D-module 522A, 522B may connect to one or
more storage devices 570A, 5708 via cluster switching fabric
525 and may be operative to service access requests on
devices 570A, 570B. In one embodiment, the D-module
522A, 522B includes storage access components such as a
storage abstraction layer supporting multi-protocol data
access (e.g., Common Internet File System protocol, the Net-
work File System protocol, and the Hypertext Transter Pro-
tocol), a storage layer implementing storage protocols (e.g.,
RAID protocol), and a driver layer implementing storage
device protocols (e.g., Small Computer Systems Interface

10

15

20

25

30

35

40

45

50

55

60

65

8

protocol) for carrying out operations in support of storage
access operations. Illustratively, a storage abstraction layer
(e.g., file system) of the D-module divides the physical stor-
age of devices S70A, 570B nto storage objects. Requests
received by node 510A, 510B (e.g., via N-module 521A,
521B) may thus include storage object identifiers to indicate
a storage object on which to carry out the request.

Also operative in node S10A, 510B 1s M-host 523 A, 5238
which provides cluster services for node 510A, 510B by
performing operations 1 support of a distributed storage
system 1mage, for instance, across system 520. Illustratively,
M-host 523A, 523B provides cluster services by managing a
data structure such as a RDB 524A, 5248, which contains
information used by N-module 521A, 521B to determine
which D-module 522A, 522B “owns™ (services) each storage
object. The various instances of RDB 524A, 5248 across
respective nodes 510A, 510B may be updated regularly by
M-host 523A, 523B using conventional protocols operative
between each of the M-hosts (e.g., across network 530) to
bring them into synchronization with each other. A client
request received by N-module 521A, 521B may then be
routed to the appropriate D-module 322 A, 522B for servicing
to provide a distributed storage system image.

It should be noted that while FIG. 5B shows an equal
number of N-modules and D-modules constituting a node in
the illustrative system, there may be different number of
N-modules and D-modules constituting a node 1n accordance
with various embodiments of the present invention. For
example, there may be a number of N-modules and D-mod-
ules of node 510A that does not retlect a one-to-one corre-
spondence between the N-modules and D-modules of node
510B. As such, the description of a node comprising one
N-module and one D-module for each node should be taken
as 1llustrative only.

FIG. 6 1illustrates a schematic block diagram of one
embodiment of a storage system 610 which may implement
the above-described schemes, according to certain embodi-
ments of the mvention. Referring to FIG. 6, 1n this embodi-
ment, the storage system 610 includes a processor 621, a
memory 624, a network mterface 626, and a storage adaptor
628, which are coupled to each other via a bus system 630.
The bus system 630 may include one or more busses and/or
interconnects. The storage system 610 communicates with a
network via the network interface 626, which may be an
Ethernet adaptor, fiber channel adaptor, etc. The network
interface 626 may be coupled to a public network, a private
network, or a combination of both 1n order to communicate
with a client machine usable by an administrator of the remote
data storage system.

In one embodiment, the processor 621 reads instructions
from the memory 624 and executes the instructions. The
memory 624 may include any of various types of memory
devices, such as, for example, random access memory
(RAM), read-only memory (ROM), flash memory, one or
more mass storage devices (e.g., disks), etc. The memory 624
stores instructions of an operating system 64. The processor
621 retrieves the instructions from the memory 624 to run the
operating system 64. In one embodiment operating system 64
includes SMI-S agent 36, which will be described further
below. The storage system 610 may interface with one or
more storage systems via the storage adaptor 628, which may
include a small computer system interface (SCSI) adaptor,
fiber channel adaptor, etc.

FIG. 7 shows a storage operating system 64 of storage
system 610 according to an embodiment of the present inven-
tion. The storage operating system comprises a series of soft-
ware layers executed by a processor (e.g., processor 621) and

US 8,756,338 Bl

9

organized to form an integrated network protocol stack or,
more generally, a multi-protocol engine 725 that provides
data paths for clients to access information stored on the
storage server using block and file access protocols.

Multi-protocol engine 725 includes a media access layer
712 of network drivers (e.g., gigabit Ethernet drivers) that
interface with network protocol layers, such as the IP layer
714 and its supporting transport mechanisms, the TCP layer
716 and the User Datagram Protocol (UDP) layer 715. A file
system protocol layer provides multi-protocol file access and,
to that end, includes support for the Direct Access File System
(DAFS) protocol 718, the NFS protocol 720, the CIFS pro-
tocol 722 and the Hypertext Transter Protocol (HT'TP) pro-
tocol 724. A VI layer 726 implements the VI architecture to
provide direct access transport (DAT) capabilities, such as
RDMA, as required by the DAFS protocol 718. An 1SCSI
driver layer 728 provides block protocol access over the TCP/
IP network protocol layers, while a FC driver layer 730
receives and transmits block access requests and responses to
and from the storage server. In certain cases, a Fibre Channel
over Ethernet (FCoE) layer (not shown) may also be operative
in multi-protocol engine 7235 to receive and transmit requests
and responses to and from the storage server. The FC and
1SCSI drivers provide respective FC- and 1SCSI-specific
access control to the blocks and, thus, manage exports of luns
to either 1SCSI or FCP or, alternatively, to both 1SCSI and
FCP when accessing blocks on the storage server.

The storage operating system also includes a series of
soltware layers organized to form a storage server 765 that
provides data paths for accessing information stored on stor-
age devices implementing secure storage (e.g., storage
devices 570A, 570B). Information may include data recerved
from a client (e.g., client 502), 1n addition to data accessed by
the storage operating system in support ol storage server
operations such as program application data or other system
data. Preferably, client data may be orgamized as one or more
logical storage objects (e.g., volumes) that comprise a collec-
tion of storage devices cooperating to define an overall logical
arrangement. In one embodiment, the logical arrangement
may 1nvolve logical volume block number (vbn) spaces,
wherein each volume 1s associated with a unique vbn.

File system 760 implements a virtualization system of the
storage operating system through the interaction with one or
more virtualization modules illustratively embodied as, e.g.,
a SCSI target module 735. SCSI target module 733 1s gener-
ally disposed between drivers 728, 730 and file system 760 to
provide a translation layer between the block (lun) space and
the file system space, where luns are represented as blocks.
File system 760 1llustratively implements the WAFL file sys-
tem having an on-disk format representation that 1s block-
based using, e.g., 4 kilobyte (KB) blocks and using a data
structure such as index nodes (“1nodes™) to 1dentity files and
file attributes (such as creation time, access permissions, size
and block location). File system 760 uses files to store meta-
data describing the layout of its file system, including an
inode file, which directly or indirectly references (points to)
the underlying data blocks of a file.

Operationally, a request from a client 1s forwarded as a
packet over the network and onto the storage server where 1t
1s received at anetwork adapter (e.g., adapter 626). A network
driver such as layer 712 or layer 730 processes the packet and,
il approprate, passes 1t on to a network protocol and file
access layer for additional processing prior to forwarding to
file system 760. There, file system 760 generates operations to
load (or retrieve) the requested data from the disks 11 1t 1s not
resident “in core”, 1.e., in memory 624. If the information 1s
not 1n memory, file system 760 accesses the 1node file to

10

15

20

25

30

35

40

45

50

55

60

65

10

retrieve a logical vbn and passes a message structure includ-
ing the logical vbn to the RAID system 780. There, the logical
vbn 1s mapped to a disk identifier and device block number
(e.g., disk, dbn) and sent to an appropriate driver (e.g., SCSI)
of disk driver system 790. The disk driver accesses the dbn
from the specified disk and loads the requested data block(s)
in memory 624 for processing by the storage server. Upon
completion of the request, the node (and operating system 64)
returns a reply to the client over the network. In one embodi-
ment, where the request 1s a single mode SMI-S request, the
request 1s received directly at D-module 750. Data access
routing module 775 detects the request and routes the request
to an SMI-S agent 1n M-host 701 for processing, as described
with respect to FIG. 1B.

It should be noted that the software “path” through the
storage operating system layers described above needed to
perform data storage access for the client request received at
the storage server adaptable to the teachings of the invention
may alternatively be implemented 1n hardware. That 1s, 1n an
alternate embodiment of the invention, a storage access
request data path may be implemented as logic circuitry
embodied within a field programmable gate array (FPGA) or
an application specific integrated circuit (ASIC). This type of
hardware implementation increases the performance of the
storage service provided by the storage server in response to
a request 1ssued by a client. Moreover, 1n another alternate
embodiment of the invention, the processing elements of
adapters 626, 628 may be configured to offload some or all of
the packet processing and storage access operations, respec-
tively, from processor 621, to thereby increase the perfor-
mance of the storage service provided by the storage server. It
1s expressly contemplated that the various processes, archi-
tectures and procedures described herein can be implemented
in hardware, firmware or software.

When implemented 1n a cluster, data access components of
the storage operating system may be embodied as D-module
750 for accessing data stored on disk. In contrast, multi-
protocol engine 7235 may be embodied as N-module 710 to
perform protocol termination with respect to a client 1ssuing,
incoming access over the network, as well as to redirect the
access requests to any other N-module 1n the cluster. A cluster
services system 736 may further implement an M-host (e.g.,
M-host 701) to provide cluster services for generating infor-
mation sharing operations to present a distributed file system
image for the cluster. For mstance, media access layer 712
may send and receive imformation packets between the vari-
ous cluster services systems of the nodes to synchronize the
replicated databases 1n each of the nodes.

In addition, a cluster fabric (CF) imterface module 7404,
7400 may facilitate intra-cluster communication between
N-module 710 and D-module 750. For instance, D-module
750 may expose a CF application programming interface
(API) to which N-module 710 (or another D-module not
shown) 1ssues calls. To that end, CF interface module 740 can
be organized as a CF encoder/decoder using local procedure
calls (LPCs) and remote procedure calls (RPCs) to commu-
nicate a file system command to between D-modules residing
on the same node and remote nodes, respectively.

Ilustratively, the storage operating system 1ssues a read- or
write-command to a storage device controller (e.g., device
controller 628) through disk driver system 790 for accessing
a physical storage object (e.g., disk) using the disk 1dentifier
mapped from the logical vbn by RAID system 780.

As used herein, the term “storage operating system”™ gen-
erally refers to the computer-executable code operable on a
computer to perform a storage function that manages data
access and may implement data access semantics of a general

US 8,756,338 Bl

11

purpose operating system. The storage operating system can
also be implemented as a microkernel, an application pro-
gram operating over a general-purpose operating system,
such as UNIX® or Windows XP®, or as a general-purpose
operating system with configurable functionality, which 1s
configured for storage applications as described herein.

In addition, i1t will be understood to those skilled 1n the art
that the invention described herein may apply to any type of
special-purpose (e.g., file server or storage serving appliance)
or general-purpose computer, including a standalone com-
puter or portion thereol, embodied as or including a storage
system. Moreover, the teachings of this mvention can be
adapted to a variety of storage system architectures including,
but not limited to, a network-attached storage environment, a
storage area network and disk assembly directly-attached to a
client or host computer. The term “storage system™ should
therefore be taken broadly to include such arrangements in
addition to any subsystems configured to perform a storage
function and associated with other equipment or systems. It
should be noted that while this description 1s written in terms
of a write anywhere file system, the teachings of the present
invention may be utilized with any suitable file system,
including conventional write 1n place file systems.

The above description sets forth numerous specific details
such as examples of specific systems, components, methods,
and so forth, in order to provide a good understanding of
several embodiments of the present invention. It will be
apparent to one skilled 1n the art, however, that at least some
embodiments of the present invention may be practiced with-
out these specific details. In other instances, well-known
components or methods are not described 1n detail or are
presented in simple block diagram format 1n order to avoid
unnecessarily obscuring the present invention. Thus, the spe-
cific details set forth are merely exemplary. Particular imple-
mentations may vary from these exemplary details and still be
contemplated to be within the scope of the present invention.

Embodiments of the present invention include various
operations, which are described above. These operations may
be performed by hardware components, soitware, firmware,
or a combination thereol. As used herein, the term “coupled
to” may mean coupled directly or indirectly through one or
more intervening components. Any of the signals provided
over various buses described herein may be time multiplexed
with other signals and provided over one or more common
buses. Additionally, the interconnection between circuit com-
ponents or blocks may be shown as buses or as single signal
lines. Each of the buses may alternatively be one or more
single signal lines and each of the single signal lines may
alternatively be buses.

Certain embodiments may be implemented as a computer
program product that may include 1nstructions stored on a
machine-readable medium. These mstructions may be used to
program a general-purpose or special-purpose processor to
perform the described operations. A machine-readable
medium 1ncludes any mechanism for storing or transmitting,
information 1n a form (e.g., software, processing application)
readable by a machine (e.g., a computer). The machine-read-
able medium may include, but 1s not limited to, magnetic
storage medium (e.g., floppy diskette); optical storage
medium (e.g., CD-ROM); magneto-optical storage medium;
read-only memory (ROM); random-access memory (RAM);
crasable programmable memory (e.g., EPROM and
EEPROM); flash memory; or another type of medium suit-
able for storing electronic nstructions.

Additionally, some embodiments may be practiced 1n dis-
tributed computing environments where the machine-read-
able medium 1s stored on and/or executed by more than one

10

15

20

25

30

35

40

45

50

55

60

65

12

computer system. In addition, the information transferred
between computer systems may either be pulled or pushed
across the communication medium connecting the computer
systems.

The digital processing devices described herein may
include one or more general-purpose processing devices such
as a microprocessor or central processing unit, a controller, or
the like. Alternatively, the digital processing device may
include one or more special-purpose processing devices such
as a digital signal processor (DSP), an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), or the like. In an alternative embodiment, for
example, the digital processing device may be a network
processor having multiple processors including a core unit
and multiple microengines. Additionally, the digital process-
ing device may include any combination of general-purpose
processing devices and special-purpose processing device(s).

Although the operations of the methods herein are shown
and described 1n a particular order, the order of the operations
of each method may be altered so that certain operations may
be performed 1n an inverse order or so that certain operation
may be performed, at least 1n part, concurrently with other
operations. In another embodiment, nstructions or sub-op-
erations of distinct operations may be 1n an intermittent and/
or alternating manner.

In the above descriptions, embodiments have been
described 1n terms of objects 1n an object-oriented environ-
ment. It should be understood, that the invention 1s not limited
to embodiments in object-oriented environments and that
alternative embodiments may be implemented in other pro-
gramming environments having characteristics similar to
object-oriented concepts.

In the foregoing specification, the mmvention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader scope of the mvention as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded 1n an 1illustrative sense rather than a
restrictive sense.

What 1s claimed 1s:
1. A method 1n a storage server in a cluster of storage
servers, wherein each storage server in the cluster of storage
servers 1s coupled to a set of one or more mass storage
devices, the method comprising;:
receving, by the storage server, a data access request from
a client device 1n a standard communication format;
11 the data access request 1s recerved at a first logical inter-
face of a plurality of logical interfaces of the storage
Server,
determining, based upon receipt of the data access
request at the first logical interface, that a type of the
data access request 1s a cluster mode request, wherein
cluster mode requests seek data from the cluster of
storage servers, wherein the first logical interface 1s
addressed by a first network address and 1s associated
with a management module that handles cluster mode
requests received by the storage server;

selecting a set of one or more Application Programming,
Interfaces (APIs) from a plurality of APIs utilized by
the cluster of storage servers, wherein each API of the
plurality of APIs describes a protocol for processing
data access requests;

translating, using the selected set of APIs, the data
access request from the standard communication for-
mat to a set of one or more proprietary format requests

US 8,756,338 Bl

13

used by the storage server to communicate with the
cluster of storage servers; and

servicing the data access request by using a mass storage
device of the storage server and by forwarding the
translated set of proprietary format requests to a plu-
rality of storage servers of the cluster of storage serv-
Crs;

if the data access request 1s received at a second logical

interface of the plurality of logical interfaces of the

storage Server,

determining that the type of the second data access
request1s a single mode request, based upon receipt of
the second data access request at the second logical
interface, wherein single mode requests seek data
from the storage server, wherein the second logical
interface 1s addressed by a second network address
and 1s associated with a disk module that handles
single mode requests recetved by the storage server;
and

selecting an API corresponding to the type of the second
data access request from the plurality of APIs.

2. The method of claim 1, wherein the standard communi-
cation format 1s a Storage Management Initiative-Specifica-
tion (SMI-S) format.

3. The method of claim 1, further comprising:

executing the corresponding API by a single mode API

tunnel module 1n the storage server.

4. The method of claim 1, further comprising;

receiving, from the plurality of storage servers and the

mass storage device, data satistying the translated set of

proprietary format requests.

5. The method of claim 4, further comprising;

translating the data satisfying the translated request into a

translated response 1n the standard communication for-

mat; and

transmitting, to the client device, the translated response.

6. The method of claim 1, wherein the first network address
comprises a first Internet Protocol (IP) address.

7. The method of claim 1, wherein the second network
address comprises a second Internet Protocol (IP) address.

8. A system, comprising:

an array ol mass storage devices; and

a storage server coupled to the array of mass storage

devices and also coupled to a set of one or more other

storage servers to form a cluster of storage servers, the
storage server comprising;:

a set of one or more network interfaces;

a disk module associated with a first of a plurality of
logical interfaces and configured to service data
access requests recerved via the first logical interface
using the array of mass storage devices, wherein the
first logical interface 1s designated for single mode
requests and 1s addressed by a first network address,
wherein single mode data access requests seek data
from the storage server; and

a management module associated with a second logical
interface of the plurality of logical interfaces desig-
nated for cluster mode requests and 1s addressed by a
second network address, the management module
configured to:
determine, based upon receipt of a data access request

via the second logical interface of the plurality of
logical interfaces, that the data access request 1s a
cluster mode request, wherein cluster mode
requests seek data from the cluster of storage serv-
ers;

10

15

20

25

30

35

40

45

50

55

60

65

14

select, for the cluster mode data access request, a set
of one or more Application Programming Inter-
taces (APIs) from aplurality of APIs utilized by the
cluster of storage servers, and wherein each API of
the plurality of APIs describes a protocol for pro-
cessing data access requests,

translate the cluster mode data access request using
the selected set of APIs, wherein the cluster mode
data access request 1s translated from a standard
communication format to a set of one or more pro-
prictary format requests used by the storage server
to communicate with the cluster of storage servers,
and

service the cluster mode data access request by for-
warding, using the set of network interfaces, the
translated sets of proprietary format requests to a
plurality of storage servers 1n the cluster of storage
SCrvers.

9. The system of claim 8, wherein the standard communi-
cation format 1s a Storage Management Initiative-Specifica-
tion (SMI-S) format.

10. The system of claim 8, further comprising:

a single mode API tunnel module configured to execute the

corresponding API in the storage server.

11. The system of claim 8, wherein the management mod-
ule further:

recetves, from the plurality of storage servers and the disk

module, data satistying the translated sets of proprietary
format requests.

12. The system of claim 11, wherein:

the management module further translates the data satis-

tying the translated sets of proprietary format requests
into translated responses that are 1n the standard com-
munication format; and

transmits, to the set of client devices, the translated

responses via the first logical interface 11 the data access
request was a single mode request and via the second
logical interface 11 the data access request was a cluster
mode request.

13. The system of claim 8, wherein the first network
address comprises a first Internet Protocol (IP) address.

14. The system of claim 8, wherein the second network
address comprises a second Internet Protocol (IP) address.

15. A storage server configured to operate as part of a
cluster of storage servers, the storage server comprising:

a processor unit; and

a memory, coupled to the processor umit, storing instruc-

tions which, when executed by the processor unit, cause
the storage server to:

receive a data access request 1n a standard communica-
tion format from a client device;
if the data access request 1s recerved at a first logical
interface of a plurality of logical interfaces of the
storage Server,
determine, based upon receipt of the data access
request at the first logical iterface, that a type of
the data access request 1s a cluster mode request,
wherein cluster mode requests seek data from the
cluster of storage servers, wherein the first logical
interface 1s addressed by a first network address
and 1s associated with a management module that
handles cluster mode requests received by the stor-
age server;
select a set of one or more Application Programming
Interfaces (APIs) from a plurality of APIs utilized
by the cluster of storage servers, wherein each API

US 8,756,338 Bl

15

of the plurality of APIs describes a protocol for
processing data access requests;

translate, using the set of selected APIs, the cluster
mode data access request from the standard com-
munication format to a set ol one or more propri-
ctary format requests used by the storage server to
communicate with the cluster of storage servers;
and

service the cluster mode data access request by using
a mass storage device coupled to the storage server
and by forwarding the translated set of proprietary
format requests to a plurality of storage servers of

the cluster of storage servers
if the data access request 1s received at a second logical

interface of the plurality of logical interfaces of the

storage Server,

determine that the type of the second data access request
1s a single mode request, based upon receipt of the
second data access request at the second logical inter-
face, wherein single mode requests seek data from the
storage server, wherein the second logical interface 1s
addressed by a second network address and 1s associ-
ated with a disk module that handles single mode
requests recerved by the storage server; and

select an API corresponding to the type of the second
data access request from the plurality of APIs.

10

15

20

16

16. The storage server of claim 15, wherein the standard
communication format 1s a Storage Management Initiative-
Specification (SMI-S) format.

17. The storage server of claim 15, wherein the instructions
further cause the storage server to:

execute the corresponding API by a single mode API tunnel

module 1n the storage server.

18. The storage server of claim 15, wherein the instructions
turther cause the storage server to:

recerve, from the plurality of storage servers and the mass

storage device, data satistying the translated set of pro-
prictary format requests.

19. The storage server of claim 18, wherein the instructions
turther cause the storage server to:

translate the data satistying the translated set of proprietary

format requests into a translated response 1n the standard
communication format; and

transmit, to the client device, the translated response.

20. The storage server of claim 15, wherein the first net-
work address comprises a first Internet Protocol (IP) address.

21. The storage server of claim 15, wherein the second
network address comprises a second Internet Protocol (IP)
address.

	Front Page
	Drawings
	Specification
	Claims

