US008745406B2
12 United States Patent (10) Patent No.: US 8,745,406 B2
King 45) Date of Patent: Jun. 3, 2014
(54) PROGRAM EXECUTABLE IMAGE (58) Field of Classification Search

ENCRYPTION CpPC ... GO6F 21/125; GO6F 21/14; GO6F 12/02
USPC ... 713/164-1677, 189-191; 717/100, 127,
(75) Inventor: Colin King, Crawley (GB) 717/140

See application file for complete search history.

(73) Assignee: Nytell Software LLC, Wilmington, DE
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1286 days.

(21)  Appl. No.: 12/090,028

(22) PCT Filed: Oct. 10, 2006

(86) PCT No.: PCT/IB2006/053717

§ 371 (c)(1),

(2), (4) Date:  Dec. 30, 2008

(87) PCT Pub. No.: W02007/063433
PCT Pub. Date: Jun. 7, 2007

(65) Prior Publication Data
US 2009/0232304 Al Sep. 17, 2009
(30) Foreign Application Priority Data
Oct. 17,2005  (EP) coveeiiiiieen, 05109642
(51) Int.CL
GO6l 12/02 (2006.01)
GO6F 21/12 (2013.01)
GO6F 21/14 (2013.01)
(52) U.S. CL
CPC .............. GO6I’ 21/125 (2013.01); GO6F 12/02
(2013.01); GO6F 21/14 (2013.01)
USPC ........... 713/189; 713/164;°713/165; 713/166;
713/167;°713/190; °713/191; 717/100; 717/127;
717/140
Header

(56) References Cited
U.S. PATENT DOCUMENTS

4,558,176 A * 12/1985 Amoldetal. ................. 713/190
6,185,680 B1* 2/2001 Glover ........c..ooevvniinnn, 713/190
6,205,580 B1* 3/2001 Hiurose .....cccoovvviviniinn, 717/162
6,405,316 B1* 6/2002 Krishnanetal. .............. 713/190
6,496,910 B1* 12/2002 Baentschetal. .............. 711/165
6,715,142 Bl 3/2004 Saito et al.

6,802,006 B1* 10/2004 Bodrov .......c.cooevvviinnn. 713/187
7,254,586 B2* 82007 Chenetal. .................... 713/190
7,757,097 B2* 7/2010 Atallahetal. ................ 713/187

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0964370 Al  12/1999
WO 03000021 A2 10/2003

Primary Examiner — Yin-Chen Shaw

(74) Attorney, Agent, or Firm — McAndrews, Held &
Malloy, Ltd.

(57) ABSTRACT

The mvention provides for a method of encrypting and
executing an executable image, comprising; tlagging sections
of the executable 1image to be encrypted using commands 1n
source files and compiling said executable images so as to
generate object files, linking one or more of said executable
images using a linker to produce a final executable 1mage,
passing said linked executable images to a post-linker encryp-
tion engine to encrypt a relocation fix-up patch table and
sections of executable 1mages flagged for encryption, and at
load time decrypting relocating and executing the executable
1mages.

30 Claims, 5 Drawing Sheets

Relocation Fixup Relggst% Fr}lti?xup
Patch Table ; _ patch Table |
. | Encryption
Text Section »  Engine

Text Selection to _ . Encrypted Text |
E .
be Encrypted 402 | Section
Data Section . Data Section |
Data Section to 5 Encrypted
be encrypted Section
BSS Section BSS Section |

Fxecutable Encrypted

Executable

)

401



US 8,745,406 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

7,757,224 B2 *
7,779,270 B2 *
2002/0138748 Al*

7/2010 Formmetal. .................... 71
8/2010 Horning et al. ............... 71
13/

9/2002 Hung

tttttttttttttttttttttttttttt

7/
3/

157
187

190

2003/0221116 Al
2004/0125954 Al
2005/0289266 Al

2011/0035733 Al

* 11/2003
7/2004
* 12/2005

¥ 2/2011

* cited by examiner

Futoransky et al. .......... 713/189
Riebe et al.

[lowsky et al. .............. 710/104
Horning etal. ............... 717/140



U.S. Patent Jun. 3, 2014 Sheet 1 of 5 US 8,745,406 B2

Program
Source

| Program |
| Object Code |

Code (A)

| Program

| Source Code

- (B) to be
encrypted

(A), (C)
. Program |
| Object Code |
| (B)tobe |
encrypted

Program ]
Source Comptier Program

woce © . (o | source Data
.. § (Dr) to be §
encrypted

Program

Source Data
| (D) to be

encrypted
It LR Program

Source Data

(E)

Program
Source

Data (E)

Source Object

FIG. 1

Object File |

Object File |

_ | Executable

Obiect File |~

Object File |/

FIG. 2



U.S. Patent Jun. 3, 2014 Sheet 2 of 5 US 8,745,406 B2

Relocation Fxup

Patch Tabie

Text Section to be

Encrypted SU4
305
Data Section to be 206

ancrypted




U.S. Patent Jun. 3, 2014 Sheet 3 of 5 US 8,745,406 B2

-ncrvpted

Do Relocation Fixup

Patch Table Patch Table

Encryption

. fext Section
cngine

Text Section -

Text Selection to Cncrypteda text
- be Encrypled Section

- Data Section Data Section |

Data Section to Encrypted

ne encrypted

- BSS Section BSS Section |

Frecutable Encrypted
\ Executabie
401

Sachion

-

FIG. 4



S. Patent un. 3, 2014 Sheet 4 of 5 US 8.745.406 B2

*
*
[
*
*
[
*
*
[
[
*
[
*
*
[
*
*
[
[
*
[
*
*
[
[
*
[
*
*
[
*
*
[
[
*
[
*
*
[
[
*
[
[
*
[
*
*
[
[
*
[
*
*
[

Header

cncrypted

Encrypled
Relocation
FiXUp Patch

o I I AL N N I B B B N N N B N B N N B N N N N N B N N N N N B R N B N N B N N B N N N N N B N N N N N B N R

b kS

Reiocation '
Fixup Patch

L I I B O L I N I B B D B N I DO N B B N D B N I B RO DO DL N D B N R B N B B N N N N N N N N N N N N N B B N

LB R DR R R BE B BE DE B DR DL DR DR DR DR DR NE DR D R BN NE DR B BE DR L B UE NE B R BE B BE BE B NN BE B N N B B B B B

Text Section

Decryption Text Section |

"1 Engine (GY |7

Encrypted Decrypted

L
L
*
L
L
*
L
L
*
*
L
*
L
L
*
L
L
*
*
L
*
L
L
*
*
L
*
L
L
*
L
L
*
*
L
*
L
L
*
*
L
*
*
L
*
L
L
*
*
L
*
L
L
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L
*
*
L

[ N B N NN BN NN NN NN NN NN NN NN N NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN N N NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN

= o ko ko ko ko ko ko ko ko FF ko ko ko ko

Text Section | Text Section
Data Section Data Section
Data Section Data Section

| s Sacton

4 h ko hohhoh ok hh o hhh o h o h o hhhh o h hh h o h e h o E R hE ok

{ext
Section

Decrypled
Text Section

L R R R R

ala
Section

Loader

)

ok ok ko kb

L R R

Decrypted
Section

LI N B I IO B B IOC DO IOE B DO B AL BN IO DO RO NOE DAL BOE IR DAL BOE BOE BOE BOE DR DAL T IR IO DK DOE DK BOE L DAL DO BOE DAL BOK BOE AL BN B DR )

B55
Section

L B B N B B B B D B O B I B O B O D B O O B B O B O DL B B B O B D B O B B B D B O DL B O B BN B

b ko o o o o o o
. l

FlIG. 5



S. Patent un. 3, 2014 Sheet 5 of 5 US 8.745.406 B2

L
*
*
L
*
L
L
*
*
L
L
*
L
*
*
L
L
*
L
-
*
L
L
*
*
L
*
L
L
*
-
L
L
*
L
*
*
L
*
*
L
L
*
L
L
*
L
L
*
*
L
*
*
[

Header

Encrypted

Relocation
Fixup Patch '

L N N I BOC T IO DO O IO DAL U DL DAL B B UL O DL BOL N B NE B B NOE IO DO O L DL B B BOC BOE IR IOC DO BOE DAL BN BOE BOC WL BOE DO BOL BOR BOE BN DR BN )

. Encrypted
Relocation
FiXUR Patch

ok ok oh ok oh ok hy A h o h ok h ko hhhd A h ok h o h h o h o h oy E o E ko h A

Decryption Text Section

L]
4 & - 4 4
-

- 4 A

Text Sechion Engine “

&
ur
s a

LI B B N B B B B B O N R O B N O N O N O N O N B N O B O O N N N N N N N ]

Decrypted
Text Section

L N L ]

Encrypted

LB B DL B B B B DU B O B DN U BN DL D DN B BN DN U DL DR NN BN D U B DL D B D DN B DL DR B DL DL B BN B B B B B

Text Section

L N N N R N N N B N N B N N B N N B R R B N I N I I B B I B B B B I I BAE L DO O DO B DO IR BOC BOE IR IOL DAL IR BNE BN BN )

Data Section

Data Section

LI B B B B N B B B B B BN B D BN DL B D B B DN B DL B B D B B B B O DD O B U D O DL BN DL B LD B DL B DB B

Decrypted
Data Section

*
&+
i

L B N B B B B B O O B O O I O O O O D O O O B DL I O O O B BN B B O B B DL B B O B I D B B DL B B L B B B I

Encrypted
ata Section

o o kS

L N B BN NN NN NN NN BN NN NN NN NN NN NN NN NN NN NN NN NN RN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN RN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN RN NN NN NN NN NN NN NN NN NN NN NN NNCENCEN NN NN NN NN RN NN NN NN NN NN NN NN NN RN NN NN NN RN NN NN NN NN NN

L]

* r

[ A

s r k #

L B

* r & &

L N ]

* r

-

b ok o o F o o o ko F ko F ko ko ko ko ko F F ko ko ko ko ko ko ko

u

P

555 Section

.
a

255 Sechion

 h ok ok ook ko hhd A h o hhhd e h d Ak h ok h h o d ko h d h oy h ok h ko h A

L L N N N B B N O D N DL I B O O B O B B O I B O B B D B I DL B B DL B B D B O DL I D DK B B B B B

jext i
Section

[
[ ]
[
[
[ ]
[ ]
[
[ ]
[ ]
[
[ ]
[ ]
[
[
[ ]
[
[ ]
[ ]
[
[
[ ]
[ ]
[
[ ]
[
[
[ ]
[ ]
a
[
[ ]
[
[ ]
[ ]
[
[
[ ]
[
[
[ ]
[
[
[ ]
[ ]
[
[ ]
[ ]
[
[
*
*
L
*
rod ok o

L BN B BN BN B BN B B DL DN BN DN U BN DS DN DN B B DL U DN D D DN NS D DD LR BB BRI
-
-
L]
-
L]
- -
LI IR
L]
ok b ko 1
-
L I ]
- -
&
L]
-
" -
L]
-
: P
n - -
L] L]
- -
- -
L] u L]
- -
- -
L] L]
-
- - 4 ko
- iii‘i‘i‘i
e aa . Tl
L] L] 4 bk ok
LI
- - L
- -
L] L]
- -
- -
L] L]
- -
- -
L] L]
- -
-
-
-
L]
-
&
-
L]
-
‘ -
L]
-
-
L]
-
-
L]
-
-
L]
L ]
-
L ]

Decrypted
Section

LR N N N N B N N B N N N N N N N N B N I N N I N N B N N B B B I B I BOC RO DR BOE BOK N BOC B BOE BN O IO B )

BSS
Section

LI N BN NN NN BN N NN BN N NN NN N NN NN NN NN NN NN NN N NN NN NN NN NN N CENEE NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN N NN NN NN NN NN NN NN NN NN N NN NN NN NN NN NN NN NN NN NN NN N NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN N NN NN NN N NN NN N

FlG. 6



US 8,745,406 B2

1

PROGRAM EXECUTABLE IMAGLE
ENCRYPTION

The present invention relates to a method and system for
encrypting and executing executable images. More specifi-
cally, 1t relates to a method and system for encrypting and
loading executable 1mage content.

Developing software requires considerable investment in
terms of both time and finance and unauthorised use of soft-
ware such as unauthorised copying or sharing ultimately
results 1n loss of income for the software developer. Examples
ol unauthorised software can include copies made by third
parties without obtaining the necessary authorization, or shar-
ing of unauthorised copies through peer-to-peer networks.
Such software may also include executable 1mage or sound
files which may also require protection from copying.

To implement such protection, 1t 1s well known to employ
encryption measures to prevent unauthorised copies of sofit-
ware from being executed. Such measures typically mnvolve
encryption of one or more executable portions of the software
which can prevent the software from running entirely, or to
disable one or more individual functional features of the
software so that the software runs sub-optimally. As an
example, 1t 1s well known to encrypt executable program
content prior to execution, and so as to protect implementa-
tions of algorithms contained therein. Examples of such
executable content can include Codecs contained 1nside the
program {iles such as the JPEG, MP3 and WMA formats
typically used to compress image and sound files. Codecs can
both transtorm the data into an encoded form (often for trans-
mission, storage or encryption) and retrieve, or decode that
data for viewing or manipulation in a format more appropriate
for the particular operation. Codecs are often used 1n video-
conferencing and streaming media solutions.

As an example, US-A-2004/0125954, discloses a data
encryption/decryption system which maintains in encrypted
form data elements required by a software program. Software
producers can select and encrypt one or more program data
sections and/or text sections referred to as critical data ele-
ments within an executable program. In order to execute the
soltware a user must obtain a license key in order to decrypt
the critical data elements used by the program. By providing
different license keys 1t 1s possible to provide different license
options allowing a software producer or supplier to exercise
control over levels of functionality of the program depending
on the functions that are enabled by the license key provided.

However, the solution as provided in US-A-2004/0125954
results 1n slower processing speeds because decrypting the
executable before the program 1mage 1s executed consumes
valuable processor cycles resulting 1n a less responsive sys-
tem. Furthermore, critical data sections referred to 1n US-A-
2004/0125934, apply to the program code 1tself, for example
program data sections and text sections, and not to a program
header which contains necessary information such as a fix-up
table, which enables a program loader to relocate the program
into a desired area of memory.

It 1s well known to use such encryption techniques 1n a
special purpose computer system known as an embedded
system. Embedded systems can include a microprocessor or
microcontroller arranged to perform pre-defined tasks. In
embedded systems such as those used in consumer electron-
ics and automobiles, the components thereol are typically
required to be small and mnexpensive. Microprocessors with
on-chip memory management unit (MMU) hardware tend to
be complex and expensive, and as such are not typically
employed for embedded systems which do not require such
complexity. Within the processor, the MMU is responsible for

10

15

20

25

30

35

40

45

50

55

60

65

2

protecting system resources from unwanted access and also
providing the capability for handling virtual memory. To
reduce such component costs in embedded systems 1t 1s well
known to use so called “MMU-Less’ processors, an example
of which 1s the Philips TriMedia media processor. However,
when executable files are loaded onto a MMU-less processor,
the executable file has to be relocated to the desired memory
location before 1t can be executed.

Relocation of executable images can be achieved by using
a relocation fix-up table to relocate the image to a new address
in memory. The fix-up table, also known as a patch table
allows the executable image to be modified so that 1t can be
run at a desired location 1n memory. This process typically
involves the individual steps of encrypting fix-up data, relo-
cating the encrypted fix-up data and decrypting the fix-up
data to produce the final fixed up executable image. However,
the fixing-up or patching process can consume valuable pro-
cessor cycles resulting 1n a slower operation of the processor.
Decrypting and relocating the executable code as separate
and distinct operations can prove a relatively time-consuming
process. Therefore, completing these operations 1n less time
by reducing the number of operations can serve to produce a
faster loading, and more responsive system.

The present mvention seeks to provide for a method and
system for encrypting and executing executable images
quickly and efficiently, having advantages over known such
methods and systems.

According to one aspect of the invention there 1s provided
a method of encrypting an executable image, comprising the
steps of: flagging sections of the executable image to be
encrypted using commands 1n source files and compiling said
executable 1image so as to generate object files, linking one or
more of said executable images using a linker to produce a
final executable 1mage, fix up processing further comprising
the steps of passing said linked executable image to a post-
linker encryption engine to encrypt a relocation fix-up patch
table and sections of executable 1images flagged for encryp-
tion, such that at load time the executable image can be
decrypted, relocated and executed.

In particular, the present invention seeks to prevent 1llegiti-
mate use of executable files 1n a manner which overcome one
or more of the above mentioned disadvantages and which 1n
particular prevents illegitimate copying of executable files.

Advantageously, this allows that only the code requiring
protection will be marked for encryption while less important
code can be left unencrypted. By selecting only the code
which requires protection executable content can be loaded
more quickly whilst also providing for a more responsive
system which 1s both cost effective and simple implement.

Preferably, the step of decrypting the fix-up table involves
combining the steps of decryption and fix-up processing.
Advantageously, such a combination of steps provides for an
cificient use of memory space whilst further providing for a
faster responding system.

Preferably the step of flagging sections to be encrypted
comprises using a compiler or linker directive and naming
said sections at the source level stage so that the linker can
encrypt the sections at a link or post link stage.

Furthermore, by using the section renaming mechanism
sections of object code can be marked to indicate whether the
section 1s to be encrypted. Advantageously, this also serves to
provide an eflicient use of memory space whilst also provid-
ing a faster responding system.

According to a further aspect of the invention there is
provided a system for encrypting an executable 1mage, com-




US 8,745,406 B2

3

prising a compiler arranged to flag sections of the executable
image to be encrypted and compile said executable 1mage so
as to generate object files,

a linker arranged to link one or more of said object files to
produce a final executable 1mage and further arranged to
process a fix up table by passing said linked executable image
to a post-linker encryption engine, wherein the post-linker
encryption engine 1s arranged to encrypt a relocation fix-up
patch table and sections of an executable image flagged for
encryption, such that atload time the executable image can be
decrypted, relocated and executed.

In particular, the present invention seeks to prevent illegiti-
mate use of executable files 1n a manner which overcome one
or more of the above mentioned disadvantages and which 1n
particular prevents 1llegitimate copying of executable files.

Advantageously, this allows that only the code requiring
protection will be marked for encryption while less important
code can be left unencrypted. By selecting only the code
which requires protection the system can be loaded more
quickly whilst also providing for a more responsive system
which 1s both cost effective and simple implement.

Preferably, the decryption means 1s arranged to decrypt the
fix-up table at the same time as processing the fix-up table.
Advantageously, this provides for an efficient use of memory
space whilst further providing for a faster responding system.

Preferably, a compiler or a linker directive 1s arranged to
flag sections to be encrypted and 1s further arranged to name
said sections at a source level stage so that the linker can
encryptthe flagged sections at either a link or a post link stage.

Furthermore, by using the section renaming mechanism
sections ol object code can be marked to indicate whether the
section 1s to be encrypted. Advantageously, this allows that
only the code requiring protection will be marked for encryp-
tion while less important code can be left unencrypted. By
selecting only the code which requires protection the system
can be loaded more quickly whilst also providing for a more
responsive system which 1s both cost effective and simple
implement.

The invention 1s described further hereinafter, by way of
example only, with reference to the accompanying drawings,
in which:

FIG. 1 1s a block diagram of a single source file, containing,
source code portions, text and data portions which can be
complied by a compiler;

FI1G. 2 1s a block diagram of object files linked together by
a linker to produce a final executable image;

FI1G. 3 1s a block diagram of final executable image, where
the header contains executable format information;

FIG. 4 1s a block diagram of an executable 1image being
passed to a post-linker encryption engine;

FI1G. 5 illustrates 1n block form decryption, relocation and
execution of the executable image at load time; and

FI1G. 6 1s a block diagram of a combined loader and decryp-
tion engine according to the present invention.

Executable images of a program contain section informa-
tion and traditionally executable images have several compo-
nents or sections, for example, a text component, forming the
executable program code, a data component comprising
space for mitialised or un-1initialised program static data, and
a Block Storage Segment (BSS) component comprising a
region allocated by the loader containing static data initia-
lised to zero. The BSS 1s the memory mapping component
contaiming the data allocated for a binary image at execution
time. The more components 1n a system, the greater the
granularity and the more tlexible 1t 1s. Granularity refers to the
extent to which a system contains separate components. For
example, the Philips TriMedia C complier allows sections or

10

15

20

25

30

35

40

45

50

55

60

65

4

components 1n a generated object file to be renamed after
compile time and before the objects are linked into a final
executable.

A complier such as a GNU GCC C compiler allows sec-
tions to be labelled at compile time using special C exten-
sions, or at link time using linker files. With GNU GCC
compiler sections can be given titles, other than the standard
text, data and BSS titles used with TriMedia C compiler, with
special compile time directives, for example, an inlined
assembler directive section which specifies that code follow-
ing the compiler directive 1s placed 1n object code with a
specified section name. This 1s performed using special linker
rename flags applied by the linker on the object file generated
from the compiled C source code from the GNU GCC com-
piler. Using the section renaming mechanism, sections of the
object code can be marked by a special naming convention to
indicate whether the section 1s to be encrypted or not. There-
fore for a large application only important code, for example
code which 1s subject to patent or copyright protection, or
which contains confidential information, need be marked for
encryption, while the less important code, such as C libraries,
can be left un-encrypted. Object code produced by a compiler
1s generally placed in marked sections. Traditionally for C
UNIX or Linux system these sections are entitled text, data
and bss, as discussed 1n more detail below. However, once the
object code 1s named 1t 1s not possible to rename it so as to
mark 1t for encryption.

In overview, the present invention provides a method and
system for encrypting and executing executable images
where the executable image of a program 1s relocatable to a
memory location for processing using a device such as a
fix-up table. A fix-up table contains a list of pointers to
addresses containing relative addresses. When the file 1s
loaded into memory, the compiler goes to each of the
addresses having a pointer and adds an absolute address of the
beginning mstruction of the program to the relative address in
the program. This allows the loader to patch or relocate the
executable 1image, such that references to addresses 1n the
executable are patched to match the desired address of the
relocated executable 1mage.

An encryption mechanism 1s employed to encrypt parts of
the executable program at or after link time. Where link time
1s the time when files compiled from different source modules
are linked 1nto a single program. Decisions made by the linker
are constrained by the compiled code and ultimately by the
information contained 1n source code. A fix-up table 1s then
encrypted preventing the image being relocated without
decrypting the fix-up table first.

The sections of executable code to be protected are put 1into
special text (and data) sections that are encrypted. All other
code and data 1s left unencrypted. A decryption mechanism 1s
employed to decrypt the encrypted fix-up table and specially
encrypted text (and data) sections at load time before the
image can be run.

In operation, at compile time, the program source code 1s
complied by a compiler into object code. Sections of the
program source code that need to be protected are flagged
using a special complier dervative or command in the source
code, or by moditying the object code after the source 1s
compiled. Decisions made at compile time are constrained by
the amount and kind of information encoded 1in source files. A
compiler directive 1s a special comment added to a program
which allows the compiler to perform certain actions and can
include switch directives which turn compiler features on or
switches off; parameter directives which specily parameters
that atfect the compilation and conditional directives which
control conditional compilation of parts of the source text.




US 8,745,406 B2

S

Compiler directives are non-executable statements which do
not get translated directly into executable code.

The fix up table can contain the locations 1n the executable
ol data that need to be patched or relocated. The data that
needs to be patched 1s:

1. Program 1nstructions that refer to locations 1n the pro-
gram, the locations need to be modified to match the new
relocation address. For example, jump addresses, load/store
instructions that refer to program addresses 1n the instruction.
The operands in the 1nstruction code need to be modified, e.g.
1mp_main load some_table->reg0.

2. Data such as pointers that refer to specific locations in the
program. These pointers need to be modified to match the new
relocation address. For example, pointers to data structures,
or functions need changed to match the new relocation
address of the executable.

It 1s assumed that the executable has been compiled to start
at location 0 1n memory. The executable 1s relocated to a new
fixed memory location N. It 1s therefore necessary to add the
offset N to every address reference in the executable to relo-
cate the executable to the starting address N.

First the decrypted program is copied into the new memory
address space, starting at address N. The fix up table 1s then
decrypted and processed entry by entry. Each entry contains
the location L of instruction or mstruction operands and data
(such as pointers) in the executable that need to be offset by N.
The program code or data at address L+N 1s then transformed
as follows. The contents of location L+N read into variable X
such that X 1s changed by the relocation ofifset N, that 1s
X=X+N and X i1s written back into the location, L+N.

This 1s repeated for all entries 1n the fix up table. The fix up
table 1s then disposed off, returning 1t back to the free memory
allocator as 1t no longer required once the fix up 1s complete.

For example, the Philips TriMedia C compiler allows com-
piled object code to be renamed whilst using a GNU GCC C
compiler permits directives to rename a section 1n the source
code 1tself. Using a known naming convention, for example,
prefixing a section with a character string such as *_encrypt_’
can allow the final link stage to determine which sections
need encrypting in the final executable image generated by
the linker. The mvention may be implemented using any
appropriate complier and can use any appropriate process to
compile the source code 1nto object code as 1s understood by
those skilled 1n the art.

FIG. 1 1llustrates a single source file, containing source
code portions A, B, C and text or data portions D, E, which are
complied by a C compiler CC. The source code B and the data
D 1s marked by compiler directives in the source code to be
encrypted. The resulting object code generated by the com-
piler contains text and data sections marked to be encrypted B'
and D' and normal text and data sections A", C' and E'.

One or more of the object files are then hnked together by
a linker to produce the final executable 1mage as 1llustrated 1n
FIG. 2. The executable image contains Text, Data and BSS
sections, with some sections being marked for encryption by
the compiler directives, as discussed above. The method of
marking a section 1s implementation dependant and based on
the nature of the compiler and/or linker.

An example of a final executable 1image 1s illustrated 1n
FIG. 3, where the header 301 contains executable format
information, for example industry standard ELF (Executable
and Linking Formats), COFF (Common Object File Formats)
or ‘a.out’ executable image formats. The Relocation Fix-up
Patch Table 302 contains information to allow the loader to
relocate and patch the executable images so that references to
addresses 1n the executable are patched to point to the new
relocated executable addresses. Each ELF file can made up of

10

15

20

25

30

35

40

45

50

55

60

65

6

one ELF header, followed by zero or more segments and zero
or more sections. The segments contain information that 1s
necessary for runtime execution of the file. However, the
COFF format 1s preferred since it allows multiple named
sections 1n an object file.

The Text Section 303 contains normal executable program
code, whilst the Text Section to be encrypted 304 contains
executable code to be protected by encryption. The Data
Section 305, contains normal program data whilst the Data
Section to be encrypted 306 contains program data to be
protected by encryption. The BSS Section 307 contains data
to be zeroed at program start up.

When the executable image 401 1s formed, as 1llustrated 1n
FIG. 4, 1t 1s then passed to a post-linker encryption engine.
The encryption engine 402 then reads the executable image
and encrypts a Relocation Fix-up Patch Table, and any Text or
Data sections marked for encryption. When the image 1s due
to be loaded, at load time, the executable image 1s decrypted,
patched/relocated and executed as illustrated in FIG. 5.
Encrypted sections of the executable are decrypted by the
decryption engine G to produce an executable image that the
loader J can relocate to produce the final run time 1mage L.

The steps of encryption and decryption as mentioned above
can implemented by any appropriate means as understood by
those skilled in the art. However, to implement the present
invention 1t 1s necessary that the encryption means is capable
of understanding the final output executable object format so
that 1t can process the executable object code and determine
the sections that need encrypting. Indeed, the step of linking
and producing the final executable 1mage can be combined
thereby removing the need for separate means to understand
post-linking executable object code to carry out post linking
processing and encryption.

In a further embodiment of invention as 1llustrated 1n FIG.
6, the loader can be optimised to include a decryption engine
enabling it to read, decrypt and process the decrypted fix-up
patch table 1n one combined operation, thereby removing the
need to store the decrypted fix-up before passing 1t to the
loader. The executable image data and text sections are
decrypted by the first decryption engine 601. The second
decryption engine 602, inside the loader decrypts the fix-up
patch table only.

As 1llustrated 1n FI1G. 6, the decryption of the fix up table 1s
combined with the fix up processing 1 one distinct step.
Decryption of the fix up table will take encrypted fix up table
information and decrypt it into decrypted fix up table entries.
Once a decrypted fix up table entry is available from the
decryption engine it can be used to patch the executable code.
This 1s a saving compared to the separate decrypt and fix up
processing phases that have to store the decrypted fix up entry
back to the fix up table and then pass this data to the fix up
processing which reads the data back.

Therefore, for each fix up entry 1t 1s possible to save a write
back of decrypted fix up data back to memory and also a read
back of decrypted fix up data from memory. This results in
considerable saving 1 the fix up table 1s large as memory
read/write processes are slow compared to processor speed
and hence save a lot of memory bandwidth and prevent data
cache stalls

Also, 1f the decryption engine and fix up processing code
are coupled tightly enough, it 1s possible to {it the decryption
and {ix up processing nto the processors instruction cache
and reduce processing time as a result of keeping the number
of instruction cache stalls low. Saving memory bandwidth
and reducing processing time 1n this way, speeds up operation
when utilising processors such as the TriMedia which have a
small 1nstruction and data cache.




US 8,745,406 B2

7

In this way, 1t can be seen that the present invention pro-
vides a faster loading, responsive system having cost effective

and simple implementation that prevents illegitimate use of

executable files.

The mvention claimed 1s:

1. A method comprising:

flagging sections of source files;

compiling both flagged sections and non-flagged sections

of said source files to object files that include flagged
sections and non-flagged sections;
linking the object files using a linker to produce a first
executable 1mage that includes flagged sections, non-
flagged sections, and a relocation fix-up table; and

creating a second executable image that includes encrypted
flagged sections, an encrypted relocation fix-up table,
and non-encrypted non-tflagged sections, wherein said
creating includes encrypting the relocation fix-up table
and flagged sections of the first executable 1mage based
on an encryption key;

loading the second executable image into memory at a base

address:

decrypting the encrypted relocation fix-up table of the

loaded second executable image based on a decryption
key; and

updating memory references of the second executable

image based on the decrypted relocation fix-up table and
the base address to produce a run time 1mage.

2. The method of claim 1, wherein:

said flagging sections of source files comprises naming

said sections at a source level stage; and

said creating a second executable image comprises

encrypting flagged sections and the relocation fix-up
table using a post-linker encryption engine and the
encryption key.

3. The method of claim 1, further comprising;

flagging a header section of the first executable 1mage.

4. The method of claim 3, wherein the flagged header
section comprises the relocation fix-up table for the first
executable 1mage.

5. The method of claim 1, wherein said encrypting the
relocation fix-up table prevents the second executable image
from being relocated 1n memory in a manner that permaits
execution of the second executable image without decrypting
the encrypted relocation fix-up table based on the decryption
key.

6. The method of claim 1, wherein said encrypting com-
prises encrypting flagged sections of the first executable
image based on commands in the source files.

7. The method of claim 1, wherein said encrypting com-
prises encrypting one or more of an executable code section,
a data section and a block storage segment section of the first
executable image.

8. A method comprising;

flagging sections of source files;

compiling both flagged sections and non-flagged sections

of said source files to object files that include flagged
sections and non-flagged sections;
linking the object files using a linker to produce a first
executable 1image that includes flagged sections, non-
flagged sections, and a relocation fix-up table; and

creating a second executable image that includes encrypted
flagged sections, an encrypted relocation {ix-up table,
and non-encrypted non-tlagged sections, wherein said
creating includes encrypting the relocation fix-up table
and flagged sections of the first executable 1mage based
on an encryption key;

10

15

20

25

30

35

40

45

50

55

60

65

8

wherein said compiling and said linking results 1n the relo-
cation fix-up table comprising a plurality of entries that
permit operatively loading the first executable image to
a relocatable address; and

wherein ones of the plurality of entries identily a location
in the first executable image to adjust based on the relo-

catable address to which the first executable 1mage 1s
loaded.

9. The method of claim 8, further comprising decrypting
encrypted sections of the second executable image based on a
decryption engine and a decryption key to produce a run time
image.

10. The method of claim 9, further comprising decrypting
the encrypted relocation fix-up table of the second executable
image based on a decryption key.

11. The method of claim 10, further comprising:

loading, with a loader, the second executable 1image 1nto
memory at run time;

wherein said loading includes said decrypting encrypted
sections and said decrypting the encrypted relocation
{fix-up table.

12. A system, comprising:

a computer-readable storage device including stored
istructions for a compiler, a linker, and an encryption
engine; and

a processor configured to execute the stored instructions
for the compiler, the linker, and the encryption engine;

wherein the stored instructions for the compiler, 1n
response to being executed, further configure the pro-
cessor to flag sections of source files, and compile both
flagged sections and non-flagged sections of the source
files to object files that include flagged sections and
non-flagged sections;

wherein the stored instructions for the linker, 1n response to
being executed, further configure the processor to link
said object files to produce a first executable image that
includes flagged sections, non-flagged sections, and a
relocation fix-up table;

wherein the stored instructions for the encryption engine,
in response to being executed, further configure the pro-
cessor to create a second executable image that includes
encrypted tlagged sections, an encrypted relocation fix-
up table, and non-encrypted non-flagged sections by
encrypting the relocation fix-up table and the flagged
sections ol the first executable image based on an
encryption key;

wherein the computer-readable storage device further
comprises stored mstructions for a loader; and

wherein the stored instructions for the loader, 1n response
to being executed, further configure the processor to
decrypt the relocation fix-up table while updating
memory references based on the relocation fix-up table.

13. The system of claim 12, wherein:

the stored instructions for the compiler, in response to
being executed, further configure the processor to flag
sections by naming said flagged sections at a source
level stage; and

the stored instructions for the encryption engine, 1n
response to being executed, further configure the pro-
cessor to encrypt the named sections.

14. The system of claim 12, wherein, in response executing
the stored instructions for the linker, the processor 1s config-
ured to tlag a header section of the first executable 1mage.

15. The system of claim 14, wherein the flagged header
section comprises the fix-up table for the first executable
image.



US 8,745,406 B2

9

16. The system of claim 12, wherein the stored instructions
for the encryption engine further configure the processor to
encrypt the flagged sections of the first executable image
based on commands in the source files or based on linker tlags
at a link stage.

17. The system of claim 12, wherein the stored mstructions
for the encryption engine, 1n response to being executed,
turther configure the processor to encrypt one or more of an
executable code section, a data section, and a block storage
segment section of the first executable image.

18. The system of claim 12, wherein the stored instructions
tor the linker, in response to being executed, further configure
the processor to tlag sections of the first executable 1image
based on commands 1n the source files.

19. The system of claim 12, wherein:

the computer-readable storage device further comprises

stored instructions for an encryption engine; and

the stored instructions for the encryption engine, in

response to being executed, turther configure the pro-
cessor to decrypt encrypted sections of the second
executable image based on a decryption key to produce
a run time 1mage.

20. The system of claim 19, wherein the stored instructions
for the encryption engine, 1n response to being executed,
turther configure the processor to decrypt the encrypted fix-
up table of the second executable 1image based on the decryp-
tion engine and the decryption key.

21. The system of claim 12, wherein the stored instructions
tor the loader, 1n response to being executed, further configure
the processor to load the second executable image into
memory, and to decrypt encrypted sections and the encrypted
relocation {ix-up table based on a decryption key to produce a
run time 1mage.

22. The system of claim 12, wherein said flagged sections
of the first executable 1mage include an executable program
code section, a data section, and a block storage segment
section.

23. The system of claim 12, wherein the encrypted reloca-
tion {ix-up table of the second executable image 1s configured
to prevent the second executable image from being relocated
in memory 1n a manner that permits execution of the second
executable 1mage without decrypting the encrypted fix-up
table based on the decryption key.

24. The system of claim 12, wherein the encryption engine
1s a post-linker encryption engine.

25. The method of claim 1, wherein said flagging sections
of source files comprises flagging sections based on com-
mands 1n the source files or based on linker tlags at a link
stage.

26. A method comprising:

flagging sections of source files;

compiling both flagged sections and non-flagged sections

of said source files to object files that include flagged
sections and non-flagged sections;
linking the object files using a linker to produce a first
executable 1image that includes flagged sections, non-
flagged sections, and a relocation fix-up table; and

creating a second executable image that includes encrypted
flagged sections, an encrypted relocation fix-up table,
and non-encrypted non-tlagged sections, wherein said
creating includes encrypting the relocation fix-up table
and flagged sections of the first executable 1image based
on an encryption key;

10

15

20

25

30

35

40

45

50

55

60

10

wherein said compiling and said linking results 1n the relo-
cation fix-up table comprising a plurality of entries that
permit operatively loading the first executable image to
a relocatable address; and

wherein ones of the plurality of entries identify an operand
address of a program 1nstruction 1n the first executable
image to adjust based on the relocatable address to
which the first executable 1mage 1s loaded.

27. A method comprising:

flagging sections of source files;

compiling both flagged sections and non-flagged sections
of said source files to object files that include flagged
sections and non-flagged sections;

linking the object files using a linker to produce a first
executable 1image that includes flagged sections, non-
flagged sections, and a relocation fix-up table; and

creating a second executable image that includes encrypted
flagged sections, an encrypted relocation fix-up table,
and non-encrypted non-tlagged sections, wherein said
creating 1includes encrypting the relocation fix-up table
and flagged sections of the first executable image based
on an encryption key;

wherein said compiling and said linking results 1n the relo-
cation fix-up table comprising a plurality of entries that
permit operatively loading the first executable image to
a relocatable address; and

wherein ones of the plurality of entries 1dentify a data
structure pointer to adjust based on the relocatable
address to which the first executable image 1s loaded.

28. A method comprising:

flagging sections of source files;

compiling both tflagged sections and non-flagged sections
of said source files to object files that include flagged
sections and non-flagged sections;

linking the object files using a linker to produce a first
executable 1mage that includes flagged sections, non-
flagged sections, and a relocation fix-up table; and

creating a second executable image that includes encrypted
flagged sections, an encrypted relocation fix-up table,
and non-encrypted non-tflagged sections, wherein said
creating includes encrypting the relocation fix-up table
and flagged sections of the first executable image based
on an encryption key;

wherein said compiling and said linking results in the relo-
cation fix-up table comprising a plurality of entries that
permit operatively loading the first executable image to
a relocatable address; and

wherein ones of the plurality of entries 1dentify a function
pointer to adjust based on the relocatable address to
which the first executable 1mage 1s loaded.

29. The method of claim 26, wherein:

said flagging sections of source files comprises naming
said sections at a source level stage; and

said creating a second executable i1mage comprises
encrypting flagged sections and the relocation fix-up
table using a post-linker encryption engine and the
encryption key.

30. The method of claim 27, wherein:

said flagging sections of source files comprises naming
said sections at a source level stage; and

said creating a second executable image comprises
encrypting tlagged sections and the relocation fix-up
table using a post-linker encryption engine and the
encryption key.



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 3,745,406 B2 Page 1 of 1
APPLICATION NO. :  12/090028

DATED . June 3, 2014

INVENTOR(S) . Colin King

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent 1s extended or adjusted under 35 U.S.C. 154(b)
by 1423 days.

Signed and Sealed this
Twenty-ninth Day of September, 2015

Tcbatle X Koo

Michelle K. Lee
Director of the United States Patent and Trademark Office



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

