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GROWTH AND USE OF SELF-TERMINATING
PREDICTION TREES

BACKGROUND

Prediction trees can include a type of decision tree used in
machine learning and data miming applications, among oth-
ers. A prediction tree can be a decision tree 1n which each
node has a real value associated with 1t, in addition to a
branching variable as in a conventional decision tree. Predic-
tion trees may be built or learned by using a first set of training,
data, which 1s then used to construct the decision and predic-
tion values. A tree may be then applied against a second set of
validation data, and the results are used to fine-tune the tree.
Various computer-implemented techniques are known for
growing and applying prediction trees to arbitrary data sets.

Conventional techmques for building prediction trees
include two phases: a growing phase and a pruning phase. In
the growing phase, nodes are added to the tree to match a
known set of data, such as a training set. During this phase the
tree may be overgrown, often to the point of fitting some noise
in the data as well as real trends and patterns in the data. In an
extreme case, for example, a tree can be constructed for a set
of data in which each data point 1s associated with an 1ndi-
vidual leat, 1.e., the tree 1s fit exactly to the data set so that no
two examples or data points result in the same end leaf or path
through the tree. In some cases, such an overgrown tree may
exactly fit known data, but could be ineffective or useless at
predicting outcomes for other examples or data points.

To avoid the problem of overgrowing a tree, a second
pruning phase may be employed 1n which sections of the tree
that provide little or no additional predictive power are
removed or collapsed. For example, a portion of the tree that
fails to distinguish further among most of the examples that
lead to that portion of the tree may be removed, thus termi-
nating that portion of the tree at a higher node. Various prun-
ing and validation techniques are known. For example, vali-
dation data may be applied to the tree to determine whether
the tree provides equivalent or better predictions in the
absence of certain nodes. Such nodes may then be pruned
from the tree. Generally, the two-step growing and pruning
process 1s computationally expensive.

Various other additions to tree learning are known. Some
tree learning and application techniques associate a predic-
tion with internal nodes of prediction trees; such techniques
have been used for the estimation and learning of context trees
for compression and classification. Measure-based regular-
1zation of prediction trees has been used to penalize a Hilbert
norm of the gradient of a prediction function f. Some tree
growing techniques have made use of self-controlled learning
for online learning of self-bounded suilix trees. The learning
procedure can be viewed as the task of estimating the param-
eters of a prediction tree of a fixed structure using the hinge
loss for assessing the empirical risk along with an 12-norm
variation penalty. In the context of online learning, this setting
may lead to distilled analysis that implies sub-linear growth
of the sullix tree. However, such approaches may not migrate
directly to other settings. Various Bayesian approaches have
also been used for tree induction and pruning.

BRIEF SUMMARY

According to an embodiment of the disclosed subject mat-
ter, a computer-implemented method of constructing a seli-
terminating prediction tree may iclude constructing a piece-
wise-continuous function representative of a prediction tree
that maps an mput space to real prediction values, determin-
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2

ing a complexity function for the prediction tree based upon
the variation norm of the real-valued prediction values, where
the complexity function 1includes a regularizer that indicates
when each child of a node should not be grown, and construct-
ing a weighted risk function based upon the piecewise-con-
tinuous function. A variable that minimizes a combination of
the complexity function and the weighted risk function for a
root node may be 1dentified, and a real value for each child
node of the root node determined. The combination of the
complexity function and the weighted risk function for each
child node may be minimized, so as to obtain a real value for
cach child node of the child node. An 1nput that includes a
request for a prediction of a real value may be recerved from
a user, and the tree may be traversed to obtain the requested
prediction.

In an embodiment of the disclosed subject matter, a com-
puter-implemented method of constructing a seli-terminating,
prediction tree may include determiming a complexity func-
tion for the prediction tree, constructing a weighted risk func-
tion for the prediction tree, and minimizing a combination of
the complexity function and the weighted risk function to
obtain a real-valued prediction for a plurality of nodes 1n the
tree, where nodes having a real-valued prediction of zero are
not added to the tree.

A system according to an embodiment of the disclosed
subject matter may include a processor configured to con-
struct a piecewise-continuous function representative of a
prediction tree, where the function maps an input space to real
prediction values, determine a complexity function for the
prediction tree based upon the variation norm of the real-
valued prediction values, that includes a regulator to indicate
when a node should not be grown, and construct a weighted
risk function based upon the piecewise-continuous function.
The processor may determine a variable that minimizes a
combination of the complexity function and the weighted risk
function for the root node, determine a real value for each
child node of the root node, and, for each child node of the
root node having a non-zero real value, minimize the combi-
nation of the complexity function and the weighted risk func-
tion for the child node to obtain a real value for each child
node of the child node. The system also may include an input
configured to receive a request for a prediction of a real value
based upon the prediction tree from a user, and an output
configured to provide a prediction obtained by traversing the
tree based upon the request.

A system according to an embodiment of the disclosed
subject matter may include a processor configured to deter-
mine a complexity function for a prediction tree, construct a
weighted risk function for the prediction tree, and minimize a
combination o the complexity function and the weighted risk
function to obtain a real-valued prediction for a plurality of
nodes 1n the tree. Nodes in which the optimization method
yields no change 1n the real-valued prediction relative to the
parent need not be added to the tree.

In embodiments of the disclosed subject matter, methods
and systems as disclosed above may be implemented on or 1n
conjunction with a computer-readable medium that causes a
processor to perform the disclosed methods and/or to imple-
ment the disclosed systems.

Additional features, advantages, and embodiments of the

disclosed subject matter may be set forth or apparent from
consideration of the following detailed description, drawings,
and claims. Moreover, 1t 1s to be understood that both the
foregoing summary and the following detailed description are
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exemplary and are intended to provide further explanation
without limiting the scope of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of the disclosed subject matter,
are incorporated in and constitute a part of this specification.
The drawings also 1illustrate embodiments of the disclosed
subject matter and together with the detailed description
serve to explain the principles of embodiments of the dis-
closed subject matter. No attempt 1s made to show structural
details 1n more detail than may be necessary for a fundamen-
tal understanding of the disclosed subject matter and various
ways 1 which 1t may be practiced.

FIG. 1A shows a schematic representation of an example
prediction tree according to an embodiment of the disclosed
subject matter.

FIG. 1B shows a specific example of a prediction tree
according to an embodiment of the disclosed subject matter.

FIG. 2A shows an example correspondence between and
tree size according to an embodiment of the disclosed subject
matter.

FI1G. 2B shows validation loss at various tree sizes accord-
ing to an embodiment of the disclosed subject matter.

FIG. 3 shows example convex loss functions suitable for
use with various embodiments of the disclosed subject matter.

FI1G. 4 shows an example logistic loss function suitable for
use with various embodiments of the disclosed subject matter.

FIG. 5 shows an example difference of hinge loss function
suitable for use with various embodiments of the disclosed
subject matter.

FIG. 6 shows a comparison of the difference of hinge loss
optimizers according to an embodiment of the disclosed sub-
ject matter with Cart results.

FIG. 7 shows a comparison of the hinge loss optimizers
according to an embodiment of the disclosed subject matter
with Cart results.

FIG. 8 shows experimental results in which uniform label
noise 1s mjected 1n 20% of the traiming and validation data
according to an embodiment of the disclosed subject matter.

FI1G. 9 shows a scatter plot comparing the log loss between
Cart and the log loss optimizer with an 1, regularizer accord-
ing to an embodiment of the disclosed subject matter.

FIG. 10 shows a plot of error rates for various noise rates
tor the difference of hinge and log loss functions according to
embodiments of the disclosed subject matter.

FIG. 11 shows an example device according to an embodi-
ment of the disclosed subject matter.

FIG. 12 shows techniques for node-based optimization
techniques for classification and regression according to
embodiments of the disclosed subject matter.

FIG. 13 shows an example technique for a generalized
solution for a dual optimization method according to an
embodiment of the disclosed subject matter.

FI1G. 14 shows an example of node-level optimizations for
a classification setting according to an embodiment of the
disclosed subject matter.

FIG. 15 shows an example of node-level optimizations for
a regression setting according to an embodiment of the dis-
closed subject matter.

FIG. 16 shows an example prediction tree according to an
embodiment of the disclosed subject matter.

DETAILED DESCRIPTION

It has been found that decision/prediction trees may be
more efficiently created, without requiring a separate pruning,
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4

phase, by using seli-terminating prediction trees (SPTs) as
disclosed herein. Seli-terminating prediction trees are a gen-
eralization of decision trees in which each node 1s associated
with a real-valued prediction. Instead of having a separate
pruning phase, a self-terminating tree may be constructed by
applying various limits during tree growth that prevent nodes
that add little or no additional decision power from being
grown within the tree. For example, a parent node that would
only have a single child node that provides little or no addi-
tional information relative to the parent’s real-value predic-
tion value may not be grown.

In general, any tree or tree structure that could be created
using a conventional growing/pruning technique also may be
created using embodiments of the disclosed subject matter.
However, whereas growing/pruning techniques normally
expand either all children no children of a node 1n the tree,
embodiments of the disclosed subject matter allow for devel-
opment of the same or equivalent tree structures directly
during tree growth.

According to an embodiment of the disclosed subject mat-
ter, an SP'T can be viewed as a piecewise-constant function
from an mput space into a set of real values. Therefore, the
children of a node 1n an SPT split the portion of the mput
teature space that 1s defined by the parent node into disjoint
partitions, where each of the partitions 1s associated with a
different prediction value. The complexity of the tree may be
measured by the variation norm of the piecewise-constant
function 1t induces.

SPTs may be applied to obtain prediction values for base
inputs, such as prediction request and/or 1nitial data supplied
by a user of a system configured to generate and/or use the
SPT. A base prediction for an mput instance 1s formed by
summing the individual predictions at the nodes traversed
from the root node to a leaf by applying a sequence of branch-
ing predicates. The final predicted value may be obtained by
applying a transfer function to the base prediction. For
example, 1n the context of a probabilistic classification, a
suitable transfer function may be the inverse logit function
1/(1+€™"). As another example, for a least squares regression
the 1dentity may be used as a suitable transier function.

According to an embodiment, the logical problem of leamn-
ing the prediction tree, such as by a computerized process,
may be cast as a penalized empirical risk minimization task,
based upon the use of prediction values and functional tree
complexity described above. For instance, for prediction trees
with the 1inverse logit transter, a natural choice for the risk 1s
the log-likelihood of the examples. Varnation penalties based
onl, and 1., norms may be used. It has been found that these
norms may promote sparse solutions that, in the context of
SPTs, correspond to seli-terminating of a tree-growing phase,
meaning that no separate pruning phase 1s required. These
norms also may facilitate parameter estimation of the predic-
tion values.

Embodiments of the presently disclosed subject matter
may be “backward compatible” with existing tree learning
procedures. That 1s, other tree learning procedures may be
used, and caused to seli-terminate using the techniques dis-
closed herein. Efficient tree growing algorithms may be
derived for a variety of loss functions, including some non-
convex losses such as the difference ol hinge functions, which
may provide a tighter bound to the 0-1 loss.

For example, upon omitting the variation penalty, tech-
niques disclosed herein may provide other growing criteria
such as the information gain and the Gini index.

In an embodiment of the disclosed subject matter, an opti-
mization method employing a dual representation of the (pri-
mal) penalized risk may be used, which may enable a unified
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treatment of different variational norms through their dual
norms. A combined primal-dual procedure also may provide

an algorithmic skeleton independent of the empirical loss.

Embodiments of the presently disclosed subject matter
may diverge from conventional tree construction methods,
which require two uncoupled phases of growing and then
pruning the tree. The fact that the growing/induction phase 1s
divorced from the pruning phase, poses aesthetic and compu-
tational challenges since two-phase tree induction methods
often grow trees beyond the size necessary and, in some
cases, over-grow the tree and result in fitting to noise 1n
addition to data trends.

As disclosed above, a prediction tree 1s a generalization of
a decision tree in which each node s 1s assigned a predicate i
that 1s used for branching, as well as a real value ... FIG. 1A
shows a schematic representation ol an example prediction
tree where each node s 100 has a real value a associated with
it. The bias b_ 1s the sum of real values from the root node 110
to the node s 100, and provides a confidence value for each
prediction. Confidence values may be calculated for both
internal nodes and for leaves. FIG. 1B shows a specific
example of a prediction tree. As in FIG. 1A, the bias provides
a confidence value for each prediction.

The use of techniques disclosed herein 1n binary predic-
tions will now be described.

For any node s 1n the prediction tree, the path P_(x) 1s
defined as the path of nodes from the root node to the node s
when evaluating x. The sum of real values b_along the path 1s
given by b =2, p )0

For a given prediction tree T, the norm variation complex-
ity VZ(T) is defined as 2 Mol Where C(s) 1s the set
of chuldren of the node s and A(s) 1s a penalty for node s, e.g.,
the depth of node s. By convention, the real value o, 1s set to O
tor null children. Thus, for p=1 and p=o0o:
and

Vi = Zm) > gl =) Aslas

=7 s’ €C(s) seT

Ve = E A(s) max o |
§ Ly

s=1

where A(s) is the penalty for the parent of node s. The penal-
ties A(s) and A(s) may be used to encourage small decision
trees. In general, the regularization constant A provides a
control for the degree of sparsity of the prediction tree. For
example, FIG. 2A shows an example correspondence
between A and tree size according to embodiments of the
presently disclosed subject matter. As shown, the tree size
may be constrained by selecting an appropriate value of the
regularization constant. For comparison, the validation loss at
various tree sizes 1s shown in FIG. 2B. In some configura-
tions, a more strict regularization constant, 1.e., one that
results 1n a smaller tree, also may increase the prediction
CITor.

The use of the 1, regularizer above may provide a sparse
solution, 1n which children C(s) of a node s are zero. If the
optimal solution 1s such that at least some o, for s'e(C(s) 1s
non-zero, then the rest of the children can be non-zero as well
without incurring further penalty.

As disclosed above, 1n an embodiment of the disclosed
subject matter the tree learning process can be performed as a
penalized empirical risk minimization task. To do so, the tree
1s modeled as a piecewise-continuous function and a risk
functionis applied. For example, a function f-may be defined
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for a prediction tree T. As a specific example, for an mput X,
§ Ax) may be the sum of the c values along the path from the
root of the tree T to the leat reached by x. An empirical risk
function R(L, F, w) may be defined for the function f with loss
L. weighted by w=0. Given examples x, and labels

Vio Ru(Lo £ W) := )" wil(f (i), y).
=1

Then the goal 1s to minimize the penalized weighted empiri-
cal nisk (Equation 1):

Ru(L, £, W)+ VP(T) = ) wi{f (%), yi)) + VP (T).
i=1

Equation 1 incorporates sparsity-promoting regulation and,
therefore, the learning technique encourages small trees that
naturally terminate growth.

This technique greedily builds a multivariate prediction
tree, but does not require a separate pruning phase as with
conventional trees. Further, any*“pruning” occurs at the finer
granularity of edges, rather than at nodes. Because each node
has an associated prediction, the value may be applied upon
reaching a null child. The variable that minimizes Equation 1
by 1tself may be placed in the root, and then the same proce-
dure may be recursively applied to all added nodes.

The optimization procedure used to select the variable to
place at the node simultaneously determines the value «; for
cach of the branches defined by the selected variable. For each
branch for which s ¢, 1s non-zero, the process 1s recursively
applied. That 1s, embodiments of the presently disclosed sub-
ject matter may learn a prediction tree by first determining a
variable that minimizes a combination of the complexity
function and the weighted risk function at a root node, which
also provides a real value for each child node of the root node.
Similarly, these techniques may then determine a variable
that minimizes a combination of the complexity function and
the weighted risk function for each child node having a non-
zero real value, which provides a real value for each child
node of the root node. The process may be recursively applied
for each child level having at least node with a non-zero real
value.

Notably, the regularizer used 1n the objective determines
when to stop growing the tree, 1.¢., when the tree will seli-
terminate. Furthermore, the regularization constant A pro-
vides a control for the degree of sparsity for the prediction
tree, as shown and described with respect to FIG. 1 previ-
ously. Thus, embodiments of the presently disclosed subject
matter may be used to boost shallow, non-fixed depth trees.

In general, as disclosed above, embodiments of the pres-
ently disclosed subject matter may be considered as including
several components: associating each node of a prediction
tree with a confidence value and a real-valued prediction, and
learning the tree by minimizing a penalized empirical risk
function. The risk function may be applied, for example, to a
piecewise-continuous model of the tree. The complexity
measure of the tree may be defined as the variation of the
real-valued predictions. As disclosed 1n further detail below,
various loss functions may be used with the penalized empiri-
cal risk tree learning technique.

In embodiments of the presently disclosed subject matter,
node expansion may be performed through a variety of tech-
niques. Techmques for learning sparse real o values for a
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node’s children according to an embodiment of the disclosed
subject matter will now be described. The predicate m to use
within a node s 1s chosen by greedily selecting the predicate
mimmizing the penalized loss (1). More specifically, the loss
obtained when s 1s associated with a k-ary predicate m may be
derived, which in turn may create k children with values
A, ..., 04 Inthe following description, w,; 1s set equal to w,
when example 1 follows branch j, and to 0 otherwise, and
b=b _(x) where x 1s the example being considered.

In embodiments of the presently disclosed subject matter,
techniques for addressing classification problems having
labels in {-1, 1} for a variety of loss functions may be used.

For the followmg description, the values u; and , ; are defined
as:

HJZZJ"IED(U{;'

V200

For the logistic loss case, L(f(x), v)=log(1+e™7®)). To
expand a node s into k children based upon splitting a par-

ticular feature, the following is minimized for c.e'J;R* -

ot

wilog(1 +e71%*2)) 4 Alall,

>

J-:l i=1

In terms of v and p, this becomes (Equation 2):

k
112 ,ujlﬂg 1 e l@ +b)) + v lmg(l ¥ el9) +b))] + Al
J=1

It can be shown that this generalizes a conventional greedy
tree building using information gain by first determining the
dual of Equation 2. H 1s used to denote the binary entropy and
1/p+1/q 1s set equal to 1, so that 1_ 1s dual to 1,. The dual
problem to Equation 2 1s then given by (Lemma 1)

— Vi
Hj+V;

] by; s.L. ”y”q < A.

maxz (4t + vj)[l-l(

J=1

Given the optimal dual variable y, the optimal o 1s o.=log
[(L=v,)/ (v +y,)]-b. Notably, when y =0 for all j, this objective
reduces to a standard information gain.

A general-purpose solution for the dual case may be
obtained as described herein. In some embodiments of the
presently disclosed subject matter, 1t may be useful to use a
primal-based algorithm for an 1, regularizer. To do so, the
sub-gradient ot Equation 2 1s determined with respect to a,
and set to 0. So

J 1 J

+ASJ,'=0
r§+1 1/r§+1

where

S;= ;”ﬂf”l and r; =expla; +50)/2
J
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Thus, r and Q; are:

ri= \/(ﬂj—lﬁ)/(”; +As ;)
w"_ln(vj+ﬂsj] b.

The closed-form solution for o, requires knowledge of s,
however, the sign of a; may be determined from known quan-

tities:

when a>0 and setting s =1, (L—A)/ (v, +h)>e”:

when o, <O and setting s, ——1 (uj+?x)<(fv —h)<e’;

Wflena =0, -1=s,=1;

when 1-==S C -==(u +7x)/ (v —K) and

when s =1, (uj?\.)/ (“v +7u)-==e

Thus, s, and o, can be determmed based upon only the known
quantities L, “v, A, and b. A more complex method may be
applied to all convex losses and for both 1, and 1., regularizers,
as described 1n further detail herein.

Another loss of interest 1n an embodiment of the disclosed
subject matter may be the hinge loss, for which L(F(x),
y)=max {0, 1-yf(x)}. The resulting optimization problem is
then:

k
minz [ ymaxil, 1 —(a; + )} + vymax{l, 1 + (a; + D)} + Al .
(1'
i=1

For p=1, the loss 1s piecewise-linear, so the objective may be
determined at the three intlection points ¢=0, a=1-b, and
a.=—1-b. The objective values may then be compared to find
the minimum. The dual approach described herein may also
be used, such as when p=co.

In an embodiment of the disclosed subject matter, another
loss of 1nterest may be the difference of hinge loss. For this
loss function, L(F(X), y)=dh(F(x) v), where dh is the differ-
ence of a hinge function at 0 and a hinge function at -1, and
is defined as dh(z)=max {0, 1-z}-max {0, —-z}. The associ-
ated optimization problem 1s

k
m&inz [;dh(a; + b) + vidh(—(a; + D) + All]],.

J=1

For this loss, a solution may be obtained using the primal for
both p=1 and p=cc. When p=1, the loss 1s piecewise-linear as
with the hinge loss, allowing for the objective to be deter-
mined at the intlection poimnts ¢=0, o=1-b, a=-1-b, and

a.=-b. Similarly, when p=c0, the loss 1s piecewise-linear with
inflection points at o.,=0, for a.€{-r, r}, where r=min(/1-bl,
[1+bl) and a.eq1-b, (1+b)} for all .

In an embodlment of the disclosed subject matter, an expo-

nential loss function may be used. For exponential loss, L(F
(x),y)=exp(-F(X) vy), so the objective function is

k
HZ (ar +b) 1 7 E(ﬂf +b)] 1 PL“EL’”

J=1

For p=1, setting the sub-gradient with respect to o, to zero
yields
—exp(—(a+b))+v.exp(a+b)+Aisign(o,)=0.
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The equation is a second-order polynomial in € and the
solution 1s the root of the equation. Just as the logistic loss
generalizes a standard information gain measure for tree
growing, the exponential loss generalizes the Gim 1ndex.

In an embodiment of the disclosed subject matter, a
squared loss may be applied for regression problems (where
yeR ). The squared loss is L(f(x), y)=Y2(f(x)-y)>. The tech-
nique then attempts to find o that mimimizes

IS &
52 2, willai +6) = y)* + Alell, =

i=1 j=1

1 2
C + 52 wi(a; + b)Y — Z wigle; + b)y; + Al .
i} i}

where C 1s a constant independent 1f a. Defining

H
i=1
and

H
vj= ) Wiy
=1

gives the equivalent

] k k
HSHEZ (il + b)* —Z vila; + ) +Allel,.
i=1 =1

J

The saddle point for o; 1s defined by w(a+b)-v+
Asign(a,)=0. So when a>0, at the saddle point, o.,=(v,—A)/
w~b. This occurs 1f and only 1t (v,-A)/1,~b>0, or equivalently
when

Similarly, whep o <0, o ~(v+A)u-b, 1t and only 1if (v+A)/
1 —b<0, or equivalently when
wj/pj—b{—h/yj.

If neither conditions hold, then a,=0.

Data Set
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FIG. 12 shows node-based optimization techniques for
classification and regression according to embodiments of the
presently disclosed subject matter.

As previously indicated, 1n an embodiment of the disclosed
subject matter a generalized solution to solving a dual opti-
mization method for both classification and regression may
be used. FIG. 13 shows an example technique for such a
solution. FIG. 14 shows an example embodiment of the dis-
closed subject matter of node-level optimizations for a clas-
sification setting. FIG. 15 shows an example of node-level
optimizations for a regression setting according to an
embodiment of the disclosed subject matter. Further details
regarding the dual technique, including derivation and solu-
tions for an 1, constraint, are provided in the appendix
included herewith.

As disclosed above, a variety of loss functions may be used.,
including convex loss functions. FIG. 3 shows example con-
vex loss functions suitable for use with embodiments of the
presently disclosed subject matter. Example hinge 510, logis-
tic 520, and exponential 530 functions are shown. FIGS. 4-5
show example non-convex loss fTunctions suitable for use with
embodiments of the presently disclosed subject matter,
including the difference of logistic loss (4) and difference of
hinge loss (5) functions. It will be understood that the specific
functions shown are 1llustrative only, and other variations and
other loss functions may be used.

In an embodiment of the presently disclosed subject mat-
ter, the standard University of Califorma-Irvine (UCI) data
sets as commonly used 1n the field were used to grow and test
a self-terminating tree. The results obtained with this embodi-
ment demonstrate that the self-terminating tree techniques
disclosed herein provide results competitive with a sophisti-
cated Cart implementation that uses validation data 1n a post-
pruning process. In contrast, embodiments of the presently
disclosed subject matter allow for trees to seli-terminate dur-
ing the growing phase, with validation data only needed to
select the value of 2. To obtain a standard deviation, the
standard UCI training data was used, with %6 of the training
data used as test data. The remaining 5 was provided as
training data (with a fraction set aside as designated by the
algorithm for cross validation). The classification results
were averaged over 200 repetitions of this process, and the

results for regression averaged over 30 repetitions. The
results are shown below:

Cart Logl.oss 1I; DiffHingel, Hingelossl, Hingel.oss I

breast-cancer
breast-w
credit-g
diabetes
haberman
heart-c
heart-h
heart-statlog
hepatitis
labor
liver-disorders

lung-cancer
solar-flare-1
solar-flare-2
sonar

vote

0.297 £ 0.059
0.063 = 0.022
0.269 = 0.032
0.259 = 0.037
0.271 £ 0.062

0.225 = 0.058
0.212 £ 0.050
0.223 = 0.061
0.202 £ 0.079
0.251 £0.135
0.350 = 0.057
0.186 £ 0.201
0.025 £ 0.021
0.005 £ 0.005
0.266 £ 0.075
0.051 £0.024

0.286 £ 0.061
0.089 £ 0.026
0.283 £ 0.036
0.248 =+ 0.033
0.284 + 0.068

0.249 = 0.059
0.225 £ 0.035
0.244 = 0.061
0.215 £ 0.078
0.273 £0.118
0.344 £ 0.061
0.234 £ 0.189
0.022 £0.019
0.004 £+ 0.004
0.281 £ 0.074
0.048 £ 0.024

0.310 £ 0.062
0.061 = 0.021
0.288 + 0.031
0.261 + 0.033
0.254 + 0.061
0.274 = 0.050
0.199 + 0.052
0.263 = 0.057
0.201 £ 0.072
0.220 £ 0.127
0.354 £ 0.072
0.148 + 0.186
0.023 £ 0.019

0.309 £ 0.062
0.061 £0.021
0.288 £ 0.031
0.261 = 0.033
0.254 = 0.061
0.274 £ 0.050
0.199 £ 0.052
0.263 = 0.058
0.201 £0.072
0.223 £0.127
0.334 £ 0.072
0.148 £ 0.186
0.023 £ 0.019

0.324 £ 0.057
0.052 £0.019
0.289 + 0.031
0.261 = 0.033
0.251 = 0.063
0.275 = 0.030
0.198 +£0.053
0.265 = 0.057
0.201 £0.072
0.236 £0.129
0.354 £ 0.072
0.148 £ 0.186
0.022 £0.019

0.005 = 0.004 0.005 +0.004 0.005 = 0.005

0.285 = 0.076
0.043 + 0.022

0.285 £ 0.076
0.043 £ 0.022

0.285 = 0.076
0.043 +£0.022
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This shows that classification errors obtained by embodi-
ments of the presently disclosed subject matter are compa-
rable to known Cart results. As an alternate view, FIGS. 6-7
compare the hinge loss and difference of hinge loss optimiz-
ers according to embodiments of the presently disclosed sub-
ject matter with Cart results 1n a scatter plot. The techniques
disclosed herein are naturally suited to making binary predic-
tions and, because the optimization technique 1itself 1s based
on minimizing a given loss function, 1t 1s appropriate that the
disclosed techniques pertorm well when compared with Cart
with respect to the loss being optimized. FIG. 9 shows a
scatter plot comparing the log loss between Cart (using the
confldence measure as 1ts real-valued prediction), and the log
loss optimizer with an 1, regularizer according to embodi-
ments of the presently disclosed subject matter.

One reason to consider the hinge loss and/or the difference
of hinge loss 1s that these both better approximate the 0-1 loss,
and as such should be more robust to classification errors.
FIG. 8 and the following table present data from embodi-
ments of the presently disclosed subject matter in which
uniform label noise has been mjected in 20% of the traiming,
and validation data.

10

15
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FIG. 10 shows a plot of error rates for various noise rates
for the difference of hinge and log loss functions.

Embodiments of the presently disclosed subject matter
also may be extended and generalized to multiclass problems.
For example, some embodiments of the presently disclosed
subject matter may provide techniques to solve multiclass
problems using an 1, regularizer at the node level. Using this
restriction, an estimation procedure for each child of a node
may be individually performed. A derivation of an example
multiclass technique and solution according to an embodi-
ment of the presently disclosed subject matter 1s disclosed in
the appendix provided herewith.

Embodiments of the presently disclosed subject matter
may be used to construct and use seli-terminating trees in a
variety of contexts. For example, self-terminating trees may
be used to automatically classity or rank various items within
a computer system. Specific examples include assigning a
likelihood that a file 1s corrupt, 1dentiiying a desired file or
component, ranking cost or value of a set of items, attributes,
or conditions, assigning a probability that a user’s provided
identity 1s correct, determining a likelihood that a security
measure has been breached, and the like, as well as various

Data Set Cart Logl.oss |, DiffHinge [, Hingel.oss I;  Hingel.oss |,
breast-cancer  0.327 £0.077 0.333 £0.073  0.320+£0.077 0318 £0.068  0.325 + 0.063
breast-w 0.080 £0.027 0.080 £0.028 0.079 £0.025 0.080 £0.026 0.076 £ 0.028
credit-g 0.293 £0.036 0304 £0.041 0.296 £0.036 0.295+£0.034 0.297 £ 0.036
diabetes 0.272 £0.039 0277 £0.042 0.268 £0.039 0.265 +£0.036 0.263 £ 0.036
haberman 0.300 £ 0.070 0319 £0.068 0.294 £ 0.068 0281 £0.065 0.283 £ 0.073
heart-c 0.273 £0.068 0.276 £0.067 0.277 £0.067 0.273 £0.060  0.269 + 0.065
heart-h 0.218 £0.064 0.230 £0.066 0.214 £0.057 0.211 £0.053  0.212 £ 0.057
heart-statlog 0.265 £0.075 0.281 £0.073 0.271 £0.065 0.277 £0.069  0.271 £ 0.071
hepatitis 0.243 £0.095 0.256 £0.100 0.211 £0.082 0.216 £0.084  0.216 = 0.079
labor 0.329 £0.157 0.283 £0.158 0.265+0.165 0.293 £0.166 0.290 £ 0.166
liver-disorders  0.391 £0.068  0.392 £ 0.069 0413 £0.059 0416 £0.063  0.406 = 0.075
lung-cancer 0.372 £0.238 0386 £0.225 0.330+£0.250 0.366 £0.260  0.349 + 0.247
solar-flare-1 0.064 £0.043 0.029 £0.029 0.032 +£0.026 0.032 £0.028 0.031 £ 0.025
solar-Rare-2 0.017 £0.016 0.005 £0.006 0.006 £0.006 0.007 £0.007 0.007 £ 0.007
sonar 0.333 £0.088 0334 £0.089 0.340 £0.087 0.334 £0.087  0.327 £ 0.091
vote 0.057 £0.028 0.050 £0.027 0.018 £0.025 0.048 £0.025 0.048 £ 0.024

Since SPT's use empirical risk minimization with respectto
a real-valued prediction associated with each node in the tree,
it would be expected that as with minimizing the log loss, the

techniques disclosed herein will perform well for regression >

as compared with Cart. The following table shows a compari-
son between Cart and SPTs according to embodiments of the
presently disclosed subject matter using the squared loss with
au L, regularizer. As expected, SPTs according to embodi-

ments of the presently disclosed subject matter may signifi- >0
cantly outperform Cart on these data sets.
Data Set Cart Squaredloss |, 23
abalone 4.669 = 0.368% 2.553 +0.209
autoMpg 12.038 £ 3.560 6.613 £1.424
breastTumor 103 £ 16 53 £ &
cpu 1322 + 1772 4787 + 5669
diabetes numeric 0.625 + 1.056 0.186 = 0.073 60
housing 33.583 +73.934 9.290 £ 4,233
kdd coil 208.685 +377.111 17.555 £11.409
mbagrade 0.123 £ 0.055 0.061 £0.024
SEeIrvo 0.568 +0.454 0.349 + 0.234
vineyard 13.995 £ 33.863 5.591 + 2.833
WI1SCONSIN 2972 + 7118 531 + R& 63

other ranking and/or classification applications. In these con-
figurations, the real value at each node may provide, for
example, an indication of whether a user 1s likely to perform
a specific action, if an analysis of the user’s history or
attributes leads to that node of the tree. Each node may 1ndi-
cate an attribute the user may have, the value of which for the
particular user indicates which branch or path through the tree
should be followed. Thus, by applying a tree to a particular
user, file, configuration, message, etc., the tree may provide a
prediction that the user’s data 1s inaccurate, that the file 1s
corrupt, or the like.

FIG. 16 shows an example prediction tree for predicting the
political party of a political representative based on the rep-
resentative’s votes. In the example, a prediction value (b,
“output”) closer to 1 mndicates a higher likelihood or confi-
dence that the representative 1s a Democrat, while a prediction
value of 0 indicates a high confidence that the representative
1s a Republican. The bias b (equal to the sum of the real values
a. along the path to each node) 1s shown for each node.

The tree structure shown in FIG. 16 may be obtained
according to embodiments of the disclosed subject matter by
applying an optimization procedure that selects a variable to
place at each node. As previously described, the optimization
procedure will also determine the real values a for each
branch at the node. Only branches with non-zero a values are
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grown. In the example, this process results in a prediction tree
that includes the large nodes 1610, 1611, 1612, 1613, 1614,
1615, where each node indicates a vote (variable) that was
found to improve the predictive power of the tree.

FIG. 16 also shows a prediction tree that may be obtained
for the same value using a conventional growth/pruning tech-
nique, before 1t has been pruned. In such a technique, for each
node typically eitther all children are expanded or no children
are expanded. For example, the only child of the “immigra-
tion” vote 1611 found by an SPT techmque as disclosed
herein to have further predictive power 1s the “yes” branch”™
along the outside edge, as shown by the O-valued a values for
the other branches. However, a conventional growth/pruning,
technique may expand the “no” and “no vote” branches as
well, resulting 1n the sub-tree structure 1620 as shown. Simi-
larly, a growth/pruning techmque may expand other branches
1630, 1640, 1650, 1660 that would not be grown by an SPT
technique as disclosed herein. Although these additional
nodes are shown much smaller for ease of illustration and
understanding, 1t will be apparent to one of skill 1n the art that
the intermediate fully-grown tree results in a much larger tree
than the SPT techniques disclosed herein.

In a growth/pruning-type techmque, these nodes may then
be pruned based upon the performance of the full tree when
applied to validation data. For example, the validation data
may show that the additional branches 1620-1660 provide
little or no additional predictive power, or that a tree without
one or more of these branches performs better than the fully-
grown tree that includes these branches. Thus, the branches
1620-1660 may be removed from the tree, resulting 1n a
similar or 1dentical tree to that obtained by an SPT technique
as disclosed herein. The additional growth of branches that
are later pruned 1620-1660, causes computational inefficien-
cies, especially for larger trees and data sets. Thus, embodi-
ments of the disclosed subject matter may provide improved
processing time relative to growth/pruning-type techniques
for tree growth.

Embodiments of the presently disclosed subject matter
may be implemented 1n and used with a variety of device and
network architectures. FIG. 11 1s an example device 200
suitable for implementing embodiments of the presently dis-
closed subject matter. The computer system 200 includes a
bus 212 which interconnects major subsystems of the com-
puter system 210, such as a central processor 214, a system
memory 217 (typically RAM, but which may also include
ROM, flash RAM, or the like), an input/output controller 218,
a user display 224, such as a display screen via a display
adapter, a user input subsystem, which may include one or
more controllers and associated user input devices such as a
keyboard, mouse, and the like, fixed storage 224, such as a
hard drive, flash storage, Fibre Channel network, SCSI
device, and the like, and a removable media subsystem 237
operative to control and recerve an optical disk, flash drive,
and the like.

The bus 212 allows data communication between the cen-
tral processor 214 and the system memory 217, which may
include read-only memory (ROM) or flash memory (neither
shown), and random access memory (RAM) (not shown), as
previously noted. The RAM 1s generally the main memory
into which the operating system and application programs are
loaded. The ROM or tlash memory can contain, among other
code, the Basic Input-Output system (BIOS) which controls
basic hardware operation such as the interaction with periph-
eral components. Applications resident with the computer
system 200 are generally stored on and accessed via a com-
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puter readable medium, such as a hard disk drive (e.g., fixed
storage 224), an optical drive, tloppy disk, or other storage
medium 237.

The fixed storage 224 may be integral with the computer
system 200 or may be separate and accessed through other
interface systems. The network interface 208 may provide a
direct connection to a remote server via a telephone link, to
the Internet via an internet service provider (ISP), or a direct
connection to a remote server via a direct network link to the

Internet via a POP (point of presence) or other technique. The
network interface 208 may provide such connection using
wireless techniques, including digital cellular telephone con-
nection, Cellular Digital Packet Data (CDPD) connection,
digital satellite data connection or the like.

Many other devices or subsystems (not shown) may be
connected 1n a stmilar manner (e.g., document scanners, digi-
tal cameras and so on). Conversely, all of the devices shown in
FIG. 2 need not be present to practice the present disclosure.
The devices and subsystems can be interconnected in differ-
ent ways from that shown. The operation of a computer sys-
tem such as that shown 1n FIG. 2 1s readily known in the art
and 1s not discussed in detail 1n this application. Code to
implement the present disclosure can be stored 1n computer-
readable storage media such as one or more of system
memory 217, fixed storage 224, removable media 237, or on
a remote storage location.

Various embodiments of the presently disclosed subject
matter may include or be embodied 1n the form of computer-
implemented processes and apparatuses for practicing those
processes. Embodiments also may be embodied in the form of
a computer program product having computer program code
containing instructions embodied 1n non-transitory and/or
tangible media, such as floppy diskettes, CD-ROMs, hard
drives, USB (universal serial bus) drives, or any other
machine readable storage medium, wherein, when the com-
puter program code 1s loaded into and executed by a com-
puter, the computer becomes an apparatus for practicing
embodiments of the disclosed subject matter. Embodiments
also may be embodied 1n the form of computer program code,
for example, whether stored 1n a storage medium, loaded nto
and/or executed by a computer, or transmitted over some
transmission medium, such as over electrical wiring or
cabling, through fiber optics, or via electromagnetic radia-
tion, wherein when the computer program code 1s loaded 1nto
and executed by a computer, the computer becomes an appa-
ratus for practicing embodiments of the disclosed subject
matter. When implemented on a general-purpose micropro-
cessor, the computer program code segments configure the
microprocessor to create specific logic circuits. In some con-
figurations, a set of computer-readable instructions stored on
a computer-readable storage medium may be implemented
by a general-purpose processor, which may transform the
general-purpose processor or a device containing the general-
purpose processor into a special-purpose device configured to
implement or carry out the instructions. Embodiments may be
implemented using hardware that may include a processor,
such as a general purpose microprocessor and/or an Applica-
tion Specific Integrated Circuit (ASIC) that embodies all or
part of the method 1n accordance with embodiments of the
disclosed subject matter 1n hardware and/or firmware. The
processor may be coupled to memory, such as RAM, ROM,
flash memory, a hard disk or any other device capable of
storing electronic information. The memory may store
instructions adapted to be executed by the processor to per-
form the method 1n accordance with an embodiment of the
disclosed subject matter.
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The foregoing description and following appendices, for
purpose of explanation, have been described with reference to
specific embodiments. However, the 1llustrative discussions
above are not intended to be exhaustive or to limit embodi-
ments of the disclosed subject matter to the precise forms
disclosed. Many modifications and variations are possible 1n
view of the above teachings. The embodiments were chosen
and described in order to explain the principles of embodi-
ments of the disclosed subject matter and their practical appli-

cations, to thereby enable others skilled in the art to utilize
those embodiments as well as various embodiments with

various modifications as may be suited to the particular use
contemplated.

APPENDIX A

A General Purpose Dual Optimization Method

In this section, we give a single unified algorithm to solve the
dual problem for both classification and regression problems.
This unified algorithm relies on an ordering lemma that
allows us to determine which of the dual variables are posi-
tive, negative and zero.

We first present the ordering lemma for the classification
setting. First observe that introducing Lagrange multiplier
0=0 for the constraint |y||, <A for the dual problem gives us
Lagrangian

i (1)
L+ (v +y ) log=—= +by; +0(||yll, - A).
U HjiTV;

Lemma 1. Assume that u >0 and v>0. Define K :=log(u/v;)—-
b. Then

K;>0 1t y,>0, k<=0 iff y,<0, and -6=K;<6 1ff y,=0

Proof. Let s,ealy;l. Then the subgradient condition for opti-
mality of the dual (1) 1s

Vit (2)
y;)+loglv; +y;) +b+Us; _lﬂg +b+0s; =0.

Mji—=7Y;

—ltzrg(J.u!Jr

Let Kk >0 and assume that y,<0. Then s€[-1,0], and

‘”_yf—b}kgﬂi—b_x:}ebﬁg

VitV Vi

log

contradicting the subgradient conditions for optimality. The
case for K,<-0 1s similar, and when K,€[-0, 0], then setting

y,~0 gives s =[-1,1] and
lmgm_h—b:fge&sﬁ
'V’J,'-I-’}"j

which satisfies the subgradient conditions for optimality.
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For the converse, assume that y>0 1s optimal, that 1s, 1t
satisfies Eq. (2). Then

and the case for y,<0 1s similar. Ity =0, then by Eq. (2) there 1s
some sje[ 1,1] for which K;+0s —O or K E[ 0, 0].

Similar to the derivation for ﬂ]le logls‘uc loss in, we have the
following ordering lemma for the regression setting.
Lemma 2. The dual problem 1s

(v; —vj) +2by; | st <A

1l& 1
max — — S
y 2 Z M

| =1

Further, given the optimal dual variable vy, the optimal . 1s

Again, a sorting algorithm using the unconstrained dual
solution v gives an efficient algorithm for solving Eq. (77).
The problem 1s clearly simply truncation when p=1 (so gq=c0).
When p=00 so that g=1, we consider the Lagrangian for the

negative dual, adding multiplier 0=0 for the constraint that
Iv||, =A. We have

(3)

&
1 (yi—vi)F
- +b)> v+ 00, = Q.
ZZ Hj ; ! l

J':

The structure of the solution 1s given by the following lemma.
Lemma 3. Let

Then
K,>0 it v >0, k<=0 iff y>0, and -0=K<0 1ff y =0

Proof. Let s,ealy;l. Then the subgradient condition for opti-
mality of the dual (3) 1s

Vi~V

4 b40s; =0, )
4

Let k>0 and assume for the sake of contradiction that y,=0.
Then’s €[-1,0], and

a contradiction to the fact that

Vi~V

= 0s; € 0[-1, 0].
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Conversely, Eq. (4) implies that when y >0,

The proof for the case that K, <-0 1s similar. When K €[-0,0],
there 1s some s.€[-1,1] such that

—+b+95i =0,
H

so that Eq. (4) 1s satistied. Conversely, 1fy,=0 1s optimal, then

Eq. (4) implies

0 e e
M

—b+0[-1, 1] =«; +0[-1, 1]

We now dertve our dual algorithm. We start with the sim-
pler setting 1n which the dual 1s accompamed with 1 con-
straints.

Solving the Dual with 1, Constraints

When the primal problem uses 1, -regularization, the dual
problem has an 1, constraint. Let y denote the unconstrained
dual solution for either the regression or classification prob-
lem. Both objectives are separable, and the solutions are (see

Eq. (2) and Eq. (4))
. . . —b — 1. 5)
; Hitvi _#ie —V - (
YiTHj— 1":_@; = Jl e ! | Logistic]
?’j =v,; — ;b |Regression].
Thus, with the 1_-constraint added, the solution

v* =max{min{y, A}, -A} is immediate.
Solving the Dual with 1, Constraints

When p=00, g=1 and the situation 1s slightly more compli-
cated, as we now detail. Both problems have very similar
structure, however. If |||, <A, then the KKT conditions for
optimality imply that =0 and no further work 1s needed. We
thus focus on the case |fy||,>A.

Lemmas 1 and 3 suggest an eflicient algorithm that 1tera-
tively considers candidate 0 values. Had we known the opti-
mal 6%, computing the optimal y, 1s easy using Hq. (2) or Eq.
(4). Thus, given 0, let v(0) denote the optimal yv. We define
index sets I, I°, and I*, containing indices for which v,<0,
y/~0, and y>0, respectively. By Lemmas 1 and 3, it 1s clear
that = {jre<-06}, I'*={j:x, >0}, and I"={j:k €[-6 El]} allow -
Ing K =+00.

Our algorithm essentially imtializes 0 at infinity, places all
indices for which [k |<oo 1nto [°, then shrinks 0 until the index
sets change. We call such change values knots, and can com-
pute the optimal v(0) given 0 using Lemma 1 and Eq. (2) or
Lemma 3 and Eq. (4), depending on our setting. The algo-
rithm terminates when |[y(6)||,=A\. Evidently, the only values
of 6 we need consider are the k. Let K,y denote the largest
knot value, K, the second, etc (we take K ,,=), and note
that setting 8=k ,, induces a partition of y into I", I°, and I™; for
E]E(I{(I),, K.1y)> the index sets I are constant. There must be
some 1 and setting of O€[K . K, ;) for which |[y(0)||,=A,
since our problems must satisty the KKT conditions for opti-
mality [?]. As noted earlier, 1f we knew the optimal 0, we
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could immediately reconstruct y(0) and ¢.. On the other hand,
if we have the correct partition of v into the index sets I, we can
reconstruct the optimal 0, which we now discuss.

Given a partition of vy into I*, I, and 1™, consider finding 6.
We begin with the logistic loss. Solving for v in Eq. (2), we
have

_ _ b+95-
Hj—Vj€

b—l—ﬂ.ﬂj +1 ]

Yi=

et t=c¢". Then to find the 0 such that |[y(0)||,=A, assuming the
partition of v into the mdex sets I 1s correct, we solve

pj—vjcebr ,uh,,-—ujeb/r_k
Z ebr + 1 e’fr+1
= jei™
We can solve the above for t as follows. Let o,”
2 0,7 =2 o, =2 voand o, 7=2, ;. v, Thena bit of
algebra yields
- (Gw++ﬁr_+?u)12+(eb (0,' -0, -h)+(0, -0, - Ne )i+
(0, +0, —A)=0. (6)
Clearly Eq. (6) 1s a quadratic in t, and we can solve for 0=log

t (where we take the positive root, and 1t there i1s none, the
algorithm simply continues) For the regression problem, we
see that solving for vy, in HEq. (4) gives ~;g'j(El) v, p&(b+s 0).
Thus, setting the o values as before for lo g15tiC regressmn we
require that

Y vi= D yi=0t - (b+6)0 oy +(b-0)0y =A

jel™ =t
Solving for 0 yields
) ol —a, —b(ﬂ'; —-0,) —A _ jy j#0
Of + 07 Y
yyj¢ﬂ

Thus our algorithm proceeds by 1terative considering knot
values K, partitioning y into I, I", and 1°, checking whether
the 6 induced by the partition falls in [k, K, ,), and return-
ing when such a 0 satisiying the KK'T conditions 1s found.

The key to the algorithm 1s to find the optimal partition of
Y into I*, 17, and I°. Our algorithm maintains a set I* of indices
1 for Wthh we know that "fj>0 Initially, these are the j for
which v=0. Likewise, we maintain a set I~ of indices j for
which we know that y,<0 which are initially the j for which
u=0.

Our algorithm can be viewed as 1nitializing our candidate
for O to oo which corresponds to the partition 1n which all
indices j not 1mitially places in I™ or I have y~0. We then
consider the knots 1n order, moving indices corresponding to
positive knots into I™, and indices corresponding to negative
knots into I". Let K, be the knot under consideration. We know
that 11 the partition being considered 1s correct, then the value
of 6 for which X |y|=A must satisty x, ,>0=2K,. Since, we
process the candidates for 0 from largest to smallest, 1t thus
follows that once we reach a partition that produces 0>k,
(equivalently, v=e"™), we have the optimal partition and its
corresponding value for 0. FIG. 13 gives the algorithm 1n

detail.
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APPENDIX B

B. Multiclass Problems

We now describe an efficient algorithm to solve the multiclass
problem when an |1 regularizer is applied at the node level.
Under this restriction, the estimation procedure for each child
of a node s can be individually performed.

We focus 1n this section on the multiclass extension for the
log loss. Recall that 1n a binary classification setting, each
node s 1s associated with a bias value b=2,,,, c,,. When using
the log loss as our empirical loss, we can also view b as a prior
distribution over the target label where the probability of the
label being 1 is u=1/(1+e"),

for all examples that reach the node s. In the multiclass
setting we 1nstead need to represent the label distribution as a
probability vector, u, rather than a single scalar. Thus, we
need to replace the single scalar a which 1s associated with
each node, with a vector c.. The distribution induced over the
labels takes the form p,~e”*%. Our goal is to further endow
the self-pruning property and promote solutions where the
entire vector a 1s zero in the lack of strong empirical evidence.
To do so, we use the 1, regularization which promotes group
sparsity.

For the remainder of this section we consider a node s with
prior u and focus on a single branch from s for which q 1s the
empirical distribution over the labels following that branch.
Using the notation introduced earlier, we define q,=
l/kEH:yikai ,» wWhere K 1s a normalization constant which
ensures that q 1s a proper distribution and w, .. Our goal 1s to
determine the (posterior) distribution p of the labels for child
node residing at the branch using the penalized empirical risk
mimmization framework we employed in the binary classifi-
cation case. This posterior distribution becomes 1n turn the
prior u as we proceed to perform the growing procedure at the
child node. Formally, the multiclass penalized risk minimi-
zation for the logistic loss amount to mimimizing -2 .q, log
p,+Allol|.. where p~e®*”. Finding the optimal solution of this
problem 1s not an easy task due to the 1, penalty. We solve
instead 1ts Legendre dual, which 1s,

minz ((gi —vi)loglgi —vi) +vilogu;,
!5

such |ly||, A and Z v =0. To solve the dual form we introduce
a Lagrange multiplier 0=0 for the 1, constraint and o for the
constraint that 2 y,=0, and obtain the following [.agrangian,

Y

i

minZ [(qf —vi)loglgi — i) +vilogui + O(|[¥l; — A) + 52 Vi

Denoting s,=sign(y.), and using the sub-gradient optimality
condition with respect to v yields that,

(we’ /7 v >0 (1)
Pi=4gi —7Yi =13 M;E_H/Z v; < ()
| G yi =0,

where z 1s the standard normalization (partition function)
which ensures that p 1s a proper distribution. Eq. (1) under-
scores the relation between v and p. Specifically, Eq. (1)
implies that when v.>0, u,=p<q,, and for v<0, u.zp,>q,. In
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words, the solution p lies between g and u where the lower and
upper bounds on each coordinate in p depends on the relation
between the corresponding components 1n g and u. This char-
acterization facilitates the efficient procedure for finding the
optimum which we describe in the sequel.

Let I, be the set of indices for which v.>0, I_ be the set of
indices for which y,<0, and I, be the set of indices for which

v.=0. Define

Q+=qu, Q—:ZQEa

icfT i=f

and similarly,

U, =

Zuh U_ =

icfT

S i

T=y

Combining Eq. (1) with the constraint that 2 v=0 (which
stems from the requirement 2 p~=1) yields

(U, +e U )/z=0,+0_. (2)

Similarly, combining Eq. (1) with the constraint 2 |y.|=A
yields

(—eU +e U ) z=h-0,+0_. (3)

Combining the last two equalities gives a close form solution
for 0 and z,

U

1 (Qy —A/2)U_) -
Q. +0Q_

U= 3l o,

], 7= EGUJF +e

Our dervation 1s not over. In order to further characterize
and find the solution we need to find the correct partition of
the components of v into the sets I, I_, 1.

From Eq. (1) 1t immediately follows that when y>0, log
(p,/u.)+log z=0 and when v,<0, log(p,/u,)+log z=—0. Further-
more, by applying the KKT conditions for optimality, the
tollowing property holds,

log(g/u,)+log z| <=y =0. (4)

We now combine these properties to obtain an efficient algo-
rithm for finding the optimal partition into I, I_ and I 1n the
optimal solution. First observe we can sort the components
according to the ratios q,/u.. Without loss of generality and for
clarity of our derivation, let us assume that q,/u,=q,/
u,=...=q,/u ,wherenisthe number of different labels. From
Eq. (4) we know that there must exist two indices r and s such
that 1=r<s=n and q,/u <l and gq/u_>1. In turn, these ratio
properties imply that that for j=r, y <0,v, ,=...=y,,=0, and
for jzs, y>0. The next key observation 1s that had we were
given the partition, then we could have computed the solution
corresponding to that partition using the from the equations
for z and 0. Finally, from Eq. (4), it 1s clear that a candidate
partition 1s optimal 111 6>0 and for all 1 such that llog(qg,/u,)+
log zI<0, the value of v, 1s zero.

The algorithm to find a partition of the indices mnto I, I_
and I, proceeds as follows. Initially, we place all the indices 1n
1°. In an outer loop, going down and beginning at n, we add the
next element I, . We also maintain the sums Q, and U, . These
sums are used compute z and 0 for each candidate partition 1n
constant time. The sums are 1mtially set to 0 and are updated
in constant time as elements are moved from I° into either I*
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or I". It 1s easy to verily that for the optimal solution Q,>A/2.
We can thus add elements to I" until this condition 1s met. Let
us definet, =(Q_ —-A/2)/U,). Next, for each candidate set1_, we
consider all feasible candidate sets I_ by incremental adding
clements, starting with index 1. We also define t_=(Q_+A/2)/
U_. Note that we can rewrite 0=4t_ /t_. Since, 1 t,/t_<0, the
candidate partition that leads to these values 1s not feasible.
Moreover, since 00, t, must be greater than t_. If either of the
two conditions do not hold we the partition 1s not feasible and
we can proceed to examine the next partition by adding one
more element to I_. If the two conditions hold, we can finally
calculate candidate values for 6 and in turn z=(e°U_ +e °U_)/
(Q,+Q_). Finally, 11 the 1-norm of the resulting solution 1s
greater than A, then we 1dentified yet another infeasible par-
tition. This condition as well can be verified 1n constant time
since, |ly||,=Q.-Q_+(U_e °-U_ e%)/z. Finally, as discussed
above, the solution 1s optimal 11 and only 11 [log g,/u,+log z| <0
for iel”. This condition can be checked in constant time as
well by simply examining the largest and smallest ratios g,/u,
tor 1€l,. The time complexity of this procedure for finding the
optimum is O(n*) since we might need to examine all possible
pairs (r, s) such that 1=r<s=n and q,/u, <1 and q/u_>1. Since
typically the label set 1s not large and we can quickly dis-
quality candidate partitions we found that this procedure 1s 1n
practice very fast.

The mvention claimed 1s:

1. A computer-implemented method of constructing a seli-
terminating prediction tree, the method comprising;:

constructing a piecewise-continuous function representa-

tive of a prediction tree, the function mapping an input
space to real prediction values;
determining a complexity function for the prediction tree
based upon the variation norm of the real-valued predic-
tion values, the complexity function comprising a regu-
larization constant that indicates when anode should not
be grown, the regularization constant at each node of the
tree depending upon the depth of the node 1n the tree;

constructing a weighted risk function based upon the
pilecewise-continuous function; by a processor, for a
root node, determining a variable that minimizes a com-
bination of the complexity function and the weighted
risk function;

determining a real value for each child node of the root

node;

for each child node of the root node having a non-zero real

value, minimizing the combination of the complexity
function and the weighted risk function for the child
node to obtain a real value for each child node of the
child node:

receiving an nput from a user, the mput comprising a

request for a prediction of a real value based upon the
prediction tree;

traversing the tree based upon the request to obtain the

prediction; and

providing the prediction to a user.

2. A method as recited in claim 1, wherein the piecewise-
continuous function for a path through the tree 1s equal to the
sum of real values on the path from the root of the prediction
tree to the leaf reached by the path.

3. Amethod as recited 1n claim 1, wherein the weighted risk
function comprises a logistic loss function, a hinge loss func-
tion, a difference of hinge loss function, an exponential loss
function, a squared loss function, or a combination thereof.

4. A computer-implemented method of constructing a seli-
terminating prediction tree, the method comprising:

determining a complexity function for the prediction tree,

the complexity function comprising a regularization
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constant that controls the sparsity of the tree, the regu-
larization constant at each node of the tree depending
upon the depth of the node 1n the tree;

constructing a weighted risk function for the prediction

tree; and

by a processor, minimizing a combination of the complex-

ity function and the weighted risk function to obtain a
real-valued prediction for a plurality of nodes 1n the tree,
wherein each node that produces no change 1n the real-
valued prediction relative to 1ts parent node 1s omitted
from the tree.

5. A method as recited in claim 4, further comprising:

recerving an input from a user, the mput comprising a

request for a prediction of a real value based upon the
prediction tree;

traversing the tree based upon the request to obtain the

prediction; and

providing the prediction to a user.

6. A method as recited 1n claim 4, wherein the weighted risk
function comprises a logistic loss function, a hinge loss func-
tion, a difference of hinge loss function, an exponential loss
function, a squared loss function, or a combination thereof.

7. A system comprising:

a processor configured to:
construct a piecewise-continuous function representative
of a prediction tree, the function mapping an input space
to real prediction values;
determine a complexity function for the prediction tree
based upon the variation norm of the real-valued predic-
tion values, the complexity function comprising a regu-
larizer that indicates when a node should not be grown
and a regularization constant that controls the sparsity of
the tree, the regularization constant at each node of the
tree depending upon the depth of the node 1n the tree;

construct a weighted risk function based upon the piece-
wise-continuous function;

for a root node, determine a variable that minimizes a

combination of the complexity function and the
weilghted risk function;

determine a real value for each child node of the root node:

and

for each child node of the root node having a non-zero real

value, minimize the combination of the complexity
function and the weighted risk function for the child
node to obtain a real value for each child node of the
child node;

an 1put configured to receive a request for a prediction of

a real value based upon the prediction tree from a user;
and

an output configured to provide a prediction, the prediction

obtained by traversing the tree based upon the request.

8. A system as recited 1n claim 7, wherein the weighted risk
function comprises a logistic loss function, a hinge loss func-
tion, a difference of hinge loss function, an exponential loss
function, a squared loss function, or a combination thereof.

9. A system comprising:

a processor configured to:
determine a complexity function for a prediction tree, the
complexity function comprising a regularization con-
stant that controls the sparsity of the tree, the regulariza-
tion constant at each node of the tree depending upon the
depth of the node in the tree;

construct a weighted risk function for the prediction tree;

and

minimize a combination of the complexity function and the

welghted risk function to obtain a real-valued prediction
for a plurality of nodes in the tree, wherein each node
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that produces no change in the real-valued prediction
relative to 1ts parent node 1s omitted from the tree.

10. A system as recited in claim 9, further comprising;:

an 1nput configured to receive a request from a user for a

prediction of a real value based upon the prediction tree;
the processor further configured to traverse the tree based
upon the request to obtain the prediction.

11. A system as recited in claim 10, further comprising an
output configured to provide the prediction to a user.

12. A system as recited 1n claim 9, wherein the weighted
risk function comprises a logistic loss function, a hinge loss
function, a difference of hinge loss function, an exponential
loss function, a squared loss function, or a combination
thereof.

13. A non-transitory computer-readable storage medium
storing a plurality of instructions that cause a processor to
perform a method comprising:

constructing a piecewise-continuous function representa-

tive of a prediction tree, the function mapping an input
space to real prediction values;

determining a complexity function for the prediction tree

based upon the variation norm of the real-valued predic-
tion values, the complexity function comprising a regu-
larizer that indicates when a node should not be grown
and a regularization constant that controls the sparsity of
the tree, the regularization constant at each node of the
tree depending upon the depth of the node 1n the tree;
constructing a weighted risk function based upon the

pilecewise-continuous function;

by a processor, for a root node, determining a variable that

mimmizes a combination of the complexity function and the

weighted risk function;

determining a real value for each child node of the root

node;

for each child node of the root node having a non-zero real

value, minimizing the combination of the complexity
function and the weighted risk function for the child
node to obtain a real value for each child node of the

child node:
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recerving an input from a user, the mput comprising a
request for a prediction of a real value based upon the
prediction tree;

traversing the tree based upon the request to obtain the
prediction; and

providing the prediction to a user.

14. A non-transitory computer-readable storage medium
storing a plurality of instructions that cause a processor to
perform a method comprising:

determining a complexity function for the prediction tree,
the complexity function comprising a regularization
constant that controls the sparsity of the tree, the regu-
larization constant at each node of the tree depending
upon the depth of the node 1n the tree;

constructing a weighted risk function for the prediction
tree; and

by a processor, minimizing a combination of the complex-
ity function and the weighted risk function to obtain a
real-valued prediction for a plurality of nodes in the tree,
wherein each node that produces no change in the real-
valued prediction relative to 1ts parent node 1s omitted
from the tree.

15. A medium as recited 1n claim 14, the method further
comprising;
recerving an input from a user, the mput comprising a

request for a prediction of a real value based upon the
prediction tree;

traversing the tree based upon the request to obtain the pre-
diction; and

providing the prediction to a user.

16. A medium as recited 1n claim 14, wherein the weighted
risk function comprises a logistic loss function, a hinge loss
function, a difference of hinge loss function, an exponential
loss function, a squared loss function, or a combination
thereof.



	Front Page
	Drawings
	Specification
	Claims

