US008745441B2
a2 United States Patent (10) Patent No.: US 8,745,441 B2
Ritz et al. 45) Date of Patent: Jun. 3, 2014
(54) PROCESSOR REPLACEMENT 5,689,701 A 11/1997 Aultet al.
5,815,731 A 9/1998 Doyle et al.
: : : : 5,913,058 A * 6/1999 Bonolaccooevvvvnnnnnnnn, 713/2
(75) Inventors: ‘éﬁdrewﬂ'{'ﬁlg; ?kalmnsami;h’ %‘2 (%2).1 6,199,179 Bl 3/2001 Kauffman et al
HSWOTLIL L7, WWAIRCE, seatle, (US); 6,226,734 B’ 5/2001 Kleinsorge
Yimin Deng, Sammamish, WA (US); 6,247,109 Bl 6/2001 Kleinsorge
Christopher Ahna, Puyallup, WA (US) 6,421,679 Bl 7/2002 Chang et al.
6,502,162 B2 12/2002 Blumenau
(73) Assignee: Microsoft Corporation, Redmond, WA 6,546,415 Bl 42003 Park et al.
(US) 6,574,748 Bl 6/2003 Andress et al.
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 181 days.
CN 101542433 9/2009
(21) Appl. No.: 13/044,391 o 115371 1072009
(Continued)
(22) Filed: Mar. 9, 2011
OTHER PUBLICATIONS
(65) Prior Publication Data
“Intel H -Threading Technology.” Intel C tion. Jan. 2003.*
US 2011/0161729 A1 Jun. 30, 2011 R pe TS EeTheyy AR L OIpOron A
(Continued)
Related U.S. Application Data
(63) Continuation of application No. 11/675,290, filed on . SR ST
Feb. 15, 2007, now Pat. No. 7,934,121 Primary Examiner — Philip Guyton |
(74) Attorney, Agent, or Firm — John Jardine; Andrew
(60) Provisional application No. 60/866,821, filed on Nov. Sanders; Micky Minhas
21, 2006, provisional application No. 60/866,817,
filed on Nov. 21, 2006, provisional application No.
60/866,815, filed on Nov. 21, 2006. (57) ABSTRACT
(51) Int.CL Techniques for transparently replacing a processor, that
GO6rl’ 11/00 (2006.01) receives interrupts in a partitioned computing device, with a
(52) U.S. CL replacement processor, are disclosed. In at least some
USPC e, 714/13; 714/11 embodiments, methods are discussed for directing the inter-
(58) Field of Classification Search rupts to an unchangeable 1dentifier mapped to the processor’s
USPC e, 714/11, 13 identifier and replacing the processor with the replacement
See application file for complete search history. processor. An intermediary, such as an I/O APIC, is used for
_ storing the unchangeable identifier. The mapping may use
(56) References Cited logical mode delivery, physical mode delivery, or interrupt

U.S. PATENT DOCUMENTS

mapping.

5,345,590 A 0/1994 Ault et al.
5491,788 A * 2/1996 Cepulis etal. ...l 714/13 20 Clalms, 6 Drawmg Sheets
06 6
il ’J c
" DEVICE FAILING REPLACEMENT
PROCESSOR PROCESSOR
APICID OF DIRECT
M2 T DESTINATION SeNAL /| ST4TE STATE
PROCESSOR A
EXTERNALLY N\ 7
i 1| ACCESSIBLE
mg../ REGISTERS
U INTERNAL /_
T STATE
" {
~ LOCAL
SIGNAL ||
LOGICAL
v D
722 e INTERMEDIARY /\
FOR REMAPPING
INTERRUPTS
MW 10 APIC
FORWARDED SIGNAL
APICID OF
TN DESTINATION S
PROCESSOR ;'zs

US 8,745,441 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
6,598,174 Bl 7/2003 Parks et al.
6,640,278 Bl 10/2003 Nolan
6,684,230 Bl 1/2004 Momoh et al.
6,792,564 B2 9/2004 Ahrens, Jr. et al.
6,895,586 Bl 5/2005 Brasher et al.
6,907,474 B2 6/2005 Oshins et al.
6,986,014 B2 1/2006 Qureshi et al.
7,007,192 B2* 2/2006 Yamazaki
7,039,827 B2 5/2006 Meyer et al.
7,051,243 B2 5/2006 Helgren et al.
7,065,761 B2 6/2006 Foster
7,114,064 B2 9/2006 Ramesh
7,171,590 B2 1/2007 Kado1
7,275,180 B2 9/2007 Armstrong et al.
7,343,515 Bl 3/2008 Gilbertson et al.
7,363,394 B2 4/2008 Shen et al.
7,404,105 B2* 7/2008 Aralooccovviviiniinnnn,
7,426,657 B2 9/2008 Zorek et al.
7480911 B2* 1/2009 Leeetal.
7.493,515 B2 2/2009 Armstrong et al.
7,509,375 B2 3/2009 Christian
7,543,182 B2 6/2009 Branda et al.
7,562,262 B2 7/2009 Kondajeri
7,877,358 B2 1/2011 Rutz et al.
7,934,121 B2 4/2011 Rutz
8,080,906 B2 12/2011 Ritz
8,473,460 B2 6/2013 Ritz et al.
8,543,871 B2 9/2013 Ritz et al.
2002/0016892 Al 2/2002 Zalewski et al.
2002/0053009 Al 5/2002 Selkirk et al.
2002/0144193 A1 10/2002 Hicks
2002/0170039 A1 11/2002 Kovacevic et al.
2003/0037278 Al 2/2003 Olarig
2003/0163744 Al 8/2003 Yamazaki
2003/0212884 Al 11/2003 Lee et al.
2004/0107383 Al 6/2004 Bouchier et al.
2004/0193950 Al 9/2004 Gagne et al.
2004/0221193 Al 11/2004 Armstrong et al.
2005/0283641 A1 12/2005 Clark et al.
2006/0010344 Al1* 1/2006 Zoreketal.
2006/0095624 Al 5/2006 Raj et al.
2007/0061634 Al 3/2007 Marisetty
2007/0067673 Al 3/2007 Avizienis
2008/0010527 Al1* 1/2008 Lu ..coovvvviiviniiininninnn,
2008/0028413 Al 1/2008 Conklin et al.
2008/0120486 Al 5/2008 Rutz et al.
2008/0120515 Al 5/2008 Rutz et al.
2008/0120518 Al 5/2008 Rutz et al.
2008/0201603 Al 8/2008 Rutz et al.
2010/0262590 A1 10/2010 Holt
2012/0054538 Al 3/2012 Ritz
FOREIGN PATENT DOCUMENTS
JP 2010510592 4/2010
JP 2010510607 4/2010
KR 20090081404 7/2009
KR 20090081405 7/2009
KR 20090082242 7/2009
MX 2009004896 6/2009
WO WO-2008064198 5/2008
WO WO-2008064213 5/2008
WO WO-2008073683 6/2008
OTHER PUBLICATIONS

Nguyen et al. “Detecting Multi-Core Processor Topology inanIA-32

Platform.” Intel Corporation. 2006.*

Shanley et al. “The Unabridged Pentium 4 IA32 Processor Geneal-
ogy.” Addison Wesley. Jul. 26, 2004. retrieved from Safari Tech

Books Online.*
“Advisory Action”, U.S. Appl. No. 11/675,290, (Dec. 7, 2010),3

pages.

tttttt

tttttt

.. 714/5.11

714/13

... 118/104

...... 714/13

714/30

“Final Office Action”, U.S. Appl. No. 11/675,290, (Jan. 27, 2010),9
pages.

“Final Office Action”, U.S. Appl. No. 11/675,290, (Oct. 4, 2010),11
pages.

“International Search Report”, PCT/2007/085184, (Mar. 28, 2008),2
pages.

“International Search Report”, PCT/US2007/085216, (Apr. 21,
2008),2 pages.

“International Search Report”, PCT/US2007/085216, (Apr. 22,
2008),2 pages.

“Non Final Office Action”, U.S. Appl. No. 11/675,290, (May 24,
2010),10 pages.

“Non Final Office Action”, U.S. Appl. No. 11/675,290, (Jun. 24,
2009),9 pages.

“Notice of Allowance”, U.S. Appl. No. 11/675,290, (Jan. 19, 2011),7
pages.

“Written Opinion of the International Searching Authority”, PCT/
US2007/085180, (Apr. 21, 2008),3 pages.

“Written Opinion of the International Searching Authority”, PCT/
US2007/085216, (Apr. 22, 2008).,4 pages.

“Written Opinion of the International Searching Authority”, PCT/
US2007/085184, (Mar. 28, 2008),3 pages.

Fletcher, M et al., “Realtime Reconfiguration Using an IEC 61499
Operating System”, Proceedings of the 15th International Parallel &
Distributed Processing Symposium, San Francisco, Calif, Apr. 23-27,
2001., (Apr. 2001),7 pages.

Milojicic, D et al., “Global Memory Management for a Multi Com-
puter System”, Proceedings of the 4th USENIX Windows Symposium,
Seattle, Wash., Aug. 3-4, 2000., (Aug. 2000),12 pages.

Moore, R.W. et al., “Knowledge-Based Grids”, Proceedings of the
18th IEEE Symposium on Mass Storage Systems, Apr. 17-20, 2001,
San Diego, Calif., 2000,pp. 29-39.

“Foreign Office Action”, Chinese Application No. 200780042960.2,
(Mar. 22, 2012), 6 pages.

“European Search Report”, Application No. 07864653.6, (Nov. 17,
2011), 7 pages.

“Foreign Office Action”, Chinese Application No. 200780042960.2,
(Nov. 30, 2011), 6 pages.

“Chinese First Office Action”, Application No. 200780042949 .6,
(Aug. 4, 2010),8 Pages.

“Chinese First Office Action”, Application No. 200780042958.5,
(Sep. 13, 2010),3 Pages.

“Chinese First Office Action”, Application No. 200780042960.2,
(Nov. 4, 2010),10 Pages.

“Chinese Notice of Grant”, Application No. 2000780042960.2, (Jul.
26, 2012),4 pages.

“Chinese Notice of Grant”, Application No. 200780042958.5, (Nov.
6, 2012),4 pages.

“Chinese Office Action”, Application No. CN200780042958.5,
Decision of Rejection,(Jun. 24, 2011), 5 Pages.

“Chinese Second Office Action”, Application No. 200780042958.5,
(Apr. 17, 2012), 3 pages.

“EP Communication”, EP Application No. 0786453.6, (Dec. 6,
2011),1 page.

“European Search Report”, Application No. 0786453.6, (Nov. 17,
2011), 7 Pages.

“Final Office Action”, U.S. Appl. No. 11/675,243, (Feb. 19, 2010),12
pages.

“Final Office Action”, U.S. Appl. No. 11/675,243, (Jun. 1, 2012),11
pages.

“Final Office Action”, U.S. Appl. No. 11/675,261, (Oct. 5, 2010),10
pages.

“Final Office Action”, U.S. Appl. No. 11/675,261, (Aug. 4, 2011), 4
pages.

“Final Office Action”, U.S. Appl. No. 11/675,272, (Mar. 18, 2009),9
Pages.

“Final Office Action”, U.S. Appl. No. 13/289,776, (Dec. 6, 2012), 6
pages.

“International Search Report”, Application No. PCT/US2007/
085180, (Apr. 21, 2008), 2 pages.

“Issue Notification”, U.S. Appl. No. 11/675,272, (Jan. 5, 2011),1
Page.

US 8,745,441 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“Issue Notification”, U.S. Appl. No. 11/675,290, (Apr. 6, 2011),1
Page.

“Non Final Office Action”, U.S. Appl. No. 11/675,261, (Mar. 29,
2010), 9 pages.

“Non Final Office Action”, U.S. Appl. No. 13/044,391, (Nov. 6,
2012),11 Pages.

“Non-Final Office Action”, U.S. Appl. No. 11/675,243, (Aug. 7,
2009),12 Pages.

“Non-Final Office Action”, U.S. Appl. No. 11/675,243, (Dec. 8,
2011),15 Pages.

“Non-Final Office Action”, U.S. Appl. No. 11/675,261, (Mar. 4,
2011),10 pages.

“Non-Final Office Action”, U.S. Appl. No. 11/675,272, (Aug. 7,
2009),10 Pages.

“Non-Final Office Action”, U.S. Appl. No. 13/289,776, (Aug. 23,
2012),11 pages.

“Notice of Allowance”, U.S. Appl. No. 11/675,243, (Feb. 26, 2013),
8 Pages.

“Notice of Allowance™, U.S. Appl. No. 11/675,261, (Aug. 24, 2011),
8 pages.

“Notice of Allowance”, U.S. Appl. No. 11/675,272, (Sep. 21,
2010),19 Pages.

“Notice of Allowance”, U.S. Appl. No. 13/289,776, (May 13, 2013),
O pages.

“Notice of Allowance”, U.S. Appl. No. 13/289,776, (Feb. 22, 2013),
7 pages.

“Notice of Allowance™, Application No. 70080042960.2, (Jul. 25,
2012), 6 Pages.

“Preliminary Report on Patentability”, Application No. PCT/

US2007/85184, (May 26, 2009), 6 pages.

“Preliminary Report on Patentability”, Application No. PCT/

US2007/85216, (May 26, 2009), 8 pages.

“Reply to Chinese Office Action™, Application No. 200780042958.5,
Request for Re-Examination along with Amended Claims in the
response,(Sep. 23, 2011),14 pages.

“Reply to EP Communication”, Application No. EP0786465.6, (Jun.
15, 2012), 14 pages.

“Reply to Final Office Action”, U.S. Appl. No. 11/675,261, (Aug. 11,
2011), 13 pages.

“Reply to Final Office Action™, U.S. Appl. No. 11/675,272, (Jun. 15,
2010), 10 pages.

“Reply to Final Office Action”, U.S. Appl. No. 11/675,290, (Apr. 27,
2010), 15 pages.

“Reply to Final Office Action”, U.S. Appl. No. 11/675,290, (Nov. 24,
2010), 15 pages.

“Reply to Furst Chinese Office Action”, Application No.
200780042958.5, (Nov. 18, 2010), 13 Pages.

“Reply to Fust Chinese Oflice Action”, Application No.
200780042960.2, (Dec. 10, 2010), 7 Pages.

“Reply to Non-Final Office Action”, U.S. Appl. No. 11/675,261,
(Jun. 29, 2010), 14 pages.

“Reply to Non-Final Office Action”, U.S. Appl. No. 11/675,272,
(Nov. 3, 2009), 17 pages.

“Reply to Non-Final Office Action”, U.S. Appl. No. 11/675,290,
(Aug. 20, 2010), 16 pages.

“Reply to Non-Final Office Action”, U.S. Appl. No. 12/675,290,
(Oct. 26, 2009), 16 pages.

“Reply to Non-Final Office Action”, U.S. Appl. No. 13/289,776,
(Nov. 27, 2012), 20 pages.

“Reply to Second Chinese Office Action”, Application No.
200780042958.5, (Jun. 15, 2012), 12 Pages.

“Reply to Second Chinese Office Action”, Application No.
200780042960.2, (Dec. 16, 2011), 2 pages.

“Reply to Third Chinese Office Action”, Application No.
200780042960.2, (May 21, 2012), 8 Pages.

“Response to Non-Final Office Action”, U.S. Appl. No. 11/675,261,
(May 15, 2011), 20 pages.

“Final Office Action™, U.S. Appl. No. 11/657,243, (Feb. 19, 2010), 12
pages.

“Final Office Action”, U.S. Appl. No. 13/044,391, (Apr. 11, 2013), 17
pages.

“International Search Report”, PCT Application 2007/085180, (Apr.
21, 2008), 2 pages.

“Notice of Allowance”, U.S. Appl. No. 11/675,243, (Sep. 27, 2012),
8 pages.

“Notice of Allowance”, U.S. Appl. No. 13/289,776, (May 13, 2013),
5 pages.

“Notice of Allowance”, Application No. CN200780042958.5, (Nov.
6, 2012), 4 pages.

* cited by examiner

U.S. Patent Jun. 3, 2014 Sheet 1 of 6 US 8,745,441 B2

100

COMPUTING DEVICE 102

ROCESSC
PROCESSOR
SP) FIRMWARE 104
ROUTING
TABLE 106
108 PROCESSOR A MEMORY A
13 PROCESSOR B MEMORY B
16 PROCESSOR C MEMORY C
120 PROCESSOR D MEMORY D
126
124 1O S%ﬁ% . COMMUNICATION s
CIRCUITRY CIRCUITRY CIRCUITRY
130 ENVIRONMENTAL POWER 135
CIRCUITRY SUPPLY :

Fig. 1.

U.S. Patent Jun. 3, 2014 Sheet 2 of 6 US 8,745,441 B2

Y08 206 214
Fig.2.
2000
204 202 210 277

) _ _
I |
- |]
Y |
T — |
I ‘ '
e e FET
L) - o |

208 =06 1 e

U.S. Patent Jun. 3, 2014 Sheet 3 of 6 US 8,745,441 B2

400 PARTITION UNIT

PROCESSOR

402

404

MEMORY CONTROLLER

406 MEMORY BLOCK A
MEMORY BLOCK B

Fig.4A.

410

450 PARTITION UNIT

PROCESSOR

.

Fig.4B.

U.S. Patent Jun. 3, 2014 Sheet 4 of 6 US 8,745,441 B2

500

506
502

DEVICE
A REDIRECTION TABLE

RTE FOR DEVICE A

508
DEVICE
5 DESTINATION APIC ID
510
INTERRUPT VECTOR
504
512
MODE
514

316

DESTINATION APIC ID

518

INTERRUPT VECTOR
MODE

Fig.5.

U.S. Patent Jun. 3, 2014 Sheet 5 of 6 US 8,745,441 B2

DETERMINE PROCESSOR TO BE
REPLACED 600

SULECT REPLACEMENT PROCESSOR 602

TEMPORARILY RESTRICT INTERRUPTS TO
PROCESSOR TO BE REPLACED 604

ACTIVATE REPLACEMENT PROCESSOR 606

SET PARTITION ID OF REPLACEMENT
PROCESSOR TO PARTITION ID OF 608

PROCESSOR TO BE REPLACED

| QUIESCE LOCAL OS I~ 610

TRANSFER STATE OF PROCESSOR TO BE 612
REPILACED TO REPLACEMENT PROCESSOR

MAP REPLACEMENT PROCESSOR TO 1D
OF PROCESSOR 1O BE REPLACED 614
UNQUIESCE LOCAL 0OS 616

Fig.o.

U.S. Patent

70

02

7

726

APICID OF

DESTINATION
PROCESSOR

MGNAL

INTERMEDIARY

FOR REMAPPING
INTERRUPTS

10 APIC

APICID OF
DESTINATION

PROCESSOR

720

Jun. 3, 2014

708

71

712
!

Sheet 6 of 6

FAILING
PROCESSOR

STATE

EXTERNALLY
ACCENSIBLE

REGISTERS

INTERNAL
STATE

LOCAL
APICID:

' PHYSICAL
LOGICAL

FORWARDED SIGNAL

7

/

Fig.’.

US 8,745,441 B2

REPLACEMENT
PROCESSOR

STATE

716

718

US 8,745,441 B2

1
PROCESSOR REPLACEMENT

RELATED APPLICATIONS

This application 1s a continuation of and claims priority to 5
U.S. patent application Ser. No. 11/675,290, entitled “Trans-
parent Replacement of a System Processor,” filed on Feb. 15,
2007, which in turn claims priority to U.S. Pat. No. 7,877,338,
entitled “Replacing System Hardware,” filed on Feb. 15,
2007; and U.S. patent application Ser. No. 11/675,243, 10
entitled “Driver Model for Replacing Core System Hard-
ware,” filed on Feb. 15, 2007; and U.S. patent application Ser.
No. 11/675,261, entitled “Correlating Hardware Devices
Between Local Operating System and Global Management
Enftity,” filed on Feb. 15, 2007; and U.S. Provisional Pat. App. 15
No. 60/866,821, entitled “Iransparent Replacement of a Sys-
tem CPU,” filed on Nov. 21, 2006; and U.S. Provisional Pat.
App. No. 60/866,817, entitled “Driver Model for Replacing
Core System Hardware,” filed Nov. 21, 2006; and U.S. Pro-
visional Pat. App. No. 60/866,813, entitled “Replacing Sys- 20
tem Hardware,” filed Nov. 21, 2006, the disclosures of which

are hereby incorporated 1n their entirety by reference herein.

BACKGROUND
25

A microprocessor 1s an electronic device capable of per-
forming the processing and control functions for computing
devices such as desktop computers, laptop computers, server
computers, cell phones, laser printers, and so on. Typically, a
microprocessor comprises a small plastic or ceramic package 30
that contains and protects a small piece of semiconductor
material that includes a complex integrated circuit. Leads
connected to the integrated circuit are attached to pins that
protrude from the package allowing the integrated circuit to
be connected to other electronic devices and circuits. Micro- 35
processors are usually plugged into or otherwise attached to a
circuit board containing other electronic devices.

While a microprocessor integrated circuit typically
includes only one computing unit, 1.e., one processor, 1t 1s
possible to include multiple processors 1n a microprocessor 40
integrated circuit. The multiple processors, which are often
referred to as “cores,” are included in the same piece of
semiconductor material and connected to the microprocessor
package pins. Having multiple cores increases the computing
power of the microprocessor. For example, a microprocessor 45
with four cores can provide almost the same amount of com-
puting power as four single-core microprocessors. Harness-
ing the increased computing power that multiple-core micro-
processors provide allows computing functions that
previously required multiple computing devices to be per- 50
tformed with fewer computing devices.

For example, a server implemented across 32 traditional
computing devices, 1.e., a 32-way server, may be imple-
mented by eight microprocessors, each having four cores.
Taking the concept one step further, if each individual core 1s 55
eight times more poweriul than one of the 32 computing
devices, a 32-way server may be implemented by one micro-
processor with four cores. Reducing the number of micropro-
cessors reduces the cost of the server, the amount of energy
required to power the server, and the amount of maintenance 60
the server requires.

The advantages of using multiple-core microprocessors
are driving a trend toward “server consolidation.” Server con-
solidation 1s the process of taking multiple servers, possibly
cach providing a different service, and providing all of the 65
services on one physical device, e.g., a four-core processor.
While reducing costs, energy, and maintenance, consolidat-

2

ing servers has the effect of putting all of one’s eggs into one
basket. This puts a greater burden of reliability on the one
physical device. IT a server 1s implemented on many separate
computing devices and a computing device fails, usually
there are other computing devices that are able to take over for
the failed computing device. The process of having one com-

puting device take over for a failing computing device 1s
referred to as “failover.”

SUMMARY

This summary 1s provided to introduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This summary 1s not mtended to
identily key features of the claimed subject matter, nor 1s 1t
intended to be used as an aid 1n determining the scope of the
claimed subject matter.

Techniques for transparently replacing an interrupt con-
trolled processor with a replacement processor are disclosed.
Rather than directing interrupts directly to processors, inter-
rupts are directed to an identifier mapped to a processor’s
identifier. Before the interrupts are directed to the replace-
ment processor, the replacement processor’s identifier 1s
mapped to the identifier. The interrupts are directed to the
identifier. The mapping of an 1dentifier to processor’s 1denti-
fiers rather than directly to processors allows processors to be
transparently replaced. In at least some embodiments, the
identifier can be unchangeable.

A processor 1s replaced with a replacement processor by
temporarily restricting the interrupts that are directed to the
processor to be replaced; activating the replacement proces-
sor; mapping the replacement processor’s identifier to the
identifier; 1solating the processor to be replaced; and using the
mapping of the identifier to the replacement processor’s 1den-
tifier to direct subsequent interrupts to the replacement pro-
cessor. In at least some embodiments, an intermediary, such
as an 1/0 APIC, stores the identifier.

The mapping of the i1dentifier to the replacement proces-
sor’s 1dentifier may be used for logical mode delivery, physi-
cal mode delivery, or interrupt mapping.

BRIEF DESCRIPTION OF THE DRAWINGS

The same numbers are used throughout the drawings to
reference like features.

FIG. 1 1s a block diagram of an example computing device
capable of supporting partition unit replacement in accor-
dance with one or more embodiments;

FIG. 2 1s a block diagram of an example partition contain-
ing a plurality of partition units, one of which 1s unassociated,
in accordance with one or more embodiments:

FIG. 3 1s a block diagram of the example partition 1llus-
trated 1n FI1G. 2 reconfigured to include the previously unas-
sociated partition unit in accordance with one or more
embodiments;

FIG. 4A 1s a block diagram of an example partition unit
containing a processor, memory controller, and memory
blocks 1n accordance with one or more embodiments:

FIG. 4B 1s a block diagram of an example partition unit
containing a processor in accordance with one or more
embodiments;

FIG. 5 1s a block diagram of a plurality of devices con-
nected to an example I/O APIC 1n accordance with one or
more embodiments:

FIG. 6 1s an functional flow diagram of an example process
for replacing a processor 1n accordance with one or more
embodiments; and

US 8,745,441 B2

3

FIG. 7 1s a block diagram of an example device interacting,
with an example mtermediary, an example failing processor,

and an example replacement processor, 1n accordance with
one or more embodiments.

DETAILED DESCRIPTION

Functionally, a server 1s an entity on a network that pro-
vides a service. For example, a web page server provides a
service that returns web pages 1n response to web page
requests. Other example servers are an email server that
returns email messages for particular users, a video server
that returns video clips from a video archive, etc. Physically,
a server 1s a stand-alone, self-contained computing device
that 1s often connected to other servers through networking or
a similar protocol. Traditionally, there 1s a one-to-one map-
ping ol a functional server to a physical server. For example,
an email server 1s implemented on one traditional physical
server. I a traditional physical email server fails, the email
service can be restored by replacing the failed physical email
server with another physical server.

An example physical server contains a microprocessor, a
memory controller, and memory blocks controlled by the
memory controller. The memory controller and the memory
blocks controlled by the memory controller are often referred
to as a unit, 1.e., a memory unit. Physical servers may also
contain additional microprocessors, memory controllers,
memory blocks, and other electronic devices such as interrupt
processors. Hence, physical servers containing only a micro-
processor and/or memory unit should be construed as
examples and not limiting. As with many types of computing
devices, the operation of a physical server 1s controlled by a
soltware program called an operating system. A physical
server executes the instructions contained 1n a copy of the
operating system, 1.€., an instance of the operating system.

Multiple-core microprocessors make it possible to imple-
ment more than one functional server on a physical server by
partitioning the resources available on the physical server into
individually manageable “partitions” comprising “partition
units.” A partition umt comprises an electrically 1solatable
microprocessor, a memory unit, and/or perhaps other elec-
tronic devices, €.g., an interrupt processor. A partition com-
prises one or more partition units. Hence, a partition 1s an
clectrically 1solatable set of partition units and electronic
devices within a physical server that can run an independent
instance of an operating system, 1.€., a local operating system,
to implement a functional server. Hereinalter, except where
noted, the term “server” refers to a physical server.

In at least some embodiments, partitioning 1s dynamic.
That 1s, partitioning 1s performed on active computing
devices, 1.e., computing devices that are energized and per-
tforming usetul functions. Also In at least some embodiments,
partitioning 1s transparent. That 1s, partition units are assigned
to, or removed from, partitions with little or no 1mpact on the
services the server provides. To support dynamic, transparent
partitioning, partition units are managed as whole units and
not subdivided. For example, a partition unit 1s moved 1nto a
partition as a unit. Therefore, when a partition unit is replaced,
all of the devices 1n the partition unit are replaced. A server
that 1s capable of being partitioned 1s a partitionable server. A
server system, 1.€., system, comprising partitionable servers
1s a partitionable system. A partitionable system provides
flexibility 1n the number and configuration of partition units
and electronic devices assigned to a partition. Partitionable
systems support “server consolidation.”

Server consolidation 1s the process of taking multiple tra-
ditional servers, possibly each providing a different service,

10

15

20

25

30

35

40

45

50

55

60

65

4

and providing all of the services on one partitionable server.
While reducing cost, energy, and maintenance, consolidating
service puts a greater burden of reliability on the partitionable
server. Whereas a traditional server implemented on many
separate computing devices usually has spare computing
devices that are able to take over for failing computing
devices, a partitionable server needs to look elsewhere for
“backup” computing power. The process of having one com-
puting device take over for a failing computing device 1s
referred to as “failover.” Techniques have been developed for
traditional server configurations to perform failover in a con-
trolled and orderly fashion to ensure that no data 1s lost and no
ongoing processes are mterrupted during the transition from
the failing computing device to the replacement computing
device. In traditional server configurations the failing “com-
puting device” was itsell a server. Since servers connect 1o
cach other through a network and are not tightly tied together,
work needed to be broken 1nto small pieces and shared across
the servers, 1.e., packetized. This made 1t easy to replace a
failing server since the failing server’s work packets could be
re-routed. With server consolidation the overhead of the pack-
ctizing of the work 1s gone, but so is the ease of completely
removing a server. In order to implement servers on partition-
able servers that are as robust and reliable as traditional serv-
ers, stmilar techniques are required.

It 1s impractical to make partitionable servers more reliable
by notifying each of the high-level software applications
when a failover 1s required. To enable high-level software
applications to respond to such a noftification would require
that the computer code for each application be modified to
adapt to the failover. Even notifying applications would prob-
ably not be enough to provide failover without a mechanism
to replace a portion of a runming server, which 1s not usually
required 1n traditional server configurations. Instead, it 1s
more practical and advantageous to mvolve only the lowest
level software 1n the failover and allow the upper level soft-
ware, e.g., applications, to behave as though no hardware
change has happened.

An implementation of an orderly, low-level, partitionable
server failover involves a global management entity and one
or more local operating systems. Examples of a global man-
agement entity are a service processor (SP) and a baseboard
management controller (BMC). An SP 1s a specialized micro-
processor or microcontroller that manages electronic devices
attached to a circuit board or motherboard, such as memory
controllers and microprocessors. A BMC 1s also a specialized
microcontroller embedded on a motherboard. In addition to
managing electronic devices, a BMC monitors the input from
sensors built mto a computing system to report on and/or
respond to parameters such as temperature, cooling fan
speeds, power mode, operating system status, etc. Other elec-
tronic devices may fulfill the role of a global management
entity. Hence, the use of an SP or BMC as a global manage-
ment entity should be construed as examples and not limiting.

A local operating system 1s an instance of an operating
system that runs on one partition. Partition units, which con-
tain logical devices that represent one or more physical
devices, are assigned to a specific partition to ensure that the
logical devices cannot be shared with logical devices 1n other
partitions, ensuring that a failure will be 1solated to a single
partition. Such a partition unit may indicate which physical
addresses are serviced by a given memory controller and,
thereby, map the physical memory addresses to the memory
controller and to the physical partition unit containing the
memory controller. More than one partition unit may be used
to boot and operate a partition. Unused or failing partition
units may be electrically 1solated. Electrically 1solating par-

US 8,745,441 B2

S

tition units 1s similar to removing a server from a group of
traditional servers with the advantage that partition units may
be dynamically reassigned to different partitions. Managing,
¢.g., adding or replacing, the partition units in a partitionable
server allows a failover to be performed 1n a controlled and
orderly fashion to ensure that the partitionable server 1s as
robust and reliable as traditional servers.

An example computing device 100 for implementing a
partitionable server capable of supporting partitions and par-
tition unit addition and/or replacement 1s 1llustrated 1n block
diagram form in FIG. 1. The example computing device 100
shown 1n FIG. 1 comprises a service processor (SP) 102 that
1s connected to a memory that stores SP firmware 104 and a
routing table 106. The computing device 100 also comprises
processor A 108 connected to memory block A 110, processor
B 112 connected to memory block B 114, processor C 116
connected to memory block C 118, and processor D 120
connected to memory block D 122. The processors 108, 112,
116, and 120 are interrupt controlled processors, 1.€., proces-
sors that are capable of responding to interrupt signals
directed to the processors. Each of the processors 108, 112,
116, and 120 contains four cores designated 0, 1, 2, and 3,
which are capable of responding to interrupt signals.

The SP 102, which 1s controlled by the SP firmware 104,
uses routing table 106 to manage the processors 108, 112,
126, 120 and memory blocks 110, 114, 118, and 122. Com-
puting device 100 also comprises I/O (input/output) circuitry
124, mass storage circuitry 126, communication circuitry
128, environmental circuitry 130, and a power supply 132.
The computing device 100 uses the I/O circuitry 124 to com-
municate with I/O devices. The computing device 100 uses
the mass storage circuitry 126 to interact with internally and
externally connected mass storage devices. The computing
device 100 uses the communication circuitry 128 to commu-
nicate with external devices, usually over networks. The com-
puting device 100 uses the environmental circuitry 130 to
control environmental devices such as cooling fans, heat sen-
sors, humidity sensors, etc. The power supply 132 powers the
computing device 100. If, for example, SP 102 1s replaced by
a BMC, the BMC may communicate with and control the
environmental circuitry 130 and the power supply 132 more
precisely.

In FIG. 1, which 1llustrates an example computing device
for implementing a partitionable server, an example partition
unit 1s formed by a processor A 108 and a memory block A
110, which 1s connected to processor A 108. Similarly, three
more example partition units are formed by processor B 112
and memory block B 114; processor C 116 and memory block
C 122; and processor D 120 and memory block D 122. The
four example partition units form an example partition that 1s
managed by an SP 102. FIGS. 2 and 3 illustrate, in diagram-
matic form, an example partition similar the partition of FIG.
1 having partition units similar to the partition units formed
from the processors and memory blocks shown 1n FIG. 1.

The replacement of partition units may be understood by
comparing the block diagram shown in FIG. 2 to the block
diagram shown 1n FIG. 3. Both of the block diagrams shown
in FIG. 2 and FIG. 3 include the same four partition units.
Each of the partition units comprises a processor and
memory: processor A 202, connected to memory 204; pro-
cessor B 206, connected to memory 208; processor C 210,
connected to memory 212; and processor D 214, connected to
memory 216. As discussed more fully below with respect to
FIGS. 4A and 4B, partition units may include additional
clements, such as a memory controller and large memory
blocks or may not include memory other than the small
memory associated with a processor. While the block dia-

10

15

20

25

30

35

40

45

50

55

60

65

6

grams 1n both FIG. 2 and FIG. 3 illustrate the same four
partition units, the partition 200a shown 1n FIG. 2 comprises
a different set of partition units when compared to the parti-
tion 20056 shown 1n FIG. 3.

The partition 200q illustrated in FIG. 2 comprises: proces-
sor A 202 and memory 204; processor B 206 and memory

208; and processor C 210 and memory 212. In FIG. 2 the
partition unit comprising processor D 214 and memory 216 1s

not included in partition 200q. In contrast to the partition
200a shown 1n FI1G. 2, the partition 2005 shown 1n FIG. 3 has
been changed to comprise a different set of partition units,
1.¢., a different set of processors and memory blocks. The
partition 2005 shown 1n FIG. 3 comprises: processor B 206
and memory 208; processor C 210 and memory 212; and
processor D 214 and memory 216. In FIG. 3, the partition unit
comprising the processor A 202 and memory 204 1s not
included 1n the partition 2005 whereas the partition unit com-
prising processor D 214 and memory 216 1s included in
partition 200a shown 1n FIG. 2. In effect, the partition unit
comprising processor D 214 and memory 216 replaces the
partition unit comprising processor A 202 and memory 204.
Such a replacement would be desirable 11, for example, pro-
cessor A 202 and/or memory 204 were failing.

Partition 200aq and partition 2005 are in effect the same
partition in that they have the same partition identifier (ID),
the difference being that partition 200q 1s made up of a dii-
ferent set of partition units than 1s partition 20058. Prior to the
transter, the partition IDs of processors A, B and C were the
ID of partition 200a/2005. The partition ID of processor D
was different or not set, 1.e., zeroed depending on the prior
status of the partition unit including processor D. Regardless
of the partition ID of processor D, as explained more fully
below, after the transier the partition ID of processor D
becomes the ID of partition 200a/2005.

Replacing a partition unit involves 1dentitying the hard-
ware devices that are to be replaced and the replacement
hardware devices. It 1s common for a processor, such as
processor A 202, to have an Advanced Programmable Inter-
rupt Controller ID (APIC ID) identitying the processor. Simi-
larly, within a partition’s local operating system, a memory
umt’s physical address uniquely 1dentifies the memory unait.
Within a partition’s local operating system, such as partition
200a’s local operating system, a processor’s APIC ID 1s
umquely 1dentifies the processor. A computing device, such
as computing device 100, shown 1n FIG. 1, may include a
plurality of partitions. Each partition in the plurality of parti-
tions runs a local operating system having a local view of the
partition. The global management entity, such as SP 102,
maintains a global namespace containing identifiers that
unmiquely 1dentity each of the partitions with which the global
management entity communicates.

During a partition umt replacement, such as the partition
unmt replacement shown in FIGS. 2 and 3 and described
above, the global management entity and the local operating
system of a partition communicate information concerning,
partition units. For example, the SP 102, shownin FIG. 1, 1.¢.,
the global management entity, communicates with partition
200a’s local operating system during the replacement of a
partition unit. In order for the global management entity to
distinguish the partition units of the same partition as well as
the partition units of different partitions, the global manage-
ment entity stores a unique identifier for each partition unait.
The unique partition unit identifiers, 1.e., partition unit IDs,
cnable the global management entity to access the resources,
e.g., processors and memory units, of each of the partition
units of each of the plurality of partitions. In contrast, a

US 8,745,441 B2

7

partition’s local operating system can access only the
resources included in the partition.

Partition unit IDs are a combination of the partition ID and
a hardware device identifier such as an APIC ID for a proces-
sor or a physical address for a memory unit. For example, to
create a unique global 1dentifier for processor C 210, proces-
sor C 210°s APIC ID 1s combined with partition 200a’s par-
tition ID. Similarly, to create a umique global identifier for
memory 212, memory 212’°s physical address 1s combined
with partition 200a’s partition ID.

When a partition unit 1s replaced, each of the hardware
devices 1n the partition unit 1s replaced. For example, as
shown 1n FIGS. 2 and 3, a first partition unit comprises pro-
cessor A 202 and the memory 204 that 1s connected to pro-
cessor A 202; and, a second partition unit comprises proces-
sor D 214 and the memory 216 that 1s connected to processor
A 214. When the second partition unit replaces the first par-
tition umit, processor D 214 replaces processor A 202 and the
memory 216 replaces memory 204.

While a single processor and a single memory block, such
as processor A 202 and memory 204, may comprise a parti-
tion unit, a partition unit may have other forms. A detailed
view of an example partition unit 400 having a different form
1s 1llustrated 1n F1G. 4A. In FI1G. 4A, as 1n FIG. 1, the example
partition unit 400 comprises a processor 402 containing four
cores: 0, 1, 2, and 3 connected to a memory controller 404 that
1s connected to two memory blocks—memory block A 406
and memory block B 410. The processor 402 communicates
with memory controller 404, which controls memory block A
406 and memory block B 410. Another form of a partition unit
1s 1llustrated 1n FIG. 4B.

The partition unit 450 shown 1n FIG. 4B contains a proces-
sor 452 that, like the processor illustrated 1n FIG. 4 A, includes
four cores: 0, 1, 2 and 3. The partition unit shown 1n FIG. 4B
does not include memory or a memory controller or blocks of
memory. Other partition umts may contain other logical
devices that represent physical devices 1 addition to a pro-
cessor, memory controller, and memory blocks and various
combinations thereotf well known to those skilled 1n the art.
Hence, the partition units 400 and 450 should be construed as
examples and not limiting.

A logical device 1n a typical partition unit may be capable
ol notifving the local operating system of the device’s status.
Alternatively, or 1n addition, the local operating system con-
trolling the partition unit may use predictive analysis to assess
the status of the logical device and determine i1 the logical
device might be failing and thus, may be a candidate for
replacement. While a person, such as a system administrator,
might check device status as a part of regular maintenance, in
at least some embodiments the hardware 1tself can notity the
local operating system of an impending failure. In some situ-
ations, 1t may be desirable to upgrade a processor from one
model to another model or to add processors and/or memory
to a system. While a system administrator may perform such
functions, 1n at least some embodiments such replacements
and additions can be automated by using explicitly pro-
grammed 1nstructions or by periodically timed instructions
that make use of partitions, partition units, and the ability of
hardware to report status.

Processes, such as the processes 1n a local operating sys-
tem, that are running on a processor that1s to be replaced must
be quiesced, 1.e., put into an inactive state, because if the
processor 1s in use, the processor’s state 1s constantly chang-
ing. If the processor’s state 1s changing, the processor cannot
be safely and reliably replaced because the processor’s state
cannot be safely and reliably transterred. Therefore, a pause
operation 1s executed by the processor that 1s to be replaced,

10

15

20

25

30

35

40

45

50

55

60

65

8

¢.g., a failing processor, to prevent the processor’s state from
changing. Those skilled in the art and others will appreciate
that the process of pausing a processor to prevent the proces-
sor’s state from changing 1s referred to as “quiescing” the
processor. A system, such as the computing device 100 shown
in FIG. 1, may also be quiesced by pausing or deactivating
physical devices, e.g., processors A 108, B 112, etc., in the
system and pausing threads of execution. Pausing or deacti-
vating devices 1n the system and pausing threads of execution
prevents devices and threads of execution from attempting to
interrupt a processor that 1s to be replaced.

A partition unit, such as the partition unit 450 illustrated 1n
FIG. 4B, may need to be replaced because the partition unit
contains a failing processor, e.g., processor 452. In order to
replace the failing processor, perhaps using a process such as
the example process described above, in at least some
embodiments the failing processor can first be identified. A
way to 1dentily a processor, failing or otherwise, 1s to use an
Advanced Programmable Interrupt Controller i1dentifier
(APIC ID). A processor’s APIC ID 1s stored 1n the processor
in logical and/or physical form. A processor’s logical APIC
ID can be changed 1n the processor, usually by reprogram-
ming a register containing the APIC ID. A processor’s physi-
cal APIC ID 1s hardwired into the processor, 1.e., fixed, and
cannot be changed. An operating system, e.g., a local operat-
ing system, uses APIC IDs to, for example, schedule new
threads on processors and direct mterrupts to particular pro-
cessors. Processors may be physical, for example processor
452 shown 1n FIG. 4B; or logical, for example core “0” 1n
processor 452.

When an operating system starts, each logical processor 1s
assigned a unique, mitial APIC ID. The imtial APIC ID 1s
composed of the physical processor’s ID and the logical
processor’s 1D within the physical processor. An operating
system may use 1itial APIC IDs to direct interrupts to par-
ticular processors. A device, e.g., adisc drive, may transmit an
interrupt signal directly to the processor using a message
signaled interrupt (MSI). A device iterrupt may instead be
routed 1nto an intermediary software entity, 1.e., an 1nterme-
diary. The device generates a signal that 1s transmitted to the
intermediary and the intermediary forwards the signal to the
processor. An example traditional intermediary 1s an Input/
Output Advanced Programmable Interrupt Controller (I/0
APIC).

The block diagram in FIG. 5 illustrates certain functional
parts of an example I/O APIC 500 and two example devices—
device A 502 and device B 504. There may be more functional
parts and more devices. Hence, the number of devices and
functional parts should be construed as examples and not
limiting. Example I/O APIC 500, shown in FIG. 5, contains a
redirection table 506. The redirection table 506 contains redi-
rection table entries (RTEs). The redirection table 506 com-

prises an RTE for device A 508 that 1s associated with device
A 502 and an RTE for device B 516 that 1s associated with

device B 504. The RTE for device A 508 comprises a desti-
nation APIC ID 510, an mterrupt vector 512, and a mode
(mode descriptor) 514. The RTE for device B 516 comprises
a destination APIC ID 518, an mterrupt vector 520, and a
mode (mode descriptor) 522. An interrupt vector 1s an entry
that contains, or refers, to code that handles the particular kind
of interrupt. An interrupt may be a conveyed over a dedicated,
physical “wire,” 1.e., physical connection, connected to a
specific entry number in the I/O APIC.

The replacement of a partition unit, such as the partition
unit 450 1llustrated in FIG. 4B, involves transferring the state
of the failing processor to a spare processor intended to
replace the failing processor. A processor’s state may include,

US 8,745,441 B2

9

but 1s not limited to, information stored 1n the processor’s
external registers, information 1n the processor’s internal reg-
isters and circuitry, and the physical APIC ID and logical
APIC ID. Not all processors are able to have their physical
APIC ID transterred or changed to accept another physical
APIC ID. The physical APIC ID may be hardwired inside of
a processor. In such processors, the physical APIC ID of a first
processor cannot be transierred to a second processor. Hence,
the second processor 1s unable to take on the physical identity
of the first processor.

There are ways to allow the physical APIC ID of a proces-
sor to be unique yet still transter the state of the processor,
¢.g., a failing processor, to another processor, e.g., a replace-
ment processor. To other entities, the two processors will
appear to be identical. Thus, for example, an interrupt
directed to the failing processor will instead be directed to the
replacement processor.

As described above, on many processors, the APIC ID, 1.e.,
the physical and/or logical APIC ID, may be hardwired inside
of the processor preventing the identity of the processor from
being transferred. Rather than relying directly on the APIC 1D
to 1dentily a processor, a processor’s APIC ID, 1.e., physical
and/or logical APIC ID, may be hidden 1nside of a service,
making 1t possible to present the other parts of the system with
a service for doing operations that involve the APIC 1D with-
out direct reference to the APIC ID. In discussing such a
service, 1t 1s helpful to divide a system, e.g., computing device
100 1nto two portions—a service processor (SP) portion and
a non-SP portion. The SP portion 1s the combination of the SP
102, the SP firmware 104, and the routing table 106. The
non-SP portion comprises the remaining items in the com-
puting device 100. To transparently replace a processor, the
non-SP portion 1s 1solated from the 1dentity of the processor
allowing the processor 1dentifier to be remapped. Remapping
processor 1dentifiers 1s accomplished by a set of 1nstructions
that may be stored 1n the SP portion, e.g., the SP firmware
104, or stored in other memory and pointed to by the SP
firmware 104. The set ol instructions for remapping processor
identifiers 1s referred to hereafter as the “processor remapping
service”.

Rather than relying directly on a processor’s APIC ID to
identily the processor, the processor’s APIC ID i1s hidden
inside of the processor remapping service, making it possible
to present the non-SP portion with a service for doing opera-
tions that involve APIC IDs without direct reference to the
APIC IDs. The processor remapping service assigns and
accepts “unchangeable” APIC 1Ds, 1.¢., APIC IDs that do not
change and are used by the non-SP portion. The processor
remapping service converts the APIC ID to the appropnate
changeable APIC ID. Hence, during a processor replacement,
whether the changeable APIC ID i1s physical or logical, the
changeable APIC ID can be changed to refer to a replacement
processor; thus, making the processor replacement transpar-
ent.

An example processor remapping service provides three
processes lor transparently replacing processors: logical
mode delivery, physical mode delivery, and mterrupt remap-
ping. By using one of the three processes during a processor
replacement, the details of which processor 1s being used are
abstracted out and hidden from the non-SP portion.

In the logical mode delivery process, the system, e.g.,
computing device 100, 1s configured such that the non-SP
portion uses only logical APIC IDs and i1s not permitted to
access or use physical APIC IDs. In the logical mode delivery
process, the processor remapping service uses the logical
APIC ID as a remapping register. A logical APIC ID of a
processor can be programmed, 1.e., changed, usually by low

5

10

15

20

25

30

35

40

45

50

55

60

65

10

level software. The logical APIC ID 1s changeable and can be
casily transferred to another processor without relying on I/0
APICs and MSIs. By inserting the failing processor’s logical
APIC ID 1into the replacement processor, the failing proces-
sor’s logical APIC ID 1s mapped to the replacement proces-
SOF.

If logical mode delivery is not available 1n a computing
device and/or system, physical mode delivery may be used to
transparently replace processors. Physical mode delivery
involves an intermediary. An example intermediary 1s a redi-
rection table 1 an I/O APIC. (See FIG. 5 and the foregoing
description.) In physical mode delivery, an I/O APIC’s redi-
rection table, 1.e., an mtermediary, stores APIC IDs for pro-
cessors. The APIC IDs are mapped to the processors” physical
APIC IDs. A processor’s APIC ID 1s used by the non-SP
portion allowing the processor to be replaced by another
processor having a different physical APIC ID without dis-
turbing operations 1n the non-SP portion.

In the physical mode delivery process an I/O APIC pro-
vides an 1nterface through which an SP interacts with the I/O
APIC. The physical mode delivery process takes advantage of
the already existing I/O APIC interface to program a new
physical ID, 1.e., the physical ID of the replacement proces-
sor, into the I/O APIC’s redirection table.

In the mterrupt remapping process, the processor remap-
ping service redirects mterrupts from a processor that 1s
replaced, e.g., processor A 202, to a replacement processor,
e.g., processor D 214. Traditionally, devices that generate
interrupts, such as a disc drive controller 1n the mass storage
circuitry 126 of computing device 100, store the APIC ID of
a processor that 1s intended to recerve the interrupts, 1.e., the
destination processor. If the disc drive controller 1s “hard-
wired,” 1.e., connected physically by a wire, circuit board
trace, etc., to an I/O APIC, the disc drive controller sets the
voltage on the wire to a level that triggers the programmed
instructions in the I/O APIC’s redirection table. Usually there
are other devices that are connected 1nto other entries in the
I/O APIC’s redirection table. Hence, there needs to be an
interface at the connections of the I/O APIC to manage the
arriving interrupts.

In the logical mode delivery, physical mode delivery, and
interrupt remapping processes, the local operating system 1s
quiesced and the state 1s transferred. In at least some embodi-
ments, external devices are not aware of the physical APIC
ID. Using logical delivery is the easiest way to accomplish
that. If a device 1s “hardwired,” 1.e., connected physically by
a wire, circuit board trace, etc., to an I/O APIC, the device sets
the voltage on the wire to a level that triggers the program-
ming in the I/O APIC. It 1s likely that there are other devices
that hook into other entries in the redirection table 1n the I/O
APIC. The I/O APIC 1s, 1n etlect, a shared state repository.
Hence, there needs to be some interface at the connections of
the I/O APIC to manage the shared state repository, 1.e., the
I/0O APIC.

An example process for replacing a processor, €.g., a fail-
ing processor, 1s 1llustrated 1n FIG. 6. The process begins at
block 600 1n which a global management entity, e.g., SP 102
shown 1n FIG. 1, determines that a processor needs to be
replaced. For example, the global management entity detects
that the processor has produced a certain quantity and type of
errors that indicate that the processor may fail and determines
that the processor needs to be replaced. At block 602, the
global management entity selects a replacement processor,
e.g., processor D 214 of partition 200aq shown 1 FIG. 2. A
replacement processor may be selected from a plurality of
spare processors according to selection criteria such as speed,
specialized computing features, etc. It 1s also possible to

US 8,745,441 B2

11

select a replacement processor from a plurality of processors
executing less important processes. Less important processes
may be halted or moved to other processors to allow a pro-
cessor to be reused as a replacement processor.

To enable the selection of replacement processors from a
plurality of spare and/or other sources of processors, the
global management entity may maintain a processor database
that contains selection criteria values for each processor man-
aged by the global management entity. If a processor 1s fail-
ing, the global management entity forms database queries
that, when submitted to the database, retrieve a list of replace-
ment processor candidates from the database. An example
database query includes the 1dentity of the failing processor
and a list of relevant selection criteria and selection criteria
parameters. The database, using the query, retrieves the selec-
tion criteria values of the failing processor, compares the
selection criteria values of the failing processor to the selec-
tion criteria values of spare, or otherwise potentially avail-
able, processors 1n the processor database. The 1dentities of
processors with selection criteria values that meet the selec-
tion criteria values of the failing processor are returned, 1n a
list, to the global management entity. The global management
entity selects a replacement processor from the list, perhaps
using other criteria. It 1s also possible for the processor data-
base to return the 1dentity of only one replacement processor
that 1s then used by the global management entity. Other ways
ol selecting replacement processors using selection criteria
are possible. Hence, using a processor database to select
replacement processors should be construed as examples and
not limiting.

Continuing 1n FIG. 6 at block 604, the global management
entity temporarily restricts interrupts to the processor to be
replaced to reduce the activity of the processor thus preparing,
the processor for replacement. At block 606, the replacement
processor, perhaps selected using the selection process
described above, 1s activated. At block 608, the global man-
agement entity sets the partition 1D of the replacement pro-
cessor to the partition ID of the processor to be replaced 1n
order to “move” the replacement processor into the partition
of the processor to be replaced. For example, the partition ID
0:“pr0cessor D 214, shown 1n FI1G. 2, 1s set to the partition 1D
of processor A 202 1n order to move processor D 214 nto
partition 200q, the partition of processor A 202. At block 610,
the local OS, 1.e., local operating system, 1s quiesced. Those
skilled 1n the art Wﬂl appreciate that quiescing an operating
system, €.g., a local operating system, 1s a process for reduc-
ing the activity of an operating system.

At block 612, the global management entity transiers the
state of the processor to be replaced to the replacement pro-
cessor. An example processor state 1s illustrated 1n FIG. 7 and
described later below. At block 614, the global management
entity maps the replacement processor to the identity of the
processor to be replaced and updates the local OS’s state to
reflect the mapping. More specifically, the replacement pro-
cessor 1s mapped to the complete 1D, 1.¢., the combination of
the partition ID and the APIC ID, of the processor to be
replaced and the local OS’s state 1s updated to reflect the
mapping. At block 616, the local OS 1s unquiesced, 1.e., the
local OS 1s reactivated. After block 616, the process ends.

FI1G. 7 1s a block diagram showing how an example device
interacts with an example intermediary to send a signal to an
example failing processor, which 1s routed to an example
replacement processor. In FIG. 7, an example device 700
contains the APIC ID of the destination processor 702. A
signal 720 carries the APIC ID of destination processor 702 to
an intermediary for remapping interrupts 722. The iterme-
diary for remapping interrupts 722 contains an I/O APIC data

10

15

20

25

30

35

40

45

50

55

60

65

12

structure 724. The I/O APIC 724 contains the APIC ID of the
destination processor 726. The device 700 may send the APIC
ID of a destination processor such as failing processor 706 via
a direct signal 704 or via a signal 720 through the intermedi-
ary for remapping interrupts 722, which sends a forwarded
signal 728 to the destination (failing) processor 706.

The failing processor 706 has a state 714. The state 714 of
the failing processor 706 1s determined by the state of exter-
nally accessible registers 708, the internal state 710 of the
failing processor 706, and a local APIC ID 712. The local
APIC ID contains a physical address and a logical address.
While the state describing a processor normally includes the
state of externally accessible registers 708, the internal state
710 of the failing processor 706, and a local APIC ID 712, the
state of the failing processor 706 may also include other
clements or may not include one or more of the previously
mentioned elements. Hence the contents of the state that
describe the state of a processor should be construed as
examples and not limiting. The state 714 of failing processor
706 1s transierred to, or copied to, the state 718 of a replace-
ment processor 716.

While one or more embodiments have been 1llustrated and
described, 1t will be appreciated that various changes can be
made therein without departing from the spirit and scope of
the disclosed embodiments.

What 1s claimed 1s:

1. A computer-implemented method comprising:

selecting a first processor associated with a computing

device to be used to replace a second processor associ-
ated with the computing device;

quiescing an operating system for the computing device

responsive to a determination that the second processor
1s to be replaced;

mapping the first processor to an 1dentifier of the second

processor, the mapping comprising:

determining a logical 1dentifier (ID) and a partition 1D
associated with the second processor;

using a combination of the logical ID and the partition
ID as a remapping register; and

inserting the combination of the logical ID and the par-
tition ID associated with the second processor into the
first processor; and

unquiescing the operating system responsive to said map-

ping.

2. The computer-implemented method of claim 1, wherein
selecting the first processor to be used to replace the second
processor 1s responsive to an indication of a failure of the
second processor.

3. The computer-implemented method of claim 1, wherein
selecting the first processor to be used to replace the second
processor comprises selecting the first processor from a plu-
rality of processors included in a database of processors, the
database including selection criteria values for each of the
plurality of processors.

4. The computer-implemented method of claim 1, wherein
selecting the first processor to be used to replace the second
processor comprises selecting the first processor from a plu-
rality of processors based on one or more selection criteria,
the selection criteria comprising a speed of the first processor
or one or more specialized computing features of the first
Processor.

5. The computer-implemented method of claim 1, wherein
the logical ID comprises an advanced programmable inter-
rupt controller (APIC) ID.

6. The computer-implemented method of claim 1, wherein
mapping the first processor to the identifier of the second
processor 1s performed by a service processor that 1s associ-

US 8,745,441 B2

13

ated with the computing device and 1s separate from the first
processor and the second processor.

7. The computer-implemented method of claim 1, further
comprising redirecting interrupts from the second processor
to the first processor based at least in part on the mapping.

8. The method of claim 1, further comprising reconfiguring,
a partition associated with the second processor to include the
first processor and exclude the second processor by replacing
a partition ID associated with the first processor with a parti-
tion ID associated with the second processor.

9. A computer-implemented method comprising:

determining that a first processor associated with a com-

puting device 1s to be replaced with a second processor
associated with the computing device;
reconfiguring a partition unit of a partition associated with
the first processor to include the second processor and
exclude the first processor by replacing a partition unit
ID associated with the second processor with a partition
umt ID associated with the first processor, the partition
umt ID associated with the first processor imncluding a
combination of a partition ID and a hardware device
identifier;
determining that a first identifier 1s mapped to a physical
identifier for the first processor, the first i1dentifier
enabling communication with the first processor; and

remapping the first identifier to a physical identifier for the
second processor to enable communication to be
directed to the second processor.
10. The computer-implemented method of claim 9,
wherein determimng that the first processor 1s to be replaced
with the second processor comprises selecting the second
processor from a plurality of processors included in a data-
base of processors, the database including selection criteria
values for each of the plurality of processors.
11. The computer-implemented method of claim 9,
wherein the physical identifier for the first processor com-
prises an advanced programmable interrupt controller
(APIC) 1dentifier for the first processor and the physical 1den-
tifier for the second processor comprises an APIC 1dentifier
tor the second processor.
12. The computer-implemented method of claim 9, further
comprising;
quiescing an operating system associated with the first
processor prior to mapping the first identifier to the
physical identifier for the second processor; and

unquiescing the operating system aiter mapping the first
identifier to the physical identifier for the second pro-
CESSOT.

13. The computer-implemented method of claim 9, further
comprising redirecting interrupts from the second processor
to the first processor based at least 1n part on the mapping.

5

10

15

20

25

30

35

40

45

50

14

14. The method of claim 9, wherein said remapping com-
prises replacing the physical identifier for the first processor
with the physical identifier for the second processor in a
redirection table that tracks physical identifiers for a plurality
of processors.

15. A device comprising:

a memory; and

a service that resides at least 1n part on the memory, the

service being configured to enable a first processor of a

plurality of processors to be replaced with a second

processor of the plurality of processors, the service

being further configured to perform one or more opera-

tions comprising:

determining a logical idenftifier and a partition ID
mapped to the first processor and causing the logical
identifier and the partition ID to be remapped to the
second processor to enable communication to be
directed to the second processor;

determining a first identifier mapped to a physical 1den-
tifier for the first processor and causing the first 1den-
tifier to be remapped to a physical identifier for the
second processor such that communication 1s directed
to the second processor; and

causing a partition associated with the first processor to
be reconfigured to include the second processor by
replacing a partition ID associated with the second
processor with the logical identifier and the partition
ID associated with the first processor.

16. The device of claim 15, wherein the logical 1dentifier
comprises an advanced programmable interrupt controller
(APIC) 1dentifier.

17. The device of claim 15, wherein the service 1s further
configured to enable the first processor to be replaced with the
second processor responsive to a detection by the service of a
failure of the first processor.

18. The device of claim 15, wherein the service 1s further
configured to be implemented by a service processor that 1s
separate from the plurality of processors.

19. The device of claim 15, wherein the one or more opera-
tions further comprise causing an operating system of the
device to be put into an iactive state during at least one of the
logical identifier and the partition ID being remapped to the
second processor, or the first identifier being remapped to the
physical identifier for the second processor.

20. The device of claim 15, the one or more operations
turther comprising causing the first identifier to be remapped
to the physical identifier for the second processor by replacing,
the physical identifier for the first processor with the physical
identifier for the second processor in a redirection table that
tracks physical 1dentifiers for the plurality of processors.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

