US008726383B2
a2 United States Patent (10) Patent No.: US 8,726,383 B2
Blackwell 45) Date of Patent: May 13, 2014
(54) FLOW DATA FOR SECURITY INTRUSION 7,430,670 B1* 9/2008 Horning etal. 713/190
DETECTION 7,594,260 B2 9/2009 Porras et al.
2008/0234999 Al1* 9/2008 Cohenetal. 703/26
(75) Inventor: Aaron Kenneth Blackwell, Redding,
CT (US) OTHER PUBLICATIONS
(73) Assignee: CA, Illc.j ISlEllldiEl, NY (US) U.S. Appl No. 12/855,135, filed Sep. 17, 2010.
Sawyer, John, “What’s Going on? Monitor Networks to Thwart
(*) Notice: Subject to any disclaimer, the term of this Intrusions”, Information Week Analytics, Strategy Session, Report
patent 1s extended or adjusted under 35 [D: 51810910, Sep. 2010, 13 pages.
U.S.C. 154(b) by 338 days. _ _
* cited by examiner
(21) Appl. No.: 13/026,788
(22) Filed: Feb. 14, 2011 Primary Examiner — Justin T Darrow
(74) Attorney, Agent, or Firm — Vierra Magen Marcus LLP
(65) Prior Publication Data
e 1sclosed herein are tec ues 1or detecting possible secu-
(1) Int. Cl Disclosed here hniques for detecting possibl
HO4L 29/06 (2006.01) rity intrusions 1n a computer network. The security intrusion
(52) gsspgl 6123 196/ T13/164- 713/187 detection may be based on analyzing patterns of how trans-
S e e ! ’ ! ! actions flow through one or more soitware applications. For
(58) Field of Clasmﬁcatlol/l Sear(::h / example, patterns of transaction flows are determined for an
USPC sesneeneeneees 726/22-25; 713/164, 16@ 167,187 initial time period to establish a baseline of normal flow
See application file for complete search history. patterns. These normal flow patterns may be compared with
(56) References Cited patterns for transaction tlows for a later time period. Devia-

U.S. PATENT DOCUMENTS

tions in the patterns of transaction flow may indicate a pos-
sible security intrusion.

5,278,901 A 1/1994 Shieh et al.
7,370,358 B2 5/2008 Ghanea-Hercock 24 Claims, 9 Drawing Sheets
100 Application Server 1103/151’5‘
Managed Application A Security monitor 102
oA T 82522? Pattern
/ Component Component ven matching
\ AT A2 notifcation 119
~ 123 -
- _-:"'-:.:: _________
/
/ Component Probes Pattern Flow
/ Az D 153A detection | | patterns
111 117
———__________1+______§L_____
Agent
Web Web \ \1 oA _
browser 104 service BTAZ \.} Data-
102 109 base
118
. Application #erver 110b 151B —
\ PP 1100 /
nTR \ Managed A,bplication B
e REV A -
7/ \ Component anager
\ Data- |*\ . ot \ 120
“ baseY ~ / /
S| 114 ™ e 1
Probes 1538)
User
' interface
Agent 122

1128

US 8,726,383 B2

Sheet 1 0of 9

May 13, 2014

U.S. Patent

buluiem
Aj1un2a8g

¢0l

J0JIUON A)1dN29S

V1 DI

Gol
elep
buiddew

uoneol|ddy

Ol

181ndwon

101

JO)JIUOIN
uoljeol|day

ccl
9oBBUI J8S

US 8,726,383 B2

Sheet 2 0of 9

May 13, 2014

U.S. Patent

el
=T =INET]

19s)

0cl
labeue

LL1 1L
sulaned UOoI108)ap

MO uJaned

ccl
uoleolinou
JUBAD
AluN29g

6L1
buiyoyew
uJaned

Z0 | Jojuow A)junoag

dcll

- e

deal ssqoid

601

99IAI9S JOSMOIQ
JoM

A Avj
Juauoduwion -« Jusuoduwion
AARS
B0 | JoAI8S uoneslddy 00L

US 8,726,383 B2

Sheet 3 of 9

May 13, 2014

U.S. Patent

4162

q1Gl

elLgl

L g Jusuodwo?

g uoinedl|ddy psbeue

v/ JUBUOdWIOD

2V lusuodwod L\ Jusuodwo?

W uonedlddy pabeue

HGC

91GC

601
90IAJ9S

USM

I1GC
PLGC

XSIOA
EIENE

A E

N

U.S. Patent May 13, 2014 Sheet 4 of 9 US 8,726,383 B2

|0J
-
-

Monitor applications for given time period
302

Determine/report first flow data Flg - 3A
304

Determine first flow patterns based on first
flow data 306

No ormal flows established”

308
Yes

390

Monitor applications for second time
period 359

Determine/report second flow data F|g - 3 B
354

Determine second flow patterns based on

second flow data 356

Compare second flow patterns with first to
determine possible security threat

398

. Issue
Security threat? Yes -

No

360

Yes Monitor again?

No—b-

362

U.S. Patent May 13, 2014 Sheet 5 of 9 US 8,726,383 B2

400

Determining a first mix of flows for a first
transaction based on the first flow data; 402

Determining a second mix of flows for the

first transaction based on the second flow
data 404

Determining whether the second mix of
flows for the first transaction deviates from
the first mix of flows for the first 406

transaction

450

Determining a first mix of transaction flows
based on the first transaction flow data 157

Determining a second mix of transaction
flows based on the second transaction
flow data

454

Determining whether the second mix of
transaction flows deviates from the first
mix of transaction flows

456

US 8,726,383 B2

Sheet 6 of 9

May 13, 2014

U.S. Patent

¢ L O
jusuodwod Jusuodwod

~ uoneai|ddy pabeuey
01G1

¢ L O
Jusuodwod Jusuodwod

~ uoneai|ddy pabeuey
901Gl

qG b1

cd
usuodwod

¢d . d
Jusuodwod jusuodwod

q uonedl|ddy pabeuepy

cd
Juauoduwod

¢d | d
Juauodwod Jusuodwod

q uoneoslddy psbeuepy

q1G L

IOLGC

A Avd
Jusuodwod Jusuodwod

v uoledlddy pabeuep
ELGL

A/ A/
Jusuodwod Jusuodwod

v uoleolddy psbeue
e1gl”

U.S. Patent May 13, 2014 Sheet 7 of 9 US 8,726,383 B2

151d 151e
Managed Application D Managed Application E

Servlett A99 EJB E1 component E2

Fig. 5C

1571e
Managed Application E

| |
| Component X EJB E1 component E2
| |

Fig. 5D

U.S. Patent May 13, 2014 Sheet 8 of 9 US 8,726,383 B2

600 610
620 630 640
Network Working .
Fig. 6A
650

User
Interface
Agents monitor execution of application
Generate application runtime data based on
monitoring

004

Process/report application runtime data
606

700\
Collect dependency data that pertains to one or
more applications that process transactions

002

702
Aggregate the dependency data to form F|g . 7
directed graph that represents dependencies
between software components that process the 204

transactions

Determine dependency map based on directed
graph 706

U.S. Patent May 13, 2014 Sheet 9 of 9 US 8,726,383 B2

300

Begin transaction trace
302
Collect dependency data between software
components that process the transaction 304

<4+No Send data to EM?
Yes
\J
Send dependency data to EM
308
<4No Send transaction flow data to security

monitor?
3810

Yes
Determine which data to send to security
monitor 812
Send data to security monitor
3814

Fig. 8

US 8,726,383 B2

1

FLOW DATA FOR SECURITY INTRUSION
DETECTION

BACKGROUND

1. Field

The present disclosure 1s directed to technology for moni-
toring software 1n a computing environment.

2. Background

The growing presence of the Internet as well as other
computer networks such as intranets and extranets has
brought many new applications i e-commerce, education
and other areas. Organizations increasingly rely on such
applications to carry out their business or other objectives,
and devote considerable resources to ensuring that they per-
form as expected. Naturally, security measures are taken to
protect valuable resources, such as content of databases.
Unfortunately, some may attempt to take advantage of secu-
rity vulnerabilities. Therefore, network intrusion detection
software has been developed to detect possible attempts to
breach security.

Some network intrusion detection software primarily relies
on an analysis of a cross-section of network traffic at a single
logical point 1n end-user interactions. As one example, pack-
cts that enter a network may be “sniffed”. As another
example, web server access logs can be analyzed. Security
soltware can analyze these end-user interactions for patterns
in the data that may indicate certain types of attacks.

To improve their effectiveness, some security software
may increase the sophistication of the pattern recognition
algorithms used to detect possible attempts to breach security.
These sophisticated algorithms may benefit from rich sources
of mput data. However, too much data may overwhelm the
algorithms to the point of diminishing their utility.

Also, one of the hardest problems 1s detecting insider secu-
rity threats. Most often, the raw data needed to 1dentify insider
threats 1s much more difficult to capture since insiders usually
do not go through the same level of application security as
external users. Insider threats may also come from malicious
custom soitware that takes advantage of embedded program-

matic interfaces that are inherently unexposed to the outside
world but that are still vulnerable to imnsiders with more nti-
mate knowledge of information technology (IT) systems. A
simple example might be a rogue programmer that utilizes a
remote Enterprise JAVA Beans (EJIB) call to imitiate a fraudu-
lent transaction that would normally be accessed through
HTTP intertaces which may be logged and more proactively
secured.

Thus, improvements are desired in detecting possible
attempts to breach security of a computer network. While
substantial amounts of data may be available to be mined for
use 1 network intrusion detection, using too much data and/
or data at too granular of a level may lessen the effectiveness
of network intrusion detection algorithms. Further, tech-
niques that are better at detecting insider security threats are
desired.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a structural overview of one embodiment of a
system for detecting possible security intrusions 1 a com-
puter network.

FI1G. 1B provides further details of one embodiment of the
system of FIG. 1A.

FI1G. 2 depicts one example of a dependency map that could
be presented on a display screen.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3A 1s a tlowchart of one embodiment of a process of
establishing 1mitial baseline tflow patterns 1n mapping data,

such as flow data.

FIG. 3B 1s an overview of a process ol analyzing flow
patterns 1n later mapping data to detect possible security
intrusions.

FIGS. 4A and 4B are flowcharts of embodiments of the
security monitor processing flow data to determine whether a
security breach 1s being attempted.

FIGS. 5A and 5B depict different flows for an example
transaction.

FIGS. 5C and 5D represents two example sequences of
soltware components for transaction flows.

FIG. 6A depicts one embodiment of a computer system
that may be used 1n the network of FIGS. 1A-1B.

FIG. 6B illustrates a flowchart of an embodiment of a
process of monitoring applications.

FIG. 7 1s a flowchart depicting one embodiment of a pro-
cess for determining a dependency map based on a digraph.

FIG. 8 1s a flowchart that depicts one embodiment of a
process of generating flow data to send to the security moni-
tor.

DETAILED DESCRIPTION

Disclosed herein are techniques for detecting possible
security intrusions in a computer network. The security intru-
sion detection may be based on analyzing patterns of how
transactions tflow through one or more software applications.
For example, patterns of transaction tlows are determined for
an 1nitial time period to establish a baseline of normal flow
paths or patterns. These normal flow patterns may be com-
pared with patterns for transaction flows for a later time
period. Deviations 1n the patterns of transaction flow may
indicate a possible security intrusion.

In some embodiments, application mapping data 1s used as
input to a security monitor. The application mapping data
may describe various sequences of software components that
are 1nvoked for some purposes. For example, a given
sequence of software components may be ivoked to process
a type ol transaction. As a particular example, when a user
places an order to purchase a book with an online retailer,
various software components may be invoked on the retailer’s
web site. The application mapping data may i1dentify appli-
cations and/or soitware components that are invoked to pro-
cess the transaction. However, note that 1t 1s not necessary for
the application mapping data to identily every software com-
ponent that 1s invoked, as this may unnecessarily complicate
the description of the transaction tlow. As one example, the
mapping data may identify a software component at a front
end of each application and a software component at a back
end of each application. Note that tracing transactions 1s one
example of how application mapping data can be generated;
however, the application mapping data does not necessarily
relate to tracing transactions.

FIG. 1A 1s a structural overview of one embodiment of a
system 100 for detecting possible security intrusions in a
computer network. The system includes an application moni-
tor 101 that monitors software applications runmng in com-
puter network 103. The security monitor 102 detects possible
attempts to breach the security of the computer network 103.

The computer network 103 may process transactions such
as user logins, online merchandise purchases, credit card
transactions, etc. In one embodiment, the application monitor
101 may generate application mapping data 105 that
describes how transactions flow through the computer net-
work 103. For example, for a given type of transaction, the

US 8,726,383 B2

3

application mapping data 105 may describe a sequence of
soltware components 1n the computer network 103 that are
invoked. Note that this sequence typically does not include all
ol the software components that are invoked for a given
transaction. In some cases, the transaction may flow through
multiple applications, and the application mapping data 105
may 1dentily two software components per application. In
one embodiment, the application monitor 101 may generate
application mapping data that describes a sequence of sofit-
ware components that are mvoked for some purpose. The
purpose may be to process some transaction (such as a user
buying a book); however, the sequence of software compo-
nents may be invoked for a purpose other than performing a
transaction.

One use of this application mapping data 105 1s to present
a graphical display on a user interface 122 to show applica-
tions and soitware components used 1n the transaction flow.
Typically, a limited number of software components are
shown so as to provide the user with pertinent information,
without overwhelming the user with too much detail. Certain
performance information, such as the average time a transac-
tion took at a specific point in the transaction flow, may be
presented to the user. The mapping of the transaction tlow
may be used to help the user identity problems such as bottle-
necks. The application mapping data 105 may be stored 1n a
database, or provided directly to the security monitor 102.
Note that the application mapping data 105 1s one type of
transaction tlow data.

Another use of the application mapping data 105 1s as an
input to the security monitor 102. The security monitor 102
analyzes the application mapping data 105 to find flow pat-
terns. After determining what normal flow patterns look like,
the security monitor 102 continues to receive new application
mapping data 105, which it analyzes for present tlow patterns.
IT these present flow patterns deviate from the normal flow
patterns, this may indicate a possible attempt at a security
breach. The security monitor 102 may 1ssue a security warn-
ing to an operator to mvestigate the possible security breach.
This warning may take many forms such as an electronic
communication (e.g., email, mstant message, etc.), report,
etc.

FIG. 1B provides further details of one embodiment of the
system of FIG. 1A. FIG. 1B depicts a system 100 in which
different computer systems provide data to a manager 120.
The computer network 103 includes application servers 110a,
11056, web service 109, and databases 113, 114. The applica-
tion monitor 101 includes the manager 120, database 118, as
well as agents 112 and probes 153 1n the applications 151.

The security monitor 102 receives application mapping
data 105 (or transaction flow data) from the manger 120,
which 1t analyzes with pattern detection logic 111 to deter-
mine flow patterns 117, which it stores. The security monitor
102 has pattern matching logic 119 which 1t uses to compare
flow patterns from different time periods to determine
whether there may be a security intrusion in the computer
network. The security monitor 102 has security event notifi-
cation logic 123 for transmitting an alert upon detecting a
possible security threat. The various logic in the security
monitor 102 may be implemented as computer readable
instructions that are executed on one or more computer pro-
cessors. In some embodiments, the flow patterns 117 are
patterns 1n transaction tlows. For example, the flow patterns
117 could be a sequence of software components that are
invoked when processing a particular type of transaction.

The application servers 110 can run different applications,
or separate istances of the same application. The application
servers 110 can be located remotely from one another or

5

10

15

20

25

30

35

40

45

50

55

60

65

4

co-located. The application servers 110 communicate with a
manager computer 120, i this example. The Manager 120
could be local or remote from the application servers 110.

For example, a corporation running an enterprise applica-
tion such as a web-based e-commerce application may
employ a number of application servers at one location for
load balancing. Requests from users, such as from an example
web browser 102 of a user, are recetved via the network 104
such as the Internet, and can be routed to any of the applica-
tion servers 110. The web browser 102 typically accesses the
network cloud 104 via an Internet Service Provider, not
shown.

Application servers 110a, 1105 include managed applica-
tion A 151A and managed application B 151B, which
includes agents 112A, 112B and example probes 153A,
153B. There may be any number of probes. The distinction
between elements having a letter in the reference numeral
(e.g., application servers 110a, 1105) 1s made for purposes of
discussion. Herein, the use of reference numerals without an
“a,” or “b,” indicates that no particular server or other element
1s being referred to. Application 151 can be a Java® applica-
tion or a different type of application. Thus, agent software
running on the application servers 110, denoted by Agent 112,
gather information from a managed application 151, middle-
ware or other software, running on the application servers
110, in one possible approach. For example, mnformation
from the application 151 can also be obtained using probes
153. In practice, many such probes can be used to obtain
information regarding different components of the applica-
tion 151. In some embodiments, the probes may be added to
the application 151 using instrumentation, one example of
which 1s byte code instrumentation. However, the gathered
data may be obtained in other ways as well. The agents 112
essentially live in the computer system being monitored and
provide a data acquisition point. The agents 112 orgamize and
optimize the data communicated to the manager 120.

For purposes describing transaction flows, software com-
ponents that process transactions are depicted 1n the managed
applications 151. The software components could include
any piece of code within a managed application 151 or any
piece of code outside of a managed application. For example,
the software components within the managed application 151
could include, but are not limited to, Servlets, plain old Java
objects (POJOs), Enterprise JavaBeans® (EJB®), sockets,
etc. Software components outside the managed application
151 may 1nclude those with which the managed application
151 interacts; however, direct interaction 1s not required.
Software components outside the managed application 151
could include, but are not limited to, databases, web services,
web browsers, etc.

The tlows of three separate transactions are depicted 1n
FIG. 1B. By the flow of a transaction it 1s meant a sequence of
some of the software components that are mnvoked to process
the transaction. Transaction BTAl1 may be imtiated in
response to an HTTP request from the web browser 102, as
one example. For transaction BTA1, the tlow 1s from compo-
nent Al to component A2 to DatabaseX 113. Note that the
flow may be depicted as moving in one direction, although
often the flow may in fact return. For example, after the
database call, the flow could return to component A2 and then
to component Al to provide a response to the web browser
102. However, the return flow 1s not necessarily needed to
adequately describe the transaction tlow. Also note that there
may actually be many more software components involved
with transaction BTA1. However, not all of the software com-
ponents may be of interest to a user. For example, there might
be one or more soltware components along the transaction

US 8,726,383 B2

S

between component Al and component A2. Also, there might
be one or more components along the transaction between
component A2 and DatabaseX 113. For example, there might
be a socket between component A2 and DatabaseX 113.
However, the socket might not be of interest to the user. For
transaction BTA2, the flow 1s from component A3 to Web
Service 109 to component B1. The flow from component B1
to DatabaseY 114 could also be considered to be part of
transaction BTA2 1if, for example, 1t was caused by the call
from component A3 to component B1. The transaction BTA2
generates a transaction BTB1 with respect to ApplicationB.
Specifically, the tlow for transaction BTB1 1s from compo-
nent B1 to DatabaseY 114.

For the sake of discussion, transaction BTA1 might be a
“Buy Transaction,” that allows a user (at web browser 102) to

buy a book or some other item. For the sake of discussion,
transaction BTA2 might be a “Check Credit Transaction,”
that authorizes the use of a credit card for purchasing the
book. Note that over time there may be many different
istances of transaction BTA, as different users visit the web-
site. Thus, transaction BTA1 may be referred to as a “type of
transaction,” for which there may be many instances.

In some embodiments, the agents 112 collect data that
describes dependencies between the software components as
transactions are processed and supply that data to the man-
ager 120. The manager 120 may aggregate that data to form a
directed graph (“digraph™) that represents dependencies
between the software components as the software compo-
nents process the transactions. For example, the digraph may
have vertices that represent the components and edges that
represent the dependencies between the components. A
dependency map may then be displayed on a display screen
such as user interface 122 based on the digraph. The depen-
dency map shows dependencies as the transactions are pro-
cessed. The dependency map can have various levels of detail.
For example, 1t might show dependencies between the sofit-
ware components. However, the dependency map could be
more general and show dependencies between the applica-
tions 151 (perhaps not even showing the software compo-
nents). In some embodiments, flow data 1s extracted from the
digraph and provided to the security monitor 102.

FIG. 2 depicts one example of a dependency map 200 that
could be presented on a display screen (such as user interface
122). Various performance metrics, such as the average time
spent at one point in the transaction tflow, might also be
presented. As previously noted, this may help the user to
analyze system performance. Moreover tlow data may be
extracted from this dependency map 200 (or from a digraph or
other structure used to create the dependency map 200). This
flow data may be provided to the security monitor 102.

The example dependency map 200 may show dependen-
cies between software components of system 100 when pro-
cessing transactions. In this example, the dependency map
200 pertains to some transactions processed by Applications
A and B. For example, the dependency between component
Al, component A2, and databaseX 113 is represented by the
arrows connecting those components. Note this corresponds
to transaction BTA 1. The dependency between component
A3, web service 109, component B1, and databaseY 114 1s
represented by the arrows connecting those elements. Note
this corresponds to transaction BTA2. Another possibility 1s
to show fewer details for managed application B 1515, since
the user only requested details for Application A. For
example, component B1 and/or database Y 114 might not be
depicted. Instead there might just be an arrow from web
service 109 to managed application B 1515.

10

15

20

25

30

35

40

45

50

55

60

65

6

The dependency map 200 may include vertices and edges.
A vertex may correspond to a software component. For
example, 1n FI1G. 2, vertexes could be “external vertex,” com-
ponent Al, component A2, component A3, DatabaseX, web
service 109, component B1, and Database Y. Also note that
the term “external vertex” 1s being used to refer to one type of
vertex that 1s outside of the application server. In this case, the
external vertex represents some software component that sent
an HTTP request to managed application A 151 A. Note that
the user might not be interested 1n exactly which software
component sent the HT'TP request. Therefore, using the
generic term “external vertex” may provide sulficient
description. However, i details of that software component
are important to the security monitor 102, then that informa-
tion might be collected. Note that in some cases, that external
vertex 1s not even reported to the security monitor 102.

Several edges 251a-251f are labeled 1n FIG. 2. An edge
represents a dependency between a pair of soltware compo-
nents. In general, an edge may be described as an ordered pair
of two software components. Edges are represented as arrows
in FI1G. 2. The tail and head of the arrow may be used to define
the order of the software components in the ordered pair. For
example, edge 251a may be described as (component Al,
component A2). Edge 2515 may be described as (component
A2, Database X). Note that when processing a transaction,
there may be other software components invoked between the
ordered pair of software components. Thus, the second soft-
ware component 1s not necessarily imvoked by the first soft-
ware component 1n the ordered pair. For example, component
A2 1s not necessarily invoked directly by component Al.

In some embodiments, the flow data includes “component
pairs.” Herein, the term “component pair” means an ordered
pair of two software components. Referring to FI1G. 2, each of
the edges 251 connects an ordered pair of two soltware com-
ponents. Note that with this definition of component pair that
a sequence ol component pair can be described for a given
transaction. As one example, one sequence of component
pairs could be: (external vertex, component Al), (component
Al, component A2), (component A2, DatabaseX). Note that
a given component may appear in more than one component
pair using this method of description. However, the sequence
could be described 1n a different manner.

One example of a component pair 1s a “front end/back end”
component pair. A front end/back end component pair
includes a “front end” software component at or near a “front
end” of a managed application 151 and a “back end” software
component at or near a “back end” of a managed application
151. In this context, the front end software component 1s
invoked prior to the back end software component. Note that
the front end software component may not be the very first
soltware component that 1s invoked 1n the managed applica-
tion 151 when processing the transaction. For example, the
very lirst software component that 1s invoked might not be of
interest to the user, or might not be as useful for analysis.
Likewise, the back end software component may not be the
very last software component that 1s invoked 1n the managed
application 151 when processing the transaction. As one
example, component Al 1s one example of a “front end”
soltware component and component A2 1s one example of a
“back end” software component. Thus, component Al and
component A2 are one example of a front end/back end com-
ponent pair (in the context of a transaction that flows through
these two components). As noted, there may be software
components invoked between component Al and component
A2. Also, component Al 1s not necessarily the very first
software component that 1s invoked in managed application
151 when processing a transaction.

US 8,726,383 B2

7

In some embodiments, the application monitor 101 sends
front end/back end component pairs to the security monitor
102, but does not necessarily send other component pairs. For
example, the component pair of (component Al, component
A2) may be sent. However, the component pair of (external
vertex, component Al) 1s not necessarily sent to the security
monitor 102. More generally, the application monitor 101
may send to the security monitor 102 any subset of the com-
ponent pairs (including all component pairs) that 1t generates.

In some embodiments, a software component exists out-
side ol a managed application. Thus, a component pair could
include a software component nside of a managed applica-
tion 151 and a software component outside of a managed
application 151. One example of this 1s a component pair of
component A3 in managed application A and the Web service
109. A second example of this 1s the web service 109 and
component B1 1 managed application B.

Note that it 1s also possible to simplify the map by remov-
ing some of the components. For example, the web service
109 could be removed, 1n which case component A3 would be
connected to component B1. This 1s one example of pruning.
The application monitor 101 may prune 1n order to present a
simplified view of the transaction for the user on the user
intertace 122. The application monitor 101 may also prune 1n
order to provide a suitable level of detail for the security
monitor 102.

Returning again to the discussion of FIG. 1B, in one
embodiment, a probe builder (not shown in FIG. 1B) instru-
ments (e.g., modifies) bytecode for managed applications 151
to add the probes 153 and additional code. The probes 153
may measure specific pieces of information regarding the
managed applications 151 without changing the applications’
business logic. One type of probe measures the amount of
time that a component spent executing. The amount of time
could include the time spent executing by components
invoked by the component having the probe, but that 1s not
required. The probe 153 may have a begin point at an entry
point of the component and an end point at each exit of the
component. In one embodiment, the begin point starts a timer
and the end point stops the timer. A probe 153 may collect
other information besides timing information.

The probe builder may also add agent 112 which may be
installed on the same machine as applications 151 or a sepa-
rate machine. Once the probes 153 have been 1nstalled 1n the
application 151, or a monitoring capability has otherwise
been provided, the application 1s referred to as a managed
application. More information about instrumenting bytecode
can be found 1n U.S. Pat. No. 6,260,187, “System for Modi-
tying Object Onented Code” by Lewis K. Cirne, and U.S. Pat.
No. 7,512,935, “Adding Functionality to Existing Code at
Exits,” each of which is incorporated herein by reference in 1ts
entirety.

As managed application 151 runs, probes 133 send data to
agent 112. For example, the information from the probes may
indicate performance data such as start and stop times of a
transaction or other execution flow, or of individual compo-
nents within a transaction/execution flow. In one embodi-
ment, probes 153 may be implemented 1n objects and other
code that write data, change data or otherwise cause the state
of an application server to change. This data may be referred
to as application runtime data. The Agent 122 may also collect
dependency data that describes dependencies between com-
ponents as transactions are processed. Agent 112 then col-
lects, summarizes and sends the application runtime data and
the dependency data to Manager 120. In response, Manager
120 runs requested calculations, makes application runtime
data available to user interface 112 and, optionally, sends the

10

15

20

25

30

35

40

45

50

55

60

65

8

application runtime data to database 118 for later analysis.
Manager 120 may also aggregate the dependency data to form
a digraph and display one or more dependency maps based on
the digraph. The Manager 120 may also send tlow data based
on the dependency data to the security monitor 102. More
information regarding monitoring an application using
probes can be found 1 U.S. Pat. No. 7,310,777, titled “User
Interface for Viewing Performance Information about Trans-
actions,” by Lewis K. Cirne, incorporated herein by refer-
ence.

Manager 120 can be provided on a separate computer
system such as a workstation which communicates with a
user interface 122, such as a monitor, to display information
based on data received from the agents. Manager 120 can also
access a database 118 to store the data received from the
agents. In the example provided, the application servers can
communicate with Manager 120 without accessing the net-
work 104. For example, the communication may occur via a
local area network. In other designs, Manager 120 can recerve
data from the agents of a number of application servers via the
network 104. For instance, some large organizations employ
a central network operations center where one or more man-
agers obtain data from a number of distributed agents at
different geographic locations. To illustrate, a web-based
e-commerce enterprise might obtain agent data from servers
at different geographic locations that receive customer
orders, from servers that process payments, from servers at
warehouses for tracking inventory and conveying orders, and
so forth. Manager 120 and user interface display 122 might be
provided at a corporate headquarters location. Other applica-
tions which are not necessarily web-based or involve retail or
other sales, can similarly employ agents and managers for
managing their systems. For example, a bank may use an
application for processing checks and credit accounts. More-
over, 1n addition to the multi-computer system arrangements
mentioned, a single computer system can be momtored as
well with one or more agents.

FIG. 3A 1s a flowchart of one embodiment of a process 300
of establishing 1nitial baseline tlow patterns in mapping data,
such as flow data. FIG. 3B 1s a flowchart of one embodiment
of a process 350 of analyzing flow patterns in later mapping
data to detect possible security intrusions. After first discuss-
ing FIG. 3A, FIG. 3B will be discussed.

Theprocess of F1G. 3A may be performed by a system such
as the example of FIGS. 1A-1B. Reference will be made to
clements 1 FIGS. 1A-1B for the purpose of illustration;
however, FIGS. 3A and 3B are not limited to the example
systems of FIG. 1A-1B. Some steps of the process of FIGS.
3 A and 3B may be performed by the application monitor 101
and others by the security monitor 102. In step 302, the
managed applications 151 are monitored by the application
monitor 101 for a given time 1nterval. This may include trac-
ing transactions that are processed by the managed applica-
tions 151. Thus, the monitoring may be used to determine a
baseline of transaction flows. This baseline may be assumed
to be for normal flows with an assumption that there are no
security intrusions for this time interval. It 1s possible that
there may in fact be some attempts at security intrusion during
this time interval. However, note that this baseline data may
be collected for many different time periods such that data
that does not reflect normal flows may be filtered out.

In step 304, the application monitor 101 generates a first set
of flow data for the first time period. In some embodiments,
the flow data 1s referred to as application mapping data. The
flow data 1s reported to the security monitor 102. In some
embodiments, the flow data 1dentifies sequences of software
components and counts for each sequence. A given sequence

US 8,726,383 B2

9

of software components may correspond to a certain transac-
tion. Note that 1t 1s not required that the transaction be 1den-
tified 1n the flow data. For example, the flow data might
identify the sequence of component Al, component A2, and
databaseX. While this might correspond to a “Buy Book™
transaction, 1t 1s not required that the transaction be 1identified
in the flow data. In some embodiments, the flow data contains
a sequence of front end/back end component pairs. For
example, referring briefly to FIG. SA, the flow data might
have the sequence of front end/back end component pairs:
(component Al, component A2), (component B1, component
B2), (component C1, component C2).

The flow data may also specity errors that occurred during,
a transaction. Note that an error does not necessarily refer to
as a software error (although i1t might). Rather, an error might
refer to a user error. An example of a user error 1s that the user
entered the wrong credit card number during a credit card
transaction. Or, an error might refer to computer hardware or
network error. An example of a hardware error 1s a “disk tull”
error that 1s detected and handled by software. In general, an
error 1n this context 1s anything that keeps a transaction from
completing as the user expects, including erroneous actions
of the user themselves.

In step 306, the security monitor 102 determines {first (or
baseline) flow patterns based on the tlow data. An example of
flow patterns 1s how many times a given sequence of software
components were mvoked. As noted above, a sequence of
soltware components may correspond to a transaction. Thus,
this may correspond to how many times this sequence of
soltware components were invoked for a certain transaction.
As will be discussed more fully below, a given transaction
may have multiple flows. For example, 65% of the time a “buy
book™ transaction may have a {irst sequence of software com-
ponents, while 35% 1t has a second sequence of software
components.

As noted above, not all software components that are
invoked during a transaction (or other processing) are
reported. Thus, the flow data 1s not overloaded with informa-
tion that 1s too detailed. However, suificient detail may be
provided to detect a possible security intrusion.

In some embodiments, the tlow patterns that are deter-
mined 1n step 306 include a ratio of one flow for a transaction
to another flow for that same transaction. For example, a buy
book transaction may have two different flows (or have two
different sequences of software components invoked). These
will be referred to as flow A and flow B. It may that flow A
occurred 80% of the time and flow B occurred 20% of the
time.

In some embodiments, the tlow patterns that are deter-
mined 1n step 306 include a percentage for each transaction
flow. This may be the percentage relative to all of the data. For
example, the aforementioned flow A may comprise 4% of all
of the transaction flows, whereas flow B comprises 1%.

The process 300 of FIG. 3A may be performed one or more
times 1n order to establish baselines. In step 308, a determi-
nation 1s made whether baselines for the flow patterns have
been established. Either the application monitor 101 or the
security monitor 102 may make this determination. For
example, either the application monitor 101 or the security
monitor 102 may determine when baselines are set by deter-
mimng that the flow data does not contain any additional
component pair combinations for the latest collection period.
The security momtor 102 could make the determination by
determining that no new flow patterns are detected in the
latest collection interval. In either case, there may be some
allowance for new component pair combinations or for new
flow patterns. This 1s because due to changing circumstances

10

15

20

25

30

35

40

45

50

55

60

65

10

in the computing environment or user requests, 1t may be
inevitable that some changes will occur to the flows. Eventu-
ally, a determination 1s made that a suitable baseline has been
determined. Note that the process may be repeated at any time
to form new baseline data.

Also note that the process of F1IG. 3A might be performed
at different days of the week, different times of day, etc. 1n
order to generate baselines for such different times. This may
be useful 1f certain types of transactions might occur with
greater frequency at certain times. For example, 1t may be that
credit card ftransactions occur with highest Ifrequency
between 5-8 pm on Monday-Thursday. Therefore, different

baselines might be used for these periods than others.
After forming the baseline data, process 350 of FIG. 3B 1s

performed to collect and analyze a new (second) set of flow
data. Process 350 then determines whether a possible security
threat 1s occurring by comparing tlow patterns in the second
set with the baseline flow patterns. In general, process 350
may be performed in real time, such that a possible security
threat that 1s ongoing may be detected. Process 350 may be
performed 1n part by the application monitor 101 and 1n part
by the security monitor 102.

In step 352, the managed applications 151 are monitored
for a second time interval. In one embodiment, the application
monitor 101 traces transactions. Note that the application
monitor 101 may trace transactions in the managed applica-
tions 151 as a part of determining various performance met-
rics, such as average response times. Therefore, collecting the
flow data does not necessarily incur any additional overhead
with respect to execution of monitoring code 1n the managed
applications 151.

In step 354, the application monitor 101 generates a second
set of flow data (e.g., application mapping data) for the second
time period. The second setmay be similar to the first set such
that 1t can be compared to the first set. This flow data 1s
reported by Manager 120 to the security momitor 102.

In step 356, the security monitor 102 determines second
flow patterns based on the second flow data. For comparison
purposes these may be the same types of flow patterns that
were determined 1n step 306.

In step 358, the security monitor 102 compares the second
flow patterns to the first (e.g., baseline) flow patterns to deter-
mine whether a possible security intrusion 1s occurring or has
occurred. As noted above, the baseline data may have been
collected for some specific time period (e.g., 5 pm-8 pm
Monday-Thursday). If so, then the baseline data thati1s used in
step 358 15 the data that corresponds to the present time
period.

One example of comparing the two flow patterns 1s for the
security monitor 102 to determine that flow A of a Buy Book
transaction 1s now occurring 40% of the time, whereas tlow B
1s occurring 60% of the time. The relative increase 1n tlow B
could indicate a possible security intrusion. For example, a
hacker may be attempting to exploit a perceived vulnerability
along flow B by repeated attempts to gain access to a data-
base.

As another example, mnitially flow A of the Buy Book
transaction might have been 4% of all transaction flows.
However, this might increase to 20% of all transaction flows.
This might indicate that a hacker 1s attempting to exploit a
percerved vulnerability along flow A. Further examples will
be discussed below. I a possible security threat has been
detected (step 360) an alert may be i1ssued (step 361). The
process 350 may then be repeated again as oiten as desired
(step 362). Note that process 350 can be performed again
using the same baseline data that was previously used. Alter-

US 8,726,383 B2

11

natively, the baseline data could be updated based on the
second flow data that was collected during process 350.

FIGS. 4A and 4B are flowcharts of embodiments of the
security monitor 102 processing tlow data to determine
whether a security breach 1s being attempted. Each flowchart
provides further details for embodiments of steps 306, 356,
and 338 from FIGS. 3A and 3B. FIG. 4A 15 a process 400 1n
which techniques are based on analyzing a change 1n the mix
of flows of a single type of transaction. For example, the flow
pattern for a credit card transaction may change. Note that it
1s not necessary for the security monitor to be aware of the
type of transaction.

In step 402, a first mix of tlows for a particular transaction
1s determined based on the first flow data. Step 402 deter-
mines baseline data. An example of a mix of flows for a
particular transaction 1s that a Buy Book transaction follows
flow A 80% of the time and flow B 20% of the time. FIGS. SA
and 5B depict different flows for an example transaction
which 1s processed by managed applications 151a, 1515, and
151c. As can be seen 1n FIG. 5A, the transaction flow includes
the sequence (component Al, component A2, component B1,
component B2, component C1, component C2). This
sequence can be considered to be three “front end/back end”
component pairs (one pair in each managed application 151).
Note that the transaction flow data that gets reported to the
security monitor 102 may specily a count of how many times
this sequence was observed over some time interval. The
sequence 1 FI1G. 5B represents a different flow for the same
transaction. Note that in this case, component B3 was invoked
instead of component B1. Note that the application monitor
101 could 1dentity both of these flows as corresponding to the
same transaction by, for example, how the sequence was
initiated. For example, each sequence may have been initiated
by an HT'TP request from a user to buy abook (e.g., Buy Book
transaction). Thus, the flow data may indicate that the com-
ponent sequence of FIGS. SA and 3B are for the same trans-
action (or linked 1n some other manner). The security monitor
102 may compare the counts of each flow (e.g., FIGS. 5A and
5B) for the time 1nterval to determine the mix of flows for the
particular transaction. Step 402 1s one embodiment of step
306 of FIG. 3A. Thus, the first mix may be a part of the
baseline flow patterns.

In step 404, the security monitor 102 determines a second
mix of flows for the transaction. This second mix 1s for a time
period after the baselines have been established. Step 404 1s
one embodiment of step 356 of FIG. 3B. Determiming the
second mix may be similar to determining the first mix. Thus,
the security monitor 102 may determine that the flow of FIG.
5A happened 40% of the time and the flow of FIG. 3B hap-
pened 60% of the time.

In step 406, the security monitor 102 compares the second
mix of flows for the transaction with the first mix to determine
whether there may be an attempted security intrusion. As one
example, the security monitor 102 determines whether the
second mix deviates from the first mix by more than some
threshold amount. In the present example, the security moni-
tor 102 determines whether the fact that flow of FIG. SB. Step
406 1s one embodiment of step 358 of FIG. 3B.

FI1G. 4B discusses a process 450 for determining a possible
security threat that 1s based on analyzing a change 1n the mix
of transaction tlows. A difference between the process of
FIGS. 4B and 4A 1s that the process 400 of FIG. 4A may
involve analyzing a single transaction at a time. However, the
process 450 of FIG. 4B may involve analyzing many different
types of transactions at a time. For example, a significant
increase 1n the number of credit card transactions, relative to
the rest of the type of transactions, may indicate an attempted

10

15

20

25

30

35

40

45

50

55

60

65

12

security breach. Note that 1t 1s not necessary for the security
monitor 101 to be aware of the type of transaction. Instead,
the security monitor 101 could analyze based on sequences of
components.

In step 452, the security monitor 102 determines a first mix
ol transaction flows 1s determined based on the first flow data.
As one example, the mix might be 4% credit card transac-
tions, 7% buy a product transaction, 23% login transactions,
etc. As noted above, the security monitor 102 does not nec-
essarily have to be aware of what transaction a given sequence
of component pairs 1s associated with. For example, the flow
data might simply list sets of component pairs (and a count of
cach set). In this case, the security monitor 102 would deter-
mine a first mix ol sequences of component pairs. For
example, the security monitor 102 determines that the
sequences ol component pairs depicted 1n FIG. SA occurs x %
of the time, etc.

Note that this mix may be on the basis of unique flows, as
opposed to being on a per transaction type basis. For example,
the two flows 1n FIGS. 5A and 5B might both correspond to a
“buy book™ transaction. However, for purposes of determin-
ing the mix of transaction flows, they can be treated as two
separate percentages. On the other hand, 1f the flow data
specifies that the flows of FIGS. SA and 5B are for the same
transaction, the security monitor 102 could combine the
counts for both flows. Step 452 1s one embodiment of step 306
of FIG. 3A. Thus, step 452 determines a baseline or “normal
mix” of transaction flows.

In step 454, the security monitor 102 determines a second
mix of transaction flows based on the second flow data. As
noted above, the second flow data 1s collected after the base-
line or “normal mix” of transaction flows 1s established. Step
454 1s one embodiment of step 356 of FIG. 3B.

In step 456, the security monitor 102 determines whether
the second mix of transaction tlows deviates from the first mix
ol transaction flows by more than some threshold amount.
Numerous ways can be used to set the threshold. Since the
frequency of some types of transactions might be expected to
vary based on factors such as day of week, time of day, etc.,
the threshold may also change on such a basis. Also, a ditfer-
ent threshold might apply to different transactions. For
example, there might be a lower threshold for credit card
transactions. In some embodiments, the security monitor 102
determines whether a second mix of sequences of compo-
nents deviates from the first mix of sequences of components
in step 456. Step 456 1s one embodiment of step 356 of FIG.
3B.

The flowcharts of FIGS. 4A-4B are two examples of how
the security monitor 102 might analyze flow data to determine
flow patterns and then determine a possible security threat.
However, there are many other techmques that might be used.
The following are a few additional techniques. One technique
1s for the security monitor 102 to determine if a new transac-
tion flow suddenly appears. The transaction flows 1n FIGS. 5C
and 3D represents two example sequences of soltware com-
ponents that will be used to discuss two different examples of
a new transaction flow.

Note that many systems have a finite number of transaction
flows that are likely to occur. Once the application monitor
101 has monitored for awhile, it may likely have discovered
all the possible flows that can be 1mitiated from normal appli-
cation traffic flow patterns. Once this state 1s achieved, any
new transaction tlow patterns may be highly suspect for an
intrusion attempt, especially by insiders with explicit knowl-
edge of the computer network 103. For example, referring to
FIG. 5C 11 a new component pair with a previously unknown
Servlet A99 1n managed application 1514 calling known EJB

US 8,726,383 B2

13

E1 in managed application 151e, this could be a strong indi-
cation that Servlet A99 has been injected into the system by an
insider and 1s attempt to do something nefarious through EJB
E1l in a way that 1s not detectable to external monitoring
security software.

In the example of FIG. 5D, the flow data identifies the
components 1n managed application E 151e. However, the
flow data does not specily what component called component
EJB E1. Note that under normal circumstances 1t may be
expected that the tlow data would specity the calling compo-
nent. Component X 1s depicted to show that it was 1n fact the
component that called component EJB E1, but for some rea-
son the tracing did not reveal this fact. This may be because
component X 1s not 1n a managed application 151. Alterna-
tively, component X might be 1n a managed application 151,
but there are no probes installed to monitor component X. A
possible reason for why component X 1s not being monitored
1s that it was nefariously inserted by someone attempting to
breach security. For example, an insider might have deployed
a servlet in an unmonitored application such that the applica-
tion monitor 101 will not even know where the call came
from. This may be the ultimate 1nsider threat because 1t pro-
vides a way to cover the intruder’s tracks. Embodiments
herein will not necessarily identify the caller, but are able to
drive the right information into the security monitor 102 to
identify the threat and lead the security triager to track down
the source of the security threat.

FIG. 6A depicts one embodiment of a computer system
that may be used 1n the network of FIGS. 1A-1B. The com-
puter system 600 1s a simplified representation of a system
which might be used as the security monitor 102, web
browser 102, host (such as application servers 110), Manager
120 and/oruser interface 122, such as discussed 1n connection
with FIGS. 1A-1B. The computer system 600 includes a
storage device 610 such as a hard disk or portable media, a
network interface 620 for communicating with other com-
puter systems, a processor 630 for executing software mnstruc-
tions, a working memory 640 such as RAM for storing the
software instructions after they are loaded from the storage
device 610, for instance, and a user interface display 650. The
storage device 610 may be considered to be a processor
readable storage device having processor readable code
embodied thereon for programming the processor 630 to
perform methods for providing the functionality discussed
herein. The user interface display 650 can provide informa-
tion to a human operator based on the data recerved from one
or more agents. The user mterface display 650 can use any
known display scheme, whether graphical, tabular or the like.
In addition to an on-screen display, an output such as a hard
copy such from a printer can be provided.

Further, the functionality described herein may be imple-
mented using hardware, software or a combination of both
hardware and software. For software, one or more processor
readable storage devices having processor readable code
stored thereon for programming one or more processors may
be used. The processor readable storage devices can include
computer readable storage such as volatile and nonvolatile
media, removable and non-removable media. For example,
computer readable storage may include volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Examples of computer readable stor-

age include RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical disk storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,

10

15

20

25

30

35

40

45

50

55

60

65

14

or any other medium which can be used to store the desired
information and which can be accessed by a computer. In
alternative embodiments, some or all of the software can be
replaced by dedicated hardware including custom 1ntegrated
circuits, gate arrays, FPGAs, PLDs, and special purpose pro-
cessors. In one embodiment, software (stored on a storage
device) implementing one or more embodiments 1s used to
program one or more processors. The one or more processors
can be in communication with one or more computer readable
storage devices, peripherals and/or communication inter-
faces.

In some embodiments, the agents 112 monitor the appli-
cations 151 and transfer application runtime data to Manager
120, where the data 1s analyzed and reported to auser. FIG. 6B
illustrates a flowchart of an embodiment of a process of
monitoring applications 151. The process may be performed
in the example system 100 of FIGS. 1A-1B. An application
151 1s monitored by agents 152 at step 602. Monitoring may
involve agents 112 determining which transactions of appli-
cation server 110 are processed and the duration for which
they are invoked when the application processes a client
request. Monitoring may also involve agents 112 determining
dependency data as components process transactions. Some
examples of dependency data are discussed below. Step 602
may 1include probes 1n the application 151 executing to collect
data.

Application runtime data based on the monitoring of the
application 1s generated at step 604. The generated applica-
tion runtime data can indicate the application components
involved 1n processing a request, the duration that each com-
ponent consumed 1n processing a request, and other informa-
tion. The application runtime data can be generated by agent
112, based on data that results from execution of the probes,
alter which the agent 112 may forward the generated appli-
cation runtime data to Manager 120. Generally, application
runtime data can include information such as average com-
ponent (e.g., method) execution time, a component 1nvoca-
tion rate per second or per interval, a count of component
invocations, a concurrency metric mndicating number of com-
ponent invocations that have started but not finished per inter-
val, and a stalled metric indicating a number of component
invocations that have started whose component invocation
times have exceeded a specific threshold per interval. Further,
application runtime data can i1dentify a garbage collection
heap size, a bandwidth metric indicating file and socket activ-
ity, a number of threads, system logs, exceptions, memory
leaks and component interactions. Note that the application
runtime data may be linked to particular transactions being,
processed by the managed application 151.

The application runtime data may be processed and
reported by Manager 120 at step 606 such as by aggregating
the data, storing the data, and providing the data to an operator
through an interface or other user interface 112.

FIG. 7 1s a flowchart depicting one embodiment of a pro-
cess 700 for determining a dependency map 200 based on a
digraph. Process 700 may be used 1in a system such as system
100 of FIGS. 1A-1B. Process 700 may be performed by the
application monitor 101. The flow data that 1s sent to the
security monitor 102 may be based on the digraph. However,
note that there are other ways to generate flow data without
forming a digraph. In step 702, dependency data 1s collected.
The dependency data may be collected by agents 112. In one
embodiment, the dependency data includes vertex data that
describes soitware components and edge data that describes
dependencies between the software components.

Note that the dependency data may include data for many
different instances of a managed application 151 (e.g., Man-

US 8,726,383 B2

15

aged Application A 151A). For example, the system 100
might have a number of servers that each runs a different
instance ol Managed Application A 151A. In some cases, a
single server might run different instances of Managed Appli-
cation A 151A. Similar factors may apply to Managed Appli-
cation B 151B. Also note that there may be many different
instances of a particular type of transaction. As noted above,
there may be many different instances of transaction BTA1,
which might correspond to different users making a purchase.
Thus, the dependency data may include data for many differ-
ent 1nstances of each type of transaction.

In step 704, the dependency data 1s aggregated to form a
directed graph that represents dependencies between sofit-
ware components that process the transactions. In some
embodiments, the directed graph includes vertices that cor-
respond to various software components (e.g., servlets, EJB,
device drivers, DBMS, sockets, etc.), as well as edges
between pairs of the software components.

In optional step 706, a dependency map 200 1s displayed
based on the directed graph. Note that the dependency map
200 may reduce some of the complexity of the directed graph.
For example, not all of the vertices 1n the directed graph need
to be displayed 1n the dependency map 200. Likewise, not all
of the edges 1n the directed graph need to be displayed 1n the
dependency map. Note that the dependency map 200 may be
displayed 1n response to a user request for a specified level of
detail. Thus, 1t will be evident that although the flow data may
be extracted from the directed graph, the flow data 1s typically
not what 1s presented to the user 1n the dependency map 200.

FIG. 8 1s a flowchart that depicts one embodiment of a
process 800 of generating flow data to send to the security
monitor 102. In this process 800, the flow data 1s formed from
dependency data. In step 802, a transaction trace 1s begun. In
one embodiment, a transaction trace begins when certain
soltware components are 1dentified as the first element 1n the
transaction calling stack. These soitware components may be
ones that have at some point been identified as being of
interest. In some embodiments, the transaction trace captures
boundaries of the transaction. The lower limit of the boundary
may be defined by the first interesting element in the call
stack. An interesting element can be pre-defined by specify-
ing a type ol component, such as a Servlet, that 1s considered
interesting, as one example. In one embodiment, the upper
boundary may be controlled by transactional calls outside the
IVM (Java Virtual Machine). The lower boundary 1n the stack
may be termed the Frontend, while the upper boundary may
be termed the Backend. Referring to FIG. 1B as one example,
component Al might be a Frontend and component A2 might
be a Backend.

In step 804, one or more agents 112 collect dependency
data that represents dependencies between the soltware com-
ponents that process the transaction. For example, the depen-
dency data may include an edge between the Frontend and the
Backend. Referring to transaction BTA1 in FIG. 1B, the
arrow between component Al and component A2 could be
such an edge. A starting edge may also be created between an
external entity and the Frontend vertex. Referring to FIG. 1B,
the network 104 (or web browser 102) could be considered to
be an external vertex. One reason for referring to the network
104 as an “external vertex” 1s that it may be outside of a virtual
machine (e.g., JVM) on application server 110a. Thus, the
starting edge would be between network 104 and component
Al. There may also be an edge between component A2 and
DatabaseX 113. Note that more than one agent could collect
the dependency data for a single transaction. For example,
agents 112a and 1125 might both collect data for transaction

BTA2.

10

15

20

25

30

35

40

45

50

55

60

65

16

In step 806, the agent 112 determines whether the depen-
dency data should be provided to the Manager 120. The
dependency data may be provided at any time and with any
frequency. The dependency data may be provided in response
to a request from Manager 120 or without a request. If the
dependency data 1s not to be provided to the Manager 120,
process 800 returns to step 802 to begin a trace of another
transaction. Tracing another transaction could be tracing a
different instance of transaction BTA1 or tracing a different

type of transaction (e.g., BTA2)

At some point, the dependency data 1s sent from the
agent(s) 112 to Manager 120 (step 808). As noted, the depen-
dency data may describe edges and vertices. In step 810,
Manager 120 stores the dependency data. In one embodi-
ment, the Manager 120 adds an arrival timestamp to the
dependency data. In one embodiment, the agent 112 adds a
collection timestamp (e.g., time the dependency data was
collected) to the data prior to sending to Manager 120. Note
that Manager 120 may recerve dependency data from many
agents 112. This data from the different agents 112 may be
combined.

In step 810, the Manager 120 determines whether flow
data, based on the dependency data, should be sent to the
security manager 102. This flow data may be sent at any
interval. The flow data may be sent upon request from the
security manager 102 or without any specific request. In one
embodiment, the Manger 120 analyzes the dependency data
to determine whether there are any previously unobserved
component pairs. This was discussed with respect to the
example of FIG. 5C. If there 1s such a previously unobserved
component pair, the Manager 120 may determine that the
security monitor 102 should be mtformed of this.

In step 812, the Manager 120 determines what dependency
data should be used to send to the security monitor 102 as flow
data. This may include pruning the dependency data such that
the number of component pairs 1s reduced. In some embodi-
ments, the Manager 120 selects “front end/back end” com-
ponent pairs from the dependency data.

In step 814, the Manager 120 sends the flow data to the
security manager 102. In the event that the Manager 120
detected a previously unobserved component pair, the Man-
ager 120 might sent a special event notification to highlight
this.

As noted above, Agents 112 may collect dependency data
and send 1t to Manager 120. Table 1 shows an example of
dependency data that could be collected for vertices. As
noted, vertices may correspond to software components. In
some embodiments, when the Manager 120 sends the flow
data to the security manager 102 some of the following infor-
mation 1s sent. In this example, each vertex has a set of “vertex
properties.”

TABLE 1

Vertex Property Description

Type The type of software component. Examples include,
but are not limited to, Starting Node, Front End,
Back End, Servlet, EIB, etc.

Name The name of the software component. Examples
include, but are not limited to, class name, interface
name, class-method name, database, URL, etc.

Update Time The time at which the vertex was last updated.

Table 2 shows an example of the types of dependency data
that could be collected for edges. As noted, edge data may
pertain to dependencies between a pair of software compo-
nents (or vertices) as transactions are processed. In this
example, each edge has a set of “edge properties.”

US 8,726,383 B2

TABLE 2
Edge Property Description
Head Vertex The vertex (e.g., software component) at the
end (head of arrow point to).
Tail Vertex The vertex (e.g., software component) at the
start (tail of arrow touches).
Owner The name of the Application or Business

Transaction that owns the edge.

Head Owner Application that owns the head vertex/software

component.

Tail Owner Application that owns the tail vertex/software
component.

Update Time The time at which the edge was last encountered.

The following elaborates on example edge properties.
Referring to FIG. 1, the edge between component Al and
component A2 may be described as follows. The head vertex
may be component A2. The tail vertex may be component Al.
The edge owner may be managed application A 151A. The
head vertex owner may be managed application A 151A. The
tail vertex owner may be managed application A 151A.

As another example, the edge between component A3 and
web server 109 may be described as follows. The head vertex
may be the web server 109. The tail vertex may be component
A3. The edge owner, head vertex owner, and tail vertex owner
may all be managed application A 151A.

Note that the agent 112 could assign a special name for
some components, such as “external vertex.” For example,
the web service 109 software component might be referred to
as an “external vertex.” The network 104 (or web browser
102) that sends a request to component A1 might also be
called an “external vertex.” One reason for this naming con-
vention 1s that the actual software component that calls an
application 151 might not be of interest to the security moni-
tor 102. Therefore, a more general term such as “external
vertex”” may provide sullicient detail.

One embodiment disclosed herein includes a machine-
implemented method for detecting possible security threats.
The method may include determining first flow patterns based
on first flow data that describes sequences of software com-
ponents that are invoked 1n one or more applications for a first
time period; determining second flow patterns based on sec-
ond flow data that describes sequences of software compo-
nents that are invoked 1n the one or more applications for a
second time period; and determining whether there 1s a pos-
sible security threat based on a comparison of the second tlow
patterns with the first flow patterns.

One embodiment disclosed herein includes a system for
detecting possible security threats. The system includes one
or more processors and computer readable storage coupled to
the one or more processors. The computer readable storage
has computer readable instructions stored thereon which,
when executed on the one or more processors, cause the one
or more processors to perform the following. The one ormore
processors trace transactions that are processed by software
components 1n the system and determine component pairs for
the traced transactions. A component pair includes two soft-
ware components that are used to process a given transaction.
The flow for a given transaction includes a sequence of one or
more component pairs. The one or more processors determine
normal transaction tlow patterns based on component pairs
for a first time period and determine transaction flow patterns
based on component pairs for a second period of time after the
first time period. The one or more processors determine
whether there 1s a possible security threat based on a deviation
of the of the transaction flows for the second period from the
normal transaction flows.

10

15

20

25

30

35

40

45

50

55

60

65

18

One embodiment disclosed herein includes computer read-
able storage having computer readable instructions stored
thereon for programming at least one processor to perform a
method for determining a possible security threat. The
method 1ncludes receiving counts of combinations of com-
ponent pairs for a {irst time period, a combination of compo-
nent pairs includes a sequence of one or more of the compo-
nent pairs. The method includes determining first flow
patterns based on the counts of combinations of component
pairs for the first time period. The method includes recerving
counts of combinations of component pairs for a second time
period, and determining second tlow patterns based on the
counts of combinations of component pairs for the second
time period. The method includes determining a possible
security threat based on a deviation between the first tlow
patterns and the second flow patterns.

The foregoing detailed description has been presented for
purposes of 1llustration and description. It 1s not intended to
be exhaustive or to limit to the precise form disclosed. Many
modifications and variations are possible 1in light of the above
teaching. The described embodiments were chosen in order to
best explain the principles of embodiments and practical
applications, to thereby enable others skilled 1n the art to best
utilize various embodiments and with various modifications
as are suited to the particular use contemplated. It 1s intended
that the scope of the disclosure be defined by the claims
appended hereto.

What 1s claimed 1s:
1. A machine-implemented method comprising:
determining {irst flow patterns based on first flow data that
describes sequences of software components 1n one or
more applications and how many times each sequence of
soltware components was invoked for a first time period;

determining second flow patterns based on second flow
data that describes sequences of software components 1n
the one or more applications and how many times each
sequence ol software components was mvoked for a
second time period; and

determiming whether there 1s a possible security threat

based on a comparison of the second flow patterns with
the first flow patterns.
2. The method of claim 1, wherein the determining first
flow patterns, the determining the second flow patterns and
the determining whether there i1s a possible security threat
COmMprises:
determining a first mix of sequences of software compo-
nents that are invoked based on the first flow data;

determining a second mix of sequences ol software com-
ponents that are invoked based on the second flow data;
and

determining whether the second mix differs from the first

mix by more than a threshold amount.

3. The method of claim 1, wherein the determining first
flow patterns and the determining the second flow patterns
COmMprises:

determinming a first mix of sequences of software compo-

nents that are invoked for a first type of transaction based
on the first flow data; and

determining a second mix of sequences of software com-

ponents that are imnvoked for the first type of transaction
based on the second flow data.

4. The method of claim 1, wherein each the sequences of
soltware components that are invoked corresponds to a trans-
action that 1s processed by the one or more applications.

5. The method of claim 4, wherein the first flow data and the
second flow data each comprise counts of failed transactions.

US 8,726,383 B2

19

6. The method of claim 4, wherein the first flow data and the
second flow data comprise component pairs, a component
pair comprises two of the solftware components that are
invoked to process the transaction, the flow for a given one of
the transactions comprises a sequence ol one or more com-
ponent pairs.

7. The method of claim 6, wherein at least some of the
component pairs comprise a solftware component at a front
end of a first of the one or more applications and a software

component at a back end of the first application.
8. The method of claim 6, wherein the determining whether
there 1s a possible security threat comprises:
determining that a component pair exists in the second tlow
data that did not exist in the first flow data.
9. The method of claim 4, wherein the determining whether

there 1s a possible security threat comprises:

determining that a sequence of component pairs exist in the

second tlow data that did not exist in the first flow data.

10. The method of claim 4, wherein the determining
whether there 1s a possible security threat comprises:

determining that the second flow data does not specily

what software component called a particular software
component 1n the second tlow data.

11. The method of claim 1, wherein the determining
whether there 1s a possible security threat comprises:

determining that the number of errors for a particular one of

the sequences of software components exceeded a
threshold.

12. The method of claim 1, wherein the first flow patterns
comprise first percentages for each sequence of software
components invoked for the first time period, the second flow
patterns comprise second percentages for each sequence of
soltware components invoked for the second time period, the
determining whether there 1s a possible security threat com-
prises comparing the second percentages to the first percent-
ages.

13. A system comprising:

a processor; and

computer readable storage coupled to the processor, the

computer readable storage having computer readable
instructions stored thereon, the computer readable
instructions which, when executed on the processor,
cause the processor to:

trace transactions that are processed by software compo-

nents 1n the system:;

determine sequences of soltware components mvoked to

process the traced transactions and counts of the
sequences;

determine normal transaction tlow patterns based on the

counts of the sequences of software components for a
first time period;

determine transaction tflow patterns based on the counts of

the sequences of the software components for a second
period of time after the first time period; and
determine whether there 1s a possible security threat based
on a deviation of the transaction flow patterns for the
second period from the normal transaction tlow patterns.

14. The system of claim 13, wherein the sequence of sofit-
ware components invoked to process a given transaction an
ordered sequence of component pairs.

15. The system of claim 14, wherein the system comprises
an application monitor and a security monitor, the computer
readable instructions which, when executed on the processor,
cause the application monitor to send an event notification to
the security monitor in response to detecting a component
pair that was not detected during any previous time period.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

16. The system of claim 13, wherein the computer readable
instructions which, when executed on the processor, cause the
processor to determine counts of failed transactions.

17. The system of claim 14, wherein the computer readable
instructions which, when executed on the processor, cause the
processor to determine normal transaction flow patterns, to
determine transaction flow patterns for a second period of
time, and to determine whether there 1s a possible security
threat comprise computer readable mstructions which, when

executed on the processor, cause the processor to:
determine a first mix of transaction tlow patterns based on
the component pairs for the first time period;
determine a second mix of transaction flow patterns based
on the component pairs for the second time period; and
determine whether the second mix of transaction flow pat-
terns deviates from the first mix of transaction flow
patterns by more than a threshold.
18. The system of claim 14, wherein the computer readable
instructions which, when executed on the processor, cause the
processor to determine normal transaction flow patterns, to
determine transaction flow patterns for a second period of
time, and to determine whether there 1s a possible security
threat comprise computer readable mstructions which, when
executed on the processor, cause the processor to:
determine a first mix of flow patterns for a first transaction
based on the component pairs for the first time period;

determine a second mix of flow patterns for the first trans-
action based on the component pairs for the second time
period; and

determine whether the second mix of flows for the first

transaction deviates from the first mix of tflows for the
first transaction by more than a threshold.

19. The system of claim 14, wherein the computer readable
instructions which, when executed on the processor, cause the
processor to determine whether there 1s a possible security
threat comprise computer readable mstructions which, when
executed on the processor, cause the processor to:

determine that a component pair exists in the component

pairs for the second time period that did not exist in the
component pairs for the first time period.

20. The system of claim 14, wherein the computer readable
instructions which, when executed on the processor, cause the
processor to determine whether there 1s a possible security
threat comprise computer readable mstructions which, when
executed on the processor, cause the processor to:

determine that a combination of component pairs exist in

the component pairs for the second time period that did
not exist 1n the component pairs for the first time period.

21. The system of claim 13, wherein the computer readable
instructions which, when executed on the processor, cause the
processor to determine whether there 1s a possible security
threat comprise computer readable mstructions which, when
executed on the processor, cause the processor to:

determine that the number of errors for a transaction asso-

ciated with a particular sequence of software compo-
nents exceeded a threshold.

22. Non-transitory computer readable storage comprising,
computer readable instructions stored thereon for program-
ming at least one processor to:

recerve counts of sequences of component pairs that pro-

cess requests for a first time period, a component pair
identifies two software components that process a
request;

determine first flow patterns based on the counts of the

sequences ol component pairs that process requests for
the first time period;

US 8,726,383 B2
21 22

receive counts ol sequences of component pairs that pro-

cess requests for a second time period;
determine second flow patterns based on the counts of
sequences ol component pairs that process requests for
the second time period; and 5

determine a possible security threat based on a deviation
between the first flow patterns and the second tlow pat-
terns.

23. The non-transitory computer readable storage of claim
22, wherein a component pair 1dentifies a soltware compo- 10
nent at a front end of a first of one or more applications and a
software component at a back end of the first application.

24. The non-transitory computer readable storage of claim
22, wherein the instructions that cause the processor to deter-
mine the first flow patterns, to determine the second flow 15
patterns, and to determine a possible security threat comprise
istructions that cause the processor to:

determine a first mix of sequences ol component pairs that

are 1voked based on the counts of sequences of com-
ponent pairs that process requests for the first time 20
period;

determine a second mix of sequences of component pairs

that are 1nvoked based on the counts of sequences of

component pairs that process requests for the second

time period; and 25
determine whether the second mix differs from the first mix

by more than a threshold amount.

¥ H H ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

