US008743882B1
12 United States Patent (10) Patent No.: US 8,743,882 B1
Kopelman et al. 45) Date of Patent: Jun. 3, 2014
(54) PACKET HEADER ALTERING DEVICE USPC oot 370/392

See application file for complete search history.

(71) Applicant: Marvell Israel (M.1.S.L) Ltd., Yokneam
(IL) (56) References Cited

(72) Inventors: Yaniv Kopelman, Holon (IL); Nafea U.S. PATENT DOCUMENTS

Bishara, Tarshiha (IL); Yariv Anafi, 4755986 A * 7/1988 Hirata ..., 370/392
Haifa (IL) 5,864,553 A 1/1999 Aramaki
5,905,725 A 5/1999 Sin_dhu et al.
(73) Assignee: Marvell Israel (M.L.S.L) Ltd., Yokneam 5,918,074 A 6/1999 Wright et al.
(IL) 5,999,536 A * 12/1999 Kawafujietal. 370/401
6,041,058 A * 3/2000 Flandersetal. 370/401
. . L . 6,160,808 A * 12/2000 Maurya 370/389
(*) Notice: Subject‘ to any dlsclalmer,,. the term of this 6.163.539 A 12/2000 Alexander et al.
patent 1s extended or adjusted under 35 6,167,091 A 12/2000 Okada et al.
U.S.C. 154(b) by 0 days. 6,400,730 Bl 6/2002 Latif et al.
6,424,658 Bl 7/2002 Mathur
(21) Appl. No ’ 6,831,893 Bl 12/2004 Nun et al.
. 7,035,226 B2 4/2006 Enoki et al.
(22) Filed: Apr. 16, 2013 2002/0085560 Al 7/2002 Cathey et al.
2002/0156898 Al 10/2002 Pouirier et al.
. . 2002/0163935 Al 11/2002 Paatela et al.
Related U.S. Application Data 2007/0220189 Al 9/2007 Lim et al.

(63) Continuation of application No. 12/283,011, filed on
Sep. 9, 2008, now Pat. No. 8,428,061, which 1s a

continuation of application No. 10/191,663, filed on Primary Examiner — Mark Rinehart

* cited by examiner

Jul. 8, 2002, now Pat. No. 7,424,019. Assistant Examiner — Maharishi Khirodhar
(60) Provisional application No. 60/333,709, filed on Nov. (57) ABSTRACT
27, 2001.

A packet processor for a network device includes an 1ncom-
(51) Int. Cl. ing port that recerves a first packet. The first packet includes a

HO4L 1228 (2006.01) data portion, a control portion and a {irst outgoing port. A
HO4L 29/06 (2006.01) control data processing device receives the control portion
HO4L 12/56 (2006.01) from the mcoming port while the data portion is stored 1n
HO4T 12/54 (2013.01) memory, and transmits the control portion to the first outgo-
(52) U.S. CL ing port. The first outgoing port transmits a first request for the
CPC HO4L 29/0653 (2013.01); HO4L 49/9042 data portion based on the control portion. A header altering
"""" (2013.01); Hb 47 } 2/56 (2013.01) device retrieves the data portion from the memory and strips,
USPC oo e 370/392 modifies, and encapsulates the data portion based on the first
(58) Field of Classification Search request.
CPC e, HO4L 29/0653 20 Claims, 10 Drawing Sheets
Uplink SCI I—u_m_ia_nut->| SCI arbiter L(—i_ﬂh_id_oul—l Local SCI ‘ \ o0
122 ; diﬁ vallid sellect 126 \ 124
L+ ¥
13[.'|j Latch commands and striping Eﬁ:::_::{—h
T4 ey, dack Ialst "'.I"EI"d dE!tE -:lalsc N

L ¥ ¥ ¥ ¥
unnel _valiche—
Tunnel synhc FIFC
134 MNB]_EM T y—
I |
dack last valid data desc TE

| ¥ VY ¥ ¥
[P —
Header Manipulator _ack
140 AN e—

dack last valid data desc TE

dack last wvalid data desc

142
| ¥ ¥ ¥ ¥

ARP Sync FIFO rp_valid
w Ao T

1 1 | | |
dack last valid data desc TE

Link Layer

146
dack last valid data desc

,| PFP Layer |7ch_id—h
150 . , ,

P | | |
kst valid dats byte en byte_count
YyYv v v

¢ Old

cY 0G

US 8,743,882 B1

—

-

y—

~

° /
i

7 0Z
.4

—

—

g |

o -
= I Ol
pu

)7 8¢ /I 9¢ /

| 19jlel] Ld _ 19|led] ¢d _ 18|lel | £d

\ s o/

U.S. Patent

4
H lapesH £d lapesH zd 1spesH Ld
0F 8¢ 9¢

vm\

US 8,743,882 B1

Sheet 2 of 10

Jun. 3, 2014

U.S. Patent

U=-¢9

u-9
u-99
u-89

09

901AS(]
80IAS(]
buissanold BULIBIY JOPESH Alows
Bleq |0Juon) .
8. £ 0L
(s) LN
9/
10$$920.14 19¥2ed
09
-29
Hod Uod o4 Uod o4
-9
AHd AHd AHd -9
OVYIN QVIN OVIN VN OVIN -00
VING VNG VIANQ VYINQ VN

JOSS900l4]89qOEd

ISPON ISO

ANIT

YIOMISN
JJodsuel |
LoISSag

uolneuasald

uoljesi|ddy

U-c9 -C9 £-C9 ¢~CY 1-C9

US 8,743,882 B1

—

y—

I~

=

er,

'

P

e

=

7

< 90IN8(]

= buissasold
2.,., eje(|0uon
er;

X 09
-

o

1N7 smo|4 1N7
pue Buinoy || sjauun]

VYINS'8Iqel OVIN pue "JIN ‘NVIA

C6
JOSS9I0ld]o9ydkd

U.S. Patent

US 8,743,882 B1

Sheet 4 of 10

Jun. 3, 2014

U.S. Patent

901

1402

c0l

001

9 Old

Jlapeay
JaAe| yJomiau paljipow a1ensdesus

SAOWaJ/ppe |auun|

lapeay JaAe| Yuomiau AJIPO

siapeay Jake| yul| Jueaspul ding

L Old

Y
as
8\
Z
g ¢9
4
s
i 19Ae DVYIN
S
= VINCG
BLLy 89
Juswabeug
lsng SMO|{ buinoy —
= pUE DYIN A
= adid " ananP X
< |0JJU0D m
pk chi ssalbuj
D ch OLl
7 L1 bs
adid
m |0JJUO)
: ssaJbh]
= m sfpuun |
bt '
o 097" m pue DN NV 1A
“ m
= “ :
- : “
- 06 m
ananyd .
147" cmcecmmcsesccacscsacsanssscsssscanncanaend

oll

10SS8201d 19)oed JayiO Jo Jsydepy olge

U.S. Patent

99

jun
uoneJs)|y

lepesH

SHod [

siajjng
ENLIR

0/

US 8,743,882 B1

Sheet 6 of 10

Jun. 3, 2014

U.S. Patent

DS [EVOT]

A A A A A

JUN0Y 8)Aq US 8)AQ Blep pleA 1SE|

_ 0G1
€—p Yo 1aheq ddd
0sap ejep pljea Ise|l Moep
arl
JoABT YUIT
31 9sap ejep pljea isel doep
Anyus~ die 144’
T 014 SUAS dHV
0SSP EJBp plleA 1SB| MOep
chl

buljsuun]

31 0S8p ejep pllea 1se| Noep

OFl

loyeindiuey JopesH

d1l 388D EBlep pljea 1Sl HOEP

Anuajauun 129’
O 4|4 DUAS [suuNn |
plleA |auun)
083 BlEp pleAa JSBE| Yoep
<—pe |suun
JB |auun
«—Dbal |5uun) buldins pue spuewwod yde’
—OJUl 2$5p 'Uzd
V1v(
103|0S DIBA YOoBD
9C1
N0 pI Yo | Jsjigue |03 N0 pl Yo n

ccl

123 YuIdn

/o xom N\ 6 Old

991

I_ 8)sibal ejeq
1282}

US 8,743,882 B1

o
—
I~
-
I~
~
L
L
e
7
JuswiuBije pue [eaollsy
891
.4
y—
o
)
ery
=
—
= 1SINg
ur Jagquuinu a|oAD ‘Bey Buo
+9| ‘desus Indul ‘pajesan) [oA9]

19)s1631 BYE(]SE|) SPUBLLWOD [BAOLUSY

9l

U.S. Patent

._mu_m_@m._ spuewwiod NyH

19]5S] Ha spuewwiod NvyH

e
=
m S1dIN
oo 98l
¢r)
G e
o 78l SuIyoen e T Y B V|
s o e | O OR
s ¢8l
. B
Joulalyld
08l

—

v

Col

&

v

!

% 10)d1l10s3p INO 18151631 eleq
-

s 9,

.4

m |I

o <° _\ MV_H_ S o1bo| ublje pue
Q.w suedap deou . ‘aoe|dal ‘Ajipowl ‘ppy
=

-

-

NS [CJUOD)

18]s1631 ele(

] (20

0S8(]

desu3

U.S. Patent

US 8,743,882 B1

Sheet 9 of 10

Jun. 3, 2014

U.S. Patent

a9, ejep

I Q/% %mcoz_vvm ‘AJJus [auun} ay) o} Japesy Juaind pue
pue Japeay pAd| Buipioooe sjaqe| € 0) loyduossp Anus jauun)

JO s8JAq Qg "Jepesy L “leuun] S1dN PPV 0} Buipiodoe 1epesy
|]ouunN] SAOWSY 7Ad| MaU 3)eal))

‘BuiylAue
op J.Uo(] ‘JusJtedsuel|

0LC 80C

SOA

i.dl== JaAe| |puun) QO

ouuN| HAd| SAOLUSN

il==2adAy J7 IO

SOA

ON

861

US 8,743,882 B1

Sheet 10 of 10

Jun. 3, 2014

U.S. Patent

10)dIIossp INO

NS Juspuadsp
awayas buneiad

NS |OJUOD)

X] obe)1Q

0S9(]

loyelaushb
19PE’Y yAd|

BaJ Japesy |[auun |

Anu3
|puun|

18)s1bal eleq

0160] Juswubife
|[suuN) sAoWal 10 ppy

18)s16a1 ejeq

US 8,743,832 Bl

1
PACKET HEADER ALTERING DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present disclosure 1s a continuation of U.S. patent
application Ser. No. 12/283,011 (now U.S. Pat. No. 8,428,
061), filed on Sep. 9, 2008, which 1s continuation of U.S.
patent application Ser. No. 10/191,663 (now U.S. Pat. No.
7,424,019), filed Jul. 8, 2002, which claims the benefit of U.S.
Provisional Application No. 60/333,709, filed on Nov. 27,
2001. The entire disclosures of the applications referenced
above are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to packet header altering
devices, and more particularly to packet header altering
devices 1n multi-layer and/or multi-protocol network
switches, routers and/or other packet processing devices.

BACKGROUND OF THE INVENTION

In the late 1980°s and early 1990’s, Internet Protocol (IP)
Routing and other higher layer protocol routing/switching
was typically performed 1n software. The modification of
packet headers was generally performed by general purpose
processors and memory that executed header altering soft-
ware code. For layer 2 and layer 3 switches, the header alter-
ing software modified one or two fields of the packet header
when relaying the packet from one port to another port of the
switch.

More recently, packets have become more complex and
often include multiple ports with different protocols and lay-
ering of protocols. Sophisticated packet alteration of layer 3
and above 1n the seven layer OSI model 1s now required.
Conventional software approaches strip protocol layers one at
a time from the packet. When the desired layer 1s reached,
modification i1s performed. Then, new layers are encapsulated
one at a time onto the packet. These approaches also perform
packet alteration on packet ingress to the packet processor.
The conventional software approach 1s cumbersome and
prone to errors, particularly for multicast packets that are sent
to different types of ports, such as bridged or tunneled Eth-
ernet, unicast or multicast multi-protocol label switching

(MPLS), and IPv4 and IPv6 routed.

SUMMARY OF THE INVENTION

A packet processor for a router/switch according to the
present 1nvention alters headers of packets and includes an
incoming port and a first outgoing port. A control data pro-
cessor receives a lirst control portion of the first packet from
the incoming port and transmits the first control portion to a
first outgoing port. A header altering device strips, modifies
and encapsulates a first portion on egress from the packet
processor based upon first protocol layering requirements of
the first outgoing port.

In other features, the control data processor transmits the
first control portion to a second outgoing port. The second
outgoing port has second protocol layering requirements. The
header altering device strips, modifies and encapsulates the
first portion on egress from the packet processor based upon
the second requirements of the second outgoing port. The
control data processor transmits the first control portion to a
third outgoing port. The third outgoing port has third layering,
requirements. The header altering device strips, modifies and

10

15

20

25

30

35

40

45

50

55

60

65

2

encapsulates the first portion on egress from the packet pro-
cessor based upon the third layering requirements of the third
outgoing port.

In still other features, a first table communicates with the
header altering device and stores tunnel entries. A second
table communicates with the header altering device and stores
address resolution protocol (ARP) entries.

In still other features, the header altering device includes a
stripping stage that strips unnecessary layers from the first
portion. A header manipulator stage communicates with the
stripping stage and performs header mamipulation on a header
of the first portion. A tunneling stage communicates with the
header manipulator stage and selectively adds and removes
tunnels from the first portion 1f needed. An encapsulation
stage communicates with the tunneling stage and adds pro-
tocol layering that 1s required by at least one outgoing port.

In st1ll other features, the header altering unit receives input
encapsulation data, last level treated data, switch commands,
and output encapsulation from the control data processor. The
stripping stage initiates a tunnel request to a first table that
stores tunnel data for the first portion. A tunnel sync stage
communicates with the stripping stage and synchronizes tun-
nel data returned from the first table with the stripped first
portion.

In yet other features, the header manipulator stage commu-
nicates with a second table that stores address resolution
protocol (ARP) data. An ARP sync stage communicates with
the tunneling stage and synchronizes ARP data returned from
the second table with the stripped and modified first portion.
The encapsulation stage includes a link layer stage that com-
municates with the ARP sync stage and that selectively adds
a link layer to the stripped and modified first portion. The
encapsulation stage includes a point to point (PPP) layer stage
that communicates with the link layer stage and that selec-
tively adds a PPP layer to the stripped and modified first
portion.

Further areas of applicability of the present invention will
become apparent from the detailed description provided here-
inafter. It should be understood that the detailed description
and specific examples, while indicating the preferred embodi-
ment of the invention, are intended for purposes of 1llustration
only and are not intended to limit the scope of the invention.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will become more fully understood
from the detailed description and the accompanying draw-
ings, wherein:

FIG. 1 illustrates a packet including one or more protocol
headers, a protocol data unit and one or more protocol trailers;

FIG. 2 illustrates an exemplary packet including an Ether-
net header, data (with an IP header and data contained
therein), and a CRC trailer;

FIG. 3 1s a functional block diagram illustrating a packet
processor according to the present imvention;

FIG. 4 1s a functional block diagram 1llustrating the packet
processor of FIG. 3 1n more detail and including a header
altering device according to the present invention;

FIG. 5 illustrates an example of multicasting and egress
processing that 1s performed by the packet processor accord-
ing to the present mnvention;

FIG. 6 illustrates operational stages of the header altering
device of FIG. 4;

FIG. 7 1s a functional block diagram 1llustrating the packet
processor 1n further detail;

FIG. 8 1s a functional block diagram 1llustrating the header
altering device 1n further detail;

US 8,743,832 Bl

3

FIG. 9 illustrates a striping stage data path;
FIG. 10A 1illustrates a header manipulator stage data path;

FIG. 10B illustrates state machines for implementing the
header manipulator stage;

FIG. 11 1llustrates steps performed by a tunneling stage;
and

FIG. 12 illustrates a tunnel stage data path.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following description of the preferred embodiment(s)
1s merely exemplary 1n nature and 1s 1n no way intended to
limit the 1nvention, 1ts application, or uses.

Referring now to FIG. 1, a packet 20 may include one or
more protocol headers that are generally identified at 24. For
example, the protocol headers may include a first protocol
header 26, a second protocol header 28, and a third protocol
header 30. A protocol data unit (PDU) 32 contains data.
Protocol trailers that are generally 1dentified at 34 optionally
tollow the PDU 32. The protocol trailer 34 may include a third
protocol trailer 36 followed by a second protocol trailer 38
and a first protocol trailer 40. An example packet 20 1s 1llus-
trated in FI1G. 2. For Layer 2 switching, the packet 20 contains

an Ethernet header 42, a data field 44, and a cyclic redundancy
check (CRC) trailer 46. The data field 44 may contain an

embedded IP header 50 and a data field 52 for Layer 3 switch-
ng.

Referring now to FIG. 3, a packet processor 60 includes
multiple ports 62-1, 62-2, . . ., and 62-n. As used herein, the
term ports includes both physical and logical ports. The ports
60 include physical layers 64-1, 64-2, . . ., and 64-», media
access control (MAC) layers 66-1, 66-2, . . ., and 66-», and
direct memory access (DMA) 68-1, 68-2, . .., and 68-n. The
ports may be Ethernet bridged or tunneled, IPv4 or IPv6
routed, MPLS unicast or multicast switched ports, and/or any
other type of port. The packet processor 60 modifies a header
of the packet 20 at layer 3 and above 1n a 7-layer OSI model.
Referring now to FIG. 4, the packet processor 60 includes
memory 70, a header altering device 74, one or more lookup
tables 76, and a control data processing unit 78.

Referring now to FIG. 5, when a packet 20 1s recerved by a
port 62, data from the packet 20 1s stored 1n the memory 70.
Concurrently, control data from the packet 1s stored in the
control data processing unit 78. Control data 1s sent by the
control data processing unit to one or more of the ports 62.
The ports 62 request matching data that 1s stored in the
memory 70. The header altering unmit 74 responds by reading,
the data from the memory 70, altering the header as required
by the corresponding port, and transmitting the modified
packet to the port 62 for transmission. The port 62 may
recalculate the checksum if needed.

In the illustrated example, the port 62-1 recerves a packet
80. Data from the packet 80 1s stored 1n the memory 70 as
indicated at 82. Concurrently, control data from the packet 80
1s stored 1n the control data processing unit 78 as indicated at
84. The control data processing unit 78 sends control data to
the ports 62-2, 62-3, and 62-4 as indicated at 86-1, 86-2, and
86-3. The ports 62-2, 62-3, and 62-4 request data from the
memory 70. The header altering device 74 reads the data from
the memory 70 as indicated at 87. The header altering device
74 modifies data in the memory 70 based upon the require-
ments specified by the port 62-2, 62-3, and 62-4 as indicated
at 87 and 88-1, 88-2, and 88-3. The lookup tables 76 may
include VLAN, MC and tunnel table 90 (heremaiter VLAN
table 90) and MAC and routing flows table 92 (hereimafter
MAC table 92). Tunnel entries are preferably stored in the

10

15

20

25

30

35

40

45

50

55

60

65

4

VLAN table 90 and address resolution protocol (ARP) entries
are preferably stored in the MAC table 92.

Changes to the packet 20 that are performed by the header
altering unit 74 depend upon several mputs. A first input
relates to mput encapsulation data, which 1s the format that
the packet 1s saved in the memory 70. A second nput relates
to a last level treated, which 1s a type of switch/router/bridge
that last worked on the packet 20. A third mput relates to
commands from a switch/router/bridge engine, such as spe-
cific changes that should be made to the inner packet header.
A fourth mput relates to an output encapsulation for the
packet 20.

Referring now to FIG. 6, the header altering device 74
alters the packet 20 1n four main stages. In a first stage 100, the
header altering device 74 strips the packet 20 from outer
encapsulation layers based on the input encapsulation and the
last level treated. For example, headers surrounding the IP
header of a routed packet are stripped. In a second stage 102,
the header altering device 74 manipulates a current header.

For example, the header altering device 74 decrements an
IPv4 time to live (I'TL) field and updates a checksum. In a
third stage 104, the header altering device 74 adds or removes
tunneling. In a fourth stage 106, the header altering device 74
encapsulates a new outer header onto the packet 20.

The header altering device 74 preferably performs header
alteration 1n a pipeline manner. Each pipeline stage is
assigned one or more tasks. The pipeline stages use informa-
tion that 1s passed from stage to stage 1n a descriptor word.
Stages add information to the descriptor word 11 the informa-
tion 1s needed 1n a subsequent stage and delete information
that 1s not needed by subsequent stages.

If changes to the header that are made by a stage change the
length of the packet 20, the stage updates an 8-bit field rep-
resenting changes to a byte count of the packet 20. The update
to the 8-bit field 1s equal to a bit length increase or decrease of
a current stage plus bit length changes from prior stages. The
8-bit field has 1 bit sign and 7 bit offset (change will be from
—-127 byte to +127 byte). Shorter or longer fields may be
employed to represent shorter or longer changes.

Referring now to FIG. 7, an exemplary architecture incor-
porating the header altering device 74 1s shown. Solid lines
are data flow paths and dotted lines are descriptor flow paths.
Blocks 1n bold (such as a transmit queue memory 110, the
VLAN table 90, and the MAC table 92) are preterably imple-
mented using on-chip memory.

Data from the packet 20 (except for the first 128 bytes) are
written to the memory 70, which provides packet butlering.
After the packet 20 passes a check-1n performed by the MAC
layer 66, the header and descriptor are forwarded to an ingress
control pipe 112. The header and descriptor are forwarded
through an queue 114, an egress control pipe 116, and a
transmit queue 118 to one or more outgoing ports 62. A fabric
adapter or other packet processor 119 may be provided.

The outgoing port(s) 62 request data from the memory 70.
The header altering device 74 reads the data from the memory
70, modifies the data as needed for each of the ports 62, and
outputs the data to the requesting ports 62. As can be appre-
ciated, by processing the layers during egress, the speed of the
packet processor 60 1s increased and the complexity 1s
reduced, particularly for multi-port, multi-protocol packet
Processors.

Referring now to FIGS. 8-12, a presently preferred imple-
mentation 1s shown. In FI1G. 8, the header altering device 74 1s
shown. The header altering device 74 operates 1n a pipeline
manner. The header altering device 74 includes a source
channel 1dentifier (SCI) stage 120. Since every DMA 68 can

request up to 8 data bursts, each burst returned from the

US 8,743,832 Bl

S

memory 70 i1dentifies the DMA 68 that originated the burst.
There also may be two modules for each DRAM, an uplink
and a local DRAM module. A source channel identifier (SCI)
arbiter 126 controls data from the DRAM modules using
uplink SCI 122 and local SCI 124. This SCI stage 120 in the
pipeline preferably holds up to 3 cycles of a burst 1n order to
enable the arbitration and 1dentification of the source channel
number. If both DRAM modules have a burst at the same
time, one of the DRAM modules will be paused, for example
in a round robin manner.

In a latching commands and header striping stage 130, the
pipeline selects the data from the correct DRAM based on the
arbitration between the uplink SCI 122 and the local SCI 124.
The latching commands and header striping stage 130 1s also
responsible for locking the commands of the DMA that are
identified by the source channel number. After locking the
commands and the data, the latching commands and header
striping stage 130 examines the content of the commands
from the port and the data from the DRAM. The stage 130
strips off the unnecessary layers. Data output by the stage 130
includes a header corresponding to the last level treated 1inside
the packet processor. The stage 130 also requests reads for
tunnel entries when commands from the port require 1t.

In a tunnel sync FIFO stage 134, data 1s held until a tunnel
entry 1s retrieved from VLAN memory 90. Data from the
previous stage and tunnel entries enter the tunnel FIFO stage
134. At the output of the tunnel FIFO stage 134, both data and
tunnel entries exist together until a header manipulator stage
140.

In the header manipulator stage 140, header manipulation
1s performed on an innermost header, preferably layer 3 and/
or below 1n the OSI 7 layer model. Details concerning the
header protocols are specified in IEEE section 802.1D, IEEE
section 802.1q, and RFC791, which are hereby incorporated
by reference. The header mampulator stage 150 also reads
ARP entries in the MAC memory 92. The outputs of the
header manipulator stage 140 are input to a tunneling stage
142, which holds the data until tunnel entry data 1s recerved (1t
applicable). The outputs of the tunneling stage 142 are input
to an ARP sync FIFO stage 144. The ARP sync FIFO stage
144 1s a similar to the tunnel sync FIFO stage 134. The ARP
sync FIFO stage 144 1s used to hold the data until the ARP
entry 1s retrieved from MAC memory 92.

In a link layer stage 146, a pipe MAC 1s added to the packet
20 1f needed. In a PPP layer stage 150, a PPP type header 1s
attached to the packet 20 for ports that are operating in packet
over SONET (PoS) mode. The PPP layer stage 150 calculates
the new byte count of the packet 20 for all the packets. The
PPP layer stage 150 1s the last stage 1n the pipeline. From this
point, the modified data 1s transferred to the DMA(s) 68 of the
requesting port(s) 62.

Valid, last, and dack control signals are used between
stages 130-150. Data 1s preferably valid and sampled only
when both valid and dack signals are active. A descriptor from
stage to stage 1s transierred during a first cycle of valid data,
unless specified otherwise. The dack signal 1s used 1n 1nter-
stage 1nterfaces because most of the stages cannot hold a
whole burst. The channel 1d (ch_id) 1s carnied from stage to
stage with the descriptor information. A do_ha bit in the
descriptor at each stage indicates whether the stage should
perform modifications of the data or carry the data 1n a trans-
parent mode.

The source channel 1dentifier stage 120 1s not part of the

header altering device 74. The select signal from the arbiter
126 1s used to select the local SCI1122 or uplink SCI 124 to the
next stage. The local and uplink SCI 122 and 124 include two

components. A first component 1s a FIFO that saves the chan-

10

15

20

25

30

35

40

45

50

55

60

65

6

nel number for each read request from the approprate
DRAM. The channel number 1s written whenever ch 1d_str-
b_1s active. The channel number 1s popped out of the FIFO
whenever last_in_is active or whenever a read pointer
changes to a write pointer, which occurs when the FIFO
changes state from empty to not empty.

The channel number 1s preferably a 4 bit number. A most
significant bit of the channel number represents a GOP
(Group Of Ports) number. The least significant bits represent
the port index inside each GOP. There are 2 GOPs—each with
an arbiter. A ch_1d_strb_input and ch_id 1mnput for each GOP
1s provided. Both GOP cannotoutputa ch_id_strb_during the
same cycle since this 1s dependent on the service that the GOP
obtains from a common arbiter.

When passing data from the DRAM to the latching com-
mands and striping stage 130, the SCI data path has a single
128 bit register to sample data from the DRAMs and enable
control blocks to act. Data 1s sampled and moved on every

clock cycle regardless of the control. The control, which 1s
done by the SCI arbiter 126, ensures that the next stage 130
samples valid data.

The SCI arbiter 126 generates control signals for both

DRAM interfaces. The SCI arbiter 126 selects one of the SCI

122 and 124 to transier the data into the header altering device
74 and blocks the other SCI. The SCI arbiter 126 obtains the

port number from both SCI and selects one of the port num-
bers to send to the ports. The SCI arbiter 126 generates a high
(not active) dack signal to DRAM interface which 1s NOT
selected at the moment. The dack signal to the selected
DRAM 1nterface 1s based on the incoming dack signal from
the header altering device 74.

In the latch command and stripping stage 130, the
unneeded packet headers are removed and the protocol that
was used for the forwarding decision becomes the outer pro-
tocol. The removal of the extra layers 1s made while the burst
passes through the latch command and stripping stage 130.
The entire burst, however, does not need to be stored in the
latch command and stripping stage 130. During the first cycle
of data transfer from the SCI stage 120, the descriptor com-
mands are locked 1n the latch command and stripping stage
130. The latch command and striping stage 130 determines
the number of bytes to remove. Stripping 1s needed when
Input_Encap 1s Ethernet or MPLS and Last Level Treated 1s
IP or MPLS. For MAC headers, the latch command and
striping stage 130 removes 14 by’tes for untagged packets and
18 bytes for tagged packets.

For MPLS header and Last Level Treated 1s IP, labels are
removed until a label with a set S bit 1s detected. MPLS labels
are 32 bit (4 byte) and the S bit 1s bit 23 1n the label. MPLS
labels are removed 1n this stage only 11 Last Level Treated 1s
IP, which occurs when there 1s a single MPLS label (a null
label). Removal of up to 4 labels 1s supported by the latch
command and stripping stage 130. If MPLS labels are
removed, the TTL field from the top label 1s saved and passed
on to subsequent stages so the T'TL field can be written to the
IP header 1n accordance with a copy_T'TL bit 1n the descrip-
tor. TTL 1s handled 1n the header manipulation stage 120. The
TTL from the label 1s passed 1n the descriptor together with a
valid biat.

When removing the MAC from a packet, 1t 1s considered
tagged according to the bit 1n the descriptor. EtherType 1s not
checked. When removing a MAC (either tagged on not) and
the packet 1s IP routed, Etherlype 1s compared to MPLS
(unicast or multicast) Etherlype. This step determines
whether MPLS labels are present 1n front of the IP header and
need to be stripped at this stage.

US 8,743,832 Bl

7

If the packet 1s IP routed, the MPLS label was detected as
the null label, which indicates that the next network layer 1s IP
and the router can handle the packet. Therefore, IP routed
packets can have only one MPLS label 1n front of the IP
header. For more general operation, a search 1s made for a
label with the S bit set. To prevent errors, the search 1is
restricted to 4 labels. If S bit 1s not set within the 4 labels, 128
bits are removed and an error bit 1n the descriptor 1s set. This
causes all of the stages 1n the header altering device 74 to
ignore commands except for receiving the tunnel entry in the
tunnel sync FIFO stage 134 (to avoid getting out of order).

Referring now to FI1G. 9, a data flow for the striping stage
130 1s shown. The stripping 1s done 1n a pipeline manner using
three 128 bit registers: register 162 (1x128 bits) and registers
164 (2x128 bits). After sampling the data from the SCI stage
120, data 1s written 1into two 128 bit registers 164 after the
MAC and MPLS are removed. The data to the next stage 1s
supplied by a multiplexer 166 that selects one of the two 128
bit registers 164 alternately.

Removal commands to a state machine 168 that controls
the stripping are: LLT (Last Level Treated), First_encap,
Src_tagged, Current burst cycle number (1.e. how many
words went through this logic 1 this burst),
EtherType==MPLS and/or MPLS S bit vector (4 bits taken

from the current word, each one represent a S bit in a MPLS
label).

Another function of the stage 130 1s to request tunnel
entries from the VLAN memory 70 if port commands from
the port 62 include a tunnel layer output logical interface. The
stage 110 cannot accept a new burst if the VL AN memory 90
has not generated an ack signal for a tunnel entry read (only
when requested). The stage 130 blocks the next burst by using
the dack_signal. The stage 130 provides an indication to next
stage 134 when the stage 130 1ssues a request for a tunnel
entry for the burst. This information 1s used to decide whether
data needs to wait for the tunnel entry.

Since the tunnel sync FIFO stage 134 does not need the
descriptor on the first cycle, the descriptor can be passed with
the last signal. If a tunnel entry was requested for the burst, a
waitdtunnel_signal (active low) 1s output by the stage 130 to
the tunnel sync FIFO stage 134. As a result, the tunnel sync
FIFO stage 134 holds the burst 11 the stage 134 1s waiting for
a valid tunnel entry.

The header manipulator stage 140 1ssues the ARP request
to the MAC table 92 when Out_Link_ILayer 1s Ethernet and
the packet 1s not Ethernet bridged. The stage 140 blocks the
next burst of data until the ARP request recetves an ack (using,
the dack_signal). This stage 140 1s also responsible for all
changes to the current outermost header. At this point, the
outermost header 1s the same header that was 1nspected by the
Last Level Treated switch/route/bridge engme The header
manipulator stage 140 changes VL AN for bridged Ethernet
packets, modifies TTL & DHCP, add sl MPLS label for IP
routed packets, and/or manipulates MPLS labels for MPLS
switched packets.

The header manipulator stage 140 has 4 different operating,
schemes [Pv4, IPv6, MPLS, and Ethernet. The current header
1s Ethernet when Input_Encap 1s Ethernet and Last Level
Treated 1s not MPLS switched or IP routed. The commands
for the stage 140 are related to VL AN tagging. The stage 140
can remove, add, modity or do nothing. For add/modity com-
mands, VID and VPT are taken from the descriptor.

When the current header 1s an MPLS label stack, the packet
was MPLS switched. In this stage, up to 4 labels are popped
or swapped or 1 label 1s pushed to the top of the label stack.
The label to push or swap 1s 1n the descriptor. TTL 1n the

MPLS stack will always follow the rule: output TTL=1nput

10

15

20

25

30

35

40

45

50

55

60

65

8

TTL-Dec_TTL. This means that the TTL from the top of the
stack 1s copied to the new top of the stack. If a Dec_TTL bait
1s set, 1t needs to be decremented by 1.

The current header 1s IPv4 when Last Level Treated 1s
IPv4. The TTL 1s decremented and DSCP 1s replaced (i1 the
descriptor requires 1t). When updating the IP header, the
checksum 1s updated as well (incremental update of a 16 bat
word at a time (according to RFC 1624, which 1s hereby
incorporated by reference)). Fach calculation 1s done 1n 1
cycle. Since TTL and TOS are not at the same byte mnside a 16
bit word, a new 16 word 1s composed. The 16-bit word 1s
{TTL,TOS} and is used in the incremental checksum calcu-
lation. Changing TOS and TTL updates the checksum 1n one
calculation. 1 MPLS label can be added 1n this stage. Label
and EXP are taken from the descriptor, T'TL 1s taken from the
IP header.

The Current header 1s IPv6 when Last Level Treated 1s
IPv6. All of the actions done for IPv4 header can be per-
formed. However, there 1s no need to update the checksum.

Referring now to FIGS. 10A and 106, a data flow diagram
and state machines used 1n the stage 140 are shown. The stage
140 1s preferably built using 5 different state machines. Four
of the state machines 190, 182, 184 and 186 deal with the
different encapsulations including Ethernet, IPv4, IPv6, and
MPLS. A control state machine 190 controls the four state
machines 180-186. The control state machine 190 handles a
handshake with the previous stage and controls the data path
according to the content of the descriptor. The control state
machine makes decisions on the descriptor from previous
stage while the specific encapsulation state machines 180-
186 make decisions according to the sampled descriptor. The
control state machine 190 is also responsible for activating a
state machine that controls the ARP request when it 1s needed
in either descriptor or tunnel entry. The stage 140 transfers the
descriptor and the tunnel entry 1n the first cycle of data to the
tunneling stage 122. The only field in the descriptor that the
tunneling stage needs to update 1s the current_encap when the
MPLS stack was totally removed.

Referring now to FIGS. 11 and 12, steps performed by the
tunneling stage 142 and a data flow diagram are shown. IT
do_ha 1s equal to 1 as determined 1s step 198, control contin-
ues with step 202. Otherwise, the stage 142 1s transparent
(step 200). The tunneling stage 142 removes 1Pv4 tunnels or
adds IPv4 or MPLS tunnels. If Out_Tunnel_Layer is either IP
or MPLS or the packetis IProuted and Remove _IPv4_Tunnel
1s set (as determined in steps 202, 204 and 206), then data 1s
modified by the stage 142 in steps 208, 210 and 212. Other-
wise the stage 142 1s transparent. The tunneling stage 142
removes IPv4 tunnel header when the packet 1s IP routed and
Remove_IPv4_Tunnel 1s set in the descriptor. When remov-
ing a tunnel, the protocol number 1n the IPv4 header 1s read to
identify the type of tunnel to be removed.

When IPv4 1n IPv4 1s encountered, the header of a tunnel 1s
20 bytes long (assuming there are no options). DSCP and

TTL fields from the tunnel header are saved before purging
the header.

The DSCP and TTL fields are copied into the inner
IPv4 header according to copy_TTL and copy_DSCP bits 1n
the descriptor. If the inner header was changed, the checksum
1s updated as well. Since the mner IPv4 header 1s not exam-
ined, the checksum 1s calculated manually.

When IPv6 1n IPv4 1s encountered, the DSCP and TTL

fields 1n the IPv4 header are mapped into Trailic Class and
Hop Limit fields in the IPv6 header. In IPv6, there 1s no

checksum to update.
When the tunnel type 1s GRE (IP protocol 47), then a GRE
header 1s examined as well as an IPv4 header. The fields in the

GRE header that are check are Checksum Present (bit 0) and

US 8,743,832 Bl

9

Protocol Type. If Checksum Present 1s set, the GRE header
length 1s 64 bits. Otherwise the GRE header length 1s 32 bats.
The Protocol Type 1s the Etherlype for the payload. 1Pv4,
IPv6 and MPLS are supported. The EtherType for those pro-
tocols 1s taken from registers. If the payload i1s IPv4 or IPv6,
the DSCP and TTL from the IPv4 tunnel header are treated
the same as in IPv4 1n IPv4 tunnels specified above. If the
payload1s MPLS, the TTL 1s copied into the MPLS top of the
stack label accordmg to copy_TTL bit and EXP field 1s not
touched 1n the label stack. MPLS does not require a check-
SUI.
Imtlatmg GRE tunnel. This tunnel 1s used when Out_Tun-
nel_layer 1s IP-in-IP and tunnel entry Type 1s GRE. GRE
tunnels can used when current header 1s IPv4, IPv6 or MPLS.
The GRE header 1s a 32 bit word attached after the IPv4
header.
Those skilled 1n the art can now appreciate from the fore-
going description that the broad teachings of the present
invention can be implemented 1n a variety of forms. There-
fore, while this invention has been described in connection
with particular examples thereot, the true scope of the inven-
tion should not be so limited since other modifications will
become apparent to the skilled practitioner upon a study of the
drawings, the specification and the following claims.
What 1s claimed 1s:
1. A packet processor for a network device, the packet
Processor comprising:
a plurality of ports including at least one incoming port and
at least one outgoing port, the at least one incoming port
configured to recerve a data packet including a header
portion and a data portion; and
a header altering device, the header altering device com-
prising:
a plurality of packet processing pipeline stages config-
ured to process the data packet by modifying a data
structure of the header portion while the data portion
1s stored in memory, each of the plurality of packet
processing pipeline stages in the header altering
device being assigned one or more tasks associated
with moditying the data structure, the plurality of
packet processing pipeline stages further configured
to:
determine whether to extract first header information
from the data structure and selectively extract the
first header information,

selectively generate a modified header portion of the
data packet using the extracted first header infor-
mation, and

retrieve the data portion from the memory and com-
bine the data portion with the modified header por-
tion.

2. The packet processor of claim 1, wherein at least one of
the plurality of packet processing pipeline stages 1s further
configured to add tunneling information to the data structure
or remove tunneling information from the data structure.

3. The packet processor claim 1, wherein at least one of the
plurality of packet processing pipeline stages 1s configured to
process the data packet based on protocol layering require-
ments associated with the at least one outgoing port.

4. The packet processor of claim 1, wherein at least one of
the plurality of packet processing pipeline stages 1s further
configured to selectively hold the data packet in a respective
one of the plurality of packet processing modules until at least
one tunnel entry 1s recerved.

5. The packet processor of claim 1, wherein at least one of
the plurality of packet processing pipeline stages 1s further
configured to selectively hold the data packet in a respective

10

15

20

25

30

35

40

45

50

55

60

65

10

one of the plurality of packet processing modules until at least
one Address Resolution Protocol (ARP) entry 1s recerved.

6. The packet processor of claim 1, wherein at least one of
the plurality of packet processing pipeline stages 1s further
configured to selectively add a link layer to the data structure.

7. The packet processor of claim 1, wherein at least one of
the plurality of packet processing pipeline stages 1s further
configured to selectively add a Point to Point Protocol (PPP)
layer to the data packet.

8. The packet processor of claim 1, wherein at least one of
the plurality of packet processing pipeline stages 1s further
configured to recetve protocol layering requirements from the
outgoing port 1n response to the outgoing port recerving con-
trol data associated with the data packet.

9. The packet processor of claim 1, wherein at least one of
the plurality of packet processing pipeline stages 1s further
configured to selectively modily the data packet to indicate
processing requirements for processing the data packet.

10. The packet processor of claim 9, wherein the data
packet indicates changes to a length of the data packet as a
result of the data structure being modified.

11. The method of claim 10, further comprising selectively
holding the data packet 1n a respective one of the plurality of
packet processing pipeline stages until at least one Address
Resolution Protocol (ARP) entry is recerved.

12. The method of claim 10, further comprising, using at
least one of the plurality of packet processing pipeline stages,
selectively adding a link layer to the data structure.

13. The method of claim 10, further comprising, using at
least one of the plurality of packet processing pipeline stages,
selectively adding a Point to Point Protocol (PPP) layer to the
data packet.

14. The method of claim 10, further comprising, using at
least one of the plurality of packet processing pipeline stages,
receiving protocol layering requirements from an outgoing
port 1n response to the outgoing port recerving control data
associated with the data packet.

15. The method of claim 10, further comprising, using at
least one of the plurality of packet processing pipeline stages,
selectively modifying the data packet to indicate processing
requirements for processing the data packet.

16. The method of claim 13, wherein the selectively modi-
tying the data packet includes, using at least one of the plu-
rality of packet processing pipeline stages, modifying the data
packet to indicate changes to a length of the data packet as a
result of the data structure being modified.

17. A method of operating a packet processor, the method
comprising;

receving, at an mcoming port, a data packet including a

header portion and a data portion;

using a plurality of packet processing pipeline stages 1n a

header altering device, processing the data packet by
modifying a data structure of the header portion while
the data portion 1s stored 1n memory; and

assigning each of the plurality of packet processing pipe-

lines stages one or more tasks associated with modifying,

the data structure; wherein the modifying the data struc-

ture includes, using the plurality of packet processing

pipeline stages,

determining whether to extract first header information
from the data structure and selectively extracting the
first header information,

selectively generating a modified header portion of the
data packet using the extracted first header informa-
tion, and

US 8,743,832 Bl
11

retrieving the data portion from the memory and com-
bining the data portion with the modified header por-
tion.

18. The method of claim 17, wherein the modifying the
data structure further includes, using at least one of the plu- 5
rality of packet processing pipeline stages, adding tunneling
information to the data structure or removing tunneling infor-
mation from the data structure.

19. The method claim 17, further comprising, using at least
one ol the plurality of packet processing pipeline stages, 10
processing the data packet based on protocol layering
requirements associated with the at least one outgoing port.

20. The method of claim 17, further comprising selectively
holding the data packet 1n a respective one of the plurality of
packet processing pipeline stages until at least one tunnel 15
entry 1s recerved.

12

	Front Page
	Drawings
	Specification
	Claims

