12 United States Patent

Kropinski et al.

US008739049B2

US 8.739,049 B2
May 27, 2014

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)

(58)

VEHICLE SYSTEM MODELING SYSTEMS
AND METHODS

Inventors: Michael A. Kropinski, Troy, MI (US);
Minghui Kao, Rochester Hills, MI (US);
Gary Ferries, Rochester Hills, MI (US);
Hamid M. Esfahan, Ann Arbor, MI
(US); Wen-Chuan Lin, Novi, MI (US);
Michael A. Steele, Southfield, MI (US);
Onassis Matthews, Novi, MI (US)

Assignee: GM Global Technology Operations
LLC
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 217 days.

Appl. No.: 12/861,176

Filed: Aug. 23,2010
Prior Publication Data
US 2011/0288840 A1l Nov. 24, 2011

Related U.S. Application Data
Provisional application No. 61/347,629, filed on May

24, 2010.

Int. CIl.

GO6l’ 15/00 (2006.01)

GOo6F 13/00 (2006.01)

U.S. CL

USPC i, 715/763; 703/8:; 763/764
Field of Classification Search

USPC 715/763-765, 700, 734736, 751-753;

703/8, 13
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,067,740 B1 6/2006 Belov et al.
7,076,740 B2 7/2006 Santori et al.
7,644,398 B2 1/2010 Cleaveland et al.
8,612,192 B2 12/2013 Larsson et al.
2003/0182027 Al1* 9/2003 MoceK ...ooooovvvvvviriiiiiiiinnnnn, 701/1
2005/0275284 Al 12/2005 Katayama
2006/0277010 Al* 12/2006 Schutteetal. 703/8
2007/0038422 Al 2/2007 Wangetal.cccovvveinnnn 703/8
2007/0088469 Al 4/2007 Schmiedel et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 101308365 11/2008
OTHER PUBLICATIONS

U.S. Appl. No. 12/555,338, filed Sep. 8, 2009, Esfahan et al.
U.S. Appl. No. 12/861,207, filed Aug. 23, 2010, Larsson et al.

(Continued)

Primary Examiner — Cao “Kevin” Nguyen

(57) ABSTRACT

A vehicle simulation system includes a compiler module, a
parser module, a wrapper module, a modeling module, and a
simulation module. The compiler module generates object
code that 1s compatible with a first type of operating system
based on source code that 1s executable by a vehicle control
module and that 1s compatible with a second type of operating
system. The parser module generates a defimitions file and an
extensible markup language (XML) file based on the source
code and the object code. The wrapper module generates a
library file based on the object code and the definitions file.
The modeling module generates model-based source code for
a virtual model based on the XML file and a user configura-
tion of the virtual model. The simulation module simulates
operation of a plant of a vehicle with the virtual model.

20 Claims, 15 Drawing Sheets

702
5?”5 748 714 756 752 3
240 0 7 A
\ & —
710
‘ 5 744
g?‘!ﬂ
?Eu—/} ?64—/’} ?EB—/}
784
5—?’22
772 776 780
3 3 i 788
5?92 5—?95

US 8,739,049 B2
Page 2

(56)

2008/0004840
2008/0133206
2008/0215304
2009/0157236
2009/0306866
2009/0306952
2010/0082303
2011/0066416
2011/0153536
2012/0022847

AN A AN AN A A

1 =¥

1 =¥

References Cited

1/2008
6/2008
9/2008
6/2009
12/2009
12/2009
4/2010
3/2011
6/2011
1/2012

U.S. PATENT DOCUMENTS

Pattipatti et al.
Devins et al.

Bailey et al.

Van Gaasbeck etal. 701/3
Malikopoulos 701/59
Kajitani et al. 703/13
Rousseau etal. 703/1
Sachs

Yang et al.

Bailey et al.

OTHER PUBLICATIONS
Kurt J. Mitts, Keith Lang, Thierry Roudier, and Daniel L. Kiskis;
SAE Technical Paper Series 2009-01-0520; “Using a Co-sumulation
Framework to Enable Software-in-the-Loop Powertrain System
Development™; Copyright 2009 SAE International; 6 pages.
dSPACE Catalog 2008, pp. 1-505.
Alexander Eichberger; “Generating Multibody Real-Time Models
for Hardware-in-the-Loop Applications”; 2003, 4 pages.
David Wenzhong Gao, Chris M1, Ali Emadi; “Modeling and Simu-
lation of Electric and Hybrid Vehicles” —Proceedings of the IEEE,
vol. 95, No. 4, Apr. 2007, 17 pages.

* cited by examiner

U.S. Patent May 27, 2014 Sheet 1 of 15 US 8,739,049 B2

28
62
60

A
4
22
6

j—26

U.S. Patent May 27, 2014 Sheet 2 of 15 US 8,739,049 B2

1763

B
C

FIG. 1B

134

106
Ia

110

102
114
!
: >
126 118 122

138
{

130

146

100-w*~~--**""'""'“‘*~\,L
142

U.S. Patent May 27, 2014 Sheet 3 of 15 US 8,739,049 B2

210
214

R r——
W
(O
o
}

- .g - |

134

252
248

¥
1307
i

r'\-f | —_— N
S .
& l O
i i A TR
II - | LL.

- 3

N o g ~

l G

by

N

102 ifmsz 114? 126 206? }
210
224

176

100—"
218

U.S. Patent May 27, 2014 Sheet 4 of 15 US 8,739,049 B2

118
130

N
L

122

)
n

322

FIG. 3

|
322

|
326g

310
N

|
300 \/‘ 302 J

U.S. Patent May 27, 2014 Sheet 5 of 15 US 8,739,049 B2

S;514

$S502

$;506

414

<
9
Ll

$S402
SS406 (8410

U.S. Patent May 27, 2014 Sheet 6 of 15 US 8,739,049 B2

{
606‘2 “
FIG. 6

602

610

U.S. Patent May 27, 2014 Sheet 7 of 15 US 8,739,049 B2

788
F

702

(784

768—/}
780—/) w

718
764—‘/—;
(27
S
76—
— 1 |
1S7
[L

706
740
710
744

U.S. Patent May 27, 2014 Sheet 8 of 15 US 8,739,049 B2

8182

826

FIG. 8

806
7

602
606

822

U.S. Patent May 27, 2014 Sheet 9 of 15 US 8,739,049 B2

702

1

[
|

R—— 748 i?’:d 756

768 ”f;
780 -/}

706
710
744

j'740 T

718
5'722
I R

764 -
776—")

760 —/W' “
772 -/W' “‘
-
B

U.S. Patent May 27, 2014 Sheet 10 of 15 US 8,739,049 B2

(S
)
0
—7\
o
o| —X— /
(Qj
=
T &
D -y
(\ |
s s | 8 O
{®, O O LL-
S
S
+ \
;f

US 8,739,049 B2

Sheet 11 of 15

May 27, 2014

U.S. Patent

L1 "Old

cecl

0.

US 8,739,049 B2

Sheet 12 of 15

May 27, 2014

U.S. Patent

Zi o | |

ohmv|wwl

miwmwr

Pecl

092l

OLCl
L

FEMINmNF
r\w,,-mmﬁ 1] g4
w |
|
|
|] 907}
(#) 812l _ Ill_ _ /
- _ —et02C| ALTAS
_—B8¢ZCl | 3

US 8,739,049 B2

Sheet 13 of 15

May 27, 2014

U.S. Patent

¢l Old
ONerm\dhiiha

ek |

(#) prel

— CL Ol

c0E!l
09Z1

gzl

vl

Oyl

.lemmr

h%ltv:womr

iiililé; w nﬁummuﬁlMaNmNe

U.S. Patent May 27, 2014 Sheet 14 of 15 US 8,739,049 B2

FiG. 14

'ﬂfﬂ;*ﬂ1~1210
|
“fjf7*1214
3
|
|
FJ5“1270
|
/
|

1248 ()
1244 (#)

1228*ﬁf“l
1232‘“’ﬁ1

1244
1244

U.S. Patent

May 27, 2014 Sheet 15 of 15

15(“:)““'“"\\v

FIG. 15

1502

1506

1510

1514

1518

1522

1526

1530

US 8,739,049 B2

US 8,739,049 B2

1

VEHICLE SYSTEM MODELING SYSTEMS
AND METHODS

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

This application claims the benefit of U.S. Provisional
Application No. 61/347,629, filed on May 24, 2010. The

disclosure of the above application 1s incorporated herein by
reference 1n 1ts entirety.

This application 1s related to U.S. patent application Ser.
No. 12/861,207 filed on Aug. 23, 2010. The disclosure of the
above application 1s incorporated herein by reference 1n 1ts
entirety.

FIELD

The present disclosure relates to vehicle hardware and
soltware simulation systems and methods.

BACKGROUND

The background description provided herein 1s for the pur-
pose ol generally presenting the context of the disclosure.
Work of the presently named inventors, to the extent it 1s
described 1n this background section, as well as aspects of the
description that may not otherwise quality as prior art at the
time of filing, are neither expressly nor impliedly admitted as
prior art against the present disclosure.

Vehicle controllers and hardware may be tested 1n a simu-
lated environment before production to ensure component
and system fidelity. The simulated environment 1s provided
by a vehicle simulation system. Vehicle simulation systems
exist for hardware in-the-loop (HIL) testing. HIL testing
includes using embedded software that 1s executed on a target
control module, which interfaces with physical and simulated
loads.

Although HIL testing can be effective, HIL testing requires
developing physical loads or real time simulated loads, which
can be expensive and can only be performed late 1n a devel-
opment cycle. HIL testing also includes using a set of hard-
ware devices, such as a vehicle control module (e.g., trans-
mission control module) and a signal simulator.

SUMMARY

A vehicle simulation system includes a compiler module, a
parser module, a wrapper module, a modeling module, and a
simulation module. The compiler module generates object
code that 1s compatible with a first type of operating system
based on source code that 1s executable by a vehicle control
module and that 1s compatible with a second type of operating,
system. The parser module generates a definitions file and an
extensible markup language (XML) file based on the source
code and the object code. The wrapper module generates a
library file based on the object code and the defimitions file.
The modeling module generates model-based source code for
a virtual model based on the XML file and a user configura-
tion of the virtual model. The simulation module simulates
operation of a plant of a vehicle with the virtual model.

A vehicle simulation method includes: generating object
code that 1s compatible with a first type of operating system
based on source code that 1s executable by a vehicle control
module and that 1s compatible with a second type of operating,
system; generating a definitions file and an extensible markup
language (XML) file based on the source code and the object
code; generating a library file based onthe object code and the

10

15

20

25

30

35

40

45

50

55

60

65

2

definitions file; generating model-based source code for a
virtual model based on the XML file and a user configuration
of the virtual model; and simulating operation of a plant of a
vehicle with the virtual model.

In still other features, the systems and methods described
above are implemented by a computer program executed by
one or more processors. The computer program can reside on
a tangible computer readable medium such as but not limited
to memory, nonvolatile data storage, and/or other suitable
tangible storage mediums.

Further areas of applicability of the present disclosure will
become apparent from the detailed description provided here-
inafter. It should be understood that the detailed description
and specific examples are mtended for purposes of 1llustra-
tion only and are not intended to limit the scope of the dis-
closure.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood
from the detailed description and the accompanying draw-
ings, wherein:

FIGS. 1A, 1B, and 2 are functional block diagrams of
exemplary vehicle simulation systems according to the prin-
ciples of the present disclosure;

FIG. 3 1s an 1llustration of an exemplary file structure of an
operating system according to the principles of the present
disclosure;

FIG. 4 1s an 1llustration of an exemplary first graphical user
interface (GUI) according to the principles of the present
disclosure:

FIG. 5 1s an 1illustration of an exemplary second GUI
according to the principles of the present disclosure;

FIG. 6 1s an illustration of a first exemplary software 1n the
loop (SIL) GUI according to the principles of the present
disclosure:

FIG. 7 1s an illustration of a second exemplary SIL GUI
according to the principles of the present disclosure;

FIG. 8 1s another exemplary illustration of the first SIL GUI
according to the principles of the present disclosure;

FIG. 9 1s another exemplary illustration of the second SIL
GUI according to the principles of the present disclosure;

FIG. 10 1s another exemplary 1illustration of the first SIL
GUI according to the principles of the present disclosure;

FIG. 11 1s another exemplary illustration of the second SIL
GUI according to the principles of the present disclosure;

FIGS. 12-14 are exemplary illustrations of a third exem-
plary SIL GUI according to the principles of the present
disclosure; and

FIG. 15 1s an exemplary method of performing a vehicle
system simulation according to the principles of the present
disclosure.

DETAILED DESCRIPTION

The following description 1s merely exemplary in nature
and 1s 1n no way mtended to limit the disclosure, its applica-
tion, or uses. For purposes of clanty, the same reference
numbers will be used in the drawings to identify similar
clements. As used herein, the phrase at least one of A, B, and
C should be construed to mean a logical (A or B or C), using
a non-exclusive logical or. It should be understood that steps
within a method may be executed 1n different order without
altering the principles of the present disclosure.

A first alternative to hardware in-the-loop (HIL) testing
includes the simulation of a vehicle control module using
source code (e.g., C code, Fortran, etc.) and simulation of a

US 8,739,049 B2

3

plant model. The source code may be hand code or code
generated 1in an automated manner (referred to as autocode).
Hand code may refer to the manipulation of source code
manually and can include errors. The HIL testing approach 1s
not expandable as the code associated with the vehicle control
module 1s fixed. Changes to the source code and execution of
additional simulations are tedious using this approach.
Another alternative to HIL testing (referred to as 2-mode
hybrid bus testing) includes simulating a vehicle control mod-
ule and vehicle components or systems using model-based
soltware. The model-based simulation software (e.g., Matlab
and Simulink software by Mathworks) operates 1 a
Microsoit Windows operating system and mvolves the con-
necting of function blocks and corresponding inputs and out-
puts to create a model. Models are developed 1in the Windows
environment and autocode may be generated based on the
developed models. Model-based soitware 1s user friendly and
allows for easy manipulation of models, function blocks,
signals, etc. However, 2-mode hybrid bus testing does not

allow for incorporating software of a vehicle control module
that 1s written 1n C code.

As an alternative to HIL testing, soitware in-the-loop (SIL)
testing may be performed. SIL testing includes automotive
control system simulation where behavior of all or a portion
of a control algorithm 1s obtained by executing actual target
embedded processor software of a vehicle control module 1n
the stmulation environment. SIL testing includes simulating,
loads, such as mputs and outputs ol: a car area network
(CAN), control modules, plant models, sensors, efc.

In an SIL testing environment, targeted soitware, such as
software of a transmission control module (TCM), 1s linked
virtually to a plant model. SIL testing does not require special
plant associated hardware. A plant model simulates actual
operation of the plant (e.g., engine, transmission or vehicle
dynamics). The plant model receives mnputs from a simulated
control module and generates outputs, which may be fed
back. The virtual linking of targeted software to a plant model
allows a vehicle system to be evaluated 1n a virtual environ-
ment early 1n a development cycle.

In the following description the term task refers to a soft-
ware function performed during a simulation or an item,
function or step performed during a method. A function refers
to a subroutine or subprogram that 1s a portion of code within
a larger program. A task may include multiple sub-tasks.
Also, 1n the following description the term ring refers to a set
ol tasks or functions.

Referring now to FIG. 1A, a functional block diagram of a
vehicle simulation system 2 1s presented. The vehicle simu-
lation system 2 includes a host 4 with a host control module 6
and memory 8. The memory 8 may be remotely located from
the host 4 and accessed via a network or may be located
within the host 4, as shown.

The host control module 6 includes a vehicle system simu-
lation (VSS) control module 10 that controls simulation of
one or more vehicle control modules, components and sys-
tems of a vehicle. The VSS control module 10 may control:
converting source code to model-based code; combining of
model-based code generated from source code and model-
based code generated via simulation software; and generation
ol a model based on model-based code.

The host control module 6 may include a model generation
module 12, a scheduling module 14, a driving cycle module
20, a plant model selecting module 22, a data processing
module 24, a calibration module 26, and a debugger module
28.

The model generation module 12 generates SIL models.
For example, the model generation module 12 may be used to

5

10

15

20

25

30

35

40

45

50

55

60

65

4

generate a model that may be used 1n conjunction with a
model of a plant, such as a transmaission, an engine, a vehicle,
or another suitable plant. The model generation module 12
may set up one or more models including hooking imnputs and
outputs of the newly generated models to objects of other
models. Hooking may refer to, for example, connecting the
inputs and outputs of a model to signal lines or nodes of a
block and/or model. Objects may be nodes, signal lines,
inputs, outputs, stored variables, etc.

The scheduling module 14 schedules the order in which
simulation tasks are performed in the simulation environ-
ment. The scheduling module 14 may be event and/or time
based. Tasks may be performed based on conditions and/or
may be performed, for example, 1n a sequential order. As an
example, a series of tasks may be performed when a certain
condition or event occurs. Multiple tasks may be performed
during a given period. The scheduling module 14 may sched-
ule, for example, algorithm tasks, functions, control system
software tasks, and other suitable tasks.

The driving cycle module 20 controls inputs to one or more
control models. For example, the driving cycle module 20
may select between and supply user inputs, pre-defined signal
inputs, and stored vehicle signals to a given model.

The plant model selecting module 22 selects a fidelity level
of one or more plant models. A fidelity level refers to the
complexity of a plant model and a degree to which the plant
model accurately simulates actual components and/or sys-
tems of the plant. Stmulation of a plant model with a greater
fidelity level may more accurately simulate how the plant will
actually perform. However, processing time 1s generally
longer for a greater fidelity level than for a lesser fidelity level.

The data processing module 24 selects objects to monitor,
retrieves various data, processes various data, etc. Data asso-
ciated with the monitored objects 1s stored in object data files
30 1n the memory 8. The calibration module 26 allows for
calibration of variables or stored values (in calibration files
32) in the memory 8. The calibration module 26 may adjust
values of various types including boolean values, scalar val-
ues, tabular values, etc. The debugger module 28 1s used to
debug model-based code.

The memory 8 may include, for example, a source code
based library 40, a modeling environment based library 42,
input shared variables 44, output shared variables 46, and a
function library 48. The source code based library 40 includes
model-based code for models (or model sets 50) that are
generated based on source code. Model-based code can be
executed 1n a modeling environment and used to generate a
virtual model. The virtual models may be viewed 1n the mod-
cling environment using model-based software. Model-based
code can be used 1n performing a simulation and simulating
operation of the model 1n the simulation environment with
one or more other models.

The modeling environment based library 42 may include
models. For example only, the models may include plant
models 52, such as control models 54, sensor models 56,
controller area network (CAN) models 38, actuator models
60, transmission models 62, engine models 64, vehicle mod-
els 66, and other suitable models.

Each plant model may be used to simulate a corresponding,
plant. For example only, a sensor model may be used to
simulate a sensor of a vehicle, such as an engine speed sensor,
a vehicle speed sensor, a temperature sensor, a pressure sen-
sor, a flow rate sensor, etc. A CAN model may be used to
simulate output signals received via a CAN of a vehicle. An
actuator model may be used to simulate an actuator, such as a
spark plug, an electric motor, a throttle, a solenoid, a fuel
injector, or another actuator of a vehicle.

US 8,739,049 B2

S

The mput and output shared variables 44 and 46 may refer
to variables that may be shared by one or more models. The
input and output shared variables 44 and 46 may include
global variables or may include variables that may be associ-
ated with one or more models, algorithms, or functions. The
function library 48 may include additional standard blocks,
such as mathematical functions used to generate one or more
blocks.

The host 4 may also include a display 70, a user input
device 72, and a compiler 74. One or more graphical user
interfaces (GUIs) 76 generated by the host control module 6
may be displayed for a user via the display 70. The user input
device 72 may be, for example, a pointing device (e.g., a
mouse, pen and tablet, touch screen, etc.), a keyboard, and/or
one or more other suitable devices. The user input device 72
may include the display 70 in various implementations. The
display 70 may include, for example, a monitor, a projector,
or another suitable displaying device. The compiler 74 may
compile one or more types of code, such as source code,
model-based code, and/or autocode.

Referring now to FIG. 1B, another functional block dia-
gram of an exemplary VSS system 100 1s presented. A source
code file 102 includes source code to be used in creating a
model 1 a modeling environment. Operation of the model
with one or more other models, such as a model of a plant
(e.g., an engine, a transmission, an exhaust system, a vehicle,
or another suitable plant) may be simulated 1n a stmulation
environment. For example only, the source code may be 1n a
Fortran programming language, a C programming language,
or another suitable programming language. The source code
may be drafted in an automated manner, by hand, or in
another suitable manner.

A cross-compiler module 106 compiles the source code.
The cross-compiler module 106 may convert the source code
into object code and store the object code 1n an object codefile
110. The object code may be a binary code that 1s compatible
with an operating system other than the operating system on
which the cross-compiler module 106 runs. The operating,
system on which the cross-compiler module 106 runs will be
referred to as a first operating system, and the operating
system that 1s compatible with the object code will be referred
to as a second operating system. For example only, the first
operating system may include a Linux-based operating sys-
tem or another suitable operating system, and the second
operating system may include a Microsoft Windows-based
operating system or another suitable operating system. For
example only, the cross-compiler module 106 may include a
mingw32-gcc module 1n various implementations.

A parser module 114 extracts information from the source
code file 102 and the object code file 110. The parser module
114 produces a definitions file 118 and an extensible markup
language (XML) file 122 based on the extracted information.
The XML file 122 includes mnformation describing the source
code of the source code file 102, such as associated variables,
calibrations, functions, algorithms, and other suitable infor-
mation. The definitions file 118 contains information describ-
ing data that 1s to be exported from one or more libraries.

A wrapper module 126 may produce a source code
dynamic-link library (DLL) file 130 and a static library file

134 based on data from the definitions file 118 and the object
code file 110. For example only, the wrapper module 126 may
include a mingw32-dllwrap module 1n various implementa-
tions. In various implementations, the source code DLL file
130 and the static library file 134 may be included within one
file.

A calibration enabling module 138 extracts calibration
information from the source code DLL file 130 and one or

10

15

20

25

30

35

40

45

50

55

60

65

6

more data (.DAT) files, such as data file 142. The calibration
enabling module 138 produces a calibration file 146 based on
data from the source code DLL file 130 and/or the one or more
data files. The calibration file 146 may include information
that may be used by a calibration module, such as an INCA
module (not shown). For example only, the calibration file

146 may be an XML file.

When prompted via a user input, a modeling module 160
produces and displays one or more graphical user interfaces
(GUIs) (e.g., see FIGS. 2-14). The user input may include a
user input made via a pointing device (e.g., a mouse, pen and
tablet, touch screen, etc.), a keyboard, and/or one or more
other suitable devices. The one or more GUIs may be dis-
played on a display screen (e.g., a monitor), a projector, or
another suitable displaying device.

The modeling module 160 may operate 1n the second oper-
ating system. More specifically, the modeling module 160
may operate 1n a modeling environment (e.g., program space)
that 1s compatible with the second operating system. For
example only, the modeling module 160 may operate 1n a

Simulink modeling environment.

The modeling module 160 retrieves data from the XML file
122 and selectively displays retrieved data for the user via the
one or more of the GUIs. The user may configure a model 1n
the modeling domain via the one or more GUIs. The model-
ing module 160 generates a model source code file 164 based
on data retrieved from the XML file 122 and the configuration
provided by the user. The model source code file 164 includes
code that 1s compatible with the second operating system and
operating in the modeling domain. For example only, the
model source code file 164 may include s-function code or
another suitable type of code. In other words, the model
source code file 164 may include code written 1n an s-function
programming language or 1n another suitable programming
language.

An executable generating module 168 generates an execut-
able DLL file 172 (also referred to as a dynamically loadable
executable) based on the source code DLL file 130 and the
model source code file 164. The executable generating mod-
ule 168 may generate the executable DLL file 172 further
based on the static library file 134. The executable generating
module 168 may, for example, compile and link the model
source code file 164 into the executable DLL file 172. The
executable DLL file 172 1s executable within the modeling
environment by the modeling/simulating software. For
example only, the executable DLL file 172 may be executable
in conjunction with a model file 176 that includes a model of
the plant.

Referring now to FIG. 2, another exemplary functional
block diagram of the VSS system 100 1s presented. A building
module 202 may include the cross-compiler module 106, the
parser module 114, and the wrapper module 126. The build-
ing module 202 may also include a zipper module 206.

The zipper module 206 may zip the source code file 102
into a source code zip file 210. The zipper module 206 may
z1p the XML file 122, the source code DLL file 130, the static
library file 134, and the source code zip file 210 1nto a zip file
214. For example only, the zipper module 206 may create the
zip file 214 and z1p the XML file 122, the source code DLL
f1le 130, the static library file 134, and the source code zip file
210 1nto the zip file 214 when triggered via a user input. While
not shown, the zipper module 206 may also zip the definitions
file 118 and one or more other files mto the zip file 214.
Exemplary dashed line 218 illustrates an exemplary division
between the first operating system and the second operating
system.

US 8,739,049 B2

7

Referring now to FIG. 3, an exemplary file structure 300 of
the second operating system 1s presented. The file structure
300 may include N first-level items 302, where N 1s an integer
greater than zero. For example only, the first-level items 302
may include folders, files, or other suitable 1tems. Each of the
first-level 1tems 302 may include one or more sub-items,
which may be referred to as second-level items. For example
only, first level item 310 includes second-level items 314 and

318.

Each of the second-level items may include one or more
sub-1tems. Sub-1tems of second-level items may be referred
to as third-level items. For example only, the second-level
item 314 includes a third-level item 322. Each of the third-
level items may include one or more sub-1tems and so on.

The file structure 300 may be displayed 1n a first viewing,
pane 326. When one of the items of the file structure 300 1s
selected from the first viewing pane 326, the sub-1tems of the
selected 1tem, 11 any, may be presented 1n a second viewing
pane 330. For example only, when the second-level 1item 314
1s selected 1n the first viewing pane 326, the sub-items of the
second-level 1tem 314 are displayed in the second viewing
pane 330.

Referring back to FIG. 2 and with continuing reference to
FIG. 3, the user may store the zip file 214 as a sub-item of a
predetermined one of the items of the file structure 300. For
example only, the user may store the zip file 214 as a sub-1tem
(1.e., athird-level item) of the second-level item 314, as shown
in the example of FIG. 3. An un-zipper module 224 that 1s
operable 1n the second operating system selectively unzips
the zip file 214. More specifically, the un-zipper module 224
extracts the files zipped within the zip file 214 to a selected
location. For example only, the un-zipper module 224 may
extract the files to be sub-i1tems of the second-level item 314,
as shown 1n the example of FIG. 3. The source code zip file
210 may be extracted to be a sub-item (1.e., a fourth-level
item) of the third-level 1item 322. In this manner, the source
code zip file 210 may be kept separate from the other
extracted files.

The modeling module 160 may include a GUI module 240,
a data retrieving module 244, a configuration module 248, a

model updating module 252, and a simulation module 256.
When the user opens the modeling/simulating software, the
GUI module 240 may open and display a first GUI for the
user.

Referring now to FIG. 4, a diagram of an exemplary first
GUI4021s presented. The first GUI 402 may include a first set
of predetermined options, such as option 406, option 410, etc.
For example only, the first set of predetermined options may
include arithmetic operators, logical operators, comparison
operators, mathematical functions, counters and timers, delay
blocks, subsystem blocks, non-linear blocks, control blocks,
and filters and averages. The first set of predetermined options
may also include, for example, parameters and constants,
signals, analysis blocks (such as sources and sinks), model
documentation, previously used blocks, examples, and
model-based code generation option 414. When the user
selects the model-based code generation option 414, the GUI
module 240 may open and display a second GUI for the user.

Referring now to FIG. 5, a diagram of an exemplary second
GUI 502 1s presented. The second GUI 502 may include a
second set of predetermined options, such as option 306,
option 510, etc. For example only, the second set of predeter-
mined options may 1nclude a data object wizard option, a
model helper option, a create internal types option, a legacy
code option, an environment controller option, and a software

10

15

20

25

30

35

40

45

50

55

60

65

8

in the loop (SIL) option 514. When the user selects the SIL
option 514, the GUI module 240 may open and display a first
SIL GUI for the user.

Referring now to FIG. 6, a diagram of an exemplary first
SIL GUI 602 1s presented. When the SIL option 514 1s first
selected by the user, an SIL module 606 1n an in1tial state (e.g.,
blank) 1s displayed for the user. Collectively, the SIL module
606, mputs to the SIL module 606 (not shown), and the
second set of predetermined options may include a data
object wizard option, a model helper option, a create internal
types option, a legacy code option, an environment controller
option, and a soitware 1n the loop (SIL) option 514. When the
user selects the SIL option 514, the GUI module 240 may
open and display a first SIL GUI for the user.

Referring now to FIG. 6, a diagram of an exemplary first
SIL GUI 602 1s presented. When the SIL option 514 1s first
selected by the user, an SIL module 606 1n an in1tial state (e.g.,
blank) 1s displayed for the user. Collectively, the SIL module
606, 1nputs to the SIL module 606 (not shown), and outputs
from the SIL module 606 (not shown) may be referred to as a
virtual model. A model may include zero to N number of SIL
blocks. Each SIL block is associated with a single DLL file at
a given time. However, more than one SIL block can use the
same underlying DLL file or different underlying DLL files.
An SIL block can be thought of like any other block in the
modeling environment.

The user may load a previously saved virtual model via a

menu 610. For example only, the menu 610 may include afile
menu from which the user may select an open option (not
shown) and select the previously saved virtual model from
one or more previously saved virtual models. When the user
loads a previously saved virtual model, the GUI module 240
displays the previously saved virtual model 1n the first SIL
GUI 602.
The user may select a virtual model via the first SIL GUI
602. For example only, the user may select a virtual model by
double-clicking the SIL module 606 or in another suitable
manner. While selection of the SIL module 606 will be here-
after discussed, selection of a previously saved virtual model
may render similar or identical results. When a virtual model
1s selected, the GUI module 240 may open and display a
second SIL GUI for the user.

Referring now to FIG. 7, a diagram of an exemplary second
SIL GUI 702 1s presented. The second SIL GUI 702 includes
a plurality of fields that the user may use to configure the
selected virtual model and/or a function that may be called by
the selected virtual model. For example only, the second SIL
GUI 702 may include an SIL build field 706, a functions field
710, a variables field 714, an 1nputs field 718, and an outputs
field 722.

The data retrieving module 244 retrieves data for the SIL
build field 706, the functions field 710, and the variables field
714. The data retrieving module 244 populates the SIL build
field 706, the functions field 710, and the variables field 714
based on the retrieved data. More specifically, the data retriev-
ing module 244 populates menus (e.g., drop-down menus)
740, 744, and 748 of the SIL build field 706, the functions
field 710, and the vanables field 714, respectively, based on
the retrieved data.

Regarding the SIL build field 706, the data retrieving mod-
ule 244 may look to the sub-items of a predetermined 1tem in
the file structure 300. For example only, where the un-zipper
module 224 extracts the files to the second-level item 314, the
data retrieving module 244 may look to the sub-1tems of the
second-level 1tem 314. The data retrieving module 244 may
retrieve the name(s) of a predetermined type of sub-item of
the predetermined item 1n the file structure 300. For example

US 8,739,049 B2

9

only, the data retrieving module 244 may retrieve the name(s)
of the XML file(s) of the predetermined 1tem 1n the file struc-
ture 300.

The data retrieving module 244 may populate the drop-
down menu 740 of the SIL build field 706 based on the
retrieved data. For example only, the data retrieving module
244 may populate the drop-down menu 740 with the name(s)

of the XML file(s). When the user selects the drop-down
menu 740 of the SIL build field 706, the GUI module 240
selectively displays the name(s) 1n the drop-down menu 740.
The user may select a name from the drop-down menu 740.
The name corresponds to a virtual model that the user can
configure, include 1n a simulation with one or more other
virtual models, and/or use 1n performing another suitable
operation.

Once the user has selected the name (i.e., the virtual
model), the data retrieving module 244 retrieves data regard-
ing functions that are associated with the selected virtual
model. The functions that are associated with the selected
virtual model may be defined, for example, 1n the XML file.
The data retrieving module 244 may populate the drop-down
menu 744 of the functions field 710 with the name of the
associated functions. The associated functions may include,
for example, one or more functions that may be called by the
selected virtual model, a null function, or a system function.
The function(s) that may be called by the selected virtual
model may be defined, for example, within the XML file.

When the null function or one of the functions that may be
called by the selected virtual model has been selected, the
user may selectively configure mputs and outputs via the
variables field 714. The null function may be selected, for
example, when the selected virtual model 1s to use one or
more available vaniables without calling an associated func-
tion.

The data retrieving module 244 retrieves variables that are
associated with the selected virtual model and variables that
are available with the model file 176. The variables that are
associated with the selected virtual model may be defined, for
example, within the XML file. The data retrieving module
244 may populate the drop-down menu 748 of the variables
ficld 714 with the associated variables.

When the user selects the variables field 714, the data
retrieving module 244 selectively displays the names of the
variables 1n the drop-down menu 748. The user may select
one of the variables from the drop-down menu 748. Once one
of the variables has been selected from the drop-down menu
748, the user may add the selected variable as an 1nput or an
output. The user may add the selected variable as an input by
selecting an mput option 752 of the vanables field 714. The
user may add the selected variable as an output by selecting an
output option 756 of the variables field 714. The user may add
one or more other inputs and/or outputs.

When an available variable 1s added as an 1nput, the data
retrieving module 244 adds the selected variable to the mputs
field 718. More specifically, the data retrieving module 244
adds the selected variable to an mputs list 760 of the inputs
field 718. The data retrieving module 244 may retrieve units
data for the added input and dimension data for the added
input. The data retrieving module 244 adds the unmits data and
the dimension data to a units list 764 and a dimensions list
768, respectively, of the inputs field 718.

When a selected variable 1s added as an output, the data
retrieving module 244 adds the selected variable to the out-
puts field 722. More specifically, the data retrieving module
244 adds the selected variable to an outputs list 772 of the
outputs field 722. The data retrieving module 244 may
retrieve units data for the added output and dimension data for

10

15

20

25

30

35

40

45

50

55

60

65

10

the added output. The data retrieving module 244 adds the
units data and the dimension data to a units list 776 and a
dimensions list 780, respectively, of the outputs field 722.

When one of the functions that may be called by the
selected virtual model has been selected via the functions
field 710 (i.e., not the null function or the system function),
the data retrlevmg module 244 retrieves inputs and/or outputs
that are pre-associated with that function. The pre-associated
inputs and/or outputs may be defined, for example, within the
XML file. The data retrieving module 244 populates the (lists
ol) mputs field 718 and the outputs field 722 based on the
pre-associated mputs and outputs, respectively.

The user can delete an added input from the inputs field 718
via an input delete option 784 of the inputs field 718. The user
can delete an added output via an output delete option 788 of
the outputs field 722. Pre-associated inputs and outputs, how-
ever, may be unavailable for deletion 1n some circumstances.
The user can save the configuration of the second SIL GUI
702 (and the first SIL GUI 602) via a save option 792. The

user can discard unsaved configurations via a cancel option
796.

Referring now to FIG. 8, another exemplary diagram of the
first SIL GUI 602 1s presented. The model updating module
252 updates the virtual model 802 displayed via the first SIL
GUI 602 based on the configuration of the second SIL GUI
702. The model updating module 252 updates a name portion
806 of the SIL module 606 based on the function selected 1n
the drop-down menu 744 of the functions field 710.

The model updating module 252 creates and displays an
input indicator 814 (e.g., an arrow pointing to) for each mput
of the mputs field 718. The model updating module 252
creates and displays an output indicator 818 (e.g., an arrow
pointing from) for each output of the outputs field 722. For
cach of the input and output indicators, the model updating
module 252 may display the variable name and the units. The
model updating module 252 may also display the dimensions
and/or other suitable data. Examples of how the model updat-
ing module 252 may display the name and units for an 1mput
indicator and an output indicator are illustrated at 822 and
826, respectively.

The model updating module 252 may update the virtual
model displayed via the first SIL GUI 602 based on the
configuration of the second SIL GUI 702 when the user
selects the save option 792. In various implementations, the
model updating module 252 may update the first SIL GUI 602
cach time that one of the fields of the second SIL GUI 702 1s
changed or at another suitable frequency.

FIG. 9 icludes another exemplary diagram of the second
SIL GUI 702. The mnputs field 718 may also include an input

UP option 902 and an input DOWN option 906. The mnput UP
option 902 or the mput DOWN option 906 may be used to
move where a selected input 1s displayed with respect to the
non-selected mputs 1n the first SIL GUI 602. For example
only, when a user has selected one of the inputs 1n the inputs
l1st 760 (or the units or dimensions associated with one of the
inputs), the model updating module 252 may move the
selected 1mput up or down one location 1n the first SIL GUI
602 cach time that the user selects the input UP option 902 or
the input DOWN option 906, respectively. This 1s 1llustrated
in FI1G. 10 by exemplary dashed arrow sets 1002 and 1006.
Referring now to FIG. 11, another exemplary diagram of
the second SIL GUI 702 1s presented. When the user selects
the system function from the drop-down menu 744 of the
functions field 710, the GUI module 240 activates a schedul-
ing option 1102. More specifically, the GUI module 240
makes the scheduling option 1102 available for selection by
the user when the user selects the system function from the

US 8,739,049 B2

11

functions field 710. When the user selects the scheduling
option 1102, the GUI module 240 opens a third SIL GUI.

Referring now to FIG. 12, a diagram of an exemplary third
SIL GUI 1202 1s presented. The user may, for example, con-
figure execution and/or scheduling of one or more tasks via
the scheduling option 1102. The tasks may be performed 1n a
simulation of the selected virtual model with the model file
176. For example only, the tasks may include algorithm tasks,
functions, operating system tasks, event tasks, and other suit-
able types of tasks.

Operating systems tasks and event tasks may be displayed
in a first viewing pane 1206 of the thurd SIL GUI 1202,
algorithm tasks may be displayed in a second viewing pane
1210 of the third SIL GUI 1202, and functions may be dis-
played in a third viewing pane 1214 of the third SIL GUI
1202. More specifically, an operating system tasks list 1220
and an event task list 1224 may be displayed in the first
viewing pane 1206. An algorithm tasks list 1228 may be
displayed 1n the second viewing pane 1210, and a functions
task list 1232 may be displayed in the third viewing pane
1214.

Each of the lists may include N tasks, where N 1s an integer
greater than zero. The data retrieving module 244 may
retrieve the operating system tasks when the scheduling
option 1102 1s selected. The data retrieving module 244 may
also retrieve the algorithm tasks and the functions when the
scheduling option 1102 1s selected. For example only, the
operating system tasks, the algorithm tasks, and the functions
may be defined in the XML file.

The data retrieving module 244 populates the lists and
displays each of the lists with the respective retrieved tasks.
Operating system tasks may be referred to as control system
software tasks. An operating system task may refer to a task
that 1s performed 1n the simulation environment. Algorithm
tasks may be referred to as component model tasks. Functions
may be referred to as component soitware tasks. The GUI
module 240 may display each of the retrieved operating sys-
tem tasks with a first type of icon or indicator (not shown),
such as a check mark. An example of the first type of 1con or
indicator 1s shown at 1252.

Each of the operating system tasks may include one or
more sub-tasks, such as one or more of the algorithm tasks
and/or one or more of the functions. For example only, exem-
plary operating system task 1240 may include a function
1244 and an algorithm task 1248. The user may schedule (1.e.,
add) an algorithm task to be performed with a selected oper-
ating system task via the third SIL GUI 1202. The user may
additionally or alternatively schedule (i.e., add) a function to
be performed with a selected operating system task via the
third SIL GUI 1202. For example only, the user may schedule
an algorithm task or a function to be performed with one of
the operating system tasks by selecting the algorithm task or
the function from the respective list and dragging the selected
algorithm task or function to the one of the operating system
tasks 1n the first viewing pane 1206.

The GUI module 240 may display each added algorithm
task with a second type of icon or indicator (not shown), such
as an A. An example of the second type of 1con or indicator 1s
shown at 1256. The GUI module 240 may display each added
function with a third type of icon or indicator (not shown),
such as an F. An example of the third type of icon or indicator
1s shown at 1260.

For each algorithm in the algorithm tasks l1st 1228, the GUI
module 240 may display a count. A count1s also displayed for
cach of the functions in the functions task list 1232. For
example only, the counts for the algorithm task 1248 and
function 1244 are 1llustrated as #. The count of a given algo-

10

15

20

25

30

35

40

45

50

55

60

65

12

rithm task or function represents the number of 1nstances that
the given algorithm task or function appears in the operating
system tasks list 1220. The counts are integers greater than or
equal to zero.

The user may save the configuration of the third SIL GUI
1202 by selecting a save and continue option 1270. When the
user selects the save and continue option 1270, the GUI

module 240 may display the second SIL GUI 702. The GUI
module 240 may also close the third SIL GUI 1202.

Referring now to FIG. 13, another exemplary diagram of
the third SIL GUI 1202 1s presented. The user may disable or
cnable a task scheduled in the operating system tasks l1st 1220
via the third SIL GUI 1202. For example only, the user may
disable a scheduled task by first selecting (e.g., right-clicking)
the scheduled task. When the scheduled task has been
selected, the GUI module 240 may display a drop-down menu
from which the user may select disable or enable. When a
scheduled task has been disabled, the task will not be per-
formed during the normal performance of the operating sys-
tem tasks list 1220. The GUI module 240 may display each
disabled algorithm task with a fourth type of 1con or indicator
(not shown), such as an X. An example of the second type of
icon or mdicator 1s shown at 1302. Disabled tasks remain 1n
the operating system tasks list 1220, but are not performed
during the performance of the operating system tasks.

The user may also delete an added task from the operating,
system tasks list 1220 via the third SIL GUI 1202. For
example only, the user may delete an added task by first
selecting (e.g., right-clicking) the added task. When the
scheduled task has been selected, the GUI module 240 may
display the drop-down menu from which the user may select
disable, enable, or delete. If the user selects delete from the
drop-down menu, the added task may be removed from the
operating system tasks list 1220.

Referring now to FIG. 14, another exemplary diagram of
the third SIL GUI 1202 is presented. The user may also
re-schedule a scheduled task for another time via the third SIL
GUI 1202. For example only, when the function 1244 1is
scheduled 1n the operating system tasks list 1220, the user
may select the function 1244 from the functions task list
1232. The user may drag the selected function 1244 from the
third viewing pane 1214 1nto the first viewing pane 1206 and
more particularly to one of the scheduled tasks. When the user
ends the selection of the function 1244, the GUI module 240
inserts the function 1244 above or below the one of the sched-
uled tasks to re-schedule the function 1244. The GUI module
240 may also disable the function 1244 (illustrated at 1402)
and mark the function 1244 as disabled when the user re-
schedules the function 1244 within the operating system tasks
list 1220.

The user may also bypass a scheduled task 1n favor of
another task via the thurd SIL GUI 1202. For example only,
when the function 1244 1s scheduled 1n the operating system
tasks list 1220, the user may select the function 1244 for
bypassing. The user may select the function 1244 for bypass-
ing, for example, by right clicking the function 1244 and
selecting a “bypass”™ option. The user may then select another
function from the functions task list 1232 to be performed
instead of the function 1244 when the function 1244 1s to be
performed. In this manner, the function 1244 may be
bypassed.

Referring back to FIG. 2, the configuration module 248
generates model-based code (e.g., the code in the model
source code file 164) based on the configuration of the second
and third SIL GUI’s 702 and 1202 and the XML file 122. The
model updating module 252 generates a model in the model-
ing/simulation environment based on the model-based code

US 8,739,049 B2

13

and the source code DLL file 130. The model updating mod-
ule 252 may generate the model further based on the static
library file 134.

The simulation module 256 simulates the operation of the
generated model with, for example, the model file 176 (1.¢., a
model of a plant of the vehicle), one or more other modules,
ctc. The simulation module 256 may also debug the model-
based code. The GUI module 240 may display the simulation
in one or more GUIs (not shown). The user may use the
second and/or third SIL GUIs 702 and 1202 to re-configure
and re-generate the model based on the result of the simula-
tion. While shown and presented as being different, one or
more of the modules of FIGS. 1B and 2 may be implemented
within one or more of the modules of FIG. 1A.

Referring now to FIG. 15, a flowchart depicting an exem-
plary method 1500 of performing a vehicle system simulation
1s presented. Control may begin with 1502 where control
generates the object code based on the source code. Control
may generate the definitions file and the XML file at 1506.
Control may generate the definitions file and the XML file
based on the source code and the object code.

At 1510, control may generate the DLL {ile and the static
library file. Control may generate the DLL {file and the static
library file based on the object code and the definitions file.
Control may generate the model-based source code at 1514.
Control may generate the model-based source code based on
the XML file. Control may also generate a virtual model and
display the virtual model 1n a GUI at 1514.

Control may selectively display one or more GUIs to the
user and receive user configurations at 1518. Control may
update the model-based source code and the virtual model
based on the user configurations at 1522. Control may gen-
crate the executable file based on the model-based source
code at 1526. The executable file 1s executable within the
simulation environment. Control may perform a simulation
involving the virtual model at 1530. Control may then end.

The broad teachings of the disclosure can be implemented
in a variety of forms. Therefore, while this disclosure includes
particular examples, the true scope of the disclosure should
not be so limited since other modifications will become
apparent to the skilled practitioner upon a study of the draw-
ings, the specification, and the following claims.

What 1s claimed 1s:

1. A vehicle simulation system comprising;:

a compiler module that generates object code that 1s com-
patible with a first type of operating system based on
source code that 1s executable by a vehicle control mod-
ule and that 1s compatible with a second type of operat-
Ing system;

a parser module that generates a definitions file and an
extensible markup language (XML) file based on the
source code and the object code;

a wrapper module that generates a library file based on the
object code and the definitions file;

a modeling module that generates model-based source
code for a virtual model based on the XML file and a user
configuration of the virtual model; and

a stmulation module that simulates operation of a plant of
a vehicle with the virtual model.

2. The vehicle simulation system of claim 1 wherein the

modeling module comprises:

a graphical user interface (GUI) module that displays a
configurable module 1n a first GUI and that displays a
second GUI when the configurable module 1s selected;

a data retrieving module that retrieves data for the virtual
model from the XML file and that selectively populates
menus of the second GUI based on the retrieved data.

10

15

20

25

30

35

40

45

50

55

60

65

14

3. The vehicle simulation system of claim 2 wherein the
modeling module further comprises:

a configuration module that generates the model-based
source code based on the XML file and the user configu-
ration 1nput via the second GUI; and

a model updating module that updates the configurable
module displayed in the first GUI based on the user
conflguration mput via the second GUI.

4. The vehicle simulation system of claim 2 wherein the
data retrieving module presents the virtual model for selec-
tion via a first one of the menus,

wherein the data retrieving module presents a function to
be called by the virtual model for selection via a second
one of the menus, and

wherein the data retrieving module presents a variable for
addition as one of an 1nput to and an output from the
function via a third one of the menus.

5. The vehicle simulation system of claim 2 wherein the
GUI module displays a third GUI when a task scheduling
option of the second GUI 1s selected.

6. The vehicle simulation system of claim 5 wherein the
configuration module generates the model-based source code
turther based on a configuration 1nput via the third GUI.

7. The vehicle simulation system of claim 5 wherein the
data retrieving module generates a list of tasks based on the

XML file.

8. The vehicle simulation system of claim 7 wherein the
data retrieving module presents at least one of an algorithm
task and a function for addition to the list of tasks via the third
GUI.

9. The vehicle simulation system of claim 7 further com-
prising an executable generating module that generates an
executable file based on the library file and the model-based
source code,

wherein the executing module simulates the operation of

the plant using the executable file, the list of tasks, and a
virtual model of the plant.

10. The vehicle simulation system of claim 1 wherein the
first and second operating systems are different.

11. A vehicle simulation method comprising:

generating object code that 1s compatible with a first type of
operating system based on source code that 1s executable
by a vehicle control module and that 1s compatible with
a second type of operating system;

generating a definitions file and an extensible markup lan-
guage (XML) file based on the source code and the
object code;

generating a library file based on the object code and the
definitions file;

generating model-based source code for a virtual model
based on the XML file and a user configuration of the
virtual model; and

simulating operation of a plant of a vehicle with the virtual
model.

12. The vehicle simulation method of claim 11 further

comprising:

displaying a configurable module 1n a first graphical user
interface (GUI);

displaying a second GUI when the configurable module 1s
selected;

retrieving data for the virtual model from the XML file; and

selectively populating menus of the second GUI based on
the retrieved data.

13. The vehicle simulation method of claim 12 further

comprising;

US 8,739,049 B2

15

generating the model-based source code based on the XML
file and the user configuration input via the second GUI;
and

updating the configurable module displayed in the first
GUI based on the user configuration input via the second
GUL

14. The vehicle simulation method of claim 12 further

comprising:

presenting the virtual model for selection via a first one of
the menus;

presenting a function to be called by the virtual model for
selection via a second one of the menus; and

presenting a variable for addition as one of an mput to and
an output {from the function via a third one of the menus.

15. The vehicle simulation method of claam 12 further

comprising displaying a third GUI when a task scheduling
option of the second GUI 1s selected.

16

16. The vehicle simulation method of claim 15 further
comprising generating the model-based source code further
based on a configuration 1nput via the third GUI.

17. The vehicle simulation method of claim 15 further
comprising generating a list of tasks based on the XML file.

18. The vehicle simulation method of claim 17 further
comprising presenting at least one of an algorithm task and a
function for addition to the list of tasks via the third GUI.

19. The vehicle simulation method of claim 17 further
comprising;

generating an executable file based on the library file and

the model-based source code; and

simulating the operation of the plant using the executable

file, the list of tasks, and a virtual model of the plant.

20. The vehicle simulation method of claim 11 wherein the
first and second operating systems are different.

¥ K H oK ¥

	Front Page
	Drawings
	Specification
	Claims

