United States Patent

US008745638B1

(12) (10) Patent No.: US 8.745,638 B1
Adya et al. 45) Date of Patent: Jun. 3, 2014
(54) METHOD AND SYSTEM FOR DISTRIBUTING 7,043,263 B2 5/2006 Kaplan et al.
OBJECT UPDATE MESSAGES IN A g é 82%3(3) E é ggggg E_amitltﬂim [Iet al.
;) 1U €1 al.
DISTRIBUTED NETWORK SYSTEM 7,243,163 Bl 7/2007 Friend et al.
7,383,289 B2 6/2008 Kraft
(75) Inventors: Atul Adya, Bellevue, WA (US); 7480907 Bl 12009 Marolia et al.
Gregory H. Cooper, Seattle, WA (US); 7,962,918 B2 6/2011 Schaefer et al.
Daniel Sumers Myers, Seattle, WA gag (1)(5)%‘532 E% gi 38 é El}’_(’hﬂfa e: :}*
. ,200, 1 ujimoto et al.
(US); John Reumann, Croton on 8350330 B2 17013 Sakamofa
Hudson, NY (US) 8,442,943 B2 5/2013 Multer et al.
2002/0024947 A 2/2002 Luzzatti et al.
(73) Assignee: Google Inc., Mountain View, CA (US) 2002/0111972 A 8/2002 Lynch et al.
2003/0023770 A 1/2003 Barmettler et al.
(*) Notice: Subject to any disclaimer, the term of this 2003/0028683 A 2/2003 Yorke et al.
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 100 days.
OTHER PUBLICATIONS
(21) Appl. No.: 13/251,042 Dinesh C. Kulkarni, Information Access in Mobile Computing Envi-
(22) Filed: Sep. 30,2011 ronments, 1993.%
Related U.S. Application Data 22?(2?; Examx:er ? Le‘;ﬁh_l Trumﬁ Lot @ Bocki
orney, Agent, or Firm — Morgan, Lewis ockius
(60) Provisional application No. 61/389,160, filed on Oct. TTP
1, 2010.
51) Tnt. Cl (37) ABSTRACT
(;’IO;SF 3 00 (2006.01) A distributed network system includes at least one server
(52) U.S. Cl ' having memory and one or more processors. The server per-
USP C ' 710/318 forms the following operations 1n connection with propagat-
SPC s e ing object updates to respective client devices: receiving a
(58) Field of Classification Search / first object update message from an application server, the
USPC 1-:1-1---: .. :.“ 719 318 ﬁl’St Object update message iI]Ch_ldiIlg a ﬁrst Object identiﬁer
See application file for complete search history. and a first object version; updating an object update record
(56) References Cited that includes the first object 1dentifier using the first object

U.S. PATENT DOCUMENTS

version, wherein the object update record includes a first
client identifier; propagating the first object version from the
object update record to a client-object registration record that

5421,009 A 5/1995 Platt includes the first client identifier; and sending a second object
5,734,898 A % 371998 He ..o /1 update message to a first client device associated with the first
0,029,175 A 2/2000 Chow et al. client identifier, wherein the second object update message
6,052,735 A 4/2000 Ulrich et al. . Tudes the fi bi dentifi dthe fi bi :
6,289,510 Bl 9/2001 Nakajima includes the 1irst object identilier and the first object version.
6,317,754 B1 11/2001 Peng
6,738,812 Bl * 5/2004 Haraetal. ..., 709/224 17 Claims, 17 Drawing Sheets
Object Registration (1)
Clent App 185 Client Library 157 Reglstrar 132
320-1 ~ 3301
_Haquaatlﬁf;-.t D | ~
and Seesion Token | 7| 1 ocove the request
s 330-3
Craate Client D and
Sesslon Tolgen
. _ }(320-3 B | s 330-5
b S
),a31ﬂ-1),f32l:|-5
send an object Receive tha
reglstration requast - —= raglatration request
to Client Library Trom Client App
ISEU-T
Generate a new
antry for the object
in the object state
e ~ 330-7
/3103 J 308 Receive the
Receiva the Ackrcrwisdgs the —= ragistration request
acknowladgment w-——— recaiptof the from Cliant Library
frorn Registrar registretion request
Sand);Iiﬂ'g &naratafup{af: :-E
ragisiaring a set of cllent acos n e
objects Iz Reglstrar registration table
r 320-11 7 330-11
Racsive the Acinowladge the
acknowledgment —- completion of the
fom Registrar neguest
| | |

US 8,745,638 Bl

Page 2
(56) References Cited 2008/0270409 A1 10/2008 Naito et al.
2009/0003620 Al* 1/2009 McKillopetal. 381/80
U.S. PATENT DOCUMENTS 2009/0018998 Al 1/2009 Patten, Jr. et al.
2009/0042536 Al 2/2009 Bernard et al.
2003/0066065 Al 4/2003 Larkin 2009/0042563 Al 2/2009 Bernard
2003/0120624 A1 6/2003 Poppenga et al. 2009/0172177 A1 7/2009 Lu
2003/0120873 Al 6/2003 Kanaley 2009/0234927 Al 9/2009 Buzescu
2003/0195951 A1 10/2003 Wittel, Jr. et al. 2009/0248739 Al 10/2009 Cao et al.
2003/0221190 Al 11/2003 Deshpande et al. 2009/0305778 Al 12/2009 Yu et al.
2004/0015942 Al 1/2004 Branson et al. 2010/0057839 Al 3/2010 Sakai et al.
2004/0064650 Al 4/2004 Johnson 2010/0106932 Al 4/2010 Ogasawara
2004/0107242 A1 6/2004 Vert et al. 2010/0115203 Al 5/2010 White
2004/0128346 Al 7/2004 Melamed et al. 2010/0235321 Al 9/2010 Shukla et al.
2004/0261082 Al 12/2004 Steere et al. 2010/0238919 AL 9/2010 Froelich
2005/0097610 Al 5/2005 Pedlow, Jr. et al. 2010/0250860 Al 9/2010 Potnis et al.
2006/0092861 Al* 5/2006 Cordayetal. ... 370/256 2010/0262948 Al 10/2010 Melski et al.
2006/0168325 Al* 7/2006 Wood et al 709/238 2010/0274875 Al* 10/2010 Bannoetal. 709/219
1 - 2010/0318967 Al 12/2010 Bhatia et al.
2006/0174242 Al 8/2006 Zhu etal.
- R 2010/0333080 Al 12/2010 Keys et al.
2007/0079091 Al 4/2007 Collins et al. : _ » |
| 2011/0047594 Al 2/2011 Mahaffey et al.
2007/0088733 Al 4/2007 Bodge et al. | : .
_ . 2011/0113068 Al 5/2011 Ouyang et al.
2008/0098473 Al 4/2008 Liu et al. 01170314048 Al 122011 Tekmar of al
2008/0114860 Al 5/2008 Keys et al.]] |
2008/0183628 Al 7/2008 Oliver et al. * cited by examiner

US 8,745,638 B1

Sheet 1 of 17

Jun. 3, 2014

U.S. Patent

I Ol

A-001 J=1ua) ejed

GEl
Jojebedouid

'

uoljelsitoy

8E1 aie | s1e0d a|qe ctl \
jsyorepy —we{2l9EL S3EPAN uonensibay 1aysnd ajepdn
sjepdn 198lq0 JoalqQ/ielisibay
A
el
lojebedoid
9jepdn 19990
0€} Janag ajepdn 198(q0 ,
Y ___ —
8cl 921 o ¢el
Alelqi J9PINO. 4 210]8 H.Ow.—ﬁ_o P PDUBJUOI
Jayslignd pas4 uopjedlddy
021 JeA1ag uoneolddy

1-001 J3jus)) Ejeq

0 Wa)sAS soMBN paInquisi|

N-0G| US|

IGL
Alelqi] LD

aal
uonesl|ddy

Jusi|o

eGl
$103lq0
payoeD-jualD

L-0G L JUSID

US 8,745,638 B1

Sheet 2 of 17

Jun. 3, 2014

U.S. Patent

dc¢ 9ld
N-¥¥¢ -
(S)Jagquiny aousnbag
It dl usld
e L 1UBI[D

-

-vve - (jeuondo) Z uoisian@peojfed

{

Z-29g

(leuondo) e uoisioA@peolied

-
..\..

vreve (|leuondo) | 11D 821N0S
0¥c - (Kiowaw
qe7 /| -ul) Bel4 suog sjepdn 308ld0

-
5

(AJowsw-ur)
agcz - | Beld Buipuad ayepdn 108l00
: 0JU| UOISIBA 198lg0

vee a1193190

287/

1€Z pJooay ajepdn 198[00

0] 9lqe] ayepdn 198(q0

(leuondo) sisyi peojAed
(AJowaw-ur) bel
a)e|dwo) 81epdn 108[q0

OjU] UOISI9A SpPIS-USI[O

OJU| UOISIDA OPIS-19AIDS

JaquinN aouanbag

) L 198l90
-0L¢ | dweysawi] 1eaquesH U810
60¢ - (Alowawl
S| -ul) be4 suoQ "bay 10890

80¢
(AJowaw

007 - | -u) Beid Buipusd Bay 108190
’ Snie1S uonensibay

voe al i

202~

10¢

PI098Y Uonessibay 198(q0-ualD

71 8lqel uonensibay 108lqo-usid

US 8,745,638 B1

J¢ 9l
/ N 192[40
N-8G¢ -
dc¢ 9lid (jeuondo)
/
. 007 - (S)peojAed |eluswaloul
- \ fe|q uone.siboy
= \ (Jleuondo) peojhed 29¢ -
2 Q)7 / Al 109lq0
(Jeuondo) 09¢ - L 109[00
/ / .
B 0/7 - dl Jusi[d 83IN0S 1-QC7 - X "

m x OJU| UOISISA 193[00 0C7 J OHELTIN SDHenbes
o VLG - o0 (Janas AQ
: / dl 199! / apIA0Jd) USYO] UOISSS
m e 1009y pa94 a1epan 108l - e c_mamm

PI099Y Posd @1epan 199190 o7 £q papirosd) @] JuslD
1GC p1029Y 81e)S 109[q0

/Z P00y pas4 ajepdn 10slqQ apIS-Ianlas
0GZ 2[qel 91e1s 199lg0 apIS-jual)

U.S. Patent

U.S. Patent

US 8,745,638 B1

Jun. 3, 2014 Sheet 4 of 17
Object Registration (1)
Client App 155 Client Library 157 Registrar 132
s 320-1 |/ 330-1

310-1
/

Send an object

registration request |-

to Client Library

310-3
/

Receive the
acknowledgment
from Registrar

Request Client ID
and Session Token

-» Receive the request

/ 330-3

Create Client ID and
Session Token

e 320-3

Receive Client ID
and Session Token

330-5
J

.‘._ —_—

Return Client ID and
Session Token

I 320-5

Receive the

» registration request

from Client App

320-0
/.

e 320-7
Generate a new
entry for the object
in the object state
table 30.7
3208 | /
Receive the
Acknowledge the —-» registration request
receipt of the | from Client Library
registration request

330-9
)

Send a request for
registering a set of
objects to Registrar

320-1
/.

Generate/update a
client record in the
client-object
registration table

1

Receive the
acknowledgment
from Registrar

330-11
|

FIG. 3A

Acknowledge the
completion of the
request

U.S. Patent Jun. 3, 2014 Sheet 5 of 17 US 8,745,638 B1

Object Registration (2)
Registration Propagator 135
340

Scan the client-object registration table for
an updated client record

7/ 340-3

Identify a pair of (client |D, object ID)
associated with the updated client record

7 340-5

Generate/update a corresponding object
record in the object update table using the
(client ID, object ID) pair

I 340-7

Fetch the object’s latest version info from the
updated object record in the object update
table

340-9
/

Update the client record in the client-object
registration table using the object’s |latest
version info

340-11
/

Mark the completion of propagating the
object registration from the client-object
registration table to the object update table

340-13
N

ast updated client record:

FIG. 3B

U.S. Patent Jun. 3, 2014 Sheet 6 of 17 US 8,745,638 B1

Object Update (1)
Feed Provider 126 Publisher Library 128 Object Update Matcher 138
Ve 410-1 I 420-1

Send an object
update requestto |———»
Publisher Library

Receive the object
update request

J 420-3 s 430-1
Send an object Receive the object
update request to ———» Update request from
Matcher Publisher Library
Ve 430-3

(Generate/update an
object record in the
object update table

for the object
/ 420-5 430-5
Receive the Acknowledge the

| completion of the
object update
request

acknowledgment (e
from Matcher

Ve 410-3 e 420-7
Receive the Acknowledge the
acknowledgment | | completion of the
from Publisher object update
Library request

FIG. 4A

U.S. Patent Jun. 3, 2014 Sheet 7 of 17 US 8,745,638 B1

Object Update (2)

Object Update Propagator 137
44()-1
J

Scan the object update table for an updated
object record

7 440-3

Retrieve the object’s latest version info,
object ID, and a set of client IDs associated
with the object in the object update table

/4405

Generate/update the corresponding client
records in the client-object registration table
using the object's latest version info

440-7
/

Mark the completion of propagating the
object update from the object update table to
the client-object registration table

440-9
ast updam N
update W
Y

FIG. 4B

U.S. Patent

Jun. 3, 2014

Sheet S8 of 17

Object Update (3)

Object Update Pusher 132

| i 450-1

Scan the client-object
registration table for an
updated client record

450-3
|/

Retrieve the object’s latest
version info from the
updated client record

450-
‘ /505

Send an object update
message including the
object’s latest version info
to Client Library

Ve 450-7

Receive an
acknowledgment of the
object update message

from Client Library

7 450-9

Mark the updated client
record as completion of
delivering the object
update message

450-11
J

ast update

client record?

Client Library 157

/

Receive an
object update
message from

Pusher

J

Update a
corresponding
record in the
object state table

y

Acknowledge
the receipt of the
object update
message

Notify Client App

of an object
update message

FIG. 4C

460-1

460-3

460-5

460-7
/

US 8,745,638 B1

Client App 155

s 470-1

Receive the object
update message

from Client Library

I 470-3

Sync the updated
object with Server

App

|

U.S. Patent

Jun. 3, 2014

Sheet 9 of 17

Message Replication

DC-Source 501

501-1
/

ldentify a source
record from a source
table

501-3
/

Send the source

record to DC-Target |

DC-Target 503

503-1
/

Receive the source
record from DC- |«
Source

503-3
J

501-5
/

Receive the
acknowledgement

Acknowledge the
receipt of the source
record

503-5
‘ f

Identify a target
record in a target
table

Pending Flag
Done Flag?

Update the target
record using the
source record

503-11
J

Set the target
record’s Done Flag
to be the source
record's Pending
Flag

FIG. 5A

'

US 8,745,638 B1

U.S. Patent

Jun. 3, 2014 Sheet 10 of 17
Client re-registration (1)
Client Library 157 Registrar 132
510-1 520-1
/ /
Send a request for Receive the
registering an object - registration request
to Registrar from Client Library
520-5 520-3
S S
Process the

ession toke
authenticated?

520-7

registration
request

510-3
/

Receive the oject re- Notify Client Library
registration request (= e to re-register all the
from Registrar objects

510-5

y

Identify previously-
registered objects
for re-registration

510-7

Send a request for
re-registering each
of the previously-
registered objects

Process each of the
——» re-registration
request

|

FIG. 5B

US 8,745,638 B1

U.S. Patent

Jun. 3, 2014

Sheet 11 of 17

Client re-registration (2)

Client Library 157
530-1
| s

Send a request for

registering an object ;

to Registrar

530-3
Ve

(Generate a client-
cached object state
map

530-5
/

Receive tLe server-
side object
registration map

from Reqistrar
530-7
¥

Compare the object
registration map with
the client-cached
object state map

530-9

Identify a set of
objects to be
registered with

Reqistrar
530-11
T S

Send a request for

Registrar 132
540-1
|/

540-5
/

Receive the
registration request
from Client Library

Process the
registration

request

540-3

ession token
quthenticated?

N 540-7
S

Generate a server-
side object
registration map for
the client device

540-9
J

| registration map to

Return the server-
side object

Client Library

540-11
/

re-registering each
of the set of objects

FIG. 5C

Process each of the
re-registration
request

US 8,745,638 B1

U.S. Patent Jun. 3, 2014 Sheet 12 of 17 US 8,745,638 B1

Object Update with Payload (1)

Object Update Matcher 138/

reod Frovider 120 Publisher Library 128 Object Update Propagator 137
10-1 20-1 630-1
= bk
Send an object Receive th | eceive the object
update request to |———» eceive theobject | . update request
update request including the latest

Publisher Library

payload (X@T, Pr)

6203) 630-3
Generate and send Generate/update a
an object update | | record in the object
request with latest update table using
payload (X@T, P) (X@T, P1)
/ 620-5 I 630-5
Receive the Acknowledge the
acknowledgment [«—— completion of the
from Matcher object update request
630-7
610-3 e 620-7 s
Receive ée Acknowledge the Append the latest
acknowledgment | = completion of the payload (Pr) to the
from Publisher object update previously-received
Library ‘eauest payloads in the object’s

payload cache

630-9
/

Propagate the object’s
latest version info
(X@T) to the client-
object registration table

|

FIG. 6A

U.S. Patent

Jun. 3, 2014

Object Update Pusher 132

\ 640-1
Scan the client-object
registration table for an
updated object whose latest
version info is different from

it knowl version in
640-3
|/
Query the object’s payload

cache for the incremental
payloads between the latest
and acknowledged version
INnfo

640-5
|

Retrieve the incremental
payloads not found in the
payload cache from the object
update table (optional)

640-7
J

Apply a payload filter to the
retrieved incremental
payloads

640-9
|

(Generate an object update
request using the filtered
incremental payloads and the
latest version info

640-11
|

Send the object upgate
message to Client Library

640-13
/

Receive an acknowledgment

of the object update message |«

from Client Library

|

» update message

Sheet 13 of 17

Client Library 157

650-1
/

Receive an object

from Registrar

U /—

corresponding
record in the object

state table

650-5
/

— receipt of the object

Acknowledge the

update message

650-7
/

Send an object

update message to |—

Client App

FIG. 6B

US 8,745,638 B1

Client App 155

7 660-1

Receive the object
update message
from Client Library

Ve 660-3

Retrieve the object’s
iIncremental
payloads from the
message

‘ e 660-5

Update the client-
cached object using
the retrieved
incremental
payloads

|

US 8,745,638 B1

Sheet 14 of 17

Jun. 3, 2014

U.S. Patent

J9 Oid

-}

(v)Jo1sI100Y V»

(A 1 'V)spiosy-

-

0—¢ (71 I\ Ld YROVOT]
."Amu—. hh\, h\\a f

(v)ozIuoJyouAs
()J9181084U) >

3&%&3-
10

(v)Jo1s100Y >

(ZA Z2d hiﬂmUQD-O

GGl ddy el

-
+—(

/Gl Aeigiq s

LA 'Ld égmcgomm-o

(v)9zZIuoJYouAsg
()J81s1084un >

—

n i 1/
/4ﬂ,\:hm>,$ VPRY-0—> &mo:

0C} Janag sjepdn 109[q0

U.S. Patent Jun. 3, 2014 Sheet 15 of 17 US 8,745,638 B1

Client 150

N

Memory 712
CPU(s) -

702 | 716

L Operating System
718

714 Network Communication Module

_ —— 155

Client Application
710\ 153

Communication Client-Cached ODbjects 157
Interface Client Library
704

250
708 Object State Table

User interface

| Kevboard/mouse |

706

FIG. 7

U.S. Patent Jun. 3, 2014 Sheet 16 of 17 US 8,745,638 B1

Application Server System 800

/ Memory 812

316
CPU Operating System "
802 818
Network Communication Module ~ |—"
814 ~ — 120
Application Server e~
122
Application Frontend S
. 126
Communication Feed Provider %
Interface , 124
Object Store L

Ke{board/mouse

806

FIG. 8

U.S. Patent Jun. 3, 2014 Sheet 17 of 17 US 8,745,638 B1

Object Update Server System 900

\

Memory 912
CPU 916
202 Operating System
018
914 Network Communication Module
130
Object Update Server
910 , , 128
Publisher Library
catl 138
Communication Object Update Matcher
Interface 126
Object Update Table
036-1

Object 1

ER e

Keyboard/mouse Object N
Registrar/Object Update 132
Pusher

906 134
Client-Object Registration
Tablg— 042-1
Client 1
é.:.l' Y 042-M
il 137
Object Update Propagator
135
Registration Propagator
948

Payload Cache

FIG. 9

US 8,745,638 Bl

1

METHOD AND SYSTEM FOR DISTRIBUTING
OBJECT UPDATE MESSAGES IN A
DISTRIBUTED NETWORK SYSTEM

PRIORITY

This application claims priority under 35 U.S.C. 119(e) to
U.S. Provisional Patent Application No. 61/389,160 filed Oct.
1, 2010, which 1s hereby incorporated by reference in 1ts
entirety.

TECHNICAL FIELD

The disclosed embodiments relate generally to a client-
server network environment, and 1n particular, to a system
and method for distributing object update messages 1n a dis-
tributed network system.

BACKGROUND

Object caching 1s anetwork technology used by web-based
services 1n modern distributed systems for reducing latency,
supporting disconnected operations, and i1mproving user
experience. This technology 1s becoming more popular with
the increasing use of mobile devices such as smartphones and
the development of cloud computing technology. Moreover,
it 1s becoming a reality that a user of a web-based service
often owns multiple terminals such as a desktop, a laptop, a
tablet, a smartphone, etc., and the user can choose any of the
terminals for accessing the service at any moment. This situ-
ation poses a significant challenge for object caching on how
to keep objects cached at diflerent terminals up-to-date. For
example, 11 a user updates his or her calendar from a mobile
phone, then the calendar cached at a desktop will be stale and
must be updated accordingly. In those distributed systems
involving hundreds of millions of users and trillions of
objects, this 1s a non-trivial task.

SUMMARY

In accordance with some embodiments described below, a
computer-implemented method 1n a distributed network sys-
tem 1s disclosed, the distributed network system including at
least one server having memory and one or more processors.
The computer-implemented method includes: recerving a
first object update message from an application server, the
first object update message including a first object 1identifier
and a first object version; updating an object update record
that includes the first object 1dentifier using the first object
version, wherein the object update record includes a first
client 1dentifier; propagating the first object version from the
object update record to a client-object registration record that
includes the first client identifier; and sending a second object
update message to a first client device associated with the first
client identifier, wherein the second object update message
includes the first object identifier and the first object version.

In accordance with some embodiments described below, a
server system in a distributed network system 1s disclosed, the
server system having memory and one or more processors for
executing programs stored in the memory. The one or more
programs include instructions for: receiving a first object
update message from an application server, the first object
update message including a first object identifier and a first
object version; updating an object update record that includes
the first object identifier using the first object version, wherein
the object update record includes a first client identifier;
propagating the first object version from the object update

10

15

20

25

30

35

40

45

50

55

60

65

2

record to a client-object registration record that includes the
first client identifier; and sending a second object update
message to a {irst client device associated with the first client
identifier, wherein the second object update message includes
the first object identifier and the first object version.

In accordance with some embodiments described below, a
non-stationary computer readable-storage medium storing,
one or more programs for execution by one or more proces-
sors of a server system 1s disclosed. The one or more pro-
grams include instructions for: receiving a first object update
message from an application server, the first object update
message including a first object 1dentifier and a first object
version; updating an object update record that includes the
first object identifier using the first object version, wherein the
object update record includes a first client 1dentifier; propa-
gating the first object version from the object update record to
a client-object registration record that includes the first client
identifier; and sending a second object update message to a
first client device associated with the first client 1dentifier,
wherein the second object update message includes the first
object 1dentifier and the first object version.

BRIEF DESCRIPTION OF DRAWINGS

The aforementioned embodiment of the invention as well
as additional embodiments will be more clearly understood as
a result of the following detailed description of the various
aspects of the invention when taken in conjunction with the
drawings. Like reference numerals refer to corresponding
parts throughout the several views of the drawings.

FIG. 1 1s a block diagram 1llustrating a distributed network
system for distributing object updates 1n accordance with
some embodiments.

FIGS. 2A to 2D are block diagrams 1llustrating data struc-
tures used by the distributed network system for distributing
object updates 1n accordance with some embodiments.

FIGS. 3A and 3B are flow charts 1llustrating how a client
device communicates with an object update server for receiv-
ing future updates to an object cached by the client device 1n
accordance with some embodiments.

FIGS. 4A to 4C are flow charts illustrating how the object
update server delivers to the client device an update to an
object cached by the client device 1n accordance with some
embodiments.

FIG. 5A 1s a flow chart illustrating how messages are
migrated from a source data center to a target data center in
accordance with some embodiments.

FIGS. 5B and 5C are flow charts illustrating how a client
device migrates from a first object update server to a second
object update server in accordance with some embodiments.

FIGS. 6 A and 6B are flow charts illustrating how an object
update server delivers to a client device one or more 1ncre-
mental payloads associated with an object cached by the
client device 1n accordance with some embodiments.

FIG. 6C 1s a flow chart illustrating how the client device
deals with out-of-order incremental payloads from the object
update server in accordance with some embodiments.

FIG. 7 1s a block diagram illustrating a client device con-
figured for registering and recerving object updates from an
object update server in accordance with some embodiments.

FIG. 8 1s a block diagram 1llustrating an application server
system configured for generating object updates 1n accor-
dance with some embodiments.

FIG. 9 1s a block diagram illustrating an object update
server system configured for receiving object updates from

US 8,745,638 Bl

3

the application server system and delivering the object
updates to client devices 1n accordance with some embodi-
ments.

DESCRIPTION OF EMBODIMENTS

Reference will now be made 1n detail to embodiments,
examples of which are illustrated 1n the accompanying draw-
ings. While the ivention will be described 1n conjunction
with the embodiments, 1t will be understood that the invention
1s not limited to these particular embodiments. On the con-
trary, the invention includes alternatives, modifications and
equivalents that are within the spirit and scope of the
appended claims. Numerous specific details are set forth 1n
order to provide a thorough understanding of the subject
matter presented herein. But 1t will be apparent to one of
ordinary skill 1n the art that the subject matter may be prac-
ticed without these specific details. In other instances, well-
known methods, procedures, components, and circuits have
not been described in detail so as not to unnecessarily obscure
aspects of the embodiments.

According to some embodiments, the present invention 1s
directed to a large-scale object cache update system. It 1s
designed to keep objects cached at the client devices up to
date with a data repository 1n a distributed network system. At
a high level, the system 1s configured to consume a feed of
object updates from the data repository and disseminate the
object updates to the appropriate client devices based on what
objects a respective client device has cached and registered
for recerving the corresponding object updates. One skilled 1n
the art would understand that the terms including “object
update,” “object change,” and “object invalidation™ appearing
in similar contexts have substantially the same meaning and
are interchangeable with each other throughout this specifi-
cation.

In some embodiments, a client device (also referred to as “a
client” 1n this application) corresponds to a client-side laptop/
desktop/tablet computer or a portable communication device
such as a smartphone or a server-side computer running an
application. Note that the system can be used by an applica-
tion (e.g., a web-based service) that has hundreds-of-millions
of client devices (many of which may be disconnected from
the network at any given time) and trillions of objects such
that any client may cache a large number of objects and the
same object may be cached by many clients simultaneously.

Throughout this application, the term “object” refers to a
piece of uniquely-identifiable, versioned data. For example, a
user’s web-based calendar may be considered as an object. A
user’s bookmarks associated with a browser application can
also be modeled as an object. Using the web-based calendar
as an example, when the user accesses the web-based calen-
dar from a mobile phone, the mobile phone downloads a copy
of the calendar from a remote server and caches the object 1n
a storage device of the mobile phone (e.g., the phone’s
memory device). Similarly, if the user accesses the web-based
calendar from a desktop computer, the computer downloads a
copy of the calendar from the remote server and caches the
object 1n a storage device of the desktop computer. By cach-
ing the calendar at the client device, the user has the benefit of
accessing the calendar even 1f the client device 1s discon-
nected from the network (e.g., the Internet). In some embodi-
ments, the cached calendar 1s stored in a client device’s per-
manent storage device such that 1t 1s even available for user
access aiter the device 1s rebooted.

A potential 1ssue with the object caching approach 1s that a
cached calendar at a first client device may become stale 11 a
user adds a new appointment to the calendar from a second

10

15

20

25

30

35

40

45

50

55

60

65

4

client device, which has not yet arrived at the first client
device. To avoid this 1ssue, all the other client devices that
cache the calendar need to have the calendar’s latest version
including the new appointment as soon as possible. Note that
a client-cached object does not have to be exclusively avail-
able for an individual user. In some embodiments, an object
may be shared by multiple users but the 1ssue remains the
same 1n term of propagating an object update initiated by one
user from one client device to the other client devices used by
others.

In some embodiments, the object cache update system 1s
designed to meet the following requirements:

1. High scalability for managing a large number of client
devices and objects. The system 1s able to support hun-
dreds of millions of users with each user, on average,
having 3 to 4 client devices (including desktop, phone,
notebook/netbook, etc). Furthermore, tens of thousands
of objects such as documents, electronic messages,
address books, calendars, and bookmarks may be
cached at a client device, which require a significant
amount of state data to track their updates.

2. High object update rate across applications. Note that
applications such as web-based email and address book
may have very high update rates (e.g., in tens of thou-
sands per second), which may be even higher 11 a single
set of servers 1s used for supporting multiple applica-
tions. In some embodiments, the system can handle an
aggregate incoming object update rate of 100,000 que-
ries-per-second (QPS) or even higher.

3. Handling disconnected clients appropriately. It 1s com-
mon that many client devices may be disconnected from
cache update for hours, days or even weeks. To deal with
this phenomenon, the system 1s developed such that an
object update server implementing the system knows
not only what to be delivered to a client device after
being reconnected but also when to make the delivery. In
some embodiments, after determiming that a client
device 1s gone forever (e.g., the client device may be
reformatted), the object update server 1s configured to
perform garbage collection for those object updates that
are yet to be delivered to the client device to free the
resources for other client devices.

4. A guarantee of delivering object updates to clients. The
object update server of the present application 1is
designed such that, once a client device has registered
for recerving updates to an object, it 1s guaranteed to
eventually recerve at least the most recent update to the
object as long as the client device 1s not permanently
disconnected. Note that this guarantee simplifies the
development of applications that use the object update
server. For example, an application does not have to
provide a path for pushing/polling the object updates
from the object update server, thereby simplifying the
application’s code base.

As a system for determining which objects cached at which
clients are outdated and then delivering object updates to
them appropriately, the object update server 1s configured to
implement the following features:

1. Tracking and delivery: The object update server tracks
objects cached at respective client devices and propa-
gates each update to an object to the client devices that
have cached the object and registered for recerving
updates to the objects.

2. Reliability of object cache updates: The object update
server provides an incremental object update stream and
combines multiple updates for the same object when

US 8,745,638 Bl

S

possible so that a client device can safely bypass the
object’s intermediate stages.

3. Low latency: The object update server routes object
updates to the appropnate clients within, e.g., seconds of
receiving them, which 1s suflicient for most collabora-
tive applications that do not require sub-second latency.
In some embodiments, the server uses batched blind
writes/reads/table scans for optimized throughput to fur-
ther reduce the latency. As will be described below, the
latency can be further reduced with an in-memory/cach-
ing component built into the system.

FI1G. 1 1s a block diagram illustrating a distributed network
system 10 for propagating object updates between clients 150
and data centers 100 1n accordance with some embodiments
including those embodiments depicted 1n FIGS. 1A to 1F of
U.S. Provisional Patent Application No. 61/389,160. The dis-
tributed network system 10 includes a plurality of clients
(150-1, . . . , 150-N) and a plurality of data centers
(100-1, ..., 100-M), which are commumicatively coupled to
the plurality of clients through a communication network
110. Commumnication network(s) 110 can be any wired or
wireless local area network (LAN) and/or wide area network
(WAN), such as an intranet, an extranet, the Internet, or a
combination of such networks. In some embodiments, com-
munication network 110 uses the HyperText Transport Pro-
tocol (HTTP) and the Transmission Control Protocol/Internet
Protocol (TCP/IP) to transport information between different
networks. The HTTP permits client devices to access various
information 1tems available on the Internet via the communi-
cation network 110. For example, the “hanging GET” request
supported by HT'TP 1.1 1s used for transmitting new messages
from a server to a client. Because the client keeps a GET
pending at the server, whenever there 1s a message to be sent,
the server can simply “reply” to the client with the message.
Other communication protocols that can be used by the com-
munication network 110 include the Extensible Messaging,
and Presence Protocol (XMPP). The various embodiments,
however, are not limited to the use of any particular protocol.
The term “information item™ as used throughout this specifi-
cation refers to any piece ol information or service that 1s
accessible via a content location 1dentifier (e.g., a URL or
URI) and can be, for example, a web page, a website includ-
ing multiple web pages, a document, a video/audio stream, a
database, a computational object, a search engine, or other
online information service.

As shown in FIG. 1, a client 150-1 includes a client appli-
cation 1535 and a set of client-cached objects 153 associated
with the client application 155. For example, the client appli-
cation 155 may be a web browser application for accessing
Internet-based services and the set of client-cached objects
153 may include a set of bookmarks associated with the web
browser, an address book and email messages associated with
a web-based email application running through the web
browser, and a set of appointments associated with a web-
based calendar application runming through the web browser.
In some other embodiments, the client application 155 1s a
soltware program dedicated to a particular application or
applications such as a web-based chat room and the client-
cached objects 153 may include a set of instant messages
associated with the chat room.

In some embodiments, the client 150-1 further includes a
client library 157 for handling transactions relating to updates
to the client-cached objects 153 or other client-related trans-
actions. As will be described below, the client library 157
includes one or more software modules, which help register a
particular object at an object update server 130 within the data
center 100-1 as well as recerving, processing, and notifying

5

10

15

20

25

30

35

40

45

50

55

60

65

6

the client application 155 of updates directed to the object. In
some embodiments, the client library 157 may be a compo-
nent (e.g., a plug-in) of the client application 155. In this case,
the client library 157 may use the client application 155°s
communication channel for communicating with the data
centers (100-1, . ..,100-M). In some other embodiments, the
client library 157 1s a standalone application that may have its
own communication channel with the data centers
(100-1, . . ., 100-M). The client library 157, like the client
application 155, may be implemented in any programming
languages including Java, Javascript, C++, etc. For 1llustra-
tion, two separate double-arrow lines are depicted in FIG. 1 as
connecting the client application 155 and the client library
157 to the commumication network 110, respectively and
these two lines may or may not represent two distinct com-
munication channels.

In order to support a large number of client devices that
may be deployed across the world, the distributed network
system 10 may include multiple data centers at different
locations. FIG. 1 1llustrates that one of the data centers 100-1
includes an application server 120 and an object update server
130. These two servers represent two types ol server-side
applications. The application server 120 provides a web-
based service (e.g., calendar) to the clients (150-1, . . .,
150-N). It includes an application frontend 122 for interacting,
with the clients and stores different users’ calendars 1n an
object store 124 (which may be a database application asso-
ciated with the application server 120). In addition, the appli-
cation server 120 includes a feed provider 126 that has access
to the object store 124 and communicates object updates
(including 1insertions, deletions, and modifications) to the
object update server 130. In some embodiments, the applica-
tion server 120 and the object update server 130 each may run
on one or more server computers. In some other embodi-
ments, the two types of applications may run on the same set
of servers. One skilled 1n the art would understand that the
configuration shown 1n FIG. 11s forillustration and it does not
restrict the implementation of the present application in any
way.

In some embodiments, the object update server 130
includes a registrar 132 for recerving object registration
requests from the clients 150 and storing them i1n a data
structure called “client-object registration table” 134. The
registrar 132 keeps track of the contents within each client
device’s cache, 1.¢., which objects the client 1s device regis-
tered for and the object versions cached by the client device.
In some embodiments, 1t also maintains an eventually-con-
sistent cache of the objects’ latest versions known to the
object update server 130. A more detailed description of the
client-object registration table 134 1s provided below 1n con-
nection with FIG. 2A. One skilled 1n the art would understand
that the terms 1ncluding “request,” “message,” “alert,” and
“notification” appearing 1n similar contexts have substan-
tially the same meamng and are interchangeable with each
other throughout this specification. In addition, the registrar
132 acts as an object update pusher for pushing an object
update to a respective client that has registered for receiving
updates to the object 1f the object cached by the client 1s
deemed to be stale. In some embodiments, the registrar/object
update pusher 132 uses the application server 120°s commu-
nication channel with the communication network 110 for
receiving object registration requests from the clients 150 or
pushing object update messages to the clients 150 through,
¢.g., the application frontend 122. In some other embodi-
ments, the registrar/object update pusher 132 has 1ts own
communication channel with the communication network

110.

US 8,745,638 Bl

7

In some embodiments, the object update server 130
includes an object update matcher 138 that acts as an interface
of the object update server 130 to the application server 120
for receiving object updates from the application server 120
and storing the object updates 1n a data structure called
“object update table” 136. The object update matcher 138
maintains the mapping from an object ID to the latest version
known for that object by the objectupdate server 130. In some
embodiments, 1t maintains an eventually-consistent cache of
client devices registered for each object. A more detailed
description of the object update table 136 1s provided below 1n
connection with FIG. 2B. As shown in FIG. 1, in some
embodiments, the object update sever 130°s interface with the
application server 120 1s an extension of the object update
matcher 138 that resides 1n the application server 120, 1.e., a
publisher library 128. The object update server 130 provides
a predefined set of call and callback functions for the object
update matcher 138 and the feed provider 126 to exchange
information through the publisher library 128. For example,
the publisher library 128 1s provided to the feed provider 126
for making an object update method call to the object update
server 130. When the call returns successfully (via a call-
back), the object update server 130 guarantees that the object
update will be delivered to the respective client devices even-
tually. In some embodiments, both calls are asynchronous,
1.€., the return values are actually provided by a callback. The
application server 120 (e.g., the feed provider 126) makes the
call repeatedly until it receives a successtul confirmation.

In some embodiments, the object update server 130 syn-
chronizes information stored in the client-object registration
table 134 with information stored 1n the object update table
136 using batched read and write operations on the two tables
134 and 136. For example, a registration propagator 135 1s
configured to scan the client-object registration table 134 or
an 1n-memory bitmap for identifying new or recently-updated
client-object registration records and then use the 1dentified
client-object registration records to update the affected object
update records 1n the object update table 136 according to a
first predefined schedule. An object update propagator 137 1s
configured to scan the object update table 136 or an
in-memory bitmap for identiiying new or recently-updated
object update records and use the identified object update
records to update the affected client-object registration
records 1n the client-object registration table 134 according to
a second predefined schedule that 1s independent from the
first predefined schedule. As such, the registrar/object update
pusher 132’s interaction with the client-object registration
table 134 does not depend on the object update matcher 138’s
interaction with the object update table 136 and vice versa. In
some embodiments, there 1s an optimized “fast path™ between
the matcher 138 and the registrar 132 that allows an object
update to bypass the object update table 136, the object
update propagator 137, and the client-object registration table
134 and be sent directly from the matcher 138 to the registrar
132 such that the registrar 132 can immediately send the
object updates to the relevant client devices. Although FIG. 1
depicts a single box for each of the registrar 132 and the
matcher 138, one skilled 1n the art would understand that
there may be multiple registrars and matchers running in the
same object update server 130. In some embodiments, the
matchers and registrars are stateless and load-balanced
through a sharding process such that any of these server-side
modules can handle a request meant for that type of server-
side module.

As will be described below, the system configuration of the
present application improves the etficiency and scalability of
the object update server 130 for dealing with billions of client

5

10

15

20

25

30

35

40

45

50

55

60

65

8

devices and trillions of objects by avoiding synchronous rep-
lication that imposes a significant latency cost and depen-
dence on replication correctness, which may fail completely.
Moreover, this system configuration supports batched opera-
tions (e.g., table reads and table writes) to persistent storage,
a loose coupling between the different servers and their asso-

ciated operations, and movement of client affiliations from
one data center to another data center.

Different components of the object update server 130 work
collectively to track a set of clients 150, each client having
registered for recerving updates to a predefined set of objects.
For example, the clients 150 use the register/deregister calls
(or messages) to express interest/disinterest in particular
objects. After the object update server 130 1s notified by the
application server 120 of a latest version of an object via an
object update message, 1t determines which of the clients 150
that have registered for recerving updates to the object have an
older version of the object than the latest version specified 1n
the object update message and sends the corresponding object
update notification messages to these clients 150. Subse-
quently, a respective client 150-1 acknowledges the receipt of
a corresponding object update notification message by return-
ing a confirmation message to the object update server 130,
thereby ensuring that the object update 1s reliably delivered.

For example, 11 the client 150-1 successiully registers with
the object update server 130 for an object X’s version V, the
object update server 130 guarantees that the client 150-1 will
be informed 1f any object update occurs to the object X with
a more recent version V' than V. In some embodiments, the
version V 1n the objectregistration request 1s the latest version
known to the client 150-1 at the time of registration. If no
version information 1s provided by the client 150-1, the object
update server 130 uses the object’s latest version known to the
object update server 130 for the client 150-1’s registration
request. Note that the object update server 130 may learn the
object’s latest version from another client 150-N that has
already registered for the same object. Alternatively, the
object update server 130 may get the object’s latest version
information from the application server 120. In some embodi-
ments, there 1s no known version for an object, 1n which case
a special symbol called “unknown version™ 1s used to inform
a client 150-1 that the client 150-1 needs to retrieve the object
irrespective of what version 1s currently cached by the client.

As described above, the object update server 130 guaran-
tees that after a client 150-1 has registered for an object, 1t will
be notified of subsequent updates to that object. This delivery
guarantee allows the other applications that rely upon the
object update server 130 for maintaining cache coherency to
have a more simplified design and implementation, e.g.,
being freed from 1mplementing a polling path for retrieving,
object update messages 1n their code base.

Note that the object update server 130°s guarantee provides
the application developers with flexibility, simplicity, and
eificiency 1n the implementation without comprising the ulti-
mate accuracy even 1n the situation that the object update
server 130 may drop, reorder object updates, or deliver the
same object update multiple times due to network congestion.
For example, an object X may be modified twice within a
short time period to create a first version V, and then a second
version V,. In this case, the object update server 130 may
automatically bypass the delivery of the object update asso-
ciated with the first version V, and only deliver the object
update associated with the second version V,. In some
embodiments, the object update server 130 may deliver the
updates for a particular object 1n an order other than that in
which the object updates were generated. For example, 11 an

US 8,745,638 Bl

9

object Y has four consecutive versions V,, V,, V,, V., the
object update server 130 may deliver them in the reverse order
V., Vi, V,, V..

As noted above, various data structures are used by differ-
ent components of the distributed network system 10 to per-
form the designated operations to maintain the cache coher-
ency between the clients 150 and the data centers 100. FIGS.
2A to 2D are block diagrams illustrating some of the data
structures for distributing object updates 1n accordance with
some embodiments.

In particular, FIG. 2A depicts an exemplary client-object
registration table 134 that 1s used by the object update server
130 (e.g., the registrar 132) for tracking the object registration
status for the clients. The exemplary client-object registration

table 134 includes one or more client-object registration
record 201. Each record 201 includes a client ID 202, a
registration status 204, an object registration pending flag
206, an object registration done flag 208, a client heartbeat
timestamp 209, and one or more object records (210-1, . . .,
210-N). In some embodiments, the client ID 202 1s a unique
parameter that the object update server 130 assigns to a
respective client device 1n response to, e.g., the first object
registration request from the client device. In some embodi-
ments, the client ID 202 1s provided by the application server
120 based at least 1n part on a unique parameter associated
with the client device (e.g., 1ts IP address). The unique param-
eter associated with the client device can be used by the object
update server 130 to avoid sending an object update to a client
device from which the object update originates.

The registration status 204’s value indicates whether the
client 150-1 1s still “alive” or has been marked as “dead.” For
example, upon receipt ol a registration request {from a new
client device, the registrar 132 generates a new record 1n the
table 134 and the record’s registration status 1s setto be “Yes,”
indicating that the client device 1s active in receiving object
updates. But the object update server 130 may invoke a back-
ground process to change the record’s registration status from
“Yes” to “No,” indicating that the client device 1s now deemed
to be gone forever for not contacting the object update server
130 for a predefined amount of time (e.g., ranging from one
week to multiple months). In some embodiments, a garbage
collector 1n the object update server 130 scans the table 134
alter a predefined time iterval to remove the client-object
registration records having a registration status of “No” to
free the resources for other use.

As noted above, the registration propagator 133 1s respon-
sible for propagating new registrations ifrom the table 134 to
the table 136. To help the registration propagator 135 quickly
identily new registrations 1n the table 134, the registrar 132
sets the object registration pending flag 206 to be a non-null
value when 1t receives a new object registration request from
a corresponding client device. In some embodiments, the
non-null value 1s a sequence number provided by the client
device or a timestamp associated with the object registration
request. In some embodiments, the object update server 130
maintains, €.g., a bitmap 1n 1ts memory for storing a com-
pressed version of the object registration pending flags in the
client-object registration table 134. The registration propaga-
tor 135 scans the m-memory bitmap to i1dentity those new
object registrations in the table 134. After propagating the
new object registrations from the client-object registration
record 201 to the corresponding entries in the table 136, the
registration propagator 135 resets the record’s object regis-
tration pending tlag 206 to null, which remains to be null until
the registrar 132 recerves the next object registration request
from the same client device.

10

15

20

25

30

35

40

45

50

55

60

65

10

The object registration done flag 208 1s used 1n a multi-
datacenter configuration to ensure that a client device’s object
registration request arriving at one data center will be
securely propagated to another data center. A more detailed
description of this process 1s provided below in connection
with FIG. SA. The client heartbeat timestamp 209 1s used by
the object update server 130 to track the client device’s online
status. In some embodiments, a client device 150-1 (e.g., 1ts
client library 157) sends a heartbeat signal to the object
update server 130 or another module within the data center
100-1 at a predefined frequency (e.g., every few minutes). In
response to the heartbeat signal, the object update server 130
(e.g., a background process managed by the object update
server 130) updates the client heartbeat timestamp 209 to
indicate that the client device 1s online. In some embodi-
ments, the same process or another one checks the client
heartbeat timestamps of the client-object registration records
in the table 134 according to a predefined schedule to deter-
mine which client devices are still online and which are not.
For those client devices that are deemed to be ofthine beyond
a predefined time period (according to their associated client
heartbeat timestamps), their registration status 1s changed
from “Yes” to “No” for future garbage collection purpose.

An object record 210-1 further includes an object ID 211
that uniquely i1dentifies an object (e.g., a particular user’s
calendar account or email account) associated with the client
1D 202, an object registration sequence number 212, server-
side version information 214, client-side version information
216, an object update complete tlag 218, and one or more
payload filters 220. In some embodiments, the size of an
object ID 1s between 8 bytes and 256 bytes. The object reg-
istration sequence number 212 i1s an attribute indicating
whether the client device (de)registers with the object update
server 130 for recerving updates to the object associated with
the object ID 211. In some embodiments, the sequence num-
ber 212 1s a monotonically-increasing parameter provided by
the client device or a timestamp associated with the object
(de)registration request so that a request having a higher
sequence number or a more recent timestamp always over-
rides another request having a lower sequence number or a
less recent timestamp. In some embodiments, the sequence
number 212 1s a monotonically-increasing parameter pro-
vided by the registrar 132.

In some embodiments, this monotonically-increasing
parameter allows a propagator to blindly write entries of a
table so as to avoid the use of transactions like the read-
modity-write cycle. The batched reads or writes operations to
the same table support better resource usage. For example,
assume that a client device submits a deregistration request
for an object at sequence number 32 (which 1s equivalent to a
timestamp since both are monotonically increasing) and then
submits a re-registration request for the same object at
sequence number 435. The object update propagator 137
would not be contused by such transaction because it only
considers the request with the higher sequence number. In this
case, the client device 1s considered registered for that object
even 1f these two messages were reordered (e.g., 45 arrved
before 32) because the second message 1s automatically
ignored for having a lower sequence number.

The server-side version information 214 indicates the
object’s latest version that the object update server 130 1s
aware of (e.g., as a result of information propagation from the
table 136 to the table 134 by the object update propagator
137) and the client-side version information 216 indicates the
object’s latest version that a client device 1s aware of (e.g., as
part of the object registration request submitted by the client
device). In some embodiments, the object update pusher 132

US 8,745,638 Bl

11

compares these two attributes to determine whether 1t needs
to push an object update message to the client device. It the
two attributes are different, the object update pusher 132
generates an object update message including the server-side
version information and sends the message to the client
device.

In some other embodiments, the object update propagator
137 sets the object update complete tlag 218 to be “No” when
updating the server-side version information 214 1n response
to an object update directed to the pair of client ID 202 and the
object ID 211. Sometimes, the object update propagator 137
may set the object update complete tlag 218 to be a simplified
or compression copy of the server-side version imnformation
214. Inthis case, the object update pusher 132 no longer needs
to compare the attributes 214 and 216. By querying the object
update complete flag 218, the object update pusher 132 1s able
to determine whether 1t should generate an object update
message for the client-object pair and resets the object update
complete flag 218 to be “Yes™ after generating the message. In
some embodiments, the object update server 130 maintains,
¢.g., a bitmap 1n its memory for storing a compressed version
ol the object update complete flags 1n the client-object regis-
tration table 134. The object update pusher 132 can scan the
in-memory bitmap to identily those clients that should be
notified of the object updates that they have registered previ-
ously.

Aswill be described below 1n connection with FIG. 6C, the
payload filters 220 are used by the object update pusher 132
for filtering out those contents from payloads that are sched-
uled to be delivered to a client device as part of or 1n connec-
tion with an object update message.

FIG. 2B depicts an exemplary object update table 136 that
1s used by the object update server 130 (e.g., the object update
matcher 138) for managing the object updates targeting at the
respective clients. The objectupdate table 136 includes one or
more object update record 231. Each record 231 includes an
object ID 232, object version information 234, an object
update pending flag 236, an object update done flag 238, a
source client 1D 240, one or more incremental payloads
(242-a, . . . , 242-z), and one or more client records
(244-1, . . ., 244-N). The object version information 234
indicates the object’s latest version that the object update
server 130 1s aware of (which may come from the application
server 120 through the publisher library 128), which, when
migrated from the table 136 to the table 134, triggers the
object update pusher 132 to send out object update messages
to the affected client devices. The object update pending flag
236 1s similar to the object registration pending flag 206
except that the object update pending tlag 236 1s used by the
object update propagator 137 for propagating the object ver-
s1on information 234 from the table 136 to the table 134. The
object update done flag 238, like the object registration done
flag 208, 1s used 1n a multi-datacenter configuration to ensure
that an object update message arriving at one data center will
be securely propagated to another data center. A more
detailed description of this process 1s provided below 1n con-
nection with FIG. 5A.

The source client ID 240 identifies a source client device
from which a user makes an update to an object (e.g., adding
a new appointment to his or her calendar application). Since
the client device 1s the source of this object update, there 1s no
need for the object update server 130 to send a message to this
client device. Each of the incremental payloads 1s a data 1tem
including the changes to an object made by a user, such as
newly-added contents and deletion/modification of existing,
contents. As will be described below 1n connection with
FIGS. 6A and 6B, the possession of these incremental pay-

10

15

20

25

30

35

40

45

50

55

60

65

12

loads by a respective client device frees the client device from
synchronizing with the application server 120 after receiving
an object update message. Fach client record 244-1 includes
a client ID 246 and a sequence number 248 derived from the
most recent object (de)registration request from the client
associated with the client ID 246. As will be explained below,
this sequence number 248 allows the updates on the same
object to be 1n an order as expected by the client even 1n the
presence ol the object updates re-ordering.

FIG. 2C depicts an exemplary client-side object state table
250 that1s used by the client library 157 for tracking the status
of registered objects at a respective client 150-1. The object
state table 250 includes one or more object state records 251,
cach record including a client ID 252 that 1s associated with
the client 150-1, a session token 254, a sequence number 256,
and one or more object records (258-1, . . ., 258-N).

In some embodiments, the client ID 252 and the session
token 254 are both provided by the data center 100-1 (e.g., the
object update server 130 or the application server 120). A
clientdevice’s client ID 252 remains the same when the client
device migrates from one data center 100-1 to another data
center 100-M. In contrast, the client device’s session token
254 depends on the data center that the client device 1s cur-
rently registered with and 1t varies when the client device
migrates from one data center 100-1 to another data center
100-M. As will be described below 1n connection with FIGS.
S5A and 5B, the session token 254 enables the client device to
successiully re-register with a new data center when the client
device moves from one location to another location, which
happens all the time for a mobile client such as a mobile
phone. As noted above, the sequence number 256 1s a mono-
tonically-increasing number used by the client device to asso-
ciate with each individual object (de)registration request.
Note that the client device can use the sequence number 256
to keep the different objects cached by the client device cor-
rectly ordered because of the sequence number’s monotonic-
ity.

Each object record (238-1, . . ., 258-N) corresponds to a
client-cached object that the client 150-1 has registered for
receiving future updates to the object. In some embodiments,
an object record 258-1 includes an object ID 260, a registra-
tion flag 262, version information 264, and one or more
incremental payloads (266. As will be described below, the
registration flag 262 may have one of multiple values: (1)
“Registered” (or “R”) for a completion of object registration,
(11) “Pending Registration” (or “PR”) for an imtiation of
objectregistration, (111) “Deregistered” (or “D”’) for a comple-
tion of object deregistration, and (1v) “Pending Deregistra-
tion” (or “PD”) for an initiation of object deregistration.

FIG. 2D depicts an exemplary server-side object update
teed record 270 that 1s used by the application server 120 for
passing an object update to the object update server 130 in
accordance with some embodiments. The object update feed
record 270 includes an object ID 272 associated with an
object (e.g., a user’s calendar) managed by the application
server 120, object version information 274 identifying the
latest version of the object, a source client ID 276 1dentifying
a client device from which the user makes the object update
initially, and an incremental payload 278 including the
changes to the object made by the user, such as newly-added
contents and deletion/modification of existing contents.

As an object cache updating system, the distributed net-
work system 10 performs at least two types of transactions for
keeping an object cached at a client device up-to-date with an
update to the object by another client device: (1) (de)register-
ing at an object update server a client’s request for receiving
an update to a client-cached object, which 1s described below

US 8,745,638 Bl

13

in detail 1n connection with FIGS. 3A to 3B; and (11) propa-
gating an object update from an application server to a set of
clients that have registered for receiving updates to the object,
which 1s described below 1n detail 1n connection with FIGS.
4A to 4C.

In particular, FIGS. 3A and 3B are flow charts 1llustrating
how a client device 150-1 registers with an object update
server 130 for recerving future updates to an object 1n accor-
dance with some embodiments. Before processing any object
registration request from the client application 135, the client
library 157 sends (320-1) a request to the registrar 132 for a
client ID and a session token. In some embodiments, the
object update server 130 1s responsible for determining these
two parameters. Upon receipt of the request (330-1), the
registrar 132 creates (330-3) a new client ID and a new token
session and returns (330-5) the two parameters to the client
library 157. In some embodiments, the registrar 132 may
forward the request to the application server 120 for generat-
ing the two parameters or generate the two parameters based
on the response from the application server 120. For example,
the client device 150-1 may already have a umique client 1D
when accessing the application server 120. In this case, the
same client ID can be used by the object update server 130 for
identifying the same client device. After recerving (320-3) the
client ID and session token, the client library 157 1s ready for
processing object (de)registration requests from the client
application 155. For illustration, the description below
focuses on processing an object registration request because
the object deregistration request 1s treated similarly with
little, 11 any, difference.

As shown 1 FIG. 3A, the client application 155 sends
(310-1) an object registration request including an object 1D
to the client library 157. In some embodiments, the client
application 155 makes a function call to the client library 157
for passing the object ID. In some embodiments, the request
includes the object’s current version known to the client
application 155. Upon recewving (320-5) the registration
request, the client library 157 writes the request 1nto a pend-
ing object registration list. In some embodiments, the pending
object registration list 1s stored 1n the client-side object state
table associated with the client library 157. For a new object
registration request, the client library 157 generates (320-7) a
new entry in the table using the object’s current version infor-
mation and sets the entry’s registration tlag to be “PR”, which
the client library 157 may revisit to determine whether it
needs to resend an object registration request to the registrar
132. Regardless of whether 1t has recerved the registration
confirmation from the registrar 132, the client library 157
acknowledges (320-8) 1ts receipt of the registration request to
free the client application 155 for other transactions (310-3).
In some embodiments, the client library 157 makes this
acknowledgment by invoking a callback function provided by
the client application 1535. In connection with generating the
new entry, the client library 157 generates a new sequence
number for the object registration request. In some embodi-
ments, the sequence number 1s a monotonically increasing
number generated by the client library 157. In some other
embodiments, the timestamp at which the client library 157
receives the request 1s used as the sequence number for the
object registration request.

In some embodiments, the client library 157 sends (320-9)
a request for registering a set of objects to the registrar 132
according to a predefined schedule. For example, the client
library 157 may send out the request after 1t has accumulated
a predefined number (e.g., 5) of registration and deregistra-
tion requests from the client application 155 or after a pre-
defined time period (e.g., a second or less). In some other

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiments, the client library 157 may submit the request
whenever 1t receives a new request from the client application
155. In some embodiments, this request includes a set of
object IDs and a pair of (client ID, session token) associated
with the client device. Upon receiving (330-7) the request
fromthe client library 157, the registrar 132 generates (330-9)
a new client record in the client-object registration table 1f,
¢.g., this 1s the first time that the registrar 132 recerves an
object registration request from this client device 150-1
according to the client ID and the session token or updates an
existing client record in the client-object registration table 1f
there 1s already a client row have the same client 1D 1n the
client-object registration table. In some embodiments, the
registrar 132 sets the client record’s object registration pend-
ing flag to be a non-null value (e.g., the sequence number
associated with the object registration request). Next, the
registrar 132 returns a message to the client library 157
acknowledging (330-11) the completion of the object regis-
tration request. Upon receipt (320-11) of the acknowledg-
ment from the registrar 132, for each object 1n the object set,
the client library 157 sets the corresponding entry’s registra-
tion flag to be “R” to mark 1ts receipt of confirmation from the
registrar 132. In some embodiments, the client library 157
may delete the corresponding entry from the object state table
250 to mark its receipt of confirmation from the registrar 132.
In some embodiments, the client library 157 performs the
operation 320-9 for those entries having a registration flag of
“PR” multiple times until 1t recerves a reply from the registrar
132 or gives up the attempt to register the object with the
object update server 130.

In some embodiments, the registrar 132 returns the object’s
latest version information known to the object update server
130 to the client library 157. The client library 157 then
updates the pending object registration list using the received
version information. For each object in the object set, the
client library 157 replaces the corresponding entry’s version
information in the object state table with the one recerved
from the registrar (1 they are different). If the object’s version
information returned by the registrar 132 1s more recent than
the client-cached object, the client library 157 may optionally
notity the client application 155 through a callback function.
The client application 155 then synchronizes with the appli-
cation server 120 (e.g., the application frontend 122) to
receive the latest version of the object. In some other embodi-
ments, the client application 155 1s not notified that there 1s a
more recent version of the object in connection with an object
registration request. Instead, 1t will be notified aifter the reg-
istrar 132 pushes an object update to the client library 157 and
the client application 155, which 1s described below 1n con-
nection with FI1G. 4B.

FIG. 3B depicts a tflow chart illustrating how the registra-
tion propagator 135 migrates the object registration requests
from the client-object registration table 134 to the object
update table 136. Following a predefined schedule, the reg-
1stration propagator 135 performs a batched scan (340-1) of
the table 134 for an updated client-object registration record
(1including new client-object registration records) 1n the cli-
ent-object registration table 134. In some embodiments, the
registration propagator 135 actually scans an in-memory data
structure (e.g., a data structure) for non-null object registra-
tion pending flags. From each updated client-object registra-
tion record having an non-null object registration pending
flag, the registration propagator 135 identifies (340-3) a pair
of (client ID, object ID) and generates (340-5) a new object
update record or updates (340-5) an existing object update
record in the object update table 136 using the pair of (client
ID, object ID). For example, the registration propagator 135

US 8,745,638 Bl

15

identifies an object update record in the table 136 having the
same object ID and adds a new entry to the object update
record for the client ID. The new entry also includes the
sequence number that the client library 157 generated for the
object registration request.

Next, the registration propagator 133 fetches (340-7) the
object’s latest version information from the object update
record and updates (340-9) the corresponding client-object
registration record. In some embodiments, the registration
propagator 135 1dentifies an object entry in the client-object
registration record that has the object 1D, replaces the object
entry’s server-side version information with the object’s lat-
est version information, and sets the object entry’s object
update complete tlag to be “No” if the object entry’s server-
side version information 1s more recent than its client-side
version information. As will be described below, the object
update pusher 132 checks this flag to determine whether or
not to generate an object update message for the object. In
addition, the registration propagator 135 marks (340-11) the
completion of propagating the object registration request
from the table 134 to the table 136 by resetting the client
record’s object registration pending tlag to a null value (in-
cluding resetting the corresponding bit in the mm-memory
bitmap). The registration propagator 135 repeats (340-13, no)
this process until after that 1t processes (340-13, yes) the last
updated client-object registration record. The registration
propagator 135 performs this batched table scan and table
update independently from other components of the object
update server 130. For example, neither the registrar 132 nor
the matcher 138 will be halted because the registration propa-
gator 135 has not yet propagated the recent object registra-
tions from the table 134 to the table 136.

With the delivery guarantee described above, after the reg-
istrar 132 acknowledges the completion of a client device’s
object registration request (330-11), the updates to an object
will be delivered to the client device for any later versions
known to the object update server 130 but unknown to the
client device. For example, 11 the client device has the version
V of an object and the latest version V' of the object 1s more
recent than V, the latest version V' will be propagated to the
client-object registration record in the table 134. When the
client device polls the object update server 130, this latest
version V' will be delivered to the client device. Alternatively,
suppose that the client device has the version V of the object
and the latest version of the object known to the object update
server 130 1s also V. If an object update with a new version V'
1s delivered to the object update server 130 after the registrar
132 finishes processing the client device’s registration
request, the new version V' will still be propagated to the
client-object registration record in the table 134 after the
client device’s client ID 1s 1dentified 1n the table 136.

In some embodiments, a deregistration record 1n the table
134 acts like a tombstone, which prevents a delayed object
registration request with a lower sequence number from re-
registering the object with a higher sequence number without
violating the object update delivery guarantee. A garbage-
collection process clears these deregistration tombstones at a
relatively slow interval.

One goal of the object registration process described above
1s to enable the object update server 130 to perform a set of
operations for delivering object updates to respective client
devices 150, which 1s described below in connection with
FIGS. 4A to 4C. In some embodiments, this set of operations
1s triggered by the application server 120 recerving a latest
version of an object from a respective client device (e.g.,
client 150-N). As shown 1n FIG. 4A, the feed provider 126

sends (410-1) an object update message including the

10

15

20

25

30

35

40

45

50

55

60

65

16

object’s object ID and 1ts latest version information as well as
the client ID of the source client device to the publisher
library 128 to indicate that this object has recently been
updated and the object update server 130 should notify any
client device that has registered with the object update server
130 for receiving updates to this particular object. In some
embodiments, the object update message may include an
incremental payload. After recerving (420-1) the object
update message, the publisher library 128 sends (420-3) an
object update request to the object update matcher 138. In
some embodiments, the publisher library 128 merges into the
matcher 138 such that the feed provider 126 sends the object
update messages directly to the object update matcher 138.

Upon recewving (430-1) the object update request, the
matcher 138 queries 1ts object update table 136 for an object
update record that has the object ID provided by the feed
provider 126. If such object update record 1s found, the
matcher 138 updates (430-3) the record using the object’s
latest version information and sets the object update pending
flag to be a non-null value, e.g., an object version number
provided by the application server 120 or a timestamp asso-
ciated with the object update request. If such object update
record does not exist, the matcher generates (430-3) a new
record in the table 136 using the object’s latest version infor-
mation and sets the object update pending tlag to be anon-null
value. Next, the object update matcher 139 acknowledges
(430-5) the completion of processing the object update
request by returning a message to the publisher library 128.
The publisher hibrary 128, upon receipt (420-5) of the
acknowledgment message from the matcher 138, sends (420-
7) amessage back to the feed provider 126 (410-3), indicating
that the object update request mnitiated by the feed provider
126 has been acknowledged by the object update server 130.

FIG. 4B depicts a flow chart illustrating how the object
update propagator 137 migrates the object updates from the
object update table 136 to the client-object registration table
134 1n accordance with a predefined schedule. In some
embodiments, this object update migration schedule 1s 1nde-
pendent from the other operations (e.g., the object registration
migrations) performed by the object update server 130. The
object update propagator 137 performs a batched scan (440-
1) of the table 136 for object update records (including those
newly-created ones) in the object update table 136 that have a
non-null object update pending flag. In some embodiments,
the object update propagator 137 actually scans an
in-memory data structure (e.g., a data structure) for non-null
object update pending flags.

From each object update record having a non-null object
update pending flag, the object update propagator 137
retrieves (440-3) the object’s latest version information, the
object’s object ID, and a set of client IDs associated with the
object, each client ID identifying a respective client device
that has registered for receiving updates to the object. For
cach pair of (client ID, object ID) retrieved from the object
update record, the object update propagator 137 either gen-
crates (440-5) a new client-object registration record or
updates (440-5) an existing client-object registration record
in the client-object registration table 136 using the object’s
latest version information. For example, the object update
propagator 137 identifies a client record 1n the table 134
having the client ID and updates a corresponding object entry
in the record having the object ID. The updated object entry
includes the object’s latest version information as 1ts server-
side version information and an object update complete tlag
of “No,” which 1s used by the object update pusher 132 for
identifying object updates to be delivered to the respective
client devices. Next, the object update propagator 137 marks

US 8,745,638 Bl

17

(440-7) the completion of propagation of the object update
from the table 136 to the table 134 by resetting the object
update record’s object update pending tlag to a null value
(including resetting the corresponding bit in the mn-memory
bitmap). The object update propagator 137 repeats (440-9,
no) this migration process until the completion (440-9, yes) of
the last updated record 1n the table 136 identified during a
particular table scan. In some embodiments, the object update
propagator 137 performs this batched table scan and table
update independently from other components of the object
update server 130. For example, neither the registrar 132 nor
the matcher 138 will be halted because the object update
propagator 137 has not yet propagated the recent object
updates from the table 136 to the table 134.

FIG. 4C depicts flow charts illustrating how the object
update pusher 132 delivers an object update to a client appli-
cation targeted by the object update 1n accordance with some
embodiments. Following a predefined schedule, the object
update pusher 132 scans (450-1) the client-object registration
table 134 for client-object registration records that have been
updated by the object update propagator 137 since the last
table scan. For each record, the object update pusher 132
determines whether the record includes one or more object
entries having an object update complete tlag of “no” value,
and 11 true, retrieves (450-3) each identified entry’s object ID
and server-side version information. Note that one client-
object registration record may include multiple object entries
corresponding to different objects cached by the same client
device. For example, a client device may cache a calendar
object, a browser bookmark object, an address book object,
etc. For each object, the client device registers an object entry
in the table 134 for receiving the corresponding object
updates.

For an 1dentified object entry, the object update pusher 132
sends (450-5) an object update message including the
object’s latest version information stored in the table 134 and
an optional payload to the corresponding client library 157.
For illustration, FIG. 4C depicts the interactions between the
object update pusher 132 with one pair of client library 157
and one client application 155 at the client device 150-1 for
one object update. In reality, the object update pusher 132
may 1dentity multiple client-object registration records in the
table 134 during one table scan, each record corresponding to
a respective client device, and deliver one or more object
update messages to each of the client devices 150. Upon
receipt (460-1) ol the object update message, the client library
157 updates a corresponding object entry i1n the object state
table by replacing its version imformation with the retrieved
server-side version mnformation and saving a copy of the
payload at a storage device accessible to the client device.
Next, the client library 157 returns (460-5) a confirmation
message to the object update pusher 132 acknowledging its
receipt of the object update message.

Upon receiving (450-7) the confirmation message, the
object update pusher 132 marks (450-9) the 1dentified object
entry in the corresponding client-object registration record as
completion of delivering the object update message. In some
embodiments, the object update pusher 132 updates the cli-
ent-side version information to be the same as the server-side
version information and resets the object update complete
flag to be “yes.” The object update pusher 132 repeats (450-
11, no) this process for every identified object entry of an
updated client-object registration record until the completion
(450-11, yes) of the last client-object registration record.

The client library 157 may notity (460-7) the client appli-
cation 1355 of the arrival of an object update message (1) after
its acknowledgment to the object update pusher 132 (as

5

10

15

20

25

30

35

40

45

50

55

60

65

18

shown 1n FIG. 4C), (1) before its acknowledgment to the
object update pusher 132, or (111) in parallel to 1ts acknowl-
edgment to the object update pusher 132. The object update
message includes at least an object’s object ID and optionally
the object’s latest version information as well as incremental
payloads. Upon receipt (470-1) of the object update message
from the client library 157, the client application 1535 syn-
chronizes (470-3) with the application server 120 to retrieve
the most recent version of the object to the client device.

Note that the description above assumes that the client
device 150-1 (hence the client library 157 and the client
application 155) 1s currently online. In some embodiments, a
client device sends a heartbeat signal 1t 1s still “alive” to a
component 1n a data center (e.g., the object update server 130)
at a predefined frequency. The heartbeat signal 1s used for
updating, e.g., the client device’s associated client heartbeat
timestamp 1n the client-object registration table 134. There-
fore, from checking the latest client heartbeat timestamp, the
object update pusher 132 can determine whether the client
device 1s currently online or offline. For those offline client
devices, the object update server 130 maintains their object
registrations and object updates for a predefined period of
time and then deletes them through garbage collection 11 they
are “dead.” For example, a client device 1s deemed to be
“dead” 11 1t 1s re-imaged. In some embodiments, when an
offline client device comes back online, 1t sends a polling
request to the object update server 130 for object updates that
were missed by the client device while being offline. The
object update pusher 132, in response, scans the table 134 for
those object updates and returns them to the client device one
by one or 1n a batch mode.

In some embodiments, the application server 120 may
already receive a second object update aifter 1t recerves a first
update to the same object from a first client device but before
a message associated with the first object update arrives at a
second client device. In this case, the second client device will
receive the most recent version of the object (including both
the first and second object updates) when 1t synchronizes with
the application server 120. To avoid retrieving the same object
from the application server 120 twice, the client application
155 compares the latest version information 1t receives from
the client library 157 with the cached object’s version infor-
mation and only 1ssues a request to synchronize (470-3) with
the application server 120 1if the latest version information 1s
more recent than the cached object’s version information. In
some other embodiments, the client application 155 always
1ssues a sync-up request without performing a version infor-
mation comparison i it 1s assumed that the object update time
interval 1s longer than the object update delivery latency. In
this case, the object update message from the client library
157 or even the object update pusher 132 may not include the
latest version information known to the object update server
130 at all.

The object update delivery process described above 1n
connection with FIGS. 4A to 4C assumes that every message
arrives at 1ts destination in the right order and there 1s no drop
or re-order of any message that requires a redelivery of any
message. In reality, this assumption may not always be true
from time to time. In some embodiments, either the publisher
library 128 or the object update pusher 132 or both implement
a mechamsm to capture and redeliver lost messages. For
example, the publisher library 128 may repeat the operation
420-3 for a predefined number of times until it recerves (420-
5) a confirmation message from the object update matcher
138 or give up 1ts delivery effort. The object update pusher
132 may repeat the operation 450-3 for a predefined number
of times until it recerves (450-7) a confirmation message from

US 8,745,638 Bl

19

the client library 157 or give up 1ts delivery eflfort. In some
embodiments, hysteresis (or a predefined time delay) 1s built
into two consecutive push operations 450-5 to avoid rapidly
resending the same object update many times.

In some embodiments, both the application server 120 and
the object update server 130 are distributed across multiple
data centers 100 in order to better support billions of client
devices located all over the world. For example, each data
center 1s configured to support a subset of the client devices
that are affiliated with the data center (e.g., those client
devices located in the proximity of a data center 100-M).
Upon detecting an object update directed to one of the client
devices registered with the data center 100-M, the data center
100-M (e.g., the object update server at the data center) will
deliver an object update message to the client device 1n accor-
dance with the description above in connection with FIGS.
4A to 4C, notilying the client device that one of its cached
objects may need to be update. In some embodiments, the
data center 100-M also delivers the object update message to
the other data centers. For example, the application server at
the data center (more specifically, the publisher library
therein) may send an object update message to each of the
multiple data centers and assume that the message has been
successtully delivered after receiving acknowledgments from
the first N of the data centers while the other data centers may
receive the message through across-datacenter data replica-
tion.

In some embodiments, the configuration described above
requires that the object update server at any data center imple-
ment at least the features of: (1) inter-datacenter message
delivery, 1.e., forwarding/receiving an object update message
to/from another object update server; and (11) inter-datacenter
client affiliation relocation, 1.¢., allowing a client device to
move 1ts aililiation from one data center to another data cen-
ter. The inter-datacenter message delivery 1s desired when a
first client device submits an object update to a first data
center whereas a second client registers with a second data
center for recerving the object update that 1s remote from the
first data center. The inter-datacenter client affiliation reloca-
tion 1s desired because many web-based applications support
mobile devices such as a smartphone to move around and
receive the services provided by the applications. A client
device that 1s able to move its affiliation from one data center
to another data center usually receives more prompt notifica-
tion of object update messages from a proximate data center
rather than a remote data center.

In some embodiments, the object update server 130 at a
data center 100-1 implements the inter-datacenter message
delivery through data replication across two data centers.
FIG. SA 1s a flow chart illustrating an inter-datacenter data
migration process 1n which a message, be 1t an object regis-
tration request or an object update, 1s migrated from a source
data center DC-Source 501 to a target data center DC-target
503 1n accordance with some embodiments. In some embodi-
ments, the registration propagator 135 performs this inter-
datacenter process while performing the intra-datacenter pro-
cess described above 1n connection with FIG. 3B. The object
update propagator 137 performs this inter-datacenter process
while performing the intra-datacenter process described
above 1in connection with FIG. 4B. In this case, the messages
are replicated from an object update server at one data center
to another object update server at a different data center. In
some other embodiments, there 1s an independent module at
cach data center for performing the inter-datacenter data
migration process. For example, the application server at one
data center may directly notify the object update servers at
different data centers 100 of new object updates. In some

10

15

20

25

30

35

40

45

50

55

60

65

20

embodiments, the aforementioned data replication paths both
exi1st to bring new messages to a target data center as quickly
as possible.

After identifying (501-1) a source record from a source
table, the DC-source 501 sends (501-3) the source record to
the DC-target 503. The source record may correspond to a
new object registration request entered 1nto the client-object
registration table 134 or a new object update message entered
into the object update table 136. Upon receiving (503-1) the
source record, the DC-target 503 acknowledges (503-3) 1ts
receipt of the source record by sending a message back to the
DC-source 501 (501-5). Subsequently or 1n parallel, the DC-
target 503 1dentifies (503-5) atarget record 1n a target table for
update. For example, 1f the source record corresponds to a
new object registration request, the target table at the DC-
target 503 1s 1ts client-object registration table. Using the pair
of (clientID, objectID) from the source record, the DC-target
503 tries to 1dentily a corresponding client-objectregistration
record in the client-object registration table. If there 1s no such
record in the table, this means that the client device having the
client ID has not yet registered with the DC-target 503. The
DC-target 503 may ignore the message to save 1ts resource for
those client devices that are currently affiliated with the DC-
target 503. In some embodiments, not all the entries 1n the
source record will be sent to the DC-target 503. For example,
a client-object registration record’s object update complete
flag may not be included in the source record. Rather, the
DC-target 503 re-calculates the target record’s object update
complete flag using its server-side and client side version
information when updating the target record.

If a target record does exist, the DC-target 503 then com-
pares (503-7) the pending flag of the source record with the
done flag of the target record. It the pending flag 1s greater
than the done flag (503-7, yes), the target record has not been
updated for the same source record. The DC-target 503
updates (503-9) the target record using the source record and
sets (503-11) the record’s done flag to be the same as the
pending flag of the source record, such as a sequence number,
timestamp, or version number associated with the source
record. Otherwise (503-7, no), the DC-target 503 returns to
wait for the next source record from the same data center or
another one.

Because there are multiple data replication paths among,
the data centers 100, a target data center (e.g., DC-target 503)
may recerve the same message from different sources mul-
tiple times. Checking the attribute like the object registration
done flag can filter out those redundant messages and prevent
the same target record from being updated repeatedly. More-
over, a new message (e.g., an object registration request)
reaching the target data center will be propagated from the
client-object registration table to the object update table by
the registration propagator. As noted above, the registration
propagator resets the object registration pending flag in the
client-registration table to be a null value after the intra-
datacenter data propagation. Without the object registration
done flag, the object registration pending flag will be set to the
same non-null value again when a second message concern-
ing the same object registration request arrives at the target
center, which triggers the registration propagator to re-propa-
gate the request from the client-object registration table to the
object update table during the next scheduled table scan. But
with the object registration done flag, the target data center 1s
able to track the most recent message applied to the target
record such that another message that carries the same mes-
sage will be 1gnored. As a result, the registration propagator
migrates an object registration request only 11 its object reg-
istration pending flag 1s greater than 1ts object registration

US 8,745,638 Bl

21

pending flag, which may be one of a sequence number, a
timestamp, and an object version number. After performing,
the migration, the DC-target 503 resets the object registration
pending tlag to a null value while keeping the object registra-
tion done flag unchanged so that the corresponding record
will not be chosen during the next table scan.

In some embodiments, the done flag 1s reset to a null value
at a low frequency, e.g., after a time interval that 1s longer than
what 1t takes to perform the inter-datacenter data replication
so as not to disturb the normal operations at each data center.
In some other embodiments, the inter-datacenter data repli-
cation only occurs to one of the two tables (e.g., the client-
object registration table 134) because the other of the two
tables (e.g., the object update table 136) will be automatically
updated through the intra-datacenter data replication as
described above 1n connection with FIGS. 3B and 4B.

Besides the inter-datacenter message delivery, the distrib-
uted network system 10 also allows a client device to move its
affiliation from one data center to another data center to
support many mobile applications. In some embodiments, the
relocation of a client device’s affiliation 1s implemented by
moving the client device’s object registrations from one data
center to another data center. FIGS. 5B and 3C are flow charts
illustrating how a client device moves its object registrations
in accordance with some embodiments.

As shown 1n FIG. 5B, a client device starts this re-registra-
tion process by instructing its client library 157 to send (510-
1) a request for registering an object to a registrar 132 of an
object update server at a particular data center. In some
embodiments, the request includes a client ID, an object 1D,
and a session token. Upon receipt (520-1) of the registration
request, the registrar 132 tries to authenticate (520-3) the
session token provided by the client device. As noted above 1n
connection with FIG. 3 A, different data centers 1ssue differ-
ent session tokens such that a session token 1ssued by the data
center 100-1 will not be authenticated by the data center
100-M. But if the session token 1s authenticated (520-3, yes),
the registrar 132 will process (520-5) the registration request

in the same manner as described above 1n connection with
FIG. 3A. Otherwise (520-3, no), the registrar 132 notifies
(520-7) the client library 157 to re-register all the objects that
it would like to receive their updates by providing a new
session token to the client library 157. In some embodiments,
the data center gives each session token a term of life such that
the session token may fail the authentication test (520-3) 11 it
has expired. This may occur after a client device 1s taken
offline for a long time and now tries to reconnect with the
same data center. When this occurs, the registrar 132 assumes
that all the objects cached by the client device are stale and
therefore instructs it to re-register with the registrar 132.
Upon recerving (510-3) the object re-registration request
from the registrar 132, the client library 157 1dentifies (510-5)
the previously-registered objects within, e.g., the object state
table. In some embodiments, the client library 157 requests
the client application 155 to provide a set of objects that the
client device 1s interested 1n receiving their updates. For each
identified object, the client library 157 sends (510-7) arequest
to the registrar 132 for re-registering this object with the
registrar 132. The registrar 132 then processes (520-9) each
request accordingly as described above 1n connection with
FIGS. 3A and 3B. In sum, the registrar 132 uses the session
token to make a binary decision such that (1) either the client
library 157 already registers with the registrar 132 and the
registrar 132 continues 1ts current registration by processing,
new registration requests (e.g., the operation 520-5) (11) or the
client library 157 1s deemed to be completely new to the

10

15

20

25

30

35

40

45

50

55

60

65

22

registrar 132 and the registrar 132 forces it to re-register every
object (e.g., the operation 510-7).

In some embodiments, a client device had registered a set
ol objects with a data center before and such registration still
exi1sts but the session token has lapsed. FIG. 5C depicts such
an embodiment 1n which the registrar 132 tries to re-use the
existing registration to the extent 1t 1s possible. Like in FIG.
5B, the client library 157 first sends (530-1) an object regis-
tration request to the registrar 132. In some embodiments, the
request includes at least a client ID, an object ID, and a
session token. Upon receipt (540-1) of the object registration
request, the registrar 132 tries to authenticate (540-3) the
session token provided by the client device. I the session
token 1s authenticated (540-3, yes), the registrar 132 will
process (540-5) the registration request 1n the same manner as
described above 1n connection with FIG. 3A.

Ifnot (540-3, no), instead of notitying the client library 157
to re-register all the objects that 1t would like to recerve their
updates, the registrar 132 queries 1ts associated client-object
registration table using the client ID provided by the client
library 157. Assuming that the client device had registered
with the data center before, the query result includes a set of
object IDs 1dentifying the objects registered by the client
device and their associated version information known to the
data center. Using this query result, the registrar 132 gener-
ates (540-7) a server-side object registration map for the
client device and returns (540-9) the object registration map
and a new session token to the client library 157. In some
embodiments, this server-side object registration map 1s a
data structure (e.g., a text string) that includes a set of object
IDs and their associated version mformation arranged 1n a
predefined order (e.g., chronologically or alphabetically). In
some other embodiments, the server-side object registration
map 1s a hash of the set of object IDs and their associated
version information.

Independently, the client library 157 generates (330-3) a
client-cached object state map. In some embodiments, this
client-cached object state map 1s a data structure (e.g., a text
string) that includes a set of object IDs and their associated
version information arranged in a predefined order (e.g.,
chronologically or alphabetically). These object IDs 1dentily
those client-cached objects that the client 1s interested in
receiving their updates. After receiving (530-5) the server-
side object registration map, the client library 157 compares
(530-7) 1t with the client-cached object state map and 1denti-
fies (530-9) a set of objects that 1s not found 1n the data center
and that the client library 157 intends to register. In some
embodiments, two types ol objects may fall into the identified
set: (1) objects that the client library 157 has never registered
with the data center; and (11) objects whose version informa-
tion at the data center 1s outdated by their counterpart at the
client device. For each object 1n the 1dentified set, the client
library 157 sends (330-11) a request to the registrar 132 for
re-registering this object with the registrar 132. The registrar
132 then processes (340-11) each request accordingly as
described above 1n connection with FIGS. 3A and 3B.

Refer again to FIG. 4C, 1n response to an object update
notification (460-7), the client application 155 synchronizes
(470-3) with the application server 120 to get an object’s
latest version. In this embodiment, the object update server
130 1s only responsible for alerting a client device that an
object cached by the client device has been updated and it 1s
not the object update server 130’s responsibility for bringing
the updated object to the client device. Compared with the
embodiments described below 1n connection with FIGS. 6 A
to 6C, this embodiment has a relatively simplified design on
both the client-side and the server-side but requires an addi-

US 8,745,638 Bl

23

tional round-trip communication between the client device
and the application server 1n order to bring the client-cached
object up-to-date. As will described below, an alternative
design of the distributed network system 1s to include the
updated object (or at least a portion thereof) 1n a payload of an
object update message and deliver the object update message
including the payload to a client device. When the client
device recerves the object update message, 1t also recerves the
update object used for replacing the client-cached object so as
to avoid the additional round-trip traific between the client
device and the application server.

In some embodiments, the payload associated with an
object update message includes an updated object 1n 1ts
entirety. In other words, there 1s no data dependency between
the updated object and any pre-updated object. What the
client device needs to do after receiving the payload 1s to
replace the pre-updated object with the updated object. This
design 1s easy to implement because 1t requires modest
changes to the design of the object update server 120 and the
data structures shown in FIGS. 2A to 2D. But because an
entire object 1s transmitted between the application server
120, the object update server 130, and the client devices, this
approach may be expensive because it requires the distributed
network system 10 to consume more resources such as net-
work bandwidth and storage space. As a result, this approach
may be applicable to delivering objects of small sizes or
objects lack of continuity across updates (1.e., there 1s little 1n
common between an updated object and a pre-updated
object).

In some other embodiments, an object associated with a
web-based service 1s too large to be included as a payload of
an object update message. For example, a user’s Gmail
account may have multiple gigabytes (GB) of data. It 1s
almost 1mpossible to pass the multi-GB data around as a
payload associated with an object update message. Moreover,
it 1s observed that a large-size object 1s incrementally built up
over time and an update to the object corresponds to an
addition/deletion/modification to a slight portion of the object
such that there 1s no need for the entire object to be passed
around. In fact, this observation 1s true to many web-based
applications. For example, an update to a calendar object may
be to add a new appointment to the calendar and an update to
an email account object may be to delete a message from the
email account. The application server 120 converts the dii-
ferences between two consecutive versions of an object into a
small-size (e.g., from kilobytes to megabytes) incremental
payload and forwards the incremental payload to the object
update server 130 for delivery to a client device together with
an object update message. Using the incremental payload, the
client device (e.g., the client application 155) can rebuild the
entire client-cached object to be up-to-date with the same
object on the server side. FIGS. 2A to 2D depict the data
structures supporting this configuration. A more detailed
description of the process 1s provided below 1n connection
with FIGS. 6A and 6B.

As shown 1 FIG. 6A, the feed provider 126 sends (610-1)
an object update request to the publisher library 128. In some
embodiments, the object update request includes an object
ID, the object’s current version information, a source client
ID 1dentiftying the client device that imitiates the object
update, and an incremental payload corresponding to the
updated portion of the object. In some embodiments, for
security reason or ease ol implementation, the internal data
structure of the incremental payload 1s opaque to the pub-
lisher library 128 and the object update server 130, which
treat the incremental payload as a binary or textual string. In
some other embodiments, at least a portion of the internal data

5

10

15

20

25

30

35

40

45

50

55

60

65

24

structure of the incremental payload 1s revealed to the pub-
lisher library 128 or the object update server 130, which may
use such information to combine multiple incremental pay-
loads into one and then push the combined incremental pay-
load to a client device together with an object update message.

In response (620-1) to the object update request, the pub-
lisher library 128 generates (620-3) a new object update
request 1n accordance with, e.g., a predefined protocol
between the publisher library 128 and the matcher 138 and
sends (620-3) the object update request (X@'1, P,) to the
matcher 138. Note that the expression “X@ 1" represents the
object X’s latest version information at the timestamp T (e.g.,
when the object X was updated at the application server 120)
and the expression “P.,.” corresponds to the latest incremental
payload to be delivered to the affected client devices. Upon
receiving (630-1) the object update request including the
latest incremental payload, the matcher 138 generates (630-
3) a new entry in the object update table 1f this 1s the first
update to the object X or updates (630-3) an existing entry. As
a result, the object X’s latest version information and incre-

mental payload are added to the corresponding entry in the
object update table 136. As shown in FIG. 2B, the object
update record 231 may include one or more incremental
payloads (242-a, . . . , 242-z), each incremental payload
having a parameter indicating the object’s corresponding ver-
sion information. As will be explained below, this parameter
1s used by the object update server 130 to arrange the delivery
or merging of the multiple incremental payloads 1n the correct
order. Next, the matcher 138 acknowledges (630-5) 1its
completion of the object update request to the publisher
library 128. The publisher library 128, uponreceiving (620-5)
the acknowledgment, sends (620-7) an acknowledgment
back to the feed provider 126 (610-3) to complete a commu-
nication round-trip between the application server 120 and
the object update server 130.

In some embodiments, the object update server 130 main-
tains a payload cache in 1ts memory for storing the incremen-
tal payloads associated with different objects 1n addition to
loading them into the object update table 136. As will be
described below i1n connection with FIG. 6B, the object
update pusher 132 does not retrieve an object’s incremental
payloads from the object update table 136 unless its effort of
retrieving the incremental payloads from the payload cache
fails. For convenience, the object’s incremental payloads 1n
the payload cache are stored in the order that they are gener-
ated by the application server 120. As such, the matcher 138
appends (630-7) the latest incremental payload to the other
previous-received incremental payloads in the payload cache.
Next, the object update propagator 137 propagates (630-9)
the object X’s latest version information X @ T to the client-
object registration table as described above 1n connection
with FIG. 4B.

FIG. 6B further depicts flow charts 1llustrating the interac-
tions between the server-side object update pusher 132 and
the client-side client library 157 and the client application
155. As described above in connection with FIG. 4C, the
object update pusher 132 performs (640-1) table scan of the
client-object registration table 134 for generating an object
update message that needs to be delivered to the respective
client devices. Based on the table scan, the object update
pusher 132 also determines which, 11 any, incremental pay-
loads should be delivered together with the object update
message and queries (640-3) the payload cache for retrieving
the object’s associated incremental payload(s) between the
latest version of the object known to the object update server
130 and the object cached by the client device. For any cache

US 8,745,638 Bl

25

miss, the object update pusher 132 then retrieves (640-5)
those missed incremental payloads from the object update
table 136.

In some embodiments, when a client device registers an
object, it provides to the object update server 130 one or more
payload filters 220 as described above 1n connection with
FIG. 2A. A payload filter 1s used for filtering out those incre-
mental payloads that are not currently required by the client
device. For example, a user of a web-based calendar applica-
tion 1s usually interested 1n his or her appointments in next
week or month. When the user registers for receiving updates
to his or her calendar object, the user may submit to the object
update server 130 a payload filter that specifies a sliding time
window of a week or a month from the current time for
filtering out those incremental payloads corresponding to
appointments falling outside the sliding time window. If the
application server 120 sends a request including an incremen-
tal payload corresponding to a new appointment for the user
that 1s six months from the present, the object update server
130 will process the request as described above 1n connection
with FIG. 6 A. But when the object update pusher 132 deter-
mines what incremental payloads should be delivered to a
client device associated with the user, this incremental pay-
load corresponding to the six-month afar appointment will be
filtered out by applying (640-7) the payload filters to the
retrieved incremental payloads.

Next, the object update pusher 132 generates (640-9) an
object update request using the filtered incremental payloads
and the object’s latest version information and sends (640-11)
the object update request to the client library 157. Upon
receiving (650-1) the object update request, the client library
157 then updates (650-3) a corresponding record in the object
update table accordingly and acknowledges (6350-5) its
receipt of the object update request to the object update
pusher 132 (640-13), which then marks the corresponding
record 1n the client-object registration record (see, e.g., 450-9
of FIG. 4C). In addition, the client library 157 sends (650-7)
an object update message including the associated payloads
to the client application 155. In response (660-1) to the object
update message, the client application 1535 retrieves (660-3)
the incremental payloads from the message and updates (660-
5) the client-cached object using the retrieved incremental
payloads.

In some embodiments, the object update server 130 may
not deliver an object’s incremental payloads when delivering
an update to the object to a respective client device. For
example, 1t 1s quite common that a client device may go
offline for a long period of time. During the same time period,
the object update server 130 may end up accumulating a large
number of incremental payloads associated with the objects
cached by the client device. As such, the object update server
130 has to allocate more resources for managing these incre-
mental payloads. Moreover, the object update server 130 has
to make sure that 1t 1s able to securely deliver a large amount
of data to the client device, which 1s the problem that the
alforementioned incremental payload-based approach tries to
avold. Another 1ssue that the object update server 130 has to
deal with 1s that an object update message may be lost or
re-ordered during the delivery process. Therefore, there 1s no
guarantee that every incremental payload will be delivered to
a client device and, even i1f delivered, all the incremental
payloads will be delivered 1n the same order that they were
generated by the application server 120.

In some embodiments, the object update server 130 solves
the aforementioned problem by only guaranteeing the deliv-
ery ol an object update message without any incremental
payload and making best effort to deliver the incremental

10

15

20

25

30

35

40

45

50

55

60

65

26

payloads as long as predefined criteria are met. For example,
the matcher 138 notifies the feed provider 126 not to send
incremental payloads for an object i1 the amount of incremen-
tal payloads for this object accumulated in the object update
table 136 has reached a predefined threshold (e.g., 10-100
MB). In addition, the matcher 138 may delete the accumu-
lated incremental payloads from the table 136 and iree the
resources for other use. On the other hand, the object update
server 130 still accepts and processes new object update mes-
sages from the application server 120. After the client device
1s back online, the object update server 130 will send an object
update including the object’s latest version information to the
client device and nstruct the client device to synchronize
with the application server for the latest version of the object
as described above 1n connection with FIG. 4C. After that, the
object update server 130 may resume the practice of accept-
ing new incremental payloads from the application server
120.

In other words, the object update server 130 uses the
approach of delivering object update alert only (as described
above 1n connection with FIGS. 4A to 4C) as 1ts fallback
option when 1ts effort of delivering incremental payloads
tails. But the object update server 130 1s also able to resume
the effort of delivering payloads when certain conditions are
met. Note that one skilled 1n the art would understand that
some changes to 1ts data structures (such as those shown 1n
FIGS. 2A to 2D) may be helpful 1in order for the object update
server 130 to switch back and forth between the two message
delivery options. For example, the object update table 136
may include a binary flag indicating which message delivery
option the object update server 1s currently practicing.

There are multiple reasons that the application server gen-
erates object updates and incremental payloads 1n one order
that the objectupdate server recerves them in a different order.
For example, two consecutive object updates generated by
two application servers located at two data centers may arrive
at the object update server in a reverse order 1f there 1s any
traffic delay at one of the two data centers. As described
above, the object update server’s operation 1s not atfected by
the re-ordered object update messages because the object
update message having more recent object version informa-
tion (which may be a monotonically increasing number or a
timestamp associated with the object update) always trumps
the object update message having less recent information
regardless of their arrival sequence at the object update server.

But the re-ordering of incremental payloads at the object
update server may cause incorrect object updates at a client
device. For example, assume that the web-based calendar
application generates a {irst object update to add an appoint-
ment to a user’s calendar and then generates a second object
update to delete the appointment from the user’s calendar. IT
the object update server receives and processes the two object
updates 1n a reverse order, a client-cached object at a client
device may end up with an appointment that should have been
deleted.

In some embodiments, the object update server solves this
problem by detecting a gap in the object’s version informa-
tion. For example, 1T every object update has a unique sequen-
tial version number (e.g., 1,2, 3, ...), the object update server
can easily tell whether it processes the object updates in the
same order as they are generated by the application server by
checking whether the last two object updates’ associated
version numbers are in sequence or not. Whenever detecting
a gap 1n the object’s version information, the object update
server may stop delivering new incremental payloads and
therefore fall back to the option of delivering object update
alerts alone. Alternatively, the object update server may wait

US 8,745,638 Bl

27

for those missed object updates to arrtve and fill the gap and
then resume delivering the object updates including incre-
mental payload in the correct order.

In some other embodiments, 1t may be diflicult for the
object update server to tell whether there 1s a gap in the
object’s version information based on the version iforma-
tion 1n 1ts possession. For example, 11 every object update 1s
marked by a timestamp at which i1t was created, the object
update server would be unable to tell whether the object
updates arriving at the object update server are re-ordered or
not from the last two object updates’ timestamps because
another object update that was generated between the last two
object updates may be delayed. In other words, it 1s possible
that the object update server may detect a gap 1n the object’s
version information after it already delivers the last object
updates (including their incremental payloads) to a client
device. FIG. 6C 1llustrates a method of detecting this type of
object update re-order and correcting 1t 1n accordance with
some embodiments. In this example, 1t 1s assumed that the
two consecutive object updates, generated by the same appli-
cation server 120, arrive at the object update server 130 1n a
reverse order. But the methodology described below 1s appli-
cable to any kind of object update re-order.

Initially, the application server 120 saves two object
updates of the same object A, Write(A, P1) and Write(A, P2),
at 1ts storage 671. Note that “P1” and “P2” represent the two
incremental payloads associated with the two object updates.
In some embodiments, the storage 671 returns, respectively,
an acknowledgment Ack(A, P1) and Ack(A, P2) for each of
the two object updates. But as shown i FIG. 6C, when the
application server 120 delivers the two object updates to the
object update server 130, their order 1s reversed such that the
first object update S Update(A P1, V1) arrives at the object
update server 130 after the second Obj ect update S-Update(A,
P2,V2). Notethat “V1” and “V2” represent the object version
information the application server 120 assigns to the two
object updates, each corresponding to a timestamp 1ndicating
when the corresponding object update occurs at the applica-
tion server 120.

Note that when the object update server 130 receives the
second object update S-Update(A, P2, V2), 1t 1s not aware that
the first object update S-Update(A, P1, V1) 1s on the way. In
this example, the object update server 130 sends an object
update O-Update(A, P2, V2, T1) to the client library 157
without waiting for the arrwal of the first object update S-Up-
date(A, P1, V1) and recerves an acknowledgment O-Ack(A,
P2,V2,T1) from the client library. Note that “T'1”" 1s a version
number that the object update server gives to the object
update. The client library 157 then sends an object update
C-Update(A, P2, V2) to the client application 155. In
response, the client application 155 may use the object update
(in particular, the incremental payload P2) to update 1ts client-
cached object.

At sometime later, the first object update S-Update(A, P1,
V1) arrives at the object update server 130. In some embodi-
ments, after comparing the timestamp V1 of the first object

update S-Update(A, P1, V1) with the timestamp V2 of the
second object update S-Update(A, P2, V2) that has been
processed by the object update server 130, the object update
server 130 realizes that the object updates have been pro-
cessed out of the order 1n which they were generated by the
application server 120. The object update server 130 then
sends an object update reorder O-Reorder(A, P1, V1) to the
client library 157, notitying that the client-cached object may
be inconsistent with the object managed by the application
server 120. In response, the client library 157 deregisters the
object A with the object update server 130, causes the client

10

15

20

25

30

35

40

45

50

55

60

65

28

application 155 to synchronize with the application server
120 to receive the latest version of the object A, and then
re-registers with the object update server 130 for the object A.
In some embodiments, the client library 157 may 1mnvoke an
API call to inform the application server 120 that 1ts object
state 1s inconsistent and the application server 120 then takes
actions (e.g., pushing the latest version of the object to the
client device 150-1 at which the client library 157 resides.
In some other embodiments, the object update server 130
may delegate the responsibility of detecting gaps in the
object’s version information to the client library 157. As
shown 1n FIG. 6C, the object update server 130 sends an
object update O-Update(A, P1, V1, T2) to the client library
157 and receives an acknowledgment O-Ack(A, P1, V1, T2)

from the client library 157. Note that ““12” 1s a version number
that the object update server gives to the object update. After
detecting the gap 1n the object version information, the client
library 157 then sends an object update reorder C-Recorder
(A, P1, V1) to the client application 155, which triggers the
client application 1535 to synchronize with the application
server 120 to recerve the latest version of the object A. In
addition, the client library 157 deregisters the object A with
the object update server 130 and re-registers with the object
update server 130 for the object A aifter the synchromization
between the client application 155 and the application server
120.

FIG. 7 1s a block diagram 1illustrating a client device 150
configured for registering and receiving object updates from
an object update server 1 accordance with some embodi-
ments. The client device 150 includes one or more processing
units (CPU’s) 702 for executing modules, programs and/or
instructions stored in memory 712 and thereby performing
processing operations; one or more network or other commu-
nications interfaces 710; memory 712; and one or more com-
munication buses 714 for interconnecting these components.
In some embodiments, the client device 150 includes a user
interface 704 comprising a display device 708 and one or
more mput devices 706 (e.g., keyboard or mouse). In some

embodiments, the memory 712 includes high-speed random
access memory, such as DRAM, SRAM, DDR RAM or other

random access solid state memory devices. In some embodi-
ments, memory 712 includes non-volatile memory, such as
one or more magnetic disk storage devices, optical disk stor-
age devices, flash memory devices, or other non-volatile solid
state storage devices. In some embodiments, memory 712
includes one or more storage devices remotely located from
the CPU(s) 702. Memory 712, or alternately the non-volatile
memory device(s) within memory 712, comprises a computer
readable storage medium. In some embodiments, memory
712 or the computer readable storage medium of memory 712
stores the following programs, modules and data structures,
or a subset thereof:

an operating system 716 that includes procedures for han-
dling various basic system services and for performing
hardware dependent tasks;

a network communications module 718 that 1s used for
connecting the client device 150 to other computers via
the communication network interfaces 710 and one or
more communication networks (wired or wireless), such
as the Internet, other wide area networks, local area
networks, metropolitan area networks, and so on;

one or more client applications 1535, each client application
including one or more client-cached objects 153, such as
web-based electronic messaging, calendar, address

book, browser bookmarks; and

US 8,745,638 Bl

29

one or more client libraries 157, each client library includ-
ing a data structure 2350 (e.g., an object state table) for
tracking the status of the client-cached objects registered
at the object update server.

FI1G. 8 1s a block diagram 1llustrating an application server
system 800 configured for generating object updates 1n accor-
dance with some embodiments. The server system 800
includes one or more processing units (CPU’s) 802 for
executing modules, programs and/or instructions stored 1n
memory 812 and thereby performing processing operations;
one or more network or other communications interfaces 810;
memory 812; and one or more communication buses 814 for
interconnecting these components. In some embodiments,
the server system 800 includes a user interface 804 compris-
ing a display device 808 and one or more input devices 806
(c.g., keyboard or mouse). In some embodiments, the
memory 812 includes high-speed random access memory,
such as DRAM, SRAM, DDR RAM or other random access
solid state memory devices. In some embodiments, memory
812 includes non-volatile memory, such as one or more mag-
netic disk storage devices, optical disk storage devices, tlash
memory devices, or other non-volatile solid state storage
devices. In some embodiments, memory 812 includes one or
more storage devices remotely located from the CPU(s) 802.
Memory 812, or alternately the non-volatile memory
device(s) within memory 812, comprises a computer readable
storage medium. In some embodiments, memory 812 or the
computer readable storage medium of memory 812 stores the
tollowing programs, modules and data structures, or a subset
thereoi:

an operating system 816 that includes procedures for han-
dling various basic system services and for performing
hardware dependent tasks;

a network communications module 818 that 1s used for
connecting the server system 800 to other computers via
the communication network interfaces 810 and one or
more communication networks (wired or wireless), such
as the Internet, other wide area networks, local area
networks, metropolitan area networks, and so on; and

one or more application servers 120, each application
server including (1) an application frontend 122 for com-
municating with the client applications at the client
devices, (1) a feed provider 126 for sending object
updates to the object update server, and (111) an object
store 124 for storing the objects used by the application
Server.

FIG. 9 1s a block diagram illustrating an object update
server system 900 configured for receiving object updates
from the application server system and delivering the object
updates to client devices 1n accordance with some embodi-
ments. The server system 900 1includes one or more process-
ing units (CPU’s) 902 for executing modules, programs and/
or instructions stored in memory 912 and thereby performing
processing operations; one or more network or other commu-
nications interfaces 910; memory 912; and one or more com-
munication buses 914 for interconnecting these components.
In some embodiments, the server system 900 includes a user
interface 904 comprising a display device 908 and one or
more 1mput devices 906 (e.g., keyboard or mouse). In some
embodiments, the memory 912 includes high-speed random
access memory, such as DRAM, SRAM, DDR RAM or other
random access solid state memory devices. In some embodi-
ments, memory 912 includes non-volatile memory, such as
one or more magnetic disk storage devices, optical disk stor-
age devices, flash memory devices, or other non-volatile solid
state storage devices. In some embodiments, memory 912
includes one or more storage devices remotely located from

10

15

20

25

30

35

40

45

50

55

60

65

30

the CPU(s) 902. Memory 912, or alternately the non-volatile
memory device(s) within memory 912, comprises a computer
readable storage medium. In some embodiments, memory
912 or the computer readable storage medium of memory 912
stores the following programs, modules and data structures,
or a subset thereof:

an operating system 916 that includes procedures for han-
dling various basic system services and for performing
hardware dependent tasks;

a network communications module 918 that 1s used for
connecting the server system 900 to other computers via
the communication network interfaces 910 and one or
more communication networks (wired or wireless), such
as the Internet, other wide area networks, local area
networks, metropolitan area networks, and so on; and

an object update server 130, further including (1) a pub-
lisher library 128 for receiving object updates from the
feed provider of an application server and propagating
these updates to the object update matcher, (11) an object
update matcher 138 for recerving object updates from
the publisher library 128 and storing these updates 1n the
object update table 136 including a plurality of object
update records (936-1, . . ., 936-N), each record identi-
fying an object and a set of client devices that have
registered for recerving updates to the object, (111) a
registrar/object update pusher 132 for recerving object
registration requests from the client devices and storing
them 1n a client-object registration table 134 including a
plurality of client-object registration records (942-1, . . .,
942-M), each record 1dentifying a client device and a set
of objects that the client device has registered for receiv-
ing their updates, and pushing object update messages to
the client devices, (1v) an object update propagator 137
for migrating new object updates from the table 136 to
the table 134, (v) a registration propagator 135 {for
migrating new object registrations from the table 134 to
the table 136, and (v1) a payload cache 948 for storing
incremental payloads associated with different objects.

Although some of the various drawings 1llustrate a number
of logical stages 1n a particular order, stages which are not
order dependent may be reordered and other stages may be
combined or broken out. While some reordering or other
groupings are specifically mentioned, others will be obvious
to those of ordinary skill in the art and so do not present an
exhaustive list of alternatives. Moreover, it should be recog-
nized that the stages could be implemented in hardware,
firmware, software or any combination thereof.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the 1llustrative discussions above are not intended to be
exhaustive or to limit the mvention to the precise forms dis-
closed. Many modifications and variations are possible 1n
view ol the above teachings. The embodiments were chosen
and described 1n order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled 1n the art to best utilize the invention and vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

What 1s claimed 1s:

1. A computer-implemented method, comprising:

at a server having memory and one or more processors,
managing objects for one or more web-based applica-
tions hosted by one or more application servers, includ-
ng:
receiving an object registration message from a first

client device, the object registration message 1includ-
Ing:

US 8,745,638 Bl

31

a first client identifier corresponding to the first client

device;

a first object identifier corresponding to a first object

cached at the first client device; and

a first object version number corresponding to the first

object cached at the first client device;
updating a client-object registration table using the first
client 1identifier, the first object identifier, and the first
object version number, thereby registering the first
client device to receive notifications of updates to the
rst object;
receiving a first object update message from an application
server ol the one or more application servers, the first
object update message including the first object identi-
fier and a second object version number;
updating an object update table using a blind write to
specily the second object version number as a current
version of the first object;
identifying one or more client identifiers 1n the client-
object registration table corresponding to client
devices that are registered to recerve update notifica-
tions for changes to the first object, wherein the one or
more client identifiers includes the first client ident-
fier; and
when transmission criteria are met:
sending a second object update message to the first
client device, wherein the second object update
message includes the first object identifier and the
second object version number;
receving an object update confirmation message
from the first client device, the object update con-
firmation message including a client-cached object
version number; and
updating the client-object registration table using the
client-cached object version number.

2. The method of claim 1, wherein the client-cached object
version number 1s greater than the second object version
number.

3. The method of claim 1, further comprising;

receiving an object registration message from a second

client device, the object registration message including:

a second client 1dentifier corresponding to the second
client device;

the first object identifier; and

a client-cached object version number corresponding to
the first object cached at the second client device; and

updating the client-object registration table using the sec-

ond client identifier, the first object identifier, and the

client-cached object version number, thereby registering

the second client device to recetve notifications of

updates to the first object.

4. The method of claim 1, further comprising;

re-sending the second object update message to the first

client device when no object update confirmation mes-
sage 1S returned from the first client device within a
predefined period of time.

5. The method of claim 4, further comprising repeating the
re-sending of the second object update message to the first
client device until:

receiving an object update confirmation message from the

first client device; or

reaching a predefined limit on the number of re-sending

attempts.

6. The method of claim 1, further comprising:

receiving a request for object updates from the first client

device, the request including the first client identifier and
one or more object identifiers;

10

15

20

25

30

35

40

45

50

55

60

65

32

updating the client-object registration table with blind
writes using the first client identifier and the one or more
object 1dentifiers, thereby registering the first client
device to recetve notifications of updates to objects cor-
responding to the one or more object identifiers; and

sending a third object update message to the first client
device, the third object update message including the
one or more object identifiers and their associated cur-
rent object version numbers stored at the server.
7. The method of claim 1, further comprising:
receving a request for object updates to the first object,
wherein the request 1s from the first client device; and

sending a third object update message to the first client
device, wherein the third object update message
includes the first object 1dentifier and its associated cur-
rent object version number stored at the server.

8. The method of claim 7, wherein the current object ver-
sion number associated with the first object identifier 1s dif-
ferent from the second object version number.

9. The method of claim 1, further comprising;

alter updating the object update table,

sending an object update confirmation message to the
application server, the object update confirmation
message mcluding the first object 1dentifier and the
second object version number.

10. The method of claim 1, further comprising:

alter recerving the first object update message:

receiving a third object update message from the appli-
cation server, the third object update message includ-
ing the first object identifier and a third object version
number;

updating the object update table using a blind write to
specily the third object version number as a version of
the first object;

when the third object version number 1s less than the
second object version number, sending out no object
update messages to client devices; and

when the third object version number 1s greater than the
second object version number, sending object update
messages for the first object identifier and third object
version number to a plurality of client devices, includ-
ing the first client device.

11. The method of claim 1, wherein the first object 1s
selected from the group consisting ol a web-based calendar, a
browser bookmark, an address book, and a set of email mes-
sages associated with a user.

12. The method of claim 1, wherein the transmission cri-
teria include a determination that the first client device 1s
online.

13. The method of claim 12, wherein the determination that
the first client device 1s online includes receipt of a heartbeat
signal from the first client device during a preceding pre-
defined span of time.

14. The method of claim 1, wherein the transmission cri-
teria include a determination that the second object version
number 1s greater than the first object version number.

15. The method of claim 1, wherein there are no transmis-
s10n criteria to meet as a perquisite ol sending the second
object message.

16. A server system for managing objects for one or more
web-based applications hosted by one or more application
servers, comprising;

one or more processors for executing programs; and

memory storing data and one or more programs executable

by the one or more processors, the one or more programs
including instructions for:

US 8,745,638 Bl

33

receiving an object registration message from a first
client device, the object registration message includ-
ng:
a first client identifier corresponding to the first client
device;
a first object identifier corresponding to a first object
cached at the first client device; and
a first object version number corresponding to the first
object cached at the first client device;
updating a client-object registration table using the first
client 1dentifier, the first object identifier, and the first
object version number, thereby registering the first
client device to recerve notifications of updates to the
rst object;
receiving a first object update message from an applica-
tion server of the one or more application servers, the
first object update message including the first object
identifier and a second object version number;
updating an object update table using a blind write to
specily the second object version number as a current
version of the first object;
identifying one or more client identifiers 1n the client-
object registration table corresponding to client
devices that are registered to recerve update notifica-
tions for changes to the first object, wherein the one or
more client identifiers includes the first client ident-
fier; and
when transmission criteria are met:
sending a second object update message to the first
client device, wherein the second object update
message includes the first object identifier and the
second object version number;
receving an object update confirmation message
from the first client device, the object update con-
firmation message including a client-cached object
version nhumber; and
updating the client-object registration table using the
client-cached object version number.
17. A non-transitory computer readable-storage medium
storing one or more programs for execution by one or more
processors of a server system for managing objects for one or

10

15

20

25

30

35

40

34

more web-based applications hosted by one or more applica-
tion servers, the one or more programs comprising nstruc-
tions for:
recerving an object registration message from a {irst client
device, the object registration message including:
a first client identifier corresponding to the first client
device;
a first object 1dentifier corresponding to a first object
cached at the first client device; and
a {irst object version number corresponding to the first
object cached at the first client device;
updating a client-object registration table using the first
client identifier, the first object 1dentifier, and the first
object version number, thereby registering the first client
device to receirve notifications of updates to the first
object;
recerving a first object update message from an application
server of the one or more application servers, the first
object update message including the first object 1denti-
fier and a second object version number;
updating an object update table using a blind write to
specily the second object version number as a current
version of the first object;
identifying one or more client identifiers in the client-
object registration table corresponding to client devices
that are registered to receive update notifications for
changes to the first object, wherein the one or more client
identifiers includes the first client 1dentifier; and
when transmission criteria are met:
sending a second object update message to the first client
device, wherein the second object update message
includes the first object i1dentifier and the second
object version number;
receiving an object update confirmation message from
the first client device, the object update confirmation
message including a client-cached object version
number; and
updating the client-object registration table using the
client-cached object version number.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

