12 United States Patent

Gooding et al.

US008751866B2

US 8.751.866 B2
Jun. 10, 2014

(10) Patent No.:
45) Date of Patent:

(54) AUTONOMIC FAULT ISOLATION IN A
HIGHLY INTERCONNECTED SYSTEM

(75) Inventors: Thomas Michael Gooding, Rochester,
MN (US); Brian Paul Wallenfelt, Eden
Prairie, MN (US)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 2365 days.
(21) Appl. No.: 11/536,360
(22) Filed: Sep. 28, 2006
(65) Prior Publication Data
US 2008/0155324 Al Jun. 26, 2008
(51) Imt. CL.
GO6F 11/32 (2006.01)
(52) U.S. CL
USPC e, 714/25; 714/43; 709/223
(58) Field of Classification Search
USPC e, 714/25,43, 4
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
6,993403 B1* 1/2006 Dadeboetal. 700/108
2002/0166088 Al* 11/2002 Dierauer etal. 714/704
2003/0188228 Al* 10/2003 Davisetal.coonnnnn, 714/43

(Start)
>¢ 710
Filter links /
Traverse unfiltered links and | 720
add the neighboring /
components to the end of the
search list

2003/0191841 Al* 10/2003 DeFerrantietal. 709/226
2003/0204786 Al* 10/2003 Dinkeretal. 714/43
2004/0013112 Al* 1/2004 Goldbergetal. 370/389
2004/0103218 Al* 5/2004 Blumnichetal. 709/249
2005/0015685 Al* 12005 Yamamoto 714/54
2005/0091361 Al* 4/2005 Bernstem etal. 709/223
2005/0276214 Al* 12/2005 Phelanetal. 370/216
2005/0278354 Al* 12/2005 Guptaetal. 707/100
2006/0029096 Al* 2/2006 Babbaretal. 370/466
2006/0112061 Al* 5/2006 Masurkarcccoceeeeeen 706/47
2008/0114874 Al1l* 5/2008 Merretal. 709/224

* cited by examiner

Primary Examiner — Chae Ko
(74) Attorney, Agent, or Firm — Martin & Associates LLC;

Bret J. Petersen

(57) ABSTRACT

A method and apparatus provides fault isolation 1 a 1n a
highly 1interconnected system. A fault 1solator uses a virtual
topology of the system to autonomically isolate the fault.
Failing nodes interconnects are identified and then used to
traverse a virtual topology to determine the most suspect
components as the cause of the reported failures. A failure
indication 1s propagated to each component connected to a
failing node 1n the virtual topology until the next node in the
virtual topology 1s encountered. In preferred embodiments,
the failure indications for each component are tallied together
as the topology 1s traversed for each failing node and/or
component. A total count of the number of nodes connected to
cach component 1s determined for a denominator. A weight-
ing of the likelihood of fault i1s then determined by dividing
the failure indications by the total count.

19 Claims, 6 Drawing Sheets

640

All components
searched?

No

740

/

Select next component to
search

750

Already searched
this component?

Yes

Increment fail count of the
selected component

Is this component
a node?

U.S. Patent Jun. 10, 2014 Sheet 1 of 6 US 8,751,866 B2

= = § % =
FIG. 1 04 Racks % E = = g
(65,536 Nodes, = = EEE
100 131,072 CPUs) |= |§||§| = % ===
& 130, [= == EE =
EEEEEEE
Service Node . = E % §| = E E
ac = =] EEREE
140 (32 Node Boards) = % == = =
s 130 — % | ==
142 ?F)O (_ — =EEEEEE
FauI‘EI Ezlator g;;[gﬁ.ll E E § §| 5 E E
Virtual Network E E % % g :
Topol n
oplo —8SEE0E5E
Node = EEEEE
Board = % = % = B =
o 134 (32 Nodes) = = =5 =
ode —— N =] =] =B =l BE5
I 132 = = = =
(2 GRUS) 120 =E§§|—§§E|
B =] L/ = =
(IEI = R E
— 5| (=)
| UL = (B
= =] Failed Node 120

{ 160
114

/O Processor
170

1

12
Global

Int
9
Tree 0 v4 /Zv'

C\OV
é Y- \Tree 2

FIG.2 (Prior Art)

U.S. Patent

4——F—p Node 0
110

4

<«—1» Node 2
110

Node 4
110

-

Repeater

Jun. 10, 2014

Node Board 0
; 120a

Node 1
110

<>

Node 3
110

Node 5
110

Sheet 2 of 6

Clock

310

Node
110

Node to
Node Board

Node Board 1

US 8,751,866 B2

Node 10 |«g—p| Node 11
110

- > X+

Clock Source

220

FIG. 3

Connector

410

Clock

Clock

Repeater

310

Clock

Node Board
114

Source

320

Midplane
132

FIG. 4

Repeater

310

Node Board
to Midplane
Connector

134

U.S. Patent

Node
110

Jun. 10, 2014

Node to
Node Board

Connector

410

Node
110

-

Node to
Node Board

Connector

410

US 8,751,866 B2

Sheet 3 of 6
Node Board
Node Board > to Midplane
Connector
114 134

¢—— Node Board

114

FIG. 5

S

Node Board
to Midplane

Connector

134

Midplane
132

U.S. Patent Jun. 10, 2014 Sheet 4 of 6 US 8,751,866 B2
612 614 ok
/ / (Start) J
RAS | !
Option 1 610

from RAS Cilter

Nodes >|
Preprocessor

Set up for breadth-first search /

User
designated Option 2
nodes

\

016

020

Processed all the
nodes?

Yes
No 630
Select next node and add to
search list
v 650
Calculate total nodes attached 640
to each component Y /
Propagate node failure
iIndication to attached
660 upstream components
Assign weighting to each
component
'

Display results to user /

l
o)

FIG. 6

U.S. Patent Jun. 10, 2014 Sheet 5 of 6 US 8,751,866 B2

640

Start)2

‘ Filter links

.

Traverse unfiltered links and | 720
add the neighboring | ./
components to the end of the

search list
740
All components Select next component to
>
searched? search
750
(Done) Already searchec g
this component? Yes
No ;60
Increment fail count of the
selected component
770
No s this component €S

a hode?

FIG. 7

U.S. Patent Jun. 10, 2014 Sheet 6 of 6 US 8,751,866 B2

650

J

310
Set up node search list /

Start

320

Done with nodes
search list?

Y < >
© Done

No 830

Select next node and add to
component search list

340
Filter Links |/

¢

Add unfiltered components to
end of components search list

350

3860

Done with
component search
list™?

Yes

NoO

Select next component
380

Increment components |/
count of the number of
total attached nodes

F1G. 8

370

Is component a NO

node?

US 8,751,866 B2

1

AUTONOMIC FAULT ISOLATION IN A
HIGHLY INTERCONNECTED SYSTEM

BACKGROUND OF THE INVENTION

1. Technical Field

This invention generally relates to fault 1solation 1n a com-
puting system, and more specifically relates to autonomic
fault 1solation 1n a highly interconnected system such as a
massively parallel super computer.

2. Background Art

Fault 1solation 1s important to decrease down time and
repair costs for sophisticated computer systems. In some
sophisticated computer systems, when a failure occurs, the
operating system soltware 1s able to generate a list of suspect
field replaceable units (FRUs) that are potentially the location
or cause of the failure. A technician can then quickly change
out the suspect FRUs to get the system quickly operational
again. A highly interconnected system as used herein 1s a
sophisticated computer system that has a large number of
interconnecting nodes such as compute nodes. Fault 1solation
in a highly interconnected system 1s much more complicated
because a failure 1n one node may cause the system to report
a failure in many adjacent interconnected nodes. The raw data
tor the failure 1s difficult for a technician to determine which
FRU 1s most likely the cause of the failure.

Massively parallel computer systems are one type ot highly
interconnected system that have a large number of 1ntercon-
nected compute nodes. A family of such massively parallel
computers 1s being developed by International Business
Machines Corporation (IBM)under the name Blue Gene. The
Blue Gene/L system 1s a scalable system 1n which the current
maximum number of compute nodes 15 65,536. The Blue
Gene/P system 1s a similar scalable system under develop-
ment. The Blue Gene/L node consists of a single ASIC (appli-
cation specific integrated circuit) with 2 CPUs and memory.
The full computer would be housed 1n 64 racks or cabinets
with 32 node boards 1n each rack.

The Blue Gene/LL supercomputer communicates over sev-
eral communication networks. The 65,536 computational
nodes are arranged into both a logical tree network and a
logical 3-dimensional torus network. The logical tree net-
work connects the computational nodes 1n a binary tree struc-
ture so that each node communicates with a parent and two
children. The torus network logically connects the compute
nodes 1n a three-dimensional lattice like structure that allows
cach compute node to communicate with 1ts closest 6 neigh-
bors 1n a section of the computer. Since the compute nodes are
arranged 1n a torus and tree network that require communi-
cation with adjacent nodes, a hardware failure of a single node
in the prior art can bring a large portion of the system to a
standstill until the faulty hardware can be repaired. This cata-
strophic failure occurs because a single node failure would
break the network structures and prevent communication
over these networks. For example, a single node failure would
1solate a complete section of the torus network, where a
section of the torus network 1n the Blue Gene/LL system 1s a
half a rack or 512 nodes.

On a massively parallel super computer system like Blue
(Gene, the time to troubleshoot a failure of a hardware com-

ponent 1s critical. Thus 1t 1s advantageous to be able to quickly
1solate a fault to an FRU to decrease the overall system down
time. Without a way to more effectively 1solate faults to FRUs
highly interconnected computers will need to require manual

10

15

20

25

30

35

40

45

50

55

60

65

2

cifort to 1solate faults thereby wasting potential computer
processing time and increasing maintenance costs.

DISCLOSURE OF INVENTION

According to the preferred embodiments, a method and
apparatus 1s described for autonomic fault 1solation 1 a

highly interconnected computer system such as a massively
parallel super computer system. In the preferred embodi-
ments failing nodes are 1dentified and then used to traverse a
virtual system topology to determine the most suspect com-
ponents as the cause of the reported failures. In preferred
embodiments, a weighting of the most suspect nodes 1s deter-
mined and displayed to the user.

The disclosed embodiments are directed to the Blue Gene
architecture but can be implemented on any parallel computer
system with multiple processors arranged 1n a network struc-
ture. The preferred embodiments are particularly advanta-
geous for massively parallel computer systems.

The foregoing and other features and advantages of the
invention will be apparent from the following more particular
description of preferred embodiments of the invention, as
illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The preferred embodiments of the present mnvention will
heremnafter be described 1n conjunction with the appended
drawings, where like designations denote like elements, and:

FIG. 1 1s a block diagram of a massively parallel computer
system according to preferred embodiments;

FIG. 2 1s a block diagram of a compute node for 1n a
massively parallel computer system according to the prior art;

FIG. 3 1s a block diagram representing a portion of a highly
interconnected computer system such as a massively parallel
computer system to illustrate an example according to pre-
ferred embodiments;

FIG. 4 1s a block diagram that shows an interconnection
topology for a clock source to a node 1n a massively parallel
computer system according to preferred embodiments;

FIG. 5 1s another block diagram that shows an intercon-
nection topology for a node to node connection in a massively
parallel computer system according to preferred embodi-
ments;

FIG. 6 1s a method flow diagram for fault isolation 1n a
massively parallel computer system according to a preferred
embodiment;

FI1G. 7 1s another method flow diagram for fault 1solation 1n
amassively parallel computer system according to a preferred
embodiment; and

FIG. 8 1s another method flow diagram for fault isolation 1n
amassively parallel computer system according to a preferred
embodiment.

BEST MODE FOR CARRYING OUT TH
INVENTION

(L]

The present invention relates to an apparatus and method
for autonomic fault 1solation 1n a highly interconnected com-
puter system such as a massively parallel super computer
system. In the preferred embodiments failing nodes are 1den-
tified and then used to traverse a virtual system topology to
determine the most suspect components as the cause of the
reported {failures. The preferred embodiments will be
described with respect to the Blue Gene/LL and Blue Gene/P
massively parallel computer being developed by Interna-
tional Business Machines Corporation (IBM).

US 8,751,866 B2

3

FIG. 1 shows a block diagram that represents a massively
parallel computer system 100 such as the Blue Gene/L com-
puter system. The Blue Gene/L system 1s a scalable system in
which the maximum number of compute nodes 1s 65,536.
Each node 110 consists of a single application specific inte-
grated circuit (ASIC) 112 with 2 CPUs and memory on a node
daughter card 114. Each node 110 typically has 512 mega-
bytes of local memory. A node board 120 accommodates 32
node daughter cards 114 each having a node 110. Thus, each
node board has 32 nodes, with 2 processors for each node, and
the associated memory for each processor. A rack 130 1s a
housing that contains 32 node boards 120. Each of the node
boards 120 connect into a midplane printed circuit board 132
with a midplane connector 134. The midplane 132 1s inside
the rack and not shown in FIG. 1. The full Blue Gene/L
computer system would be housed 1n 64 racks 130 or cabinets
with 32 node boards 120 1n each. The full system would then
have 635,536 nodes and 131,072 CPUs (64 racksx32 node
boardsx32 nodesx2 CPUs).

Again referring to FIG. 1, the computer system 100
includes a service node 140 that handles the loading of the
nodes with software and controls the operation of the whole
system. The service node 140 1s typically a min1 computer
system that includes a control console (not shown). The ser-
vice node 140 1s connected to the racks 130 of compute nodes
110 with a control system network 150. The control system
network 150 includes various network interfaces that provide
the necessary communication for the massively parallel com-
puter system. An I/0O processor 170 located on a node board
120 handles communication from the service node 140 to a
number of nodes. In the Blue Gene/LL system, an I/O proces-
sor 170 1s nstalled on a node board 120 to communicate with
1024 nodes 1n a rack.

The Blue Gene/LL computer system structure can be
described as a compute node core with an I/O node surface,
where communication to 1024 compute nodes 110 1s handled
by each I/0 node that has an 1/0 processor 170 connected to
the service node 140. The I/0O nodes have no local storage.
The I/O nodes are connected to the compute nodes through
the tree network and also have functional wide area network
capabilities through a gigabit ethernet network. The connec-
tions to the I/O nodes 1s similar to the connections to the
compute node except the I/0 nodes are not connected to the
torus network.

According to claimed embodiments herein, when a num-
ber of nodes report failure in a highly interconnected system,
a fault 1solator 144 1n the service node 140 uses a virtual
topology 146 of the system to autonomically 1solate the fault.
The virtual topology 1s a logical representation of the system
topology stored 1n a computer readable form. The failing
nodes are 1dentified and the virtual topology 1s then traversed
to determine the most suspect components as the cause of the
reported failures. The virtual topology can be stored 1n any
suitable manner to allow the fault 1solator 144 to traverse and
use the virtual topology as described herein. A failure indica-
tion 1s propagated to each component 1n the virtual topology
146 that are connected through a suspect IO connection of all
identified failing nodes. Each component in the virtual topol-
ogy has 1t’s own failure indication count that 1s incremented
cach time that component 1s traversed.

Before the links of 1dentified nodes 1n the virtual topology
are traversed, the suspect I/O connections of each of the
identified nodes are determined based on the nature of the
failure and those interconnects that may be the cause of the
tailure. All nodes that need not be searched are filtered out and
only the unfiltered links are traversed to propagate failure
indications to all components down that link 1n the topology.

10

15

20

25

30

35

40

45

50

55

60

65

4

Because of the highly linked structure, the failure indication
1s propagated until the next node in the virtual topology 146 1s
encountered to prevent duplicating traversal through the
topology. This 1s necessary because the weighting 1s based on
the number of times each component’s fail count is 1ncre-
mented, so each link in the topology 1s only traversed one time
for each failed node. When another node 1s encountered,
traversing that link in the topology 1s complete.

In preferred embodiments, the failure indications for each
component are tallied together as the topology 1s traversed for
cach failing node and/or component. A total count of the
number of failure reporting components connected to each
component 1s determined for a denominator. A weighting of
the likelihood of fault 1s then determined by dividing the
failure indications by the total count. Thus a weighting of 1.0
means that all failure reporting components connected to the
component are indicating a failure, and therefore there 1s a
high probability that component 1s causing the fault. Other
welghting methods can also be used to predict the failing
components. For example, the weighting could be failing
nodes/total nodes/hopcount, where hopcount 1s the number of
components that were traversed before encountering the next
node. The greater the virtual tree distance away or the greater
the hopcount may indicate a lesser likelihood to be the cause
of the fail. Or the weighting could be 1/hopcount. In addition,
the weighting could also incorporate field data of actual fail-
ures 1n correlation to the weighting methods described herein
to produce a likelihood of failure.

The failed nodes that are used as input to the fault 1solator
can be 1dentified by the system 1n a first option, or designated
by the user 1n the second option. In the BlueGene system, the
designated nodes 1n a first option are 1dentified by the system
with a system service called Reliability, Availability and Ser-
vice (RAS). The RAS i1dentifies nodes and other components
that are reporting a failure and the type of failure. The user
designated failures could be from another source such as from
an application program.

FIG. 2 shows a block diagram that shows the I/O connec-
tions of a compute node to 1illustrate the highly connected
nature of a computer system such as the massively parallel
Blue Gene/LL computer system. The Blue Gene/L. supercom-
puter communicates over several communication networks.
The 65,536 computational nodes and 1024 I/O processors
170 are arranged 1nto both a logical tree network and a logical
3-dimensional torus network. The torus network logically
connects the compute nodes 1n a lattice like structure that
allows each compute node 110 to communicate with 1ts clos-
est 6 neighbors. In FIG. 2, the torus network 1s illustrated by
the X+, X—, Y+, Y-, Z+ and 7Z- network connections that
connect the node the six respective adjacent nodes. The tree
network 1s represented in FIG. 2 by the tree0, treel and tree2
connections.

Other communication networks connected to the node
include a JTAG network and a the global interrupt network.
The JTAG network provides communication for testing and
control from the service node 140 over the control system
network 150 shown 1n FIG. 1. The global interrupt network 1s
used to implement software barriers for synchronization of
similar processes on the compute nodes to move to a different
phase of processing upon completion of some task. Further,
there are clock and power signals to each compute node 110.

FIG. 3 shows a block diagram that represents a portion of a
highly connected computer system such as the Blue Gene/L
computer system to illustrate an example according to pre-

terred embodiments. In this example, each node board 120a,
1205 has six nodes. Node board 1204 has nodes labeled

node0 through node5, and node board 12056 has nodes labeled

US 8,751,866 B2

S

node6 through nodell. Each of the nodes 110 1s connected to
its four closest neighbors. In this simplified example, only
two dimensions are shown, the X and Y dimensions as indi-
cated by the dimension key 330. In comparison, Bluegene has
three dimensions of connections where each node would be
connected to 1ts si1x closest neighbors on each midplane. Each
of the node boards 120a, 1206 has a clock repeater circuit 310
that propagates clock signals on the node board 120. The
clock repeater circuits 310 are connected to a clock source
320. The clock source 320 1s located on the midplane 132 1n
board rack 130 (FIG. 1).

FIG. 4 represents the component topology for the clock
input into a node 110 according to the simplified example
introduced 1n FIG. 3. The component topology for an input
into a node represents each of the components which are 1n
the path between the node and the source of the mput 1n a
hierarchical topology. In the example of FIG. 4, the clock
input topology begins with the node 110 which 1s connected
by a node connector 410 to a node board 114. The node board
114 has a clock repeater circuit 310 as discussed above. The
clock repeater circuit 310 has an input from a midplane con-
nector 134 that connects the node board to the midplane 132.
The midplane 1s a printed wiring board (PWB) that has a
clock source 320. (For this simplified example, 1t 1s assumed
the clock source on the midplane PWB 1s the final source of
the clock.) When an error occurs at the clock link or input to
a node 110, any component in the clock input topology could
be the cause of the error. This topology will be used to deter-
mine which component 1s a possible cause of the system
failure as described further below. The arrows 1n the topology
indicate the direction the method below takes to traverse the
topology starting from the compute node.

FIG. 3 represents another component topology for a node
input according to the simplified example mtroduced in FIG.
3. This component topology 1s a node-to-node topology for a
network 1nput into a node. The topology 1llustrates all the
components which are 1n the path between the node and the
nextnode in a hierarchical topology. In the example of FIG. 5,
the network 1input topology begins with the node 110 which 1s
connected by a node connector 410 to a node board 114. The
node board 114 connects through a midplane connector 134
to the midplane 132. From the midplane 132 to the next node
110, the topology has the same components in the reverse
order, 1.e. midplane connector 134, node board 114, node
connector 410, and node 110. When an error occurs on a
network mput to a node 110, any component 1n the node-to-
node topology could be the cause of the error.

FI1G. 6 shows a method 600 for autonomic fault 1solation in
a highly interconnected computer system according to
embodiments herein. The first step of the method 1s to set up
for a breadth-first search of the system topology (step 610).
The set up of the breadth-first search uses as inputs a set of
designated nodes. The designated nodes 1n a first option are
identified by the RAS 612. The raw RAS output 1s then
pre-processed at 614 to determine nodes that indicate a fail-
ure. In the second option, the user 1s allowed to designate
nodes 616 to input into the search where the user has used
other means to determine failing nodes such as nodes that are
reporting failure by application soiftware. The setup of the
breadth-first search prepares a node list of failing nodes (step
610). The next part of the method 1s to process all the 1denti-
fied nodes (step 620) 1n the node list prepared at setup. IT all
the nodes have not been processed (step 620=no) then the
next node in the node list 1s added to the search list (step 630)
and the node failure 1s propagated to each attached upstream
component according to the system topologies (step 640, see
FIG. 7). If the nodes have all been processed, (step 620=yes)

10

15

20

25

30

35

40

45

50

55

60

65

6

then the total nodes attached to each component are calcu-
lated (step 630) and a weighting 1s assigned to each compo-
nent (step 660) to indicated to likelithood the component 1s the

cause of the fault and these results are displayed to the user
(step 670). The method 1s then done. The details of steps 640

and 6350 are described further 1n FIGS. 7 and 8 respectively.

FIG. 7 shows a method 640 for propagating a node failure
indication to all components attached upstream 1n the system
topology from a node according to embodiments herein.
First, for the node currently being processed, filter unneces-
sary component links and add the remaining links to the
search list (step 710). Unnecessary links are those links that
do not need to be traversed because they do not contribute to
the type of failure indicated. Next, traverse all unfiltered
component links and add the neighboring components to the
search list (step 720). Search all the components 1n the search
list (step 730). If the components have not all been searched
(step 730=no) then the next component in the search list 1s
selected (step 740). If this component has already been
searched (step 670=yes) then return to step 730. I this com-
ponent has not already been searched (step 750=no), then
increment the components fail count (step 760). I the com-
ponent being searched 1s a node (step 770=yes) then return to
step 730 to process the next component. If the component
being searched 1s a not a node (step 770=no) then return to
step 710 to process all the links to this component (beginning,
at step 710). When all the components have all been searched
(step 730=yes) then the method 1s done.

FIG. 8 shows a method 650 for calculating the total failure
reporting components attached to each component according
to embodiments herein. The first step of method 650 1s to set
up a search list of each node (step 810). The search list 1s set
up by using all nodes 1n virtual topology for the system. The
method next processes the nodes through several steps until 1t
1s done with all the nodes 1n the search list (step 820 yes). IT all
the nodes in the search list are not done (step 820=no) then
select the next node 1n the search list (step 830). Next, filter
unnecessary component links (step 840) and add the until-
tered links to the search list (step 850). Search each compo-
nents in the search list with remaining steps as follows. If not
done with the components search list (step 860=no) then
select the next component 1n the search list (step 870). Incre-
ment the components count of the total number of attached
failing nodes (step 880). If this component 1s a node (step
890=yes) then return to step 860 to continue searching com-
ponents attached to this node. I this component 1s not a node
(step 890=no0), then return to step 840 to process this compo-
nent further to find additional components linked to this node.
When all the components have all been searched (step
820=yes) then the method 1s done.

An example of the above methods will now be described to
illustrate a preferred embodiment with reference to FIGS. 3
through 8. This example assumes the following failures speci-
fied via the RAS 1n option 1 shown in FIG. 6: Node3 (X+
failure), Node6é (Y- failure), Node9 (X- failure), Nodel(
(Y+ failure). Some repetitions through the method are
removed for sumplicity as indicated below. Also, the node
board and connectors in the topology shown 1n FIGS. 4 and 5
are not included 1n this example. With these assumptions we
now use method 600 1n FIG. 6 as described 1n detail below:

Start

Step 610) Setup for breadth-first search

Step 620) Processed all identified nodes? Answer: no

Step 630) Select node (Node 3) and add it to the searchlist:

Searchlist="3"

Step 640) Enter propagate node failure block

US 8,751,866 B2

7

Step 710) Filter links. Node 3 has 5 links (X+, X-, Y+,Y -,

and a clock input) Since the problem occurred 1n the X+
direction, the other directions are removed. This leaves
us to traverse the X+ and clock input links.

Step 720) Traverse unfiltered links and add neighboring

components to the end of the searchlist. Node 3 has a
clock repeater connected to its clock input. So that 1s

added to the searchlist. Node 3 has a midplane immedi-
ately attached to its X+ link. Searchlist="3”, “Mid-
plane”, “Nodeboard0 clock repeater”

Step 730) Have all components been searched? Answer:
no.

Step 740) Select next component to search: Node 3
Searchlist="Midplane”, “Nodeboard0 clock repeater™

Step 750) Have we already searched this component?
Answer:no

Step 760) Increment fail count. Node 3’s fail count goes to
1.

Step 760) Is this component a node? Answer: yes.

Step 730) Have all components been searched? Answer:
no.

Step 740) Select next component: Midplane
Searchlist="Nodeboard0 clock repeater”
Step 750) Have we searched this component? Answer: no

Step 760) Increment fail count. Midplane’s fail count goes
to 1.

Step 770) Is the midplane a node? Answer: no

Step 720) Filter links. Midplane has 8 links. (3 X+ links and
3 X- links+2 clock mput links). Since we entered the
midplane from 1 specific X— link (from the midplane’s
perspective), there 1s only 1 valid destination. This

leaves us to traverse the corresponding X+ link. The
Midplane has node 8 attached to the X+ link. So node 8

1s added to the searchlist. Searchlist="“Nodeboard 0
clock repeater”, “Node 8”

Steps 730 to 770 are repeated for “Nodeboard0 clock
repeater’”.

Clock source1s added to the search list. The fail count for

“Nodeboard 0 clock repeater”, Clock source and
“Node 8 are all incremented to 1.

After searching processing clock source through steps 730
to 770

Step 710) Filter links. The clock source has no outputs.
Step 720) There are no links to add.

Searchlist 1s empty
Step 730) Have we searched all components? Answer: yes

(This completes the processing of node 3. The tlow returns
to step 620.)

Step 620) Processed all nodes? Answer: no

Step 630) Select node (Node 3) and add 1t to the searchlist:
Searchlist="Node 3”

Step 640) Enter propagate node failure block (The
above steps described for node 3 are repeated for node 6,
then again for node 9 and node 10. When this 1s complete
for node 10, flow would return to step 620)

Step 620) Have we processed all nodes? Answer: yes

Step 650) Calculate total nodes attached to each compo-
nent.

Step 810) Setup Nodesearchlist

Nodesearchlist="Node0”, “Nodel”, “Node2”, Node3”,
“Noded™”, “Node5”, “Node6”, “Node7”’, “Node8”,
“Node9”, “Nodel0”, “Nodell”

10

15

20

25

30

35

40

45

50

55

60

65

8

Step 820) Done with nodes search list? Answer: no
Step 830) Select next node: Node(

Nodesearchlist="Nodel”, “Node2”, Node3”, “Noded”,
“Node5”, “Node6”, “Node7”, “Node8”, “Node9”,
“Nodel0”, “Nodell”
CompSearchlist=Node(

Step 840) Filter links. Select torus and clock links (In this
simplified example, these are the possible links in the

topology) (3 links. Nodel and Node2)
Step 850) Add unfiltered components to end of component

search list.
CompSearchlist=Node0, Node2, Nodel, “Nodeboard(
ClockRepeater”™

Step 860) Are we done with component search list?
Answer: no

Step 870) Select next component (Nodel) from
compsearchlist.
CompSearchlist=Node2, Nodel, “Nodeboard0 Clock-

Repeater”

Step 880)—Increment totalcount for Node0. Node0 count
1s now 1.

Step 890)—Is component a node, answer: yes.

Step 860)—Are we done with searchlist? Answer: no.

Step 870)—Select Node2 from compsearchlist
CompSearchlist=Nodel, “Nodeboard0 ClockRepeater™

Step 880)—Increment totalcount for Node2. Node2 count
1s now 1.

Step 890) Is component a node? Answer: yes.

Step 860)—Are we done with searchlist? Answer: no.

Step 870)—Select Nodel from compsearchlist
CompSearchlist="Nodeboard0 ClockRepeater”

Step 880)—Increment totalcount for Nodel. Nodel count
1s now 1.

Step 890)—Is component a node? Answer: ves.

Step 860)—Are we done with searchlist? Answer: no.

Step 870)—Select “Nodeboard0 ClockRepeater™
CompSearchlist 1s empty

Step 880)—Increment totalcount for “Nodeboard0 Clock-
Repeater”. “Nodeboard(
ClockRepeater” count 1s now 1.

Step 890)—Is component a node? Answer: no

Step 840)—Filter links. Only valid output 1n the clockinput

Step 850)—Add components:
CompSearchlList="Clocksource”

Step 860)—Are we done with searchlist? Answer: no

Step 870)—Select “Clock source”

Step 880)—Increment totalcount for “Clock source”.
“Clock source” count 1s now 1.

Step 890)—Is component a node? Answer: no

Step 840)—Filter links. no output links from clock source

Step 850)—Nothing to add

Step 850) Are with done w/ component searchlist? Answer:
yes.

Step 820) Are we done with node searchlist. answer=no.

Step 850) 33) Select next node: Nodel
Nodesearchlist="Node2”, Node3”, “Node4”, “Node5”,
“Nodeb6”, “Node7”, “Node8”, “Node9”, “Nodell”,
“Nodell”
CompSearchlist=Nodel
Step 840) Filter links. Select torus and clock links (4 links.
X—, X+, Y- and clockinput)
Step 850) Add links.
CompSearchlist=Nodel, Node0, Node3, Midplane,
“Nodeboard0 ClockRepeater”

US 8,751,866 B2

9

Step 860) Are we done with searchlist? Answer: no
Step 870) Select Nodel from compsearchlist

CompSearchlist=Node0, Node3, Midplane, “Node-
board0 ClockRepeater”

Step 880) Increment totalcount for Nodel. Nodel count 1s
now 2.

Step 890) Is component a node? Answer: yes.
Step 860)—Are we done with searchlist? Answer: no.
Step 870)—Select Nodel from compsearchlist

CompSearchlist=Node3, Midplane, “Nodeboard0
ClockRepeater™
Step 880)—Increment totalcount for Node0. Node0 count
1S now 2.

Step 890)—Is component a node? Answer: yes.
Step 860)—Are we done with searchlist? Answer: no.
Step 870)—Select Node3 from compsearchlist

CompSearchlist=Midplane, “Nodeboard) ClockRe-
peater”

Step 880)—Increment totalcount for Node3. Node3 count
1s now 1.

Step 890)—Is component a node? Answer: yes.

Step 860)—Are we done with searchlist? Answer: no

Step 870)—Select “Midplane™
CompSearchlist="Nodeboard0 Clockrepeater”

Step 880)—Increment totalcount for Midplane. Midplane
count 1s now 1

Step 890)—Is component a node? Answer: no
Step 840)—Filter links. 1 valid link 1n the X+ direction
Step 850)—Add link to compsearchlist

CompSearchlList="Nodeboard(
“Node6”

Step 860) Are we done with searchlist? Answer: no

Step 870) Select new component. Select “Nodeboard(
Clockrepeater™

CompSearchlList="Node6”

Step 880) Increment totalcount for “Nodeboard0 Clockre-
peater”.

Clockrepeater”,

Count 1s now 2.
Step 890) Is component a node? Answer: no
Step 840) Filter links. 1 valid link to the clock mput.
Step 850) Add clockinput link to compsearchlist
CompSearchList="Node6”, “Clock Source”
Step 860) Are we done with searchlist? Answer: no
Step 870) Select “Node6”

Step 880) Increment totalcount for “Node6”. Node6 count
1s now 1.

Step 890)—Is component a node? Answer: yes

Step 860)—Are we done with searchlist? Answer: no

Step 870)—Select “Clock Source”

Step 880)—Increment totalcount for “Clock Source”.
Clocksource count 1s now 2.

Step 890)—Is component a node? Answer: no

Step 840)—Filter links. No output links.
Step 850)—Nothing to add.
Step 850)—Are we done with searchlist? Answer: yes.

(Repeat steps 820 through 890 for the other nodes 1n
nodesearchlist)

Step 820) Are we done with node searchlist? Answer: yes

Step 660) Calculate weights, where the weight in this
example 1s the propagated failure indications divided by
the total count of components (See table 1).

10

15

20

25

30

35

40

45

50

55

60

65

10

Step 670) Display weighted results. In this example, all
non-zero weights are displayed to the user 1n descending
order (See table 2).

Done—The example 1s complete.

TABLE 1
Propagated
Failure

Component Indications Total Count Weight
NoaeO 0 2 0
Nodqel 0 3 0
Noae?2 0 3 0
Node3 1 4 25
Node4 0 2 0
Node5s 0 3 0
Noaeb 1 3 33
Noae7 0 2 0
Node8 4 4 1.0
Node9 1 3 33
NodelO 1 3 33
Nodell 0 2 0
Nodeboard0_ ClkR 1 6 167
Nodeboardl_ ClkR 3 6 5
Midplane 1 3 33
Clocksource 4 12 33

TABLE 2

Propagated

Failure

Component Indications Total Count Weight
Node& 4 4 1.0
Nodeboardl_ClkR 3 6 5
Noaeb ' 3 33
Noae9 3 33
NodelO 3 33
Midplane 3 33
Clocksource 4 12 33
Node3 1 4 25
Nodeboard0 ClkR 1 6 167

The example above illustrates a preferred embodiment for
autonomic fault 1solation in a highly interconnected computer

system. In the illustrated example, a set of 1dentified failures
was reported (Node3 (X+ failure), Node6 (Y - failure), Node9

(X~ failure), Nodel0 (Y + failure)). After processing failure
indications into the virtual topology according to the identi-
fied failures and calculating the weighting, the data in Table 2
indicates that node 8 1s most likely the source of the fault since
node 8 has the highest weight. Thus node 8 1s most likely
causing a fault that 1s the source of the identified failures. The
fault1solation information as 1llustrated 1n Table 2 can be used
to assist 1n troubleshooting and repair of the system 1n a
timely manner by giving repair personnel a prioritized list of
potential sources of the fault.

As described above, embodiments provide a method and
apparatus for autonomic fault 1solation 1n highly intercon-
nected computer system such as a massively parallel super
computer system. Embodiments herein can significantly
decrease the amount of down time for increased efficiency of
the computer system.

One skilled 1n the art will appreciate that many varations
are possible within the scope of the present invention. Thus,
while the invention has been particularly shown and
described with reference to preferred embodiments thereof, 1t
will be understood by those skilled in the art that these and
other changes 1n form and details may be made therein with-
out departing from the spirit and scope of the mvention.

US 8,751,866 B2

11

What 1s claimed 1s:

1. A highly interconnected computer system comprising;

a plurality of interconnected compute nodes; and

a service node that receives failure indications of system
components that have a failure, including from the com-
pute nodes 1n the highly interconnected system compris-
ng:

a virtual topology of the highly interconnected computer
system:

a Tailure 1indication count for each system component 1n
the virtual topology; and

a fault 1solator to autonomically 1solate faults in the
system by traversing the virtual topology and propa-
gating failure indications from the system compo-
nents, wherein the fault 1solator propagates each fail-
ure indication by incrementing the failure indication
count of each component 1n the virtual topology con-
nected to the system component with the failure.

2. The highly iterconnected computer system of claim 1
wherein the fault 1solator determines a weighting of the like-
lithood of a component causing the fault by comparing a total
number of failure indications propagated to each component
with a total count of the components that are capable of
reporting a failure connected to each component.

3. The highly interconnected computer system of claim 2
wherein the weighting further includes the hopcount of the
component.

4. The highly interconnected computer system of claim 2
wherein the weighting 1s displayed to the user.

5. The highly interconnected computer system of claim 1
wherein the highly interconnected computer system 1s a mas-
stvely parallel computer system.

6. The highly interconnected computer system of claim 1
wherein the fault 1solator traverses each component in the
virtual topology until another node 1s encountered.

7. A computer implemented method for fault 1solation on a
highly interconnected computer system comprising the steps
of:

a) preparing a list of system components of the highly

interconnected computer system with a failure;

b) traversing a virtual topology of the highly intercon-
nected computer system to propagate a failure indication
for each system component on the list, wherein the fail-
ure indication 1s propagated by incrementing a failure
indication count of each component 1n the virtual topol-
ogy connected to the system component with the failure;
and

¢) weighting each component in the virtual topology based
on the likelithood that component is the cause of a fault.

8. The computer implemented method of claim 7 wherein
the step of traversing the virtual topology further comprises
the steps of:

1) filtering links that are not 1n failure;

2) traversing the unfiltered links and adding neighboring

components to the end of a component search list;

10

15

20

25

30

35

40

45

50

12

3) selecting the next component 1n the component search
l1st to search until all the components in the component
search list have been searched;

4) incrementing a fail count of each component connected
to the selected component that has not been searched;
and

5)1f the selected component 1s not a node, then returning to
step 1 to traverse links of the selected component to

further search the link.

9. The computer implemented method of claim 7 wherein
the step of weighting compares a total number of failure
indications for the component with a total count of the com-
ponents that are capable of reporting a failure connected to the
component.

10. The computer implemented method of claim 9 wherein
the weighting further includes the hopcount of the compo-
nent.

11. The computer implemented method of claim 9 wherein
the weighting 1s displayed to the user.

12. The computer implemented method of claim 7 wherein
the highly interconnected computer system 1s a massively
parallel computer system.

13. The computer implemented method of claim 7 wherein
the fault 1solator traverses the virtual topology until another
node 1s encountered.

14. A computer-readable program product comprising:

a fault 1solator that autonomically 1solates faults 1n a highly
interconnect computer system by traversing a virtual
topology and propagating failure indications from com-
ponents of the highly interconnected computer system
that have a failure, wherein each failure indication 1s
propagated by incrementing a failure indication count of
cach component in the virtual topology connected to the
system component with the failure; and

recordable media bearing the inbound packet filter mecha-
nism.

15. The program product of claim 14 wherein the fault
1solator determines a weighting of the likelihood of a com-
ponent causing the fault by comparing a total number of
tailure indications for the component with a total count of the
components that are capable of reporting a failure connected
to the component.

16. The program product of claim 15 wherein the weight-
ing further includes the hopcount of the component.

17. The program product of claim 15 wherein the weight-
ing 1s displayed to the user.

18. The program product of claim 14 wherein the highly
interconnected computer system 1s a massively parallel com-
puter system.

19. The program product of claim 14 wherein the fault
1solator traverses the virtual topology until another node 1s
encountered.

	Front Page
	Drawings
	Specification
	Claims

