12 United States Patent

US008726244B2

(10) Patent No.: US 8,726,244 B2

Zoller et al. 45) Date of Patent: May 13, 2014
(54) SOFTWARE BREAKPOINT HANDLING BY (56) References Cited
ELIMINATING INSTRUCTION
REPLACEMENT AND EXECUTION UNDER U5 PALENTDOCUMENTS
CERTAIN CONDITIONS 6,516,408 B1* 2/2003 Abiko etal. 712/227
6,934,886 B2* 8/2005 OK .ooovovvoverreerrereererenn, 714/34
(75) Inventors: Jeffrey David Zoller, Chelmsiord, MA 7,296,259 B2* 11/2007 Betkeretal. 717/129
(US); Kenneth Edwin Poole, rumford, - 5000 a2) 31 155004 Betker et al. o 714735
RI (US); Vincent Michael Del Vecchio, S
Watertown, MA (US); Zhian Luo, OTHER PUBLICATIONS
Sharon, MA (US) o | | |
Gilpin, Andrew, “Debugging Under Unix: gdb Tutorial,” <http://
(73) Assignee: MediaTek Singapore Pte. Ltd., W‘CS‘Cmu‘etif/ ~gllpin/tutorial/>, Apr. 7, 2004, p. 1-6.* .
Singapore (SG) Angepa‘t et al., ﬁNIFD: an-Intruswe FPGA Debugger .Delluggmg
FPGA ‘Threads’ for Rapid HW/SW Systems Prototyping,” 2010,
3
(*) Notice: Subject to any disclaimer, the term of this TEEE, P 530-359
patent 1s extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 345 days.
Primary Examiner — Qing Chen
(21) Appl. No.: 13/293,099 (74) Attorney, Agent, or Firm — Winston Hsu; Scott Margo
(22) Filed: Nov. 9, 2011 (57) ABSTRACT
(65) Prior Publication Data The debugging system 1S proyidf;d that %ncludes a debugging
module that recetves an application having one or more soft-
US 2013/0117732 Al May 9, 2013 ware breakpoints such that when a target system encounters
the one or more software breakpoints the debugging module
(1) Int. CI. H starts handling of the one or more solftware breakpoints. A
GO6F 9744 (2006'0:") determination 1s made as to whether the one or more software
GOoF 11/00 (2006'0;~) breakpoints 1s a selective software breakpoint, if 1t 1s deter-
GO6E 11/36 (2006.01) mined that the selective software breakpoint has been
(52) US. CL encountered, the debugging module eliminates instruction
CPC ... GO6F 11/3636 (2013.01); GO6F 11/362 replacement for all other remaining breakpoints and execu-
(2013.01) tion of the onginal instruction of the application at the
USPC ... T17/129;717/124; 717/127; 714/38.1 encountered breakpoint or eliminates instruction replace-
(58) Field of Classification Search ment for all other remaining breakpoints and reinstalls the
CPC i, GO6F 11/362; GO6F 11/3636 encountered breakpoint.
USPC i, 717/124-135; 714/37, 38.1

See application file for complete search history.

14 Claims, 3 Drawing Sheets

62
N \ N\ <
Breakpoints (inctuding
Automatic Processor runs and Debugger evaluates the
e Breakpoints) are set = triggers a breakpoint = address and attributes of the
at selected addresses event breakpoint
Handie the breakpoint 72 +— 68
Lininstall the LVWBP
Lightweight <
/ Broakpoint only P
Decrement PG 1<
Lininstat! all \
breakpoints %'LWEP 70
H ‘ 78
74 /
Processor to be set running /33 88
76 LwER f Reinstall Lightweight \
Single step Breakpoint only \ Processor s
\ > | current | set running >
instruction /
If the breakpoint was f L Reinstall 2l breakpoints
automatic and ILWaP e
L ~1 conditions are met the 82 86
debugger may set the
pProcessor running agatn Processor to remain halted under debugger
controt
> | i breakpoint was Lightweight, uninstall the _,,.”? >
rematning breakpomts
\ \
N
90 \

} "Ol4

US 8,726,244 B2

- N 4 A

0l > 8

ooepou| bnge(lebbngaQ

Sheet 1 of 3

/ weysAg 1ebie |

5 § Hmo@
/

9

May 13, 2014

U.S. Patent
7

US 8,726,244 B2

Sheet 2 of 3

May 13, 2014

U.S. Patent

¢ Old
8¢

06
\ \ |

suiodyealq

\A\\\. ay} JO J]e ||BISUIUN ‘dON B U0 sem juiodyessq ﬁ.«m

JOLJUO0D
12bbngap iapun pajiey uiBwa. O} JOSSa00I1d

174 4
14

Sl J0SS3001H

< Buung 185 |

] LOflonIIsul AON;
sjuodyeslq jie jjeisuiay < Jusuna days sibuig <

N

/

8y

utefe Buiuunl J0ssan0id
oy} 198 Aews 106bngsp
ARRRRRRRRRREE SU] Jaut aie SUOiIpuUoD
pUe Ofeuoiny

SEM Juiodyealq aul §

SIMI0ANEBS.G UOIIONJIS Ul JIBLING &
AUE jle1suis) LON O S days 9IBuiS [ON OG dON

\ \ Buiuun. 19s 99 0} J0SS800J4

e
9¢

A 4

GC

Ve

ot
./’
dONI 1
S T4]UdBWaa(g >

LAON
2 UofoNNSU] |k

> leuito sSepn

m o JUSWRL03QT
dON LON OQC

T
- 0z 8z 4

7

siuiodyes.lq
e jjeisuiun

syuodyealg Aue \

[feysuiun { ON O

JuodBealg ayl ejpueH

bz 0%

uiodyessg IUOAD
o4} JO SBINGURE pue sseippe |« juodyeslq e siebbuy i«

oy} saieneas Jebbngaq pUB SUlt JOSSA201A

N \

¢C 0c

SOSSalppE POJ03}eS 1B
19s aie (sjuodyealg
DIBWIOINY

Buipnioul) spuodyestq

N
8l

US 8,726,244 B2

Sheet 3 of 3

May 13, 2014

U.S. Patent

08

£ Old

06

X

suiodyealg duiuirwal
el sy} [eysuiun ‘bieamuybiy sem juiodyesig ji [N

10J3UOD

1Bbbngap Jspun pajjey uiewal 0} J0SS8001d

98
~

_\ siodjeslq |je jleisuisy
buluunt }1os |

¢S
A89M
< [
LORONIISW
JUBLND |
days sibuis
S
d8M

Buiuun 19s 8q 0} JOSS9001d

urebe buiuun jossaooud
ay) 19s Aeuwt Jabbngap

S} 18U ale SUoIpUoD
pUE oflpwioine
sem Juiodyesiq aul i

1274

.m\!.
St J0SS820Jd / Ajuo juiodyes.g
/ wiemiybiy jlejsuey
g8 /
74"
8.
0L

\

d8M i

V,\nw_ Yl JUBWIBI0B(]

89 T

otheslq
oL} JO S|INGIe pue ssalppe

BY] salenieAs 18bbnga

ddM i

A4

>,

\

siuiodyesiy
& [[BISUiUf

AU Juiodyraig
wiBiemiyBi
SU} |[BISUUf

]

9.

7

juodealq aul sjpueH

S

99

juiodyealq e siabbly |«
PUE SUNJ 108892044

JUOAS

.

b9

SBSSAIPPE Pa}Isies e
198 aJe (spodyesiq
IRLIoINY

Buipnjout) spuodyeasg

\

9

09

US 8,726,244 B2

1

SOFTWARE BREAKPOINT HANDLING BY
ELIMINATING INSTRUCTION
REPLACEMENT AND EXECUTION UNDER
CERTAIN CONDITIONS

BACKGROUND

The mvention 1s related to the field of software breakpoint
handling, and 1n particular to improving performance of soft-
ware breakpoint handling by eliminating instruction replace-
ment and execution under certain conditions.

Some debuggers, like GDB for example, offer an option
that determines how breakpoints are treated when the proces-
sor halts. The breakpoints can be eirther left in memory or
removed from memory. I the breakpoints are left in memory
and the debugger 1s asked to read memory 1n an area where a
breakpoint exists, the debugger will mask the breakpoint with
the original memory contents before displaying it to the user.

The invention improves over the prior art by increasing the
speed and performance 1n handling specific kinds of break-
points by eliminating instruction replacement and execution
under certain conditions.

SUMMARY

According to one aspect of the invention, there 1s provided
a debugging system. The debugging system includes a debug-
ging module that receives an application comprising one or
more soltware breakpoints such that when a target system
encounters the one or more software breakpoints the debug-
ging module starts handling of the one or more software
breakpoints. A determination 1s made as to whether the one or
more software breakpoints 1s a selective software breakpoint,
if 1t 1s determined that the selective software breakpoint has
been encountered, the debugging module eliminates mnstruc-
tion replacement for all other remaining breakpoints and
execution of the original instruction of the application at the
encountered breakpoint or eliminates instruction replace-
ment for all other remaining breakpoints and reinstalls the
encountered breakpoint.

According to another aspect of the invention, there 1s pro-
vided a method of performing the operations of a debugging
system. The method includes providing an application for
execution and recerving the application using a debug mod-
ule, the application comprising one or more software break-
points such that when a target system encounters the one or
more soltware breakpoints the debugging module starts han-
dling of the one or more software breakpoints. Also, the
method includes determining whether the one or more soft-
ware breakpoint 1s a selective software breakpoint, 1t 1t 1s
determined that a selective software breakpoint has been
encountered, the debugging module eliminates instruction
replacement for all other remaining breakpoints and execu-
tion of the orniginal instruction of the application at the
encountered breakpoint or eliminates instruction replace-
ment for all other remaining breakpoints and reinstalls the
encountered breakpoint.

These and other objectives of the present mnvention will no
doubt become obvious to those of ordinary skill 1n the art after
reading the following detailed description of the preferred
embodiment that 1s 1llustrated 1n the various figures and draw-
Ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram 1illustrating the debugging
system used 1n accordance with the invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a process flow diagram illustrating the steps
performed by the mventive debugging system when a soft-
ware breakpoint placed on a NOP 1s discovered during an
execution of a loaded application; and

FIG. 3 1s a process flow diagram illustrating the steps
performed by the inventive debugging system when a light-
weight breakpoint 1s encountered during an execution of a
loaded application.

DETAILED DESCRIPTION

The invention provides a technique to handle a specific
software breakpoint based on the breakpoint’s individual
attributes and not on a global option that affects all break-
points. In particular, the imnvention relies on two specific sce-
narios of soitware breakpoints usage to ascertain on how to
proceed and process the remaining breakpoints in an nstruc-
tion set provided for processing. Depending which break-
point scenario 1s encountered, the debugger will determine on
how to proceed 1in handling the other remaining breakpoints
in a loaded application.

FIG. 1 1s a schematic diagram 1llustrating the debugging
system 2 used 1n accordance with the invention. The debug-
ging system 2 includes a host 4 comprising a computer con-
trolled by the user, typically a PC having a processor, a
processor memory, a hard disk storage, and other peripheral
devices. The host 4 executes using its processor and processor
memory a debugger 8 connected to a debug interface 10. The
debugger 8 1s a software application running on the host 4
used to control a target system 6 and display information that
allows a user to diagnose and analyze the application code
that will run on the target system 6. The debug interface 10 1s
an interface module between the target system 6 and the
debugger 8 running on the host 4.

The target 6 executes a loaded application that can include
a software breakpoint. The software breakpoint 1s a special
instruction that when executed causes a processor to enter a
debug mode where the debugger 8 can take control. Typically
soltware breakpoints are set by saving the application’s origi-
nal istruction and replacing 1t with a special breakpoint
instruction. The debugger may also support automatic break-
points that are breakpoints being set automatically based on
the existence of a predefined label 1n the loaded application.

If certain predefined labels exist, the debugger 8 or debug
interface 10 can set breakpoints at these locations automati-
cally without the user having to set them explicitly. When an
automatic or conditional soitware breakpoint 1s discovered
the debugger 8 or debug interface 10 can evaluate certain
conditions based on address, attributes, and possibly data
from the processor 1tsell and decide whether the processor
should remain halted or be returned to a running state auto-
matically without user interaction.

Currently 1n the prior art, when a breakpoint event 1s trig-
gered 1n the target system, the debugger or debug interface
can make decisions on how to handle the breakpoint event
based on the address at which the event occurred. If the
breakpoint 1s an automatic or conditional breakpoint the
debugger 8 or debug interface 10 can evaluate the conditions
of the breakpoint and optionally set the processor running
again without user intervention after performing some spe-
cific actions. Whenever a breakpoint 1s discovered and the
processor halts, all other breakpoints 1in the system are
removed from memory and replaced by their original, saved
instructions. If the processor 1s to be set running again 1t must
first single step the instruction where 1t stopped 1n order to get
beyond the address of the current breakpoint, then all of the

US 8,726,244 B2

3

breakpoints are written to memory and again the original
instructions are saved for later use. The processor can then be
set running.

The invention identifies two scenarios of breakpoint usage,
the first scenario of breakpoint usage 1s a breakpoint placed on
an struction having no side-eifects on the state of the pro-
cessor ol the target system when 1t 1s executed, such as a NOP.
When a breakpoint 1s placed on a NOP the breakpoint no
longer needs to be removed from memory when 1t 1s hit and
we can also skip the single step which results 1n faster han-
dling of the breakpoint because the NOP acts as a placeholder
for the breakpoint and has no side efiects on the application 1f

it 1s not executed. The second scenario of breakpoint usage 1s
using a Lightweight Breakpoint (LWBP) which simplifies the
handling of breakpoints. Typically when a breakpoint 1s hit
and the processor halts, all other breakpoints 1n the system are
removed from memory and replaced by their original instruc-
tions. When a breakpoint flagged as a LWBP 1s hit the Debug-
ger/Debug Interface will remove just the LWBP and wait until
a decision 1s made that the processor 1s indeed staying halted
before removing all other breakpoints in the system from
memory. If the decision 1s made that the processor should be
set running again after handling the LWBP then only the
LWRBP itself needs to be reinstalled. Automatic Breakpoints
can also be a LWBP, but not all LWBPs need to be Automatic.

FIG. 2 1s a process flow diagram illustrating the steps
performed by the mventive debugging system 2 when a soft-
ware breakpoint on a NOP 1s discovered during an execution
of a loaded application. The process flow 16 shows a loaded
application having breakpoints, including automatic break-
points, being set at selected addresses, as shown in step 18.
The processor of the host 4 1s executing the debugger 8. The
application 1s executing on the target system 6. The break-
point 1s triggered when the application executing on the target
system 6 executes a software breakpoint instruction. This
activates the debugger 8 that evaluates the address and
attributes of the breakpoint, as shown 1n step 22. The debug-
ger 8 activates a breakpoint handler that performs actions
shown 1n step 24. After recerving information from the debug-
ger 8, the breakpoint handler determines whether the original
instruction 1s a NOP instruction, as shown 1n step 26. If it 1s
determined the original mstruction 1s a NOP, the PC 1s not
decremented, shown 1n step 28, and any remaining break-
points are not uninstalled as shown 1n step 30. If 1t 15 deter-
mined the breakpoint 1s not a NOP, the PC 1s decremented, as
shown 1n step 32, and all breakpoints are umnstalled, as
shown 1n step 34.

Moreover, step 35 determines 11 the breakpoint 1s an auto-
matic breakpoint and conditions are met so as to allow a
debugger 8 to set the processor to run again. If the processor
1s to be set to run again, the process tlow 36 1llustrates the
steps needed to accomplish this task and process 38 shows the
step needed if the processor 1s to remain halted under debug-
ger 8 control. In particular, process flow 36 shows if the
automatic break point 1s a NOP 1nstruction, single step cur-
rent instruction 1s not performed, as shown 1n step 40, and no
breakpoints are reinstalled, as shown 1n step 42. The proces-
sor 1s set running as shown in step 48. If the automatic break-
point 1s determined, as shown 1n process tlow 36, to not be a
NOP instruction then single step the current instruction 1s
performed, as shown 1n step 44, and reinstall all breakpoints,
as shown 1n step 46. Again, the processor 1s set running as
shown 1n step 48. The process flow 38 shows the step needed
when a processor 1s to remain halted under debugger 8 con-
trol. In this case, 11 the breakpoint 1s on a NOP, uninstall all of
the breakpoints, as shown in step 50.

10

15

20

25

30

35

40

45

50

55

60

65

4

When a breakpoint 1s placed on a NOP the breakpoint no
longer needs to be removed when it 1s encountered and one
can also skip the single step which results in faster handling of
the breakpoint because the NOP acts as a placeholder for the
breakpoint and has no side effects on the application if it isnot
executed. This 1s especially useful when the breakpoint 1s an
automatic or conditional breakpoint that i1s encountered
repeatedly and the debugger 8 or debug interface 10 typically
resumes the application automatically after handling the

breakpoint.

FIG. 3 1s a process tlow diagram 60 1llustrating the steps
performed by the inventive debugging system 2 when a light-
weilght breakpoint (LWBP) 1s encountered during an execu-
tion of a loaded application. The process tlow 60 shows a
loaded application having breakpoints, including automatic
breakpoints, being set at selected addresses, as shown 1n step
62. The processor of the host 4 1s executing the debugger 8.
The application 1s executing on the target system 6. The
breakpoint 1s triggered when the application executing on the
target system 6 executes a soltware breakpoint instruction.
This activates the debugger 8 that evaluates the address and
attributes of the breakpoint, as shown 1n step 66. The debug-
ger 8 activates a breakpoint handler that performs actions
shown 1n step 68. The breakpoint handler decrements the PC
and determines 1t a lightweight breakpoint (LWBP) has been
encountered, as shown 1in step 70. If a LWBP has been
encountered, only the LWBP 1s uninstalled, as shown 1n step
72, otherwise 1f a LWBP has not been encountered all break-
points are umnstalled, as shown 1n step 74.

Moreover, Step 76 further determines 11 the breakpoint 1s
an automatic breakpoint and 11 conditions are met so as to
allow a debugger 8 to set the processor to run again. If the
processor 1s to be set to run again, the process tlow 78 1illus-
trates the steps needed to accomplish this task and process 80
shows the step needed 1f the processor 1s to remain halted
under debugger 8 control. In particular, process tlow 78
shows the single step current instruction being performed, as
shown 1n step 82, and 1f the automatic breakpoint 1s a LWBP,
the LWBP 1s reinstalled only, as shown 1n step 84. The pro-
cessor 1s set running as shown in step 88. If the automatic
breakpoint 1s determined, as shown 1n step 82, to not be a
LWBP, then remnstall all breakpoints, as shown 1n step 86.
Again, the processor 1s set running as shown in step 88. The
process tlow 80 shows the step needed when a processor 1s to
remain halted under debugger 8 control. In this case, if the
breakpoint 1s a LWBP, uninstall all of the remaining break-
points, as shown 1n step 90.

In this scenario the performance 1s gained by not having to
swap out all of the installed breakpoints when a LWBP 1s
encountered. Instead only the LWBP 1is mitially removed.
Further gains are made when the debugger 8 decides to auto-
matically set the processor running again. These gains are
made by not having to reinstall all of the breakpoints. Instead
only the LWBP 1s reinstalled. Conditional software break-
points and software breakpoints used for File I/0 operations
are good examples where a LW BP can provide improvement.

Although the present invention has been shown and
described with respect to several preferred embodiments
thereol, various changes, omissions and additions to the form
and detail thereof, may be made therein, without departing
from the spirit and scope of the invention.

Those skilled 1n the art will readily observe that numerous
modifications and alterations of the device and method may
be made while retaining the teachings of the invention.
Accordingly, the above disclosure should be construed as
limited only by the metes and bounds of the appended claims.

US 8,726,244 B2

S

What 1s claimed 1s:

1. A debugging system comprising;:

a debugging module that recerves an application compris-
ing one or more software breakpoints such that when a
target system encounters the one or more software
breakpoints, the debugging module starts handling of
the one or more soitware breakpoints by determiming
whether the one or more software breakpoints 1s a selec-
tive software breakpoint, 1f 1t 1s determined that the
selective software breakpoint has been encountered, the
debugging module eliminates instruction replacement
for all other remaining breakpoints and execution of an
original instruction of the application at the encountered
selective software breakpoint or eliminates instruction
replacement for all other remaining breakpoints and
reinstalls the encountered selective software breakpoint,
wherein the selective software breakpoint comprises a
lightweight breakpoint; and

a host system that executes the debugging module, wherein
the debugging module leaves all breakpoints installed
except the lightweight breakpoint until a determination
1s made as to remain halted or continue running a pro-
cessor on the host system.

2. The debugging system of claim 1, wherein the host
system uses the debugging module to control the target sys-
tem.

3. The debugging system of claim 1, wherein the debug-
ging module comprises a debugger and a debug interface.

4. The debugging system of claim 1, wherein the selective
soltware breakpoint replaces an instruction having no side-
clfects on a state of a processor of the target system.

5. The debugging system of claim 4, wherein the debug-
ging module leaves all breakpoints installed until a determi-
nation 1s made as to remain halted or continue running a
processor on the target system.

6. The debugging system of claim 5, wherein the debug-
ging module decides the processor of the target system should
be set running automatically and resumes executing the appli-
cation automatically after handling the selective software
breakpoint.

7. The debugging system of claim 1, wherein the debug-
ging module decides the processor of the target system should
be set running automatically and resumes executing the appli-
cation with the lightweight breakpoint remstalled and the
other remaining breakpoints remaining installed.

8. A method of performing operations of a debugging sys-
tem comprising:

5

10

15

20

25

30

35

40

45

6

providing an application for execution;

recerving the application using a debugging module,
wherein the application comprises one or more software
breakpoints such that when a target system encounters
the one or more software breakpoints, the debugging
module starts handling of the one or more software
breakpoints by determining whether the one or more
software breakpoints 1s a selective software breakpoint,
if 1t 1s determined that a selective software breakpoint
has been encountered, the debugging module eliminates
istruction replacement for all other remaining break-
points and execution of an original instruction of the
application at the encountered selective software break-
point or eliminates istruction replacement for all other
remaining breakpoints and reinstalls the encountered
selective software breakpoint, and wherein the selective
soltware breakpoint comprises a lightweight break-
point; and

executing the debugging module by a host system, wherein

the debugging module leaves all breakpoints installed
except the lightweight breakpoint until a determination
1s made as to remain halted or continue running a pro-
cessor on the host system.

9. The method of claim 8, wherein the host system uses the
debugging module to control the target system.

10. The method of claim 8, wherein the debugging module
comprises a debugger and a debug interface.

11. The method of claim 8, wherein the selective software
breakpoint replaces an istruction having no side-effects on a
state of a processor of the target system.

12. The method of claim 11, wherein the debugging mod-
ule leaves all breakpoints installed until a determination 1s

made as to remain halted or continue running a processor on
the target system.

13. The method of claim 12, wherein the debugging mod-
ule decides the processor of the target system should be set
running automatically and resumes executing the application
automatically after handling the selective software break-
point.

14. The method of claim 8, wherein the debugging module
decides the processor of the target system should be set run-
ning automatically and resumes executing the application
with the lightweight breakpoint reinstalled and the other
remaining breakpoints remaining installed.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

