US008745265B2
a2y United States Patent (10) Patent No.: US 8,745,265 B2
Drew et al. 45) Date of Patent: Jun. 3, 2014

(54) INTERCONNECTION FABRIC CONNECTION (51) Int.CL
(75) Inventors: Julie Ward Drew, Redwood City, CA GOOF 157173 (2006.01)

(US); John Wilkes, Palo Alto, CA (US): (52) US. CL

Charles O’Toole, Northboro, MA (US): USPC e, 709/238

Douglas Hagerman, Worcester, MA (358) Field of Classification Search

(US); Simge Kucukyavuz, Palo Alto, USPC e 709/238

CA (US)

(73) Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 154 days.

(21) Appl. No.: 13/443,356

(22) Filed: Apr. 10, 2012
(65) Prior Publication Data
US 2012/0198093 Al Aug. 2, 2012

Related U.S. Application Data

(63) Continuation of application No. 10/874,128, filed on
Jun. 22, 2004, now Pat. No. 8,214,523.

| DEVICE 1

159

See application file for complete search history.

Primary Examiner — Maceeh Anwari

(57) ABSTRACT

Link used variables are defined for links related to an inter-
connection fabric. The links used variables are representative
of whether or not a link 1s used for handling flows between a
plurality of hosts and devices. Constraints for links, and hop
counts or port counts are also defined. An objective function
1s used by an integer programming solver to determine con-
nections as a function of the definitions.

13 Claims, 3 Drawing Sheets

100

DEVICE 2

140

U.S. Patent Jun. 3, 2014 Sheet 1 of 3 US 8,745,265 B2

100

s

110 119 120 123 150
HOST 1 HOST 2 HOST 3 HOST 4 HOST &
— -= - |\ ! - - ' // =

\\ ° /l // /

\ \\ / / -

/

AN /f /
\ /
| e /
\ / e ~
\ \ / 7 /
\ | /(// ,ff //
| » | /D / - / |—\,105
\ A “ /
L N T A P / N
— — — — —p c— cp— s /e — — — — — — — — —
\ \ 7 f‘?’r /’h
\ I / < \ /
\ | / P
!

\‘//
e
DEV

;::/ \\\ //
\ -
I ICE 1 l DEVICE 2
135 140

FIG. 1

200

| DEVICE 1 DEVICE 2
HOST 1 | 40 MBps (FT) |
)

100 MBps (F6)

HOST 4

HOST 5 | 40 MBps (F5) | 100 MBps (F7)|

U.S. Patent Jun. 3, 2014 Sheet 2 of 3 US 8,745,265 B2

EDGE EDGE
991 switeH 1 | SWITCH 2)10
A
CORE
swich [~°%
C

EDGE
300// swicH 3 [7°'°

FIG. 3

115 125 135 140
HOST 1 | I—vOST 2———I HOST 3 | LHOST 4 | | HOST S ' t)WICE 1 DEVICE 2 |

1
A ,)\‘ > N/ S\ s N \ /. \
430\ 435 \ 440** N :a:/ A 2 4 /
|
i

\
\ \ AN >\ /N K/Y\ RN f< a | /

EDGE | EDGE tDGE
SWITCH 1 205 SWITCH 3 219 SWITCH 2 210

A C B

- 420
4195 425

| CORE
swich 2%

FIG. 4

U.S. Patent Jun. 3, 2014 Sheet 3 of 3 US 8,745,265 B2

INPUT DATA INTEGER PROGRAM SOLVER SOLUTION
550
560
5104 HOST, DEVICE o
AND FLOW DATA
_ _ INTEGER
< PROGRAMMING MODEL INTEGER 570
520 TOF[D)%EGY ={ OF SAN CONNECTIVITY PROGRAMMING =
, . PROBLEM SOLVER YT
- CONNECTIVITY,
530 HOP COUNT ROUTING, AND
LIMITATIONS (IMPLEMENTED IN A (SUCH AS TOPOLOGY USAGE
MATHEMATICAL MODELING llog/CPLEX) -
< LANGUAGE SUCH |
BANDWIDTH, PORT AS AMPL)
540 A AVAILABILITY, AND
COST DATA FOR \\
SAN ELEMENTS
- - 500
FIG. 5
10 115 120 125 130 135 140
l HOST 1 l HOST 2 HOST 3 HOST 4 l HOST 5 i ! DEVICE 1 | DEVICE 2 |
x i _ i} _
N \ \\ \\ Pl //l f,f”
~ \l N \\ ,*"’f f/ // ;j‘__,.--"'"f
Hx\.:\ _\\ fﬂfr’{\\//{ ffi/ff,..;’
i_\ ‘;{ N _#_;/ ;
N CREATED LINKS >«- 7~ ,’
\ ‘“‘*\ /f"f :a.(/-'"’! ><' f
" ™ o PR NP !
\l ;\‘(":L ,,..-""';# / ;.r\\‘ \\ ’J’
\ pd > / Pl N AN f
\ f/ f____,*"" S / s/ \"\ \ I
EDGE FDGE | EDGE
swieH 1 5% | swireH 375" | switew 2 31°
A C B
420
415 N _ 475
CORE
SWITCH | 320

FIG. 6

US 8,745,265 B2

1
INTERCONNECTION FABRIC CONNECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 10/874,128 filed Jun. 22, 2004, now U.S. Pat. No. 8,214,
523 U.S. Publication No. 2006/0080463, the disclosure of

which 1s hereby incorporated by reference.

FIELD

The present invention relates to interconnection fabrics,
and 1n particular to connection of interconnection fabrics.

BACKGROUND

An 1nterconnection fabric 1s a set of communication lines
and intermediate nodes between a given set of source nodes to
a given set of terminal nodes, such as storage devices. Inter-
connection fabrics can be implemented as storage area net-
works. A storage area network (SAN) 1s a high-speed special-
purpose network or sub network that interconnects data
storage devices with associated data servers on behalfl of a
larger network of users. Typically, a storage area network 1s
part of the overall network of computing resources for an
enterprise. The SAN includes the interconnection fabric and
the source and terminal nodes, as well as links from source
and terminal nodes to the fabric. Targets may act as sources,
and sources may act as targets in some SANS.

The mterconnection fabric typically comprises switches
and hubs, and links between the switches and hubs. Data
flows through the interconnection fabric between the source
nodes and terminal nodes. There may be predetermined flow
requirements between such nodes that the interconnection
fabric should be capable of handling. There 1s a desire to
determine how to connect the source nodes and terminal
nodes to the interconnection fabric in a manner that handles
such flow requirements in a desired manner.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of hosts and devices to be con-
nected to an mterconnection fabric according to an example
embodiment.

FI1G. 2 1s a chart showing flow requirements for the hosts
and devices of FIG. 1 according to an example embodiment.

FIG. 3 1s a block diagram showing the interconnection
tabric of FIG. 1 according to an example embodiment.

FI1G. 41s ablock diagram of hosts and devices coupled to an
interconnection fabric according to an example embodiment.

FIG. S 1s a block flow diagram of a method for determining,
connectivity and routing for an interconnection fabric accord-
ing to an example embodiment.

FIG. 6 1s a block diagram of an example solution provided
by the block flow diagram of FIG. § according to an example
embodiment.

DETAILED DESCRIPTION

In the following description, reference 1s made to the
accompanying drawings that form a part hereof, and in which
1s shown by way of illustration specific embodiments 1n
which the mvention may be practiced. These embodiments
are described 1n suificient detail to enable those skilled in the
art to practice the invention, and it 1s to be understood that
other embodiments may be utilized and that structural, logical

10

15

20

25

30

35

40

45

50

55

60

65

2

and electrical changes may be made without departing from
the scope of the present invention. The following description

1s, therefore, not to be taken 1n a limited sense, and the scope

ol the present invention 1s defined by the appended claims.
The functions or algorithms described herein are imple-

mented 1n software or a combination of software and human

implemented procedures in one embodiment. The software
comprises computer executable nstructions stored on com-
puter readable media such as memory or other type of storage
devices. Further, such functions correspond to modules,
which are software, hardware, firmware or any combination
thereof. Multiple functions are performed in one or more
modules as desired, and the embodiments described are
merely examples. The software 1s executed on a digital signal
processor, ASIC, microprocessor, or other type of processor
operating on a computer system, such as a personal computer,
server or other computer system.

A system 1n FIG. 1, indicated generally at 100 1s represen-
tative of a typical set of terminals to be coupled by an inter-
connection network indicated by broken line 105. In this

simplified example embodiment, hosts, such as host 1 1ndi-
cated at 110, host 2 indicated at 115, host 3 indicated at 120,
host 4 indicated at 125 and host 5 1indicated at 130 are to be
selectively coupled to device 1 indicated at 135 and device 2
indicated at 140. In one embodiment, the devices are storage
devices, and the hosts are computer systems, such as personal
computers and servers. This type of system, including the
interconnection network 105, 1s commonly referred to as a
storage arca network (SAN). Many more hosts and devices
may be connected 1n further embodiments.

There are many different ways 1in which the hosts and
devices may be connected to the interconnection fabric. The
desire 1s to determine how such connections should be made
to make efficient use of the interconnection fabric. Variables
and constraints related to the hosts, devices and interconnec-
tion fabric are identified and encapsulated 1n a mathematical
language to create an integer program representation of the
connection problem.

The integer program i1s then fed mto an integer program-
ming solver to provide an output identifying a desirable solu-
tion. The solver automatically determines the connectivity of
host and device nodes to the interconnection topology, and
the routing of flows through the resulting network to mini-
mize congestion and latency of flows 11 a feasible solution to
the connectivity/routing problem exists. It can also automati-
cally determine which parts of the given interconnection
topology to exclude 1n order to minimize hardware costs. The
connectivity provided by the solution can be cost-effective
and provide low latency.

In one interconnection problem example, each host and
device 1s defined as having two ports, each with a bandwidth
of approximately 200 Mbps (megabits per second). Lines are
shown between selected hosts and devices in one embodi-
ment. Each line indicates a tlow requirement between a host
and a device pair that needs to be connected via the fabric 105.
A flow requirement 1s represented by a number of megabits
per second. The tlow requirement may be specified based on
expected requirements by a designer of a system, or may be
predetermined based on host and device capacities.

Example flow requirements for the system 100 are 1ndi-
cated 1n a multi-cell table mn FIG. 2 at 200. Each cell indicates
a flow requirement between a host and device pair. Device 1
at 135 has a flow to each of the hosts of 40 MBps (megabytes
per second). The flows are referred to as F1, between host 1
and device 1, F2 between host 2 and device 1, F3 between host
3 and device 1, F4 between host 4 and device 1, and F5

US 8,745,265 B2

3

between host S and device 1. Further flows of 100 MBps, are
referred to as F6 between host 1 and device 2, and F7 between
host 5 and device 2.

FIG. 3 1s an example connection fabric 300. Example con-
nection fabric 300 1s a simplified example comprising three
edge switches, switch 1 at 305, switch 2 at 310 and switch 3
at 315, and a core switch at 320. In further embodiments,
many more edge switches and core switches may be used
such that flows may progress through multiple levels of core
switches. Further embodiments may utilize hubs or other
types of routing devices.

The switches 1n connection fabric 300 comprise multiple
ports and links between ports, each having a bandwidth o1 200
MBps. Each switch has a total bandwidth of 800 MBps and
four ports. In further embodiments, different switches in the
interconnection fabric may have more or fewer ports with
different bandwidths.

FI1G. 4 1s a block diagram of system 100, coupled by virtual
links indicated generally at 410, to edge switches 303, 310
and 315. The virtual links represent candidate or potential
links that can be considered during connection configuration,
but do not exist physically. Links 415, 420 and 423 are physi-
cal links between the switches that exist in the interconnec-
tion fabric. Links 415 labeled “A” and 425 labeled “B” rep-
resent tlow between edge switch 1 at 315 and edge switch 2 at
310 and the core switch 320. Link 420 labeled “C” represents
flow between edge switch 3 at 3135 and core switch 320. A link
1s referred to as an ordered pair of nodes (1,1). For example,
link 415 can be described as (edge switch 1 305, core switch
320). Alternatively, link 415 can be described as (core switch
320, edge switch 1 305). The choice of which description 1s
used 1s arbitrary, but it should be consistent for the later
purpose of defining variables. Flow can travel 1 both direc-
tions along any link.

Three of the virtual links 410 are represented by darker
broken lines 430, 435 and 440 for later reference with respect
to defining constraints. Link 430, labeled “D” represents a
potential connection between host 1 110 and edge switch 1
305. Link 435, labeled “E” represents a potential connection
between host 1 110 and edge switch 3 at 315. Link 440,
labeled “F” represents a potential connection between host 1
110 and edge switch 2 at 310.

An integer programming formulation of the connectivity
problem 1s created 1n a mathematical modeling language such
as AMPL. AMPL 1s a language that allows the writing of
variables, constraints and objective function of an integer
program 1n a language that a computer can execute. Any other
mathematical language may also be used. The model data 1s
drawn from user mputs shown in FIG. 5, which 1s a block
diagram of a method 500 for optimizing connectivity to and
routing 1n the interconnection fabric.

User mnputs in one embodiment comprise host, device and
flow data 510, a characterization of the network topology or
fabric to which hosts and devices will be connected at 520,
limitations on hop counts that may be imposed at 530 and
bandwidth, port availability, and cost data for system devices
at 540. The user 1inputs are used to create an integer programs-
ming model of the system connectivity problem at 550.

The integer program consists of a set of decision variables,
an objective function, and a set of constraints. The decision
variables represent the decisions that the solver 1s attempting,
to make. The objective function represents the goal of the
model, 1.e., the metric to be minimized or optimized. The
constraints represent the rules that a decision should obey 1n
order to be valid. This model 1s provided to an integer pro-
gramming solver at 560. One example of such a solver 1s

llog/CPLEX, but other solvers may also be utilized. The

10

15

20

25

30

35

40

45

50

55

60

65

4

solver provides a solution indicated at 570, which provides
connectivity, routing and topology usage information to pro-
vide suificient guidance 1n configuring the system to connect
the hosts and devices to the interconnection fabric.

The decision variables 1n one embodiment include, flow-
using-a-link decision variables. For each flow requirement
and for each link, a binary flow-using-a-link decision variable
1s equal to one if the flow travels forward along the link, and
zero otherwise. Another binary tlow-using-a-link decision
variable 1s equal to one 11 the flow travels backward along the
link, and zero otherwise. For a link between nodes 1 and j that
1s referred to as (1,1), tlow 1s said to travel forward 1t it travels
from node1 to 7. It 1s said to travel backwards it 1t travels from
110 1. It should be noted that the actual integer values assigned
may differ in different models. For each link, a decision
variable includes a binary link-used variable equal to one 1t
that link 1s used, and equal to zero, i 1nstead, the link 1s
unused, and therefore excluded from the topology. For each
node, a binary decision variable 1s equal to one if that node 1s
used, and equal to zero i instead, the node 1s unused and
therefore excluded from the topology.

In one embodiment an objective function of the integer
program 1s to minimize the total hops taken by the flows,
weilghted by their respective bandwidths. The corresponding
objective function 1s the sum, over the tlows, of the bandwidth
of the flow times the number of links used by the flow. The
objective function can be generalized to reflect that some
flows may have a higher priority than others. For example, 1f
flows originating at a particular storage device should have
the lowest possible latency, one can apply a large positive
multiplicative penalty 1in the objective function to the latency
of those flows such that the flows are prionitized. Another
objective function in a further embodiment 1s used to mini-
mize the maximum difference between flow routed through
two switches. This objective function achieves load balancing
in the solution.

Constraints that are available for use in the integer program
or model are selected from the following set of constraints. A
constraint 1s defined such that the total flow across a link
should be less than the link’s bandwidth and the bandwidth of
the ports on erther end of the link.

A further constraint, 1s defined such that the flow through a
node should be less than the bandwidth, 11 that node 1s used.
If the node 1s unused, the flow through it should be zero. The
nodes’ bandwidth may vary.

A Turther constraint 1s defined such that the volume of each
flow through a component (switch, hub, host or device) 1s
conserved. IT the component 1s a switch or hub, the outgoing
volume of a given flow on links should equal the incoming
volume. If instead the component 1s a host (respectively,
device) and i1s the source (respectively, destination) of the
flow, then the outgoing flow (respectively, imncoming tlow)
should equal the flow’s required bandwidth.

For every component to which a hub 1s connected, a con-
straint 1s defined such that the total tlow through that hub
should be less than the bandwidth of the hub’s own port, the
other component’s port, and the link between the hub and the
component. This depends on an underlying assumption that
number of links between a hub and any other component 1s at
most 1. This constraint 1s due to the special bandwidth limi-
tations of hubs 1n that all ports on a hub propagate the same
data.

A constraint 1s defined such that the number of links 1nto a
component should be less than 1ts port count. The port counts
may vary from component to component. A constraint 1s also
defined such that the hop count for a particular tlow should be
less than 1ts maximum allowed hop count. Note that the

US 8,745,265 B2

S

maximum hop count can vary from flow to flow. Thus, if there
are particular flows for which very low hop counts are
desired, this can be modeled through the maximum hop count
parameter used 1n this constraint.

A constraint 1s defined such that for a given flow require-
ment, the sum of the forward and backward flow-using-a-link
decision variables for that link 1s less than or equal to the
link-used decision variable for that link. This constraint 1s
called a strengthening cut because, although it 1s redundant
with the link bandwidth constraint, it strengthens the linear
programming relaxation of the iteger program, and speeds
up the solution time.

The following example uses a few selected constraints and
variables to illustrate a simple connectivity problem. A con-
straint, Link bandwidth, for the virtual link D at 430 1s rep-
resented by the total flow (1n both directions) across link D
being less than or equal to its bandwidth (200 MBps). Flows
are represented by the letter “F#” as in FIG. 2, with the “#”
symbol representing a corresponding number of the flow, and
the links are represented by the letters “A, B, C, D, E and F”.
The constraint 1s represented as follows:

(Forward_Flow D, F1]+ Backward_Flow| D, F1])«40 MBps +
(Forward_Flow| D, F2| + Backward_Flow|D, F3])«40 MDBps +
(Forward_Flow| D, F3] + Backward_Flow|D, F3])«40 MDBps +
(Forward_Flow| D, F4| + Backward_Flow| D, F4])+«40 MBps +
(Forward_Flow| D, F5] + Backward_Flow| D, F5])x40 MBps +

(Forward_Flow| D, F6]| + Backward_Flow| D, F6])+ 100 MBps +
(Forward Flow|D, F7]| + Backward Flow|D, F7]) %

100 MBps <= 200 MBps

A Node bandwidth constraint for the core switch requires
that the total flow out of the core switch is less than or equal
to 1ts bandwidth (800 MBps). The constraint 1s expressed as

follows:

Forward_Flow|C, F1]% (40 MBps) + Forward_FlowC, F2] (40 MBps) +
Forward_Flow]C, F3] % (40 MDBps) +
Foward_Flow C, F4] =« (40 MDBps) +
Forward_Flow|C, F3]# (40 MBps) +
Forward_Flow|C, F6] % (100 MBps) +
Forward_Flow C, F7]# (100 MBps) +
Backward_Flow|A, F1] (40 MDBps) +
Backward_Flow|A, F2] (40 MDBps) +
Backward_Flow|[A, F3] (40 MDBps) +
Backward_Flow|[A, F4]« (40 MBps) +
Backward_Flow|[A, F5] % (40 MDBps) +
Backward_Flow| A, F6]« (100 MDBps) +
Backward_Flow| A, F7] (100 MDBps) +
Backward_Flow[B, F1]* (40 MBps) +
Backward_Flow[B, F2| (40 MBps) +

Backward_Flow[B, F3] (40 MBps) +

10

15

20

25

30

35

40

45

50

55

60

65

6

-continued
Backward_Flow|B, F4]« (40 MDBps) +

Backward_Flow|B, F3] (40 MBps) +
Backward_Flow| B, F6] (100 MBps) +

Backward_Flow[B, F7] (100 MBps) <= 800 MDBps

A Flow Conservation constraint for the core switch and
flow F1 requires that the amount of Flow F1 that goes into the
core switch equals the amount that goes out. The constraint 1s
represented as follows:

Forward_Flow|C, F1] (40 MBps) +
Backward_Flow|A, F1]=% (40 MDBps) +
Backward_Flow[B, F1] (40 MBps) =
Backward_Flow|C, F1]#(40 MBps) + Forward_FlowlA, F1] =

(40 MBps) + Forward_Flow B, F1] (40 MBps)

A Port Limit constraint for host 1 requires that the total
number of (existing+created) links that are incident to host 1
should be less than or equal to 1ts port count (2). The con-
straint 1s expressed as follows:

LinkUsed[D]+LinkUsed[E|+LinkUsed[F]<=2

Link Usage constraints for link D requires that i1 any of the
flows (F1 through F7) uses link D, then LinkUsed[D] should
equal 1. It 1s expressed as follows:

(Forward_Flow[D F1]+Backward Flow[D F1])
<=LinkUsed[])/;

(Forward_Flow|[D F2]+Backward_Flow[D F2])
<=LinkUsed[]}/;

(Forward_Flow[D F3]+Backward_Flow[D F3])
<=LinkUsed[D/;

(Forward_Flow[D, F4]+Backward_Flow[D, F4])
<=LinkUsed[D/;

(Forward_Flow[D F5]+Backward Flow[D F5])
<=LinkUsed[]}/;

(Forward_Flow|[D F6]+Backward_ Flow[D F6])
<=LinkUsed[[}/;

(Forward_Flow[D F7]+Backward_Flow[D F7])
<=LinkUsed[D/;

In one embodiment, a single flow requirement, referred to
as a commodity, does not have both a backward and forward
flow along a single link 1n an optimal solution to the intercon-
nection problem. However, some commodities may be going
forward, and others going backward. The constraint considers
one commodity at a time 1n accordance with an integer pro-
gramming formulation.

FIG. 6 1s a block diagram representing an example solution
for the example connectivity problem. A total weighted hop
count 1s 880 hop-MBps. In this example solution, host 1 at
110, host 5 at 130 and device 1 at 133 are coupled to edge
switch3 at315. Host2at 115, host5at 130 and device 2 at 140
are coupled to edge switch 1 at 305. Host 3 at 120, host 4 at
125 and device 1 at 135 are coupled to edge switch 1 at 310.
The flow F2 from host 2 at 115 to device 1 at 135 of 40 MBps
1s routed along a link between host 2 at 1135 and edge switch

US 8,745,265 B2

7

1 at 305, and a link between edge switch 1 at 305 and device
2 at 140. The flow F6 from host 2 at 115 to device 2 at 140 of
100 MBps 1s routed along a link between host 2 at 115 and
edge switch 1 at 305, link A at 415 to core switch 320, link C
at 420 to switch 3 at 315 and finally a link between edge
switch 3 at 315 to device 2 at 140.

In further embodiments, additional constraints may be
used, such as forcing the iteger program to leave a specified
number or percentage of empty ports on each switch. Certain
switches can be specified to not connect to hosts and devices,
such as the core switch connecting only to other edge
switches. This 1s indicated by the fact that there are no can-
didate links from hosts and devices to the core switch. Some
switches can be forced to have only hosts, or only devices
attached to them.

Through the mathematical constraints of the integer pro-
gram, 1t can be required that solutions have a number of
desirable properties, such as a limait to the hop count for a tlow,
and balanced bandwidth allocation across network devices.
Through the objective function, it can be ensured that a solu-
tion minimizes the total hop count of all flows, weighted by
their bandwidth, so as to provide minimum overall latency.

The method of representing the connectivity problem as an
integer program can be applied to solve geographically dis-
tributed network connectivity problems. In some embodi-
ments, the host and devices which are to be connected through
the topology are distributed among several different physical
sites. In such situations, 1t may be desirable to limait the num-
ber of cables that cross sites, since long cables are expensive
to 1nstall and manage.

In order to limit intersite cables, a “boundary switch” may
be 1nstalled for each site (or a pair of such boundary switches
or hubs). For a given site, flows originating at the hosts and
devices within the site and terminating at other sites would be
routed through the site’s boundary switch. In the network
connectivity problem, each boundary switch(es) would act as
the host and/or device node for the flows going 1n or out of its
site. In this context, the links between boundary switches and
the network fabric nodes may be long-distance cables. Such
cables may have more limited bandwidth, higher latency,
higher cost, or some combination of these attributes. These
limitations may be reflected in the parameters of the integer
program.

In a further embodiment the integer program model 1s used
to reprovision an existing SAN design to accommodate new
host and device nodes and/or new or modified flow require-
ments. In this context, the existing part of the network con-
nectivity and routing 1s considered to be fixed. The connec-
tions and routing of the newly added nodes and flows are
optimized without changing the existing part of the network
connectivity and routing. Still more generally, some modifi-
cations to the installed parts are subject to a penalty. The

penalty then becomes part of the problem objective function
to minimize.

A turther extension mvolves creating a process to monitor
the network topology after 1t has been built. The mteger
program 1s then coupled with the monitoring process 1n a
teedback loop. The monitoring process records the actual
traffic patterns running in the network, since they may differ
trom the predicted traflic that was used as input for the integer
program. I the actual traffic differs significantly from the
predicted tratfic, and adversely impacts the latency or load
balancing, then the integer program 1s applied again to repro-
vision the existing connectivity and routing with respect to
the new traffic measurements.

10

15

20

25

30

35

40

45

50

55

60

65

8

The mvention claimed 1s:

1. A method comprising:

generating an integer program identifying a set of hosts and
devices to be connected by an interconnection fabric;

defining decision variables of the integer program for links
in the mnterconnection fabric and for data flows along the
links, wherein the decision variables include binary link
used variables that each has one of two binary values
depending upon whether the corresponding one of the
links 1s used or unused;

welghting the tlows as a function of respective bandwidths
of the flows; and

solving, by a computer system, the integer program to
minimize total hops taken by the flows, weighted by the
respective bandwidths.

2. The method of claim 1, further comprising generating an
output representing a connectivity of the hosts and the devices
to a given interconnect topology for the imterconnection fab-
Iic.

3. The method of claim 2, wherein the flows are between
the hosts and devices through the interconnection fabric.

4. The method of claim 1, wherein a selected one of the
flows 1s prioritized by applying a larger weight to 1t.

5. The method of claim 1, further comprising defining
constraints comprising bandwidth limitations for the integer
program.

6. The method of claim 1, further comprising defining, for
the integer program, a port limit constraint for a host or
device.

7. The method of claim 1, further comprising defining a
hop count limitation constraint 1n an integer programming
language.

8. The method of claim 1, further comprising:

defining an objective function that reduces a value based on
an aggregate, over the flows, of the bandwidth of each
respective flow times a number of hops used by the
respective tlow,

wherein solving the integer program considers the objec-
tive function.

9. A non-transitory computer readable medium having an
integer program stored thereon for determining connection of
hosts and devices to an interconnection fabric having links for
handling flows between the hosts and devices, the program
comprising;

for each flow and for each link i the interconnection
fabric, a binary variable having a different value depend-
ing on whether or not the flow travels along the link;

for each link, a binary variable having a different value
depending on whether the link 1s used or unused;

a plurality of constraints representative of physical limita-
tions of the interconnection fabric, including a port limit
constraint; and

an expression ol an objective function to be optimized,
wherein the objective function reduces an aggregate,
over the flows, of a bandwidth of each corresponding
flow times a number of hops used by the corresponding,
tlow.

10. The computer readable medium of claim 9, wherein the
plurality of constraints further include constraints for links in
the interconnection fabric, the constraints for links compris-
ing bandwidth limitations.

11. The computer readable medium of claim 9, wherein the
plurality of constraints further include constraints for links in
the interconnection fabric, the constraints for links compris-
ing an amount of flow that a switch in the interconnection

fabric can handle.

US 8,745,265 B2

9

12. The computer readable medium of claim 9, wherein the
port limit constraint 1s representative of port limits for a host

or a device.
13. The computer readable medium of claim 9, wherein t.

1C

objective function minimizes a sum, over the flows of t

1€¢ 5

bandwidth of each corresponding tlow times the number of

hops used by the corresponding tlow.

¥ ¥ e ¥ ¥

10

	Front Page
	Drawings
	Specification
	Claims

