12 United States Patent

US008726238B2

(10) Patent No.: US 8.726.,238 B2

Duesterwald et al. 45) Date of Patent: May 13, 2014
(54) INTERACTIVE ITERATIVE PROGRAM 2006/0241909 Al1* 10/2006 Morganetal. 702/183
PARALLELIZATION BASED ON DYNAMIC 2009/0172633 Al* 7/2009 Tsyganskiyetal. 717/104
FEEDRACK 2009/0222799 Al* 9/2009 Stewartetal. 717/143
2009/0259612 Al* 10/2009 Hansoncoeeeennnn. 706/47
_ 2010/0070948 Al* 3/2010 Ramacetal. 717/105

(75) Inventors: Evelyn Duesterwald, Yorktown Heights,

NY (US); Robert M. Fuhrer, OTHER PUBLICATIONS

Hawthorne, NY (US); Vijay Saraswat,
Hawthorne, NY (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 867 days.

(21) Appl. No.: 12/709,712

(22) Filed: Feb. 22, 2010
(65) Prior Publication Data
US 2011/0209119 Al Aug. 25,2011
(51) Imt. CL.
GO6F 9/44 (2006.01)
(52) U.S. CL
USPC 717/122;717/136; 717/149; 717/151;

712/241

(58) Field of Classification Search
USPC 717/100-110, 122-136, 149-161;

712/23, 203-241
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,151,991 A * 9/1992 Iwasawaetal. 717/150

5,634,059 A * 5/1997 Zaikicooiiiiiiiiinnnl 717/160

5,809,308 A * 9/1998 Tuumalal 717/161

2006/0212843 Al1* 9/2006 Zakyetal. 717/106
106

Banerjee, Utpal, et al. “Automatic program parallelization.” Proceed-
ings of the IEEE 81.2 (1993): pp. 211-243 .*

Blume, William, and Rudolf Eigenmann. “Performance analysis pf

parallelizing compilers on the Perfect Benchmarks programs.” Par-
allel and Distributed Systems, IEEE Transactions on 3.6 (1992): pp.

643-656.*

Chen, Michael K., and Kunle Olukotun. “The Jrpm system for
dynamically parallelizing Java programs.” Computer Architecture,
2003. Proceedings. 30th Annual International Symposium on. IEEE,

2003, pp. 1-12.*

* cited by examiner

Primary Examiner — Satish Rampuria
(74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
Presser, P.C.; Louis J. Percello, Esq.

(57) ABSTRACT

Interactive 1iterative program parallelization based on
dynamic feedback program parallelization, in one aspect,
may 1dentily a ranked list of one or more candidate pieces of
code each with one or more source refactorings that can be
applied to parallelize the code, apply at least one of the one or
more refactorings to create a revised code, and determine
performance data associated with the revised code. The per-

formance data may be used to make decisions on 1identifying
next possible ranked list of refactorings.

21 Claims, 4 Drawing Sheets

Interactive Concurrency __..134
user Refactoring tool
Navigate through
transformation history | npake refactoring <2 Refactored source
decistons)
104 X
— GQUI J’ 116
Instrumentation tool -
Refactometer
102
“e_i | Code,Transformation, and 112 Instrumented
Performance Repository H— refactored source
Invoke
performance Ve 118

Performance
data

Initial source
code version

visualization

Compiler

Instrumented refactored

! executable
Ve 120

Performance tool

US 8,726,238 B2

Sheet 1 of 4

May 13, 2014

U.S. Patent

| |00] 92UBWLIOM3Y .
ozv /L~ T >
9[qeINIaXD |

Do.401JE 0 PDalUgsUUNilsU|

e1ep

UONLZIENSIA
ouewoIBd
MNOAU]

19]1dWiod)

321N0S paJoliejal
POIUIWNIISU)

| |00} UoIEIUBWINIISY]
oLL | 1

921N0S Pa1010L}oY

PP E—
o Aduaiinouo)) |

Ll

— @@&f |

UQISIDA 3POD
32IN0S {BIIU]

- AJOlisoday 9ouBWIIOIad
|| pue ‘UoIIBUWIO)SURL] ‘BP0

| 201
J915W0IIeeY |

Ay o, Al] e

— Y01

SUOISIIAP

SUHOPEIDI RN AJOISIY UOIIBUWIIOSURL]
- y3noay) aledinen

h 19sn
\ SAI12RIU

901

US 8,726,238 B2

Sheet 2 of 4

May 13, 2014

U.S. Patent

gﬁf

P P Y™y

O1L

———

P17 - SUi OJUI PaIoiUs 3B S1NsOA mmm%.m@ﬁﬁ pue eJjep mwﬁﬁgﬂﬁmm

wr el .

UOYNOSXS
I} 10] Biep oousuuiojiod ozAjEUR puR 10900 PUE 9P S} 9IN0SX

p—p—

ayé

017 — 3]qERINOSXD UL OJUI SJ1dIoD

o

30INOS PAIOIORIDI O} JUSUUNLISUL
g0z -

I

T -

\ SULIOJ0RIS] 2Y) INOgR UOTJRULIOJUT IOJUd pue JULIOJOBJII Pajdafes a1} Ajdde

90¢

e P ban o3

Wﬂﬁﬁwuﬁwma SUL JNOgE UONBUWLIOJUL J3]Us DUE Mﬁ.ﬂﬁwaﬁ%@m SO ISE2] 1B 1032385

“0C

Srliarer Sy iy e

sSuLIojorye1 Jo suogruIquIoo parjdde-A[snotasid snorrea topin weidoid |
311 J0 2ourUIOlIod pue AJOISIY 2} pue SSULIOIOR)DI 3{(ISSOd 10 ISI] _
D07 \ 3} U0 paseq sdojs JULIOIORIAI I0UWL JO JUO JO ISI[POyULI B SUINLIARD

PP

UOISIDA TeHLUL 9] 88 D2J21U2 ST D00 VINO0S
NQN ...1._&\\\!1 | , M Yo, ﬂ @ ,, ﬁ T m |||“

US 8,726,238 B2

Sheet 3 of 4

May 13, 2014

U.S. Patent

Ua10]1JBla) Pajuzatinilsuy

1001 2OURWIIODG ™

32UBW.IOLIBd
DY OAU

324N0S P3J01IesD.
031UBNIISU]

| {001 UolleluatunJisui #

_ e

9L

JJ2IN05 DaJ0l0BlaY

_ P T———" 1

AJUa4IN3uU0)) |
142

N\, eep
SN T\ PouBULIOI

LOREZIIENSIA

A 4213010 0}

LI0ISI3A IPOD
32UN0S B}

H Asonsoday souewiopiad
pue ‘uoijewiojsuel)’apo)

Z01

U.S. Patent May 13, 2014 Sheet 4 of 4 US 8,726,238 B2

US 8,726,238 B2

1

INTERACTIVE ITERATIVE PROGRAM
PARALLELIZATION BASED ON DYNAMIC
FEEDBACK

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under
Contract No.: HRO0011-07-9-0002 awarded by Delfense

Advanced Research Projects Agency (DARPA). The Govern-
ment has certain rights 1n this invention.

FIELD

The present application relates generally to computer sys-
tems and concurrent programming and more particularly to
interactive 1terative program parallelization based on
dynamic feedback.

BACKGROUND

Producing parallel code 1s a complex task. Manual paral-
lelization requires careful crafting of parallel code by highly
skilled parallel programmers. Several parallel programming
models have been developed to ease this challenging task and
while these models successtully free the programmer from
reasoning about certain tedious and complicated details, they
still burden the programmer with the major conceptual tasks
of parallelization and data distribution, along with reasoning
about many complex details such as data dependencies and
communication costs. Automatic parallelizing compilers
exist for limited domains, mostly scientific application
domains. Those compilers have been shown to be capable of
automatically parallelizing programs that were written 1n a
sequential language; however, 1n the general case outside of
such specific application domains, parallelizing compilers
are largely etfective.

Refactorings are semantic-preserving source-to-source
code transformations. Refactoring has traditionally been used
in program maintenance to improve the structure and read-
ability of code. Existing refactoring tools are typically
destructive; the previous version of the source code 1s lost
alter the transformation has been applied.

The present disclosure, 1n one aspect, addresses the prob-
lem of how to enable programmers to build parallel applica-
tions for multi-core and other parallel machines through
interactive tool-assisted concurrency refactoring of the code.
Known solutions to this problem are based on either manual
parallelization or automatic (compiler) parallelization.
Inspite of many advances in parallel programming models,
manual parallelization of code remains to be a difficult task
that typically only a small number of highly trained class of
programmers are able to conquer. Automatic parallelization
has been successiul when restricting the problem (mostly to
regular loop dominated scientific applications) but has not yet
provided a general solution to the problem.

BRIEF SUMMARY

A method and system for program parallelization are pro-
vided. The method, 1n one aspect, may include recording a
history of source code versions of a program and recording,
performance data associated with the source code versions in
the history. The method may also include predicting an
expected benelit of one or more source refactorings for one or
more candidate pieces of source code based at least on the

5

10

15

20

25

30

35

40

45

50

55

60

65

2

performance data, and ranking the one or more candidate
pieces of source code according to the prediction.

A system for program parallelization, 1n one aspect, may
include a storage device and a processor operable to record a
history of source code versions of a program 1n the storage
device. The processor may be further operable to record per-
formance data associated with the source code versions in the
history. The processor also may be operable to predict an
expected benellt of one or more source refactorings for one or
more candidate pieces of source code based at least on the
performance data and rank the one or more candidate pieces
ol source code according to the prediction.

A program storage device readable by a machine, tangibly
embodying a program of instructions executable by the
machine to perform methods described herein may be also
provided.

Further features as well as the structure and operation of
various embodiments are described 1n detail below with retf-
erence to the accompanying drawings. In the drawings, like
reference numbers 1ndicate 1dentical or functionally similar
clements.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1s an architectural diagram 1llustrating a system of
the present disclosure 1n one embodiment.

FIG. 2 1s a flow diagram illustrating a method of the present
disclosure 1n one embodiment.

FIG. 3 1s an architectural diagram 1llustrating a system of
the present disclosure 1n another embodiment.

FIG. 4 1llustrates an example of a computer system, 1n
which the systems and methodologies of the present disclo-
sure may be carried out or executed.

DETAILED DESCRIPTION

The present disclosure, 1n one aspect, provides a hybnd
solution between manual and fully automatic parallelization.
The parallelization process may be assisted with several tools
(e.g., refactoring tool, refactometer, performance tool and/or
others) to interactively guide the programmer through an
incremental parallelization effort. The refactoring tool or the
like tunctionality provides various parallelization choices.
The refactometer or the like functionality 1dentifies a ranked
list of those choices based on history information and perfor-
mance models. Parallelization choices may include choices
for revising the code so that certain pieces of code can run 1n
parallel. The refactoring tool, for example, may identify
pieces of code 1n a given code that may be parallelized, 1.¢.,
run simultaneously or substantially simultaneously. In order
to 1dentify parallelization choices, the refactoring tool may
perform semantic analyses of the program, for instance, to
ensure that only semantic-preserving, 1.€., sate, paralleliza-
tion choices are offered to the programmer.

The programmer then selects a refactoring from the list
produced by the refactometer, 1.e., one or more choices for
revising the code, for example to introduce/manipulate the
program’s parallelism, to alter the layout in memory and/or
distribution of various data structures, or to rearrange loop
structures to 1mprove memory relference locality. The
selected one or more refactorings are then applied to effect the
changes to the program’s code. The new code, 1.e., the code
with one or more refactorings applied, 1s executed. The one or
more selected refactorings may be evaluated using one or
more performance tools and the resulting performance data
may be placed in the repository of the past transformation

US 8,726,238 B2

3

history to assess progress. The transformation process may
incrementally continue until the programmer decides to con-
clude transforming the code, the performance tools indicate
acceptable performance has been achieved, and/or the refac-
toring tool indicates that there are no longer any applicable
transformations.

In one aspect, the system and method of the present dis-
closure may provide an interactive parallelization develop-
ment loop 1 which the developer decides what transforma-
tions to apply at each step from a ranked list of safe
transformations offered by the refactometer. In another
aspect, the system and method may provide an intelligent
decision making tool to produce a completely automatic
incremental parallelization process, for example, without
requiring developer’s intervention.

The system and method of the present disclosure may
incorporate the concepts of code refactoring into the code
parallelization process 1n order to provide a novel hybrid
approach that uses an interactive feedback loop to assist the
programmer in parallelizing a sequential program and/or
manipulating the parallelism and/or distribution of an
already-parallel program through a series of code refactor-
ngs.

FIG. 1 1s an architectural diagram illustrating a system of
the present disclosure 1n one embodiment. A refactometer
102 may be a processing module that may include a graphical
user mtertace (GUI) 104 and/or an application programming,
interface (API). The GUI 104 may be provided for interacting
with the user acting as an intelligent agent also referred to as
“oracles”. An API may be provided as an interface to an
automated 1ntelligent tool acting as the intelligent agent. The
refactometer 102 may also include a repository 112 storing
information such as the program source code, the history of
transiformations applied, and performance data collected for
various program runs under various combinations ol refac-
torings. It should be understood that the repository 112 need
not be locally co-located with the refactometer 102 as shown;
rather, the repository 112 may be distributed across or over
different systems, machines or platform, or networks, or even
in a manner so as to be used 1n cloud computing. The refac-
tometer 102 receives source code and queries the refactoring,
tool to determine a set of applicable (candidate) refactorings
for the source code. Candidate refactorings refer to one or
more revisions or code changes that can safely be made to the
source code to parallelize the source code. While in this
description, the code for parallelizing 1s referred to as “source
code,” 1t should be understood that the intermediate codes or
objects may be also parallelized according to the system and
method disclosed herein.

The concurrency refactoring tool 114 may be any software
component or tool or the like that analyzes the given code and,
for a given list of possible transformations (refactorings),
identifies the set of semantically safe (i.e., legal) refactorings,
for example, pieces of code that can be parallelized or run
concurrently, and/or restructured or rewritten to make the
code more readable, understandable and the like. The concur-
rency refactoring tool 114 then transmits the 1dentified can-
didate refactorings to the refactometer 112. The refactometer
112 analyzes the 1dentified candidates and produces a ranked
list of the refactoring candidates. In one aspect, the rankings
are assigned 1n order to reflect the expected performance
benelits of each refactoring 1n the list. The refactometer may
compute these rankings based on the history of previously
applied refactorings and their performance, and/or based on a
performance prediction model, and the like. The prediction
model may be based on a formula that estimates the perfor-
mance of the refactored code as a function of the structure,

10

15

20

25

30

35

40

45

50

55

60

65

4

number and types of operations in the code, and possibly
using performance data from previous runs of the code and
information regarding the cost of key operations on the target
execution platform (e.g., the cost of creating a new task, the
cost of various forms of synchronization, and so on). The
prediction model also could be based on simulation to esti-
mate key performance metrics (e.g., total computer cycles
executed, instructions per cycle (IPC)) without actually
executing the code. The refactometer may also query and
compare performance data across different alternative code
versions from the transformation history to determine which
refactoring to keep or remove from the candidate list.

The refactometer may present the ranked list of refactor-
ings to the user 106 through a Graphical User Interface (GUI)
104. The user 106 may interact with the refactometer 102 to
make decisions as to which of the identified candidate refac-
torings should actually be implemented or applied to revise
the code 1nto a more parallel, or otherwise improved code.
The user 106 may make the decision, for example, based on
the history of transformations, performance data and/or other
data accessible from the refactometer 102, for example, via
the GUI 104. This allows the user to interactively make 1ntel-
ligent decisions as to what refactorings should occur 1n the
code. During the interaction, the user 106 may pull informa-
tion from the refactometer 102 and navigate through the
information, for example, transformation history, examining,
for example, past refactorings for different types of code and
different types of platforms that may have resulted 1n
improved execution of codes or overall performance of a
computer system running the code.

Additionally or alternatively, the refactometer may auto-
matically make such decisions by simply selecting the high-
est ranked refactoring from the list.

Based on the refactoring decisions, the source code 1s
revised or refactored accordingly. The history or information
related to the refactoring 1s saved, for example, 1n the reposi-
tory 112 for later retrieval or use. Further, performance data
from executions of the code resulting from this refactoring
may be saved and linked to the refactoring. This information
may be used, for example, in the next round of iterations when
determining what part of the program to transtorm, or what
refactoring to select. The saved history of refactorings may be
also used, for instance, to permit the code to be returned to a
previous state, 1.€., to undo the refactoring, 1f for instance, the
refactoring resulted 1 worse performance or no 1mprove-
ment. The saved history can further be used to alter a param-
cter of a previously-applied refactoring, such as the number of
times to unroll a particular loop.

An 1nstrumentation tool 116 may be utilized to istrument
the refactored code. Instrumenting the code, for instance,
would cause the code, for instance, when 1t executes, to gen-
erate types of performance data that would allow for moni-
toring or analyzing the performance factors of the code. Such
instrumented code might, for example, add entries to a log
indicating when the program enters a certain phase of the
computation, or 1t might enable fine-grained sampling of
hardware performance counters during the execution of a
core inner computational “kernel”.

It should be noted that instrumenting the refactored code 1s
optional and may take place before or after compiling the
code that 1s refactored, or even before and after, and this
disclosure does not limit the invention to one particular
method.

A compiler 118 may be utilized to compile the refactored
code 1nto an executable. This step may not be needed if the
refactored code 1s 1n the machine executable or runnable state
already. The refactored code (e.g., the executable) then may

US 8,726,238 B2

S

be run or executed on a machine, for example, by a computer
processor with one or more cores or the like. The executing,
code creates performance data that can be used to monitor
and/or analyze its performance, for instance, as a result of the
instrumentation. The data may be used to perform real-time
analysis of the refactored code. The data may be also saved 1n
the repository 112 for example, for later off-line analysis, use
by the refactometer 102, and/or others. A performance tool
120 may be used to analyze the data 1n real-time and/or at a
later time (e.g., off-line analysis).

The performance and other data obtained from running the
refactored code may then be used as feedback to conduct
more refactoring of the code. The present disclosure inte-
grates and orchestrates several tools mto a single feedback
loop. These tools present the programmer with the informa-
tion to drive the parallelization effort, assist 1n the safe and
incremental transformation of the program into a better par-
allel program (through the application of a series of refactor-

ngs).

In one embodiment, transformations may be maintained as
user-visible and manipulable entities 1n a tree that represents
the programmer’s exploration of the solution space, permit-
ting convenient reasoning about “what-1”" scenarios, and
additional tuning of intermediate transformations. For
example, such a structure may permit the user to review
various combinations and sequences ol transformations that
had been applied 1n the past, to alter each one’s parameters, to
run additional executions under a given set of transforma-
tions, to remove transtformations, or to insert additional trans-
formations or others.

The system and method of the present disclosure may
maintain both the original source and all intermediate results,
including intermediate results that led up to configurations
other than the one currently under consideration, unlike the
traditional refactoring frameworks. This also may permit the
programmer to maintain multiple versions, for instance, each
tuned for a different platform.

The teedback loop, that for example, includes selecting
one or more refactorings, refactoring the code, executing the
code, and using the results of the executed code as feedback
for more refactoring, can be implemented with varying
degrees of automation ranging from a primarily interactive
user-driven loop to a fully automated loop, where the refac-
tometer makes the refactoring selections. FI1G. 3 illustrates an
example of this configuration. In this example the refactome-
ter 112 automatically selects the highest ranked refactoring,
from the ranked list of possible refactorings without requiring
user mtervention.

FI1G. 2 15 a flow diagram illustrating a method of the present
disclosure in one embodiment. At 202, source code 1s entered,
for example, 1n the refactometer of the present disclosure or
another like component. At 204, a ranked list of the next
possible refactoring steps 1s determined based on the list of
possible legal refactorings and the history and performance of
past refactorings. At 205, one or more of the refactoring steps
from the ranked list 1s selected. The selection may be driven
by a user, for instance, via user intertace, or the top ranked
step may automatically be selected. At any time during the
iteration ol making refactoring decisions, at 205 no selection
may be made, effectively terminating the iteration and declar-
ing the current version the final version. The termination may
occur, for example, 1 certain performance metrics have been
met, 11 the improvement 1n the performance has diminished
between iterations, or for other reasons.

At206, the refactoring tool applies the next refactoring and
enters information about the refactoring into the refactometer

10

15

20

25

30

35

40

45

50

55

60

65

6

or the like component. Entering or storing the information
about the refactoring maintains the history of which revisions
have been made to the code.

At 208, the instrumentation tool instruments the refactored
source, for instance, to output, log or provide the data that can
be used to monitor and/or analyze the performance of the
refactored source code.

At 210, the mmstrumented refactored source 1s compiled into
an executable file or object. In another embodiment, the refac-
tored source may be compiled before instrumentation, then
the compiled code may be mstrumented. Yet imn another
aspect, the mstrumentation make take place both before and
alter the compilation.

At 212, a performance tool or the user may execute the
code one or more times, and collect and analyze performance
data associated with the execution(s).

At 214, the performance data and analysis results are saved
or stored, for instance, entered into the refactometer for later

use.
At 216, the steps shown at 204 through 214 may be

repeated with more or different refactorings.

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, intfrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or 1n connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an 1nstruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including

US 8,726,238 B2

7

but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soitware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the tlowchart 1llustrations and/
or block diagrams, and combinations of blocks in the tlow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function 1n a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the tlowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block 1n the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or tlowchart
illustration, and combinations of blocks 1n the block diagrams

10

15

20

25

30

35

40

45

50

55

60

65

8

and/or tlowchart 1llustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer 1nstructions.

Referring now to FIG. 4, the systems and methodologies of
the present disclosure may be carried out or executed in a
computer system that includes a processing umt 2, which
houses one or more processors and/or cores, memory and
other systems components (not shown expressly in the draw-
ing) that implement a computer processing system, or com-
puter that may execute a computer program product. The
computer program product may comprise media, for example
a hard disk, a compact storage medium such as a compact
disc, or other storage devices, which may be read by the
processing unit 2 by any techniques known or will be known
to the skilled artisan for providing the computer program
product to the processing system for execution.

The computer program product may comprise all the
respective features enabling the implementation of the meth-
odology described herein, and which—when loaded 1n a
computer system—1s able to carry out the methods. Com-
puter program, software program, program, or software, in
the present context means any expression, 1n any language,
code or notation, of a set of instructions intended to cause a
system having an information processing capability to per-
form a particular function either directly or atter either or both
of the following: (a) conversion to another language, code or
notation; and/or (b) reproduction in a different material form.

The computer processing system that carries out the sys-
tem and method of the present disclosure may also include a
display device such as a monitor or display screen 4 for
presenting output displays and providing a display through
which the user may 1input data and interact with the processing
system, for instance, in cooperation with mput devices such
as the keyboard 6 and mouse device 8 or pointing device. The
computer processing system may be also connected or
coupled to one or more peripheral devices such as the printer
10, scanner (not shown), speaker, and any other devices,
directly or via remote connections. The computer processing
system may be connected or coupled to one or more other
processing systems such as a server 16, other remote com-
puter processing system 14, network storage devices 12, via
any one or more of a local Ethernet, WAN connection, Inter-
net, etc. or via any other networking methodologies that con-
nect different computing systems and allow them to commu-
nicate with one another. The various functionalities and
modules of the systems and methods of the present disclosure
may be implemented or carried out distributedly on different
processing systems (e.g., 2, 4, 6), or on any single platform,
for instance, accessing data stored locally or distributedly on
the network.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
turther understood that the terms “comprises” and/or “com-
prising,” when used 1n this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
clements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements, 1f any, in the
claims below are intended to include any structure, matenal,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of

US 8,726,238 B2

9

the present invention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the invention 1n the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill 1n the art without departing from the scope and
spirit of the invention. The embodiment was chosen and

described 1n order to best explain the principles of the mven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Various aspects of the present disclosure may be embodied
as a program, software, or computer instructions embodied 1n
a computer or machine usable or readable medium, which
causes the computer or machine to perform the steps of the
method when executed on the computer, processor, and/or
machine. A program storage device readable by a machine,
tangibly embodying a program of mstructions executable by
the machine to perform various functionalities and methods
described 1n the present disclosure 1s also provided.

The system and method of the present disclosure may be
implemented and run on a general-purpose computer or spe-
cial-purpose computer system. The computer system may be
any type of known or will be known systems and may typi-
cally mclude a processor, memory device, a storage device,
input/output devices, internal buses, and/or a communica-
tions interface for communicating with other computer sys-
tems 1n conjunction with communication hardware and soft-
ware, etc.

The terms “computer system” and “computer network™ as
may be used in the present application may include a variety
of combinations of fixed and/or portable computer hardware,
soltware, peripherals, and storage devices. The computer sys-
tem may include a plurality of individual components that are
networked or otherwise linked to perform collaboratively, or
may include one or more stand-alone components. The hard-
ware and soitware components of the computer system of the
present application may include and may be included within
fixed and portable devices such as desktop, laptop, server. A
module may be a component of a device, soltware, program,
or system that implements some “functionality”, which can
be embodied as software, hardware, firmware, electronic cir-
cuitry, or etc.

The embodiments described above are illustrative
examples and 1t should not be construed that the present
invention 1s limited to these particular embodiments. Thus,
various changes and modifications may be effected by one
skilled 1n the art without departing from the spirit or scope of
the invention as defined in the appended claims.

We claim:

1. A method of identifying a ranked list of one or more
candidate pieces of source code for use in parallelizing a
given potentially concurrent user program, each candidate
piece associated with one or more source refactorings, com-
prising;:

recording a history of source code versions of a program,

wherein the recording a history of source code versions
includes recording one or more of a plurality of code
transformations that have been applied to the program
and other programs in the past;

recording performance data associated with the source

code versions in the history;

predicting an expected benefit of one or more source refac-

torings for one or more candidate pieces of source code
based at least on the performance data, the one or more

5

10

15

20

25

30

35

40

45

50

55

60

65

10

source refactorings comprising at least pieces of code
that are capable of being parallelized and capable of
running concurrently;

ranking the one or more candidate pieces of source code
according to the prediction; and

allowing a user to navigate through past refactorings for
different types of code and different types of platiorms,
and associated performance data associated with the
past refactorings,

wherein an interactive parallelization development loop 1s
provided via a graphical user interface, in which a devel-
oper 1s allowed to decide which one or more of the
plurality of code transformations to apply at each step
from the ranked list of the candidate pieces of source
code, and the method further comprises enabling the
developer to undo an applied transformation or alter a
parameter of a previously applied refactoring,

wherein the expected benefit 1s determined for each of the
different types of platforms based on at least cost of
operations on the different types of platforms.

2. The method of claim 1, wherein the prediction of an
expected benefit 1s based on specific information associated
with a computing platform.

3. The method of claam 1, wherein the predicting an
expected benelfit 1s based on a mathematical performance
model.

4. The method of claim 1, further including:

selecting one or more candidate pieces of source code and
associated one or more source refactorings from the
ranked list;

applying the associated one or more source refactoring to
create a revised code;

determining performance data associated with the revised
code; and

analyzing the performance data to evaluate benefit of the
applied refactoring.

5. The method of claim 4, wherein the steps of selecting,

applying, determining and analyzing are repeated iteratively.

6. The method of claim 4, wherein the step of determining
includes:

instrumenting the revised code;

executing the instrumented code; and

collecting performance data associated with executing of
the instrumented code.

7. The method of claim 4, wherein the selecting further
includes a user mteractively selecting the one or more candi-
date pieces of code and associated one or more source refac-
toring from the ranked list.

8. The method of claim 4, wherein the selecting further
includes a processor automatically selecting the one or more
candidate pieces of code and associated one or more source
refactoring from the ranked list.

9. A system for 1dentifying a ranked list of one or more
candidate pieces of source code for use in parallelizing a
given potentially concurrent user program, each candidate
piece associated with one or more source refactorings, com-
prising;:

a storage device;

a processor operable to record a history of source code
versions of a program 1n the storage device, wherein to
record the history of source code versions includes
recording one or more of a plurality of code transforma-
tions that have been applied to the program and other
programs 1n the past, the processor further operable to
the processor further operable to record performance
data associated with the source code versions in the
history, the processor further operable to predict an

US 8,726,238 B2

11

expected benefit of one or more source refactorings for
one or more candidate pieces of source code based at
least on the performance data the one or more source
refactorings comprising at least pieces of code that are
capable of being parallelized and capable of running
concurrently, the processor further operable to rank the
one or more candidate pieces of source code according
to the prediction, the processor further operable to allow
a user to navigate through past refactorings for different
types of code and different types of platforms, and asso-
ciated performance data associated with the past refac-
torings:

wherein an 1nteractive parallelization development loop 1s

provided via a graphical user interface, in which a devel-
oper 1s allowed to decide which one or more of the
plurality of code transformations to apply at each step
from the ranked list of the candidate pieces of source
code, and the graphical user allows the developer to
undo an applied transformation or alter a parameter of a
previously applied refactoring,

wherein the expected benefit 1s determined for each of the

different types of platforms based on at least cost of
operations on the different types of platforms.

10. The system of claim 9, wherein the prediction of an
expected benelit 1s based on specific information associated
with a computing platform.

11. The system of claim 9, wherein the predicting an
expected benefit 1s based on a mathematical performance
model.

12. The system of claim 9, wherein the processor 1s further
operable to select one or more candidate pieces of source code
and associated one or more source refactorings from the
ranked list, apply the associated one or more source refactor-
ing to create a revised code, determine performance data
associated with the revised code, and analyze the perfor-
mance data to evaluate benefit of the applied refactoring.

13. The system of claim 12, wherein to determine perfor-
mance data, the processor 1s further operable to 1nstrument
the revised code, execute the instrumented code, and collect
performance data associated with the executed instrumented
code.

14. A non-transitory computer readable storage medium
storing a program of instructions executable by a machine to
perform a method of 1dentitying a ranked list of one or more
candidate pieces of source code for use in parallelizing a
given potentially concurrent user program, each candidate
piece associated with one or more source refactorings, the
method comprising:

recording a history of source code versions of a program,

wherein the recording a history of source code versions
includes recording one or more of a plurality of code
transformations that have been applied to the program
and other programs in the past;

recording performance data associated with the source

code versions in the history;

predicting an expected benefit of one or more source refac-

torings for one or more candidate pieces of source code
based at least on the performance data, the one or more

10

15

20

25

30

35

40

45

50

55

12

source refactorings comprising at least pieces of code
that are capable of being parallelized and capable of
running concurrently;

ranking the one or more candidate pieces of source code

according to the prediction; and

allowing a user to navigate through past refactorings for

different types of code and different types of platiorms,
and associated performance data associated with the
past refactorings,

wherein an interactive parallelization development loop 1s

provided via a graphical user interface, in which a devel-
oper 1s allowed to decide which one or more of the
plurality of code transformations to apply at each step
from the ranked list of the candidate pieces of source
code, and the method further comprises enabling the
developer to undo an applied transformation or alter a
parameter of a previously applied refactoring,

wherein the expected benefit 1s determined for each of the

different types of platforms based on at least cost of
operations on the different types of platforms.

15. The non-transitory computer readable storage medium
of claim 14, wherein the prediction of an expected benefit 1s
based on specific information associated with a computing
platiorm.

16. The non-transitory computer readable storage medium
of claim 14, wherein the predicting an expected benefit 1s
based on a mathematical performance model.

17. The non-transitory computer readable storage medium
of claim 14, turther including:

selecting one or more candidate pieces of source code and

associated one or more source refactorings from the
ranked list:

applying the associated one or more source refactoring to

create a revised code;

determiming performance data associated with the revised

code:; and

analyzing the performance data to evaluate benefit of the

applied refactoring.

18. The non-transitory computer readable storage medium
of claim 17, wherein the steps of selecting, applying, deter-
mining and analyzing are repeated iteratively.

19. The non-transitory computer readable storage medium
of claim 17, wherein the step of determiming 1includes:

instrumenting the revised code;

executing the mstrumented code; and

collecting performance data associated with executing of

the mstrumented code.

20. The non-transitory computer readable storage medium
of claam 17, wherein the selecting further includes a user
interactively selecting the one or more candidate pieces of
code and associated one or more source refactoring from the
ranked list.

21. The non-transitory computer readable storage medium
of claim 17, wherein the selecting further includes a processor
automatically selecting the one or more candidate pieces of
code and associated one or more source refactoring from the

ranked list.

	Front Page
	Drawings
	Specification
	Claims

