US008724624B2
12 United States Patent (10) Patent No.: US 8.724,624 B2
Bazlamacci et al. 45) Date of Patent: May 13, 2014
(54) SYSTOLIC ARRAY ARCHITECTURE FOR (56) References Cited
FAST IP LOOKUP
U.S. PATENT DOCUMENTS
(76) Inventors; Cune)ft BaZlamaCCi? Ankara (TR); 65583106 Bl K 6/2003 Crescenzi et al‘ ““““““ 709/242
Oguzhan Erdem, Ankara (TR) 6,711,153 B1* 3/2004 Hebbetal. ..ocoovvvnn..... 370/351
7,031,320 B2* 4/2006 Choec.covvveiennnn. 370/395.31
(*) Notice: Subject to any disclaimer, the term of this 8,477,780 B2 : 7/2013 Schultz ... 370/392
patent is extended or adiusted under 35 2011/0128959 Al* 6/2011 Bando etal. ... 370/392
U.S.C. 154(b) by 95 days. * cited by examiner
(21) Appl. No.: 13/518,390 Primary Examiner — Brenda H Pham

(22) PCT Filed Dec. 22. 2006 (74) Attorney, Agent, or Firm — Gokalp Bayramoglu
11C{. CC. .

(37) ABSTRACT
(86) PCTNo: PCITRZ009/000157 This invention first presents SR AM based pipeline IP lookup
§ 371 (c)(1), architectures including an SRAM based systolic array archi-
(2), (4) Date: Jun. 22, 2012 tecture that utilizes multi-pipeline parallelism idea and elabo-
rates on 1t as the base architecture highlighting its advantages.
(87) PCT Pub. No.: WO2011/078812 In this base architecture a multitude of 1ntersecting and dii-
PCT Pub. Date: Jun. 30, 2011 terent length pipelines are constructed on a two dimensional
array ol processing elements 1n a circular fashion. The archi-
(65) Prior Publication Data tecture supports the use of any type of prefix tree instead of
conventional binary prefix tree. The invention secondly pro-
US 2012/0257506 Al Oct. 11, 2012 poses a novel use of an alternative and more advantageous

prefix tree based on binomial spanning tree to achieve a

(1) Int. CL. substantial performance increase. The new approach,

HO4L 12/28 (2006'();“) enhanced with other extensions including four-side input and
HO4L 12/66 (2006'();) three-pointer implementations, considerably increases the
HO4L 12754 (2013'0:“) parallelism and search capability of the base architecture and
HO4L 12/56 (2006.01) provides a much higher throughput than all existing IP lookup
(52) U.S. Cl. approaches making, for example, a 7 Tbps router IP lookup
CPC i HO4L 12/66 (2013.01); HO4L 12/56 front end speed possible. Although theoretical worst-case
(2013.01); HO4L 45/54 (2013.01) lookup delay 1n this systolic array structure 1s high, the aver-
USPC ... 370/389; 370/401; 370/395.31 age delay is quite low, large delays being observed only
(58) Field of Classification Search rarely. The structure in 1ts new form is scalable in terms of
CPC HO4L 12/66; HO4L 12/56; HO4L 45/54 processing elements and 1s also well suited for the IPv6
USPC 3770/389, 351, 252, 401, 402, 395.32, addressing scheme.
370/395.31, 400, 229
See application file for complete search history. 5 Claims, 15 Drawing Sheets
SU SU SU I SU
e
: I 1 |
' v KILTY ' -r;:"‘ 1)
CR CR CR CR
, __:u_ Systolic Array
" . mnmmm: /I/
l‘““““"“""“"""""‘___"_"--""'""""'“'"_1
- | Y i v b4 1
l ST _‘:ﬁ-_-é CR ----r---*:—-i Py —# PE |~} PE |—| PE 3*
| T e T e Iy ol

Informatlon to
Backplane

el
. Next Hop
I
I

Next Hop
Information to
Backplane

US 8,724,624 B2

Sheet 1 of 15

May 13, 2014

U.S. Patent

g1 ainbi

vd

(d &d

V| 2inbi4
00TIT | 8d
00011 | 94
I0T10L | 24
11001 | 14
[0001 | <4
01110 | 2d
I01I10 | <g
10010 | ¥4
[1100 | ¥4
01100 | 94
1000 | /4
«01TTL | 9d
[0TT | £d
1000 Td

=001 | &d
010 1d
xyasgy| 4oH

IXON]

US 8,724,624 B2

Sheet 2 of 15

May 13, 2014

U.S. Patent

SSAIPPY dorf-pxap o) 1aqutog

Z 2.1nbi4

|| vomedd)| || |

~—{ || somedd|| [[«mand
— L¥N |+

p ananO3—

-s'-

l..II

51d Jo{Jbad]

¢ 1930%d

H. b B |

[19 2%
E |pdd][=—

US 8,724,624 B2

Sheet 3 of 15

May 13, 2014

U.S. Patent

sindinQ

¢ a1nbi4
sindinQ

ﬁ |

-— m—ﬁH +— m—m ._-|...T|.| dd | «——

synduag

sjnday

US 8,724,624 B2

Sheet 4 of 15

May 13, 2014

U.S. Patent

7 81nbi4

JauINIBY
0} UoHBIMLIOU]
doyy)xoN

aupjdyoeg
0) HOPRHLIOFU]
doy yxan

|]
e e

= e e

1 | I :II!.I'F‘II!

5

ARITY JI0ISAS ﬂ _t.

= e
0

L}

.

i
I L - M
o i

G 94nbi4

jinog
U ¥ -1

SAVA

US 8,724,624 B2

1 Tt
e —————————————
AV
Te
y—
I~
=
Ve
'
P
e
=
N
_4
y—
=
g |
ery
y—
>
=

 Lsng e
ﬁ.ﬁdﬂ H Iy

qaeN

U.S. Patent

SN TF
1S9
WAV

R

US 8,724,624 B2

Sheet 6 of 15

May 13, 2014

U.S. Patent

g9 ainbi

|

V9 aInbi4

i o
I (d &d

I _

0 T
e &
N /0

9
o owim . mmu mem wme asa

-

'
}
|
2@
|
N
=3 3

US 8,724,624 B2

Sheet 7 of 15

May 13, 2014

U.S. Patent

/ 8inbi4
| 5 e ettt ittt S [9A9]
m\u_
DITITT TOITT
faa -~ ALY 1101 T e e .
\, ,.\V F
%,
/2::
@ VA AL otlot - Toton ﬂwwﬂ OTTTO TOT1O0 H@D 11100 - --—--——¢lAa]
D0O0TT 00101 0T00T cm_\ﬂc OTOT0 I00TI0 OTTO00 10100 TT1000-— —-T 13487
0000T 000T0 00TO0 OT000 T0000--T [3Aar

0 [3A97]

US 8,724,624 B2

6 a1nbi4

s EN m...wnOI,E _“L_E.T_/ELI,,E/_ m/,_ _
/A,,% iy ET&

i

@)

e
40000
Q 2.nbi4
Gl Q@ @ E (e

Sheet 8 of 15
&,

ﬂ:;ﬁ JOO.I \

td (d

May 13, 2014

00000 vk
_~ TOYITIRLEE |

g

d

&) (o)1

LITLT ool

)

Z Uopn.Ie g

00000 J00.1

U.S. Patent

US 8,724,624 B2

L | 8inbi

Sheet 9 of 15

May 13, 2014

U.S. Patent

INOUd
L EXFO
PPV 1)
1L
._ N -
pubg — s o f NOdd
I3 .—u—: — .—ﬂ.—_.-:__—.-w-m:-ﬁ-hu ' | ___ﬁ M €X+0
JA ety ng-o _\._ .—h—.——“_-.”« o
AL 21 — - *
R nat |, INOUT
s ¥ ro— mm Y EXFD
{0011 . T
ﬂ -
s NOdd| |
mx nq gxrel 9

F
Cmr
L

— apou xgatd prea

. COU0CO00 GOCUDOEROTTALI00 TEI00TIO !

VAN

11q 185 JUBOYTUIZIS 1SBA 14 138 WRIIRIBIS (SO

q ¥ i - »)

-

T e — . r— e—

M ¢ Q0 . M ¢ i @ Q O 0
e _.._mu..r .___.m.., ..m..,.”_..r . uw_..r g ¢ U r) (])

p— p— — Pt —
© © o o © © © ©o © o © o ©
= bl et e e d \& A - " T
T’ " " ‘" — R

US 8,724,624 B2

Sheet 10 of 15

May 13, 2014

U.S. Patent

g91 ainbi4

le|2A2 yr010) e

0000t 1ILIA § J000E DOOSZ DO OZ

\)

gaosi

aononi DO0S D

Bl

.
T
=
Ll |

(7 g
o

0000,

iNdubnoaryy snosuslueISU|

V9| ainbi4

[810A2 0|9} alll]

ILHTH 4 (000%

21 3Inbi

or - (T-wrur ([+ur g 7r ¢ 71=uy
T 01— |
_ | |
lapoduy |
SX7g _ [Iiret=1U
| rEN=1y
€T I — tll=tdJ

00007

¢,

L

0000k 0

¥ |

=
p—

= wil'y
ey bl
duydbno iy) snosaejue)suy

N
-

ot

US 8,724,624 B2

Sheet 11 of 15

May 13, 2014

U.S. Patent

ke o |
INVAS PPy | l1axaidyynyy [— 891
a5e)g yndug jo I\mﬁ Ng-71 _Nﬂ X8 — LS 1 ¥XOST
SAIPPY [enJdju] | | Y b 1q $395¢
n' | °lqE L
\’ ¢ f _ gseH |¢m_|
199K (91 PoIV)
ol4BUY Haispodagy) dOPUIEWOY 19pIAl(] v
38e)q ynduy 91Xy [mﬂ ARy __ ,.mumﬁmm_nwf B,
— ¥ _ .
junod dog | | | 30001 TS
B S | c i
B RX3dy|nIy 10)de.13qD
J0)IEQNS “H.N_ i D :a.,m >
) Hq-< . ! _‘
w. _l‘o S _x *C H
QUIL.L] SUIS.TaARIT _ 5 ¢ ¢ ¢ -
r [i
lopuig 1opuiq Jy—
Puig Jopuly
moyisod jiq Josayg| | |uoyised yq y3say| | aoyisod)iq o< I_ aousod nq 10
juEdyIusIg juEdIubIq yuedyInSig . ..Eauwﬁm.m
| 3se9] PN __.mmm_“_d _.wﬁ.u”&
S _ ? |
nqpxosy |8 -
wdng 21qEt 1L]
Sl g 1 P
JMDID I3 d0jeredmo’)

€1 8inbi

s TIe 10 S,Q1®

S, PRE 5,0)0 #

e .]

T

U.S. Patent May 13, 2014 Sheet 12 of 15 US 8,724,624 B2

Ap—
fe——
e
W

Systolic Array
N ==
~Se— ;

l

CR
l wJ— :
e L '
B e e

|

Il
R
Ll

§

,- o |

| u - i
™ 1 -

=

Il

CR

E

Figure 14

e W
.
@

E

——'
—-——-——-—’
M
rrererrreerere i

A
X

9d

US 8,724,624 B2

Sheet 13 of 15

Gl 2inbi

(7=s) nonwjuasaida qa)ymod 3y (9)

)

od €d

8d . b

9d

May 13, 2014

U.S. Patent

ar} suinueds jerwoulq ng (8)

v (d) (1d zd) (sd bd

@ rd) (0d

td Id

U.S. Patent May 13, 2014 Sheet 14 of 15 US 8,724,624 B2

Figure 18B

10 11 12 13 14 15 16 17 18 19 20

<
S
=
O
|
-
— a
TR =g
; & - S
o < Sy
< |3 e
5 ™~ I WA S
! * ‘ S
= o A o 8§ 8 8 28 38
e X S 8 8 3 & g
E 8 O, g 8 = © T °
o F = < T
s 2 B
o E s O) f f * I
| i
.~ - L / /
] /
© T Db ——
| L
| o § f
0 f
—— Rl o rmm— £

T S

Einriis v i n s, - , T

’|I pi S e e e i e Ry
! - ¢l

aindn s e g m e "‘.ﬂ.‘l‘a‘l‘.‘ AL, B T

y
’
.

Figure 18A

500000
450000
400000
350000
300000

50000

o
o
&
=
Ty
o~

200000
E 150000

=
< 100000

sjayoed 0 13q

o

U.S. Patent May 13, 2014 Sheet 15 of 15 US 8,724,624 B2

Figure 19B

Figure 19A

US 8,724,624 B2

1

SYSTOLIC ARRAY ARCHITECTURE FOR
FAST IP LOOKUP

FIELD OF THE INVENTION

This invention first presents SRAM based pipeline IP
lookup architectures including an SRAM based systolic array
architecture that utilizes multi-pipeline parallelism idea and
claborates on 1t as the base architecture highlighting 1ts
advantages. In this base architecture a multitude of 1intersect-
ing and different length pipelines are constructed on a two
dimensional array of processing elements 1n a circular fash-
ion. The architecture supports the use of any type of prefix
tree mstead of conventional binary prefix tree. The invention
secondly proposes a novel use of an alternative and more
advantageous prefix tree based on binomial spanming tree to
achieve a substantial performance increase. The new
approach, enhanced with other extensions including four-side
mnput and three-pointer implementations, considerably
increases the parallelism and search capability of the base
architecture and provides a much higher throughput than all
existing IP lookup approaches making, for example, a 7 Tbps
router IP lookup front end speed possible. Although theoreti-
cal worst-case lookup delay 1n this systolic array structure 1s
high, the average delay 1s quite low, large delays being
observed only rarely. The structure 1n 1ts new form 1s scalable
in terms of processing elements and 1s also well suited for the
IPv6 addressing scheme.

PRIOR ART

Trie-Based IP Lookup:

IP lookup solutions can be categorized into two main
groups as soltware and hardware based approaches. For sofit-
ware based solutions of LPM, the most commonly encoun-
tered data structure 1s the binary tree, in which the prefixes in
the routing table are represented by marked tree nodes and the
path from root to a node represents a prefix. FIG. 1 illustrates
a prefix table and 1ts corresponding prefix tree (referred as
binary trie 1n the literature).

IP lookup 1s performed by traversing the binary trie using
the bits 1n the searched IP address. When a leaf node or a null
pointer 1s reached, search operation terminates and the last
matched prefix 1s selected as the longest matched prefix. It all
the prefix nodes are pushed to leaves, then the binary trie 1s
called as leat-pushed binary trie. In a leaf-pushed trie, a
non-leal node contains only pointers to its children and a leaf
node contains only port number corresponding to its associ-
ated prefix.

SRAM Based Pipeline Architectures for Fast IP Lookup:

Single SRAM based IP lookup solutions need multiple
memory accesses during the trie traversal in order to complete
a single search process. During the search for an IP address, a
new incoming search request waits for the ongoing lookup to
finish up. In order to speed this up, various SRAM based
pipeline architectures have been proposed [14], [13], [16],
[17], [19], [20], [21], [22], [23], [24], [25]. In these architec-
tures, the trie 1s partitioned and mapped onto pipelines. These
pipelines are composed of separate memory banks that are
connected 1n sequence. The trie traversal 1s then performed on
these separate and multiple memory elements through the
pipeline.

There are enough memory elements and no stage 1s
accessed more than once during a search 1n a conventional
one dimensional pipeline architecture. Although throughput
1s 1mproved using a pipeline, an ordinary mapping of the
binary trie onto the pipeline stages yields unbalanced

10

15

20

25

30

35

40

45

50

55

60

65

2

memory utilization. Various different solutions have been
proposed to address the memory balancing problem [14],
[13], [16], [19], [21]. Baboescu et al. [14] proposes a ring
pipeline architecture, which allows a search to be activated at
any pipeline stage. This approach 1s based on dividing the
binary trie into subtrees and allocating each subtree starting
point to a different pipeline stage to create a balanced pipe-
line. The starting stage for each search 1s then determined by
a hash function. The subtrees are stored 1n pipeline stages by
using a level-based mapping where the trie nodes in same
level are stored 1n the same pipeline stage. The depth of each
subtree 1s selected to be less than or equal to the number of
pipeline stages but the pipelines may roll back trom the last
stage to the first hence being called as ring structure. This
pipeline architecture has two virtual data paths. The first path
1s active during the odd clock cycles and 1t 1s used for finding
the starting stage. In other words, when a search 1s started, the
pipeline 1s traversed until the relevant subtree root 1s found.
The second data path 1s active during the even clock cycles
and 1t correspond to the actual search continuing until the last
stage ol the pipeline. When the search 1s completed, the result
propagates to the final stage for output through the remaining
stages. Hence each pipeline stage works with a speed twice
the maximum input packet rate. The throughput of the
described Baboescu et al. architecture then becomes 0.5 look-
ups per clock cycle.

In [15], the previous approach 1s extended with an archi-
tecture called Circular, Adaptive and Monotonic Pipeline
(CAMP). CAMP has a circular pipeline of memory blocks.
The first block performs a direct lookup on the first r-bits of
the address to find the stage where the root node of the
corresponding subtree 1s stored. CAMP has multiple packet
entry and exit points 1n order to improve the throughput.
Initially the trie 1s split into one root sub-trie and multiple leaf
subtries. Root subtrie handles first r-bits of the IP address
implemented as a table and a maximum of 2" subtries are
independently mapped to the pipeline. Each pipeline stage
has two entry and one exit points. Access contlicts are then
solved by using a FIFO queue 1n each stage for the incoming
requests. A request waits for an 1dle cycle to enter a pipeline
stage. CAMP architecture can achieve a throughput of 0.8
lookups per clock cycle.

With an alternative mapping based on the height rather than
the levels of the search tree, a worst case per stage memory
bound has been obtained [19]. Since the height of the nodes
changes when the prefix distribution changes upon route
updates, this mapping becomes dynamic.

Jlang et al. [16] proposed the first parallel multi-pipeline
architecture (Parallel Optimized Linear Pipeline (POLP)) 1n
which each pipeline can operate concurrently to speed up the
lookup (FIG. 2).

The trie 1s mitially partitioned 1nto subtrees which are then
mapped onto the pipelines. In order to perform a balanced
mapping, they proposed an approximation algorithm. Also
within each pipeline, node to stage mapping 1s done and nops
(no operations) [21] are used in some stages to balance the trie
node distribution. This approach is eflicient in terms of
memory consumption but the search process 1s complicated.

n parallel destination index tables (DITs) are used to pro-
cess n packets simultaneously and handle the mapping
between subtrees and pipelines. In DIT, a pipeline ID 1s
obtained using first few bits of the IP address. This pipeline 1s
the one that stores the corresponding subtree and the address
ol the subtree’s root 1n the first stage of the pipeline. POLP
architecture also uses prefix caching for short term traffic
bias, whereas the long term traffic among pipelines 1s bal-
anced by an exchange based algorithm. This algorithm

[l

US 8,724,624 B2

3

remaps the subtrees to the pipelines dynamically, bringing an
extra disruption to the search process. POLP 1s improved

turther 1n later studies. For example a bidirectional linear
pipeline 1s mtroduced 1n [17] and the 1dea of flow caching
from Layer 4 switching 1s introduced in [22]. Flow caching
climinates long waiting times for cache updates. To improve
POLP power efliciency, a hybrid SRAM/TCAM selector unit
1s also proposed 1n [24], [25], the aim being shortening pipe-
line lengths by introducing hybrid partitioning schemes.

The following patents are related to the present invention:

U.S. Pat. No. 7,418,536 B2 “Processor having systolic

array pipeline for processing data packets™

The “IP lookup unit” of the network processor presented in
the above mvention 1s also designed by using systolic array
architecture. But each stage of the systolic array architecture
1s composed of a small register file and functional units and
exhibits a single pipelining behavior 1n one dimension only.
On the other hand, 1n the present invention, processing ele-
ments (PEs) in the systolic array architecture has a single
SRAM unit, a FIFO queue and a logic unit. The new archi-
tecture presented in this invention 1s a systolic array architec-
ture that employs parallel pipelines 1n two dimensions. A
multitude of intersecting and different length pipelines are
constructed on the two dimensional array of PEs 1n a circular
fashion and hence more benefit 1s obtained from parallelism.

U.S. Pat. No. 7,069,372 Bl “Processor having systolic

array pipeline for processing data packets™

In the existing patent, a single on-chip memory unit 1s used
for storing the whole routing table. In the structure developed
within the present invention, each PE 1n the systolic array
architecture maintains a smaller memory unit and therefore
by employing more than one memory unit, 1t 1s possible to
make parallel and independent memory accesses to each unit
that increases the parallelism further.

U.S. Pat. No. 7,382,787 B1 “Packet routing and switching

design™

In the existing patent, all units are programmable. In the
new structure within the present invention, each PE in the
systolic array triggers the next one and hence there 1s no need
for programmability.

U.S. Pat. No. 7,525,904 B1 “Redundant packet routing and

switching device and method”

The structure proposed in the existing patent operates at
line speeds of 40 Gbps. On the other hand, the performance
level achieved with the new structure developed within this
invention 1s about 7 Thps.

BRIEF DESCRIPTION OF THE INVENTION

The growth of the number of hosts on Internet and the
increase in line speeds have resulted 1n powertul forwarding
engines that can operate at line data rates and can cope with
increasing numbers of routing table entries. In early days of
Internet the simple class-based addressing scheme was sufli-
cient but with the introduction of the classless inter domain
routing (CIDR) scheme IP route lookup has become a major
task for an Internet router. CIDR has two major benefits. First,
prefixes can be of arbitrary length in CIDR and hence the
address space can be used more efliciently. Second, CIDR
allows arbitrary aggregation ol networks and therefore the
number of routing table entries decreases, which slows down
the growth of forwarding tables. In CIDR, addresses may
match two or more entries 1n a routing table because of prefix
overlap. In such cases for a correct decision, the router must
find the most specific match, which 1s referred as the longest
prefix matching (LPM). LPM 1s harder than finding the exact

match because the destination address of an arriving packet

10

15

20

25

30

35

40

45

50

55

60

65

4

does not carry any information about the length of the longest
matching prefix. For LPM, there are both software and hard-
ware based solutions proposed 1n the literature [1], [2]. For
measuring the success of these IP route lookup solutions
various metrics such as number of memory accesses, memory
s1ze, update time, scalability and flexibility are used.

A key can be searched in an enftire list of pre-stored
memory entries 1n one clock cycle using a content address-
able memory (CAM). The conventional CAMs store binary
values and hence can be searched only for an exact match.
Ternary content addressable memory (TCAM), in which each
cell can take values 0, 1 or don’t care, 1s more poweriul
because don’t cares may act as wildcards during a search and
hence LPM can be solved naturally 1n one cycle [3]. Although
TCAMS are quite popular, they have high cost and high

power consumption as major drawbacks [4], [3], [6], [7], [8],
[9], [10], [11], [12], [13]. Other handicaps are their slow

updating rate and low scalability. Internet requires a forward-
ing table to be updated frequently to reflect the route changes
and a single update, which includes either adding or deleting
a prefix, may imvolve multiple TCAM entry moves in order to
maintain the order of the TCAM entries. Low scalability
arises from the need for a priority encoder at the TCAM
output stage. On the other hand, a static random access
memory (SRAM) has better density, power consumption and
speed characteristics compared to TCAM. But if LPM 1s
solved using an SRAM, the number of memory accesses 1s
determined by the average depth of the binary tree that stores
prefixes in the routing table. The tree traversal process on a
single SRAM needs multiple memory accesses and hence
multiple clock cycles for finding the longest matched prefix.
Theretore, SRAM based pipeline architectures, which
improve the throughput, have also become popular [14], [15].
The first parallel multi-pipeline SRAM based architecture for
IP lookup, 1n which each pipeline can operate concurrently,
has appeared 1 [16] and enhanced 1 [17].

A systolic array 1s a natural structure for multiple and
intersecting pipelines. In this mvention the multi-pipeline
parallelism 1dea 1s used and a novel SRAM based systolic
array architecture for fast IP lookup (referred as SAAFFIL) 1s
developed. For this purpose, 1) a special systolic array pro-
cessing element (PE) composed of a basic SRAM, FIFO
queue and associated peripheral logic circuitry 1s designed, 11)
invented PEs are organized in a two dimensional circular
structure to get different length and intersecting pipelines, 111)
a suitable and efficient tree mapping scheme 1s devised 1v) the
corresponding IP lookup process 1s presented. In SAAFFIL,
instead of using n parallel pipelines, each of which has m
stages with a total of nm resources, a circular structure 1n the
form of Vnmxvnm square grid of resources is used. Using
SAAFFIL, a 2 Thps router IP lookup front end speed became
possible.

In the present invention, the base architecture SAAFFIL 1s
substantially extended further to achieve a much better per-
formance. Overall, 1n the invention, the following major con-
tributions are made:

1. SRAM based pipeline architectures for fast IP lookup 1s
reviewed and SAAFFIL as the base architecture is
claborated highlighting its advantages.

2. The base architecture SAAFFIL 1s enhanced by includ-
ing a novel use of an alternative and more advantageous
prefix tree based on binomial spanning tree to achieve a
substantial performance increase (referred as SAAF-
FIL-BT). For this purpose in the invention;

a) a binomial spanning tree based forwarding table con-
struction method 1s devised,

US 8,724,624 B2

S

b) a binomial spanning tree mapping strategy onto the
architecture 1s designed, including the development
ol a novel concept, named as dual root partitioning,

¢) the corresponding IP lookup process 1s presented for
the new structure SAAFFIL-BT,

d) the selector unit design for SAAFFIL-BT 1s given.

3. SAAFFIL-BT 1s extended for further performance gain.
For this purpose, the following are considered;

a) cache use at the inputs,
b) dual 1input/output SRAM use 1n PEs,
¢) four-side input possibility, and

d) three-pointer representation and implementation of
the binomial spanning tree.

4. The eflectiveness of the mmvention 1s demonstrated
through simulations using both synthetic and real life IP
traces. For this purpose, the following are considered;

a) throughput,

b) delay statistics,
¢) tree node distribution over memory units, and
d) search load distribution.

The prefix tree of any kind can be mapped onto the invented
two dimensional array of PEs. Use of binomial spanning tree
instead of binary search tree, which necessitates modifica-
tions in the architecture, brings the following advantages in
addition to SAAFFIL advantages:

shorter search paths and hence shorter pipelines (through-
put advantage)

fewer tree nodes stored in SRAMSs (reduction in memory
s1ize and hence access times)

To benefit from the binomial spanning tree, etfficient imple-
mentations of 1t should be employed. In this invention, a
multi-pointer binomial spanning tree implementation 1s used
as an extension. Other extensions to the proposed architec-
ture, as listed above, are also possible with minor modifica-
tions. For example, the architecture 1s suitable for cache use in
order to handle the temporal bias of search requests towards a
specific pipeline. It 1s also suitable for dual input/output
SRAM use in PEs and for four-side mput possibility.

In this 1nvention, overall, a search engine, 1.e., SAAFFIL-
BT, 1s obtained with increased parallelism and search capa-
bility providing a higher performance than the existing archi-
tectures including the base invention SAAFFIL. Simulations
indicate that SAAFFIL-BT, which can be employed as a high
speed router front end for IP lookup, can operate at 7 Tbps
speed with the use of binomial spanning tree and the proposed
extensions. To the best knowledge of the mventors, this 1s
much better than all existing IP lookup approaches. Although
theoretical worst-case lookup delay in the systolic array
structure 1s high, the average delay 1s quite low, large delays
being observed only very rarely. The structure in 1ts new form
1s scalable 1n terms of processing elements and 1s also well
suited for the IPv6 addressing scheme.

The rest of this document 1s organized as follows: Section
2 presents brief background information on prefix tree search
and a review of existing SRAM based pipeline architectures.
Section 3 presents the mvented multi-pipeline systolic array
architecture for fast IP lookup (SAAFFIL) and elaborates on
this structure highlighting 1ts advantages. Section 4 explains
the adaptation of the SAAFFIL to use binomial spanming tree
and presents SAAFFIL-BT. Section 3 presents further exten-
s10ms to improve overall performance. Section 6 discusses the
simulation results and evaluates the performance of the inven-
tion.

5

10

15

20

25

30

35

40

45

50

55

60

65

0
DETAILED DESCRIPTION OF THE INVENTION

Briel Description of the Figures

In order to explain the present invention in more detail,
necessary ligures have been prepared and attached to the

description. The list and definition of the figures are given
below.

FIG. 1A—llustrates an example of a prefix table.

FIG. 1B—illustrates an example of binary trie correspond-
ing to prefix table in FIG. 1A.

FIG. 2—llustrates an example SRAM based parallel pipe-
line architecture.

FIG. 3—llustrates an example 4x4 systolic array.

FIG. 4—illustrates 4x4 SAAFFIL..

FIG. S—llustrates processing Element (PE).

FIG. 6 A—illustrates an example of 1nitial partitioning.

FIG. 6B—illustrates an example of mapping of 01 subtrie.

FIG. 6C—allustrates zero skip clusters.

FIG. 7—allustrates a binomial spanning tree with 5-bit
address space.

FIG. 8—llustrates an example of dual root partitioning of
BT.

FIG. 9—illustrates FCNS representation of upper BT 1n
FIG. 8.

FIG. 10—allustrates an IP search example for 103.54.192.0

FIG. 11—llustrates circuit for comparing the number of
‘ones” and to ‘zeros’ 1n a 24-bit string

FIG. 12—allustrates circuit for finding the most significant
set bit position 1n a 24-bit string.

FIG. 13—allustrates the selector umt (SU) with r=8.

FIG. 14—llustrates four-side 4x4 SAAFFIL-BT.

FIG. 15—llustrates examples of binomial tree representa-
tions.

FIG. 16 A—illustrates instantaneous throughput fluctua-
tion in SAAFFIL-BT—d/1/t for T4.

FIG. 16B—illustrates instantancous throughput fluctua-
tion in SAAFFIL-BT—c/d/1/t for T3.

FIG. 17—allustrates the delay histogram for the stmulation
of SAAFFIL-BT—d/f/tforT4 and SAAFFIL-BT—c/d/T/t for
T3.

FIG. 18A—illustrates the trie node distribution over
SRAMSs for SAAFFIL-BT—c/d/f/t for T5.

FIG. 18B—illustrates the search load distribution over
SRAMSs for SAAFFIL-BT—c/d/f/t for T5.

FIG. 19 A—llustrates the speedup vs cache size and num-
ber of SUs for SAAFFIL-BT—c/d/f/t for T4.

FIG. 19B—llustrates the average delay vs cache size and
number of SUs for SAAFFIL-BT—c/d/t/t for T4.

BRIEF DESCRIPTION OF THE TABLES

In order to explain the present invention 1n more detail,
necessary tables have been prepared and attached to the
description. The list and definition of the tables are given
below.

Table 1—llustrates an example of prefix tables.
Table 2—allustrates search path length of prefixes for FIG.
15.

Table 3—allustrates throughput of SAAFFIL-BT

Table 4—illustrates SRAM access time estimates 1n nano

second.
Table 5—llustrates average lookup delay of SAAFFIL-BT

in clock cycles.

lable 6—illustrates comparison with existing parallel
architectures

US 8,724,624 B2

7

Systolic Array Architecture for Fast IP Lookup (SAAF-
FIL):

A systolic array 1s a matrix-like pipe network arrangement
of data processing elements (PEs). It 1s a specialized form of
parallel computing, where PEs compute data and share 1t with
their neighbors immediately after processing. A PE 1s similar
to a central processing unit except for a program counter since
operation 1s synchronous but transport-triggered, 1.e., by the
arrival of a data object. The systolic array 1s often rectangular
where data flows across the array between neighboring PEs,
often with different data flowing 1n different directions. The
communication with the outside world occurs only at the
array boundary. FIG. 3 presents an example 4x4 systolic
array.

Although systolic arrays are usually known to be expen-
s1ve, highly specialized and difficult to build, they have attrac-
tive properties such as synchronization, modularity, regular-
ity, locality, finite connection, parallel pipelining and modular
extendibility.

It 1s observed that a systolic array, which implements par-
allel pipelines naturally, 1s a good candidate for SRAM based
parallel IP lookup. To speedup the search and hence increase
the router throughput, using a systolic array like organization,
as shown 1n FIG. 4, 1s proposed 1n this invention.

In this approach, a multi-directional (towards east or south)
data tflow, 1n contrast to existing one dimensional SRAM
based multi pipeline proposals, may exist through the systolic
array during a search process and in this way the pipeline
utilization under real IP traffic conditions 1s increased. In the
present invention, the general systolic array structure 1s
extended such that invention includes connections between
the endpoints of each row and column as 1llustrated in FI1G. 4.
Hence a pipeline corresponding to a branch in prefix tree can
be mapped onto the array of PEs by wrapping it around the
corresponding row or column. A selector unit (SU) specifies
the starting stage of a new search request. Since more than one
search request may arrive at an input stage PE, there 1s a need
for contention resolvers (CR) in order to be able to get an IP
address 1nto the system to be searched. Each SU 1s connected
to every other CR. Number of SUs 1s a design choice and
defines the maximum number of search requests that can be
admitted to the system. The endpoints of each row and col-
umn are also connected to the CRs. If a circulating search
exists, other search requests from SUs are not accepted by
CR.

Backplane may get port number (next hop router) informa-
tion only from the output boundary PEs i1 backplane simplic-
ity 1s desired (as 1s the case in FIG. 4), or this information can
be presented by each PE to the backplane 11 wiring complex-
ity 15 not an 1ssue.

Processing Elements:

A PE 1n the mnvented systolic array consists of a FIFO
queue block and an SR AM memory unit with some additional
computational logic as illustrated in FIG. 5.

Each element has two mput buses (north and west) that are
directly connected to the FIFO queue. Two output buses (east
and south) connect to neighboring PEs. FIFO queue 1is
employed because during one SRAM access cycle two search
requests may arrive simultaneously to a PE from north and
west inputs. FIFO queue can be implemented using an SRAM
and some associated registers. It 1s assumed that 1 one
SRAM read cycle two requests can be inserted into this
queue. This 1s reasonable because the size of FIFO queue 1s
selected to be much smaller compared to the size of the main
SRAM unit. In addition to FIFO queue and SRAM block,
cach PE contains additional combinational circuitry to route
the IP prefix search to next stage (FI1G. 5). With every system

5

10

15

20

25

30

35

40

45

50

55

60

65

8

clock two new frames (composed of searched IP address bits
plus additional architectural data) arriving from north and/or
west (11 data 1s available) may be mserted into the queue and
a frame taken out of the FIFO queue (if not empty) may be
presented to the SRAM block, which then transforms and
routes 1t to the mput of either east or south FIFO queue of the
next stage. The connection (frame that 1s transferred 1n par-

allel) between any two PEs consists of a (24+n+m)-bit wide
data bus, for an SRAM o1 2"x(2n+m+1) bits, the last bit being

a data available (DAV) signal. Most significant 24 data bits
are the least significant 24-bits of the key (IP address) being
searched, next n-bits are used for the address to be accessed 1n
the next stage SRAM unit, and the last m-bits are used to
transier port number information. FIG. 5 assumes n=12 and
m=>5. A search packet carries the latest longest match port
number through each traversed PE not to backtrack from the
last stage when a search terminates. Port number field may be
updated 1n some of the SRAM blocks. In this way, if there 1s
no match 1n the last stage, port number updated with a previ-
ous match that corresponds to the longest match 1s obtained
without any backtracking at the final stage of the search.

The IP address bit that corresponds to the current stage
determines the next hop to be south or east. Each SRAM unait
stores (2n+m-+1)-bits 1n each entry, having two n-bits of south
and east neighbor SRAM indices, an m-bit port number field
and a valid bit (indicating whether the current tree node 1s a
prefix node or an itermediate node).

If a leat-pushed trie 1s used, since a non-leaf node contains
only pointers to its children and a leal node contains only port
number, use ol a (2n+1)-bit wide SRAM will be suificient.
The forwarding table 1s then constructed using a suitable
prefix search tree mapping strategy as described 1n subsection
3.3.

Congestion Control Mechanism:

Since resource usage contlicts on intersecting pipelines are
handled using a queue in each PE, packet loss due to queue
overflow 1s possible. A simple congestion control mechanism
may be employed. One possibility 1s additive increase multi-
plicative decrease strategy. If the FIFO queue occupancy
exceeds the predefined threshold value then half of the SUs
are deactivated to decrease the load at the input of the whole
system. On the other hand 11 the queue occupancy 1s under the
threshold then the number of active SUs may be increased by
one at each clock cycle until all SUs become active again.

Tree Mapping:

Prefix tree mapping to PEs 1s a critical issue. An unbal-
anced tree node distribution over stages may decrease overall
performance because the clock rate of the system closely
depends on memory access times of stages and the access
time ol memory 1s proportional to its size. The larger the
memory the slower 1t 1s.

Tree mapping 1s done 1n two steps:

1. Initial Partitioning: In pipelined architectures, prefix
search tree 1s partitioned onto separate memory blocks
and the trie traversal 1s performed on these memory
clements 1n multiple cycles. Memory units 1n PEs or
stages 1n SAAFFIL are also used to store such tree
nodes. In order to utilize parallel pipelines, one has to
divide the binary search tree into separate subtrees
(called in1tial partitioning). Whichever prefix search tree
type (binary or binomial for example) 1s used, employ-
ing circular pipelines and an 1nitial partitioning strategy
may help 1n providing a balanced distribution of tree
nodes on pipeline stages.

Similar to previous works, partitioning strategy of the
invention 1s to use several 1nitial bits of prefix as an index
to partition the trie into disjoint subtries. r 1mtial bits

US 8,724,624 B2

9

used for this purpose 1s called as initial stride. An maitial
stride value defines a subtrie and hence 2' possible sub-
tries can then be mapped onto pipelines. FIG. 6a illus-
trates an 1nitial partitioning on a binary trie for r=2.

2. Subtrie Mapping: There can be more subtries than the
number of input stages. One can use 1nitial stride value
within a suitable strategy to determine the starting stage
PE to which the root of the corresponding subtrie is
stored. Afterwards, node-to-stage mapping can be done
simply by storing each subtrie node in consecutive PEs.
FIG. 65 illustrates the mapping of one such subtrie (sub-
trie 1d 01 as an example) to corresponding PEs 1n a 3x3
SAAFFIL. In this example mapping, if the correspond-
ing prefix bit 1s O then the next tree node 1s stored 1n the
south neighbor PE, otherwise 1t 1s stored in the east. It
circular connections between boundary PEs were not
allowed such a mapping would not be possible.

Skipping the leading zeros (or ones) of a prefix 1s also
possible 1f a thurd level of partitioning (zero-skip (or
one-skip) clustering) 1s introduced. Its details are
explained later but FIG. 6.c¢ illustrates zero case for 10
subtrie only.

The mapping of the subtries to PEs 1n two dimensions
brings a certain level of randomness and therefore no
extra effort 1s needed for balancing the tree node distri-
bution over SRAM units unlike existing approaches.

Lookup Process:

An IP lookup process (search request) starts at a selector
unit (SU). Then this SU, using initial stride of the searched
key, finds the mput stage PE and the memory address of the
corresponding subtrie root 1n this PE.

If more than one simultaneous search requests arrive at the
same 1mput stage PE, then one of the requests 1s selected by
CR and the others are put on hold using any suitable strategy.
If there 1s a circulating search, other search requests are not
accepted by the corresponding CRs and the circulating search
continues 1ts operation being admitted to the PE. An SU 1n
hold state keeps its current request on hold being not able to
accept a new request and contends 1n the next cycle similarly.
CRs admit their winning search requests to their input stage
PEs. Then the search flows through other SAAFFIL stages
using other bits than the 1nitial stride. If the corresponding bit
of the IP address 1s 0 then the next hop 1s towards south,
otherwise it 1s towards east. Through each PE, the 5-bit port
number field 1n the traversing frame 1s updated 1t the stored
prefix node 1s valid, 1.e., colored 1n the search tree. For leaf
pushed tries, port numbers are obtained from leaf nodes only,
in other words LPM can be found only at the last stage of each
pipeline for such tries.

Advantages of SAAFFIL:

Major advantages of SAAFFIL 1n comparison to the exist-
ing SRAM based approaches can be listed as follows:

The number of request entry points to the search engine 1s
increased and hence input contention 1s reduced.
Resource (PE) usage contlicts on intersecting pipelines
are handled using a FIFO queue 1n each PE.

Provisioning of exit points from any stage other than the
boundary and keeping the operating pipes shorter
increases, unlike the existing architectures, resource
availability for other parallel search operations.

Mapping the prefix subtrees to PEs in two dimensions
brings a certain level of randomness and therefore,
unlike the existing approaches, no extra etfort 1s needed
for balancing the tree node distribution over SRAM
units.

The proposed architecture 1s scalable in terms of number of
PEs and hence it 1s well suited for the IPv6 addressing

10

15

20

25

30

35

40

45

50

55

60

65

10

scheme. I the prefix length gets larger, for example 128
as 1 IPv6, only the size of the memory units in PEs, the
width of FIFO queues in PEs and the width of connec-
tions between PEs have to be increased. Number of PEs
and their organization can be kept unchanged.

Systolic Array Architecture for Fast IP Lookup with
Binomal Trie (SAAFFIL-BT):

Chang [26] has proposed a binomial spanning tree based IP
lookup approach having simple search and update processes
similar to binary trie but with better performance 1n terms of
memory requirement and lookup time. Use of binomial prefix
tree instead of binary trie may bring a considerable perfor-
mance advantage in terms of throughput besides less memory
use but necessitates some modifications in SAAFFIL hence
resulting 1n SAAFFIL-BT. An efficient implementation of
binomial prefix tree 1s also obviously beneficial.

Binomial Trie:

FIG. 7 depicts the 5-bit binomial spanming tree where each

node of the tree has a constant length binary address.
The nodes including the same number of “1” bits 1n their
node addresses reside in the same level of the binomial span-
ning tree. In other words, the level of a node 1 a binomual
spanmng tree depends on the number of °1” bits 1n 1ts node
address. If some of the nodes are marked as prefix nodes and
unused nodes are deleted as 1n a binary trie then this structure
1s called as a binomaial prefix tree (binomial trie (BT) 1n short
throughout this text). Stmilarly, in a BT, the number of nodes
traversed throughout the search process depends on the num-
ber of *1’s 1n the node address. Hence search operation in BT
1s different from that in binary trie. For instance, 11 the best
matching prefix (BMP) 1s 01010/5 1n a 3-bit address space,
the distance between the root and the BMP node 1s only two
hops, 1.e., node addresses 00000, 01000 and 01010 are visited
only (FIG. 7).

Binomial Trie Based Forwarding Table:

The conversion from binary trie to 1ts BT representation 1s
straightforward. Using the 1nitial prefix table, a new one 1s
generated and the BT 1s constructed using this new table. New
prefix table referred as ST address table should include con-
stant length prefixes which may be obtained by appending
‘O’s (or “17s) to all the prefixes. For instance, for ‘0’ appending,
case, prefixes 011* and 10* will be converted to 01100 and
10000 1n 5-bit address space, respectively. However, append-
ing ‘0’s (or ‘1’s) may result 1n contlicts, 1.e., more than one
prefix can be mapped onto one single node of the BT. Prefixes
01* and 010* are such examples that will be mapped onto the
same node 01000 1n 5-bit BT with the above approach. Two
solutions for handling such conflicting prefixes can be used
[26]. The first one 1s using an additional prefix array for
storing contlicting prefixes. The second one 1s expanding the
conilicting prefixes of shorter length to longer ones 1n such a
way that no BT node stores more than one prefix. The first
approach has the advantage of simpler updates whereas 1n
prefix expansion there 1s no need for the additional prefix
array. However, 1n this invention, use of Minimum Indepen-
dent Prefix Set (MIPS) algorithm [27], [28] 1s preferred.
Although i1t 1s a more complex version of the second
approach, 1t also provides memory compaction for the for-
warding table while generating independent prefixes. MIPS
output 1s then used for the construction of the BT.

Binomial Tree Mapping:

Binomial tree mapping consists of three major steps:

1. Imitial partitioning 1s done as described 1n section 3.3 on

the original binary trie.

2. Dual root partitioning: It 1s observed 1n this mvention

that BT nodes can be divided into two groups. One group
contains nodes that have greater number of ‘0’ bits 1n

US 8,724,624 B2

11

their addresses and the other group contains the rest
(with greater number of “1” bits 1n their addresses). For
example 1n FIG. 7, the first group (upper BT) contains
the nodes 1n level 0, 1, and 2 while the other one (lower
BT) contains the nodes 1n level 3, 4, and 3.

BT has a nice property that both partitions can be repre-

In

Input:
stride

sented as separate but similar BTs with approximately
halithe original depth. In one BT, root node address 1s all
‘O’s and 1n the other all ‘1’s (as can be seen 1n FIG. 8).
This approach, that is called dual root partitioning 1n this
invention, brings a considerable depth advantage for
prefix search. Dual root partitioning i1s applicable not
only to a BT but to any subtrie of a BT therefore for each
prefix table obtained as a result of 1nitial partitioning of
the binary trie, two separate BTs may be constructed.

order to benefit more from dual root partitioning, the
following modification of the prefix conversion step
described 1n previous subsection 4.2 1s proposed 1n this
part. In this modification, the difference between the

number of ‘1’°s and the number of ‘0’s 1n prefixes 1s used
as follows:

procedure PrefixConversion

prefix p; ny: number of *1’s in p; ny: number of “0°s 1n p; 17 titial

Output: q = {ql, g2} where ql and g2 are 32 bit BT node addresses
1:1f In; — ngl < (32-r- length(p)) then

2: q,=p+ Q327 length@) - append *0’s to p
3: g =p + 1527 feneh@) - apnend 1%s to p
4: q =141 %}

5:else

6: 1f (n, - ny) >0 then

7: q,=p + 127 @) - apnend ‘1%s to p
8: else

9: q =p + 027 fengh@) - append ‘0’s to p
10: q=1{q;}

11. end

In

the above method some of the prefixes are appended
with all *1’s (line 7), some with all “‘0’s (line 9) and some
both ways (lines 2-3).

It 1s observed 1n this 1invention that the level of a node 1s

determined by the number of ‘1’s (in the upper BT) and
the number of ‘0’s (1n the lower BT) 1n a prefix. New
approach 1n the mvention, by making prefix conversion
wiser, guarantees the prefix to be placed 1n a better level
in its corresponding BTs compared to the trivial
approach. For example, prefix 10111* will be converted
to binary address 1011111 1n 7-bit address space using,
the present invention, which will then be stored 1n level
1 of the lower BT. In the trivial ‘0’ appending case
however, this conversion would have resulted in
1011100, which would then be stored 1n level 3 of the
same partition. In this way, the number of memory
accesses required for reaching the prefix 10111* will be
reduced from three to one.

Table 1 and FIG. 8 present a simple dual root partitioning,

example. Table 1 columns give prefixes and their asso-
ciated port numbers. The original prefix table, shown 1n
the first column, 1s first applied to the MIPS algorithm.
Next, the disjoint prefix set obtained (second column) 1s
converted to BT address table (third column) using the
above prefix conversion algorithm. This final table
including 5-bit constant length addresses corresponding
to prefixes 1s then used to construct two separate B1's
(upper and lower BT's or partitions) as in F1G. 8. Dashed
nodes 1indicate those binomial spanning tree nodes that

10

15

20

25

30

35

40

45

50

55

60

65

12

are not stored 1n memory 1n representing BT but are
included 1n the figure for illustration purposes only.

TABL.

1

(1]

An example of prefix tables

Prefix

010%

100%*

0001*
1101%*
1110%*
00011
00110
00111
01001
01101
01110
10001
10011
10101
11000
11100

Initial Prefix Table MIPS Table BT Address Table
Port Number Prefix Port Number Prefix Port Number
P1 01000 P1 01000 P1
P3 0101% P1 01010 P1
P2 1001% P3 01011 P1
P3 10000 P3 10010 P3
P6 00010 p2 10011 P3
P7 110% P3 10000 P3
P6 11101 P6 00010 P2
P4 00011 P7 11000 P3
P4 00110 P6 11011 P3
P2 00111 P4 11101 P6
P2 01001 P4 00011 P7
P5 011% p2 00110 P6
P3 10001 P35 00111 P4
P7 101% P7 01001 P4
P3 11100 PR 01100 P2
P& 01111 P2
10001 P5
10100 P7
10111 P7
11100 PR

Due to the dual root partitioning, search depth 1s reduced.

In

Although this advantage 1s lost to some extent in the
implementation, the search performance in terms of
throughput may still be increased considerably.
binomial trees the number of children of a node 1s not
fixed. Such general tree structures can be implemented
1n various ways, one of which 1s first-child-next-sibling
(FCNS) representation. Even though there 1s an expan-
ston 1 BT address table size (due to duplications),
resulting binomial subtries have less number of trie
nodes and links compared to the original binary trie.

. Subtree Mapping: FCNS representation 1s used to imple-

ment a BT. Every node 1s linked with its rightmost child
and 1ts next (left nearest) sibling as shown in FIG. 9.

The number of nodes traversed during a search on a BT

In

depends on the number of ‘1’s 1n the node address
whereas 1t depends on the number of bits between the
first bit and the last set (reset) bit in FCNS representation
of an upper (lower) BT. In order to counter balance the
resulting longer FCNS path lengths, 1t 1s observed 1n this
invention that one can skip the leading zeros of a search
key 11 a third level of partitioning, which 1s called 1n this
invention as BT clustering 1s introduced. BT clustering
can be applied to both upper and lower BTs. In the
following BT clustering will be discussed for upper BTs
only. For lower BT's, one has to replace set bit” phrases
with ‘reset bit” and ‘west” with ‘north’ side.

BT clustering, the root node of a BT 1s removed and
hence smaller disjoint BTs (clusters) arise (e.g. four
clusters 1n partition 1 in FIG. 8). Root nodes of each
cluster were previously 1n the second level of BT and
cach cluster 1s characterized such that most significant
set bit 1n node addresses of cluster members are 1n the
same position.

Upper BT clusters are then mapped to SAAFFIL-BT start-

ing from west side and lower BT clusters from north
side. There can be more BT clusters than the number of
input stages. The mapping should be done 1n such a way
that load balance at mputs will be achieved and at the
same time input stage PE index and the root memory

US 8,724,624 B2

13

address of the corresponding cluster will be easy to
compute before an IP lookup begins. One such strategy
and 1ts corresponding imndex and address formulas are
given below:

r: iitial stride

g: subtree 1d (decimal equivalent of mitial r bits)

X: leftmost set bit position 1n remaining (32-r) bits

n: number of input stage PEs 1n west side

m: BT base index

w: mput stage PE index

p: root memory address for upper BT clusters.

In total there are 2" x(32-r) cluster BTs. q 1s the group index
due to mitial partitioning. x 1s the BT cluster index and m
1s the 1put stage PE index for the first (x=0) cluster of a
specific group . Hence X 1s used as an offset from BT
base 1ndex.

As an exception, the prefixes having all ‘O’s or *1°’s 1n their

remaining 24-bits (x.0.0.0 or x.255.255.235) should be

stored 1n a small hash table of size 512 rows 1n SUs and
lookup, for such IP addresses only, should be performed
on these tables only.

Node to stage mapping 1s done simply by storing each
cluster node 1n consecutive PEs. If the corresponding
address bit 1s 0 then the next node 1s stored 1n the south
neighbor PE, otherwise it 1s stored 1n the east. This node
to stage mapping strategy is the same for both lower and
upper BT clusters.

Routing table updates can be handled as 1n other existing,
pipelining architectures. For this requirement, a special
‘update’ packet may traverse the pipelines 1n a similar
manner as 1 lookup but through an additional and spe-
cially designed logic umit added to PEs. Each route
update may have several write messages. Finally, the
corresponding PEs on a path 1ssue ‘write’ commands to
their associated memories [20]. The rest of the document
does not consider the update 1ssue any further for sim-
plicity.

Lookup Process:

As 1 the previous subsection, for simplicity, IP lookup will
be discussed for key values in upper BT's only. For lower BT
key values, one has to replace ‘set bit” phrases with ‘reset bit”
and ‘west’ with ‘north’ side 1n the following.

In the search process, the number of nodes traversed
depends on the bits between the most and least significant set
bits. IP lookup starts from an available (non-hold state) selec-
tor unit (SU). The SU specifies the input side as either west or
north. Then 1t computes mput stage PE index and the root
memory address of the corresponding cluster using equations
1-4. In addition, 1t finds the maximum number of PE hops that
the search key will traverse and initiates the search through
the corresponding CR. CRs operate as described in subsec-
tion 3.4.

FIG. 10 illustrates the lookup process for an example 1P
address 103.54.192.0 on 16x16 SAAFIL-BT.

With an 1in1tial stride of eight (due to nitial partitioning), 1P
address 103.54.192.0 corresponds to upper BT cluster (due to
dual root partitioning) because the number of zeros 1s greater
than the number of ones 1n the remaining 24-bits. The bit
position of the most and least significant set bit 1s 2 and 9,
respectively. The iput stage PE index 1s 9 and the root
memory address of the corresponding cluster 1s 103. Finally,
the maximum number of hops that the search can traverse 1s
0-2=7.

After finding the input stage PE, the search continues
towards either east or south depending on the bit values
between the

10

15

20

25

30

35

40

45

50

55

60

65

14

(1)

mig, 1) = gmodn

(2)
(3)

w(g, x,n)=(m+x)modn

kir,n)=(32-r)+n)n

(g O=m+x)<n) 4)

g+ 2 ns(m+x)<2n
q+2F+l

g+k-2

2ns(m+x)<3n

kn=(m+x)<(k+1Dn |

most and least significant set bits. If the corresponding bit 1s
‘1’ then east neighbor 1s the next node, otherwise the south.
FIG. 10 marks only the input stage PEs with row and column
indices and the example search termuinates at PE (11,5)

assuming a valid prefix at this stage of the pipeline.
SAAFFIL-BT has a slightly modified PE logic unit such
that the traversing frame includes an additional 5-bit hop

il

counter, a single bit of packet type and the following tunc-
tionality 1s implemented. The hop count value, which shows
the number of PEs left for the packet to traverse, 1s decre-
mented 1n each hop. The packet type indicates whether the
packet belongs to an upper or lower BT cluster and this
information 1s used to determine whether the port number
field 1n a frame will be updated or not while visiting a node.
The port number field 1s updated 1n a valid prefix node 1t the
packet type 1s O (lower BT cluster) and the transition to the
next node 1s towards east, or the packet type 1s 1 (upper BT
cluster) and the transition to the next node 1s towards south.
The last stage of the lookup 1s specified by longest matching
rule. Unless a valid prefix 1s found in the last stage, the longest
matching prefix 1s the one before the last ‘one’ (east-bound)
transition and the port number 1s the last updated one. For
instance 1n FI1G. 10, the longest matching prefix would be the
one 1n coordinates (11,4), 1f the prefix 1n the last stage (11,5)
was not a valid one.

Selector Unit:

Selector unit 1s a combinational logic circuit that inputs the
search key. There exists a path from each selector to each CR.
The number of selector units, n, closely aflects the perfor-
mance of the SAAFFIL-BT because a maximum of n search
requests can be allowed to the system per cycle. Selector unit
for SAAFFIL-BT 1s more complex than for binary trie. SU
implements the following functionality:

It specifies the mput side (packet type) as either west or
north, by comparing the number of ones and zeros 1n the
remaining 24-bits of an IP address (FIG. 11 shows the
block diagram of a logic circuit, which compares the
number of ones and zeros 1n a 24-bit string).

It finds the input stage and the root memory address by
using the bit position of the most significant set or reset
bit of a key (FIG. 12 shows the block diagram of a logic
circuit, which finds the bit position of the most signifi-
cant set bit in a 24-bit binary number).

It calculates the maximum number of hops by using the bit

position of least significant set or reset bit position in
addition.

The overall block diagram of SU 1s given 1 FIG. 13.

Extensions of SAAFFIL-BT:

Cache Use:

Cache units are commonly used in parallel architectures
for handling short term traffic bias. When the input tratffic 1s
biased to a few stages only (1n burst periods), then parallelism
decreases. Caching prevents performance degradation 1in
such periods.

US 8,724,624 B2

15

The parallel architectures 1n the literature (both TCAM and
SRAM based ones) consider caching as part of their struc-
tures and 1t 1s demonstrated 1n [13], [16] that cache use
increase their performance considerably. SAAFIL-BT on the
other hand aims to have a higher performance without cache.
However, 1t 1s still possible to extend 1t with a suitable caching
scheme. Two alternatives may be employed as follows:

PPM (popular prefix matching) [13]: In this approach,
small cache units (PPMs) are maintained in SUs and the most
popular prefixes are stored in these units. An incoming packet
1s first searched 1n the cache. If a hit occurs, then the packet is
torwarded directly to the backplane, otherwise a search pro-
cess 1n the corresponding parallel architecture 1s initiated.
Whenever two or more packets are forwarded to the same
input stage, a contention occurs. This contention then triggers
the process of prefix placement to the cache. This type of
caching has several updating difficulties.

In binary trie implementations, time consuming computa-
tions are required in writing a parent prefix into a cache unait.
An mcoming IP address that matches with a child prefix also
matches with its ascendant prefixes but the longest matching,
prefix has to be found. If an ascendant prefix exists in the
cache, an IP address that matches with 1t may still have a
longer match outside the cache. Theretfore, ascendant prefixes
cannot be written to cache units directly but the extensions of
ascendant prefixes should be placed to the cache. This prob-
lem does not exist in BT implementation since all the node
addresses have equal lengths and the whole IP address,
instead of a prefix, can be cached (IP address caching).

In TCAM based parallel architectures, cache placement
starts 1n the next cycle following a contention. In SRAM
based parallel pipelining architectures, it takes longer to 1ni-
tiate the cache placement process because lookup result 1s
retrieved after a while. If the pipeline length 1s longer than the
burst length of a flow, all packets of the flow will have cache
misses but the cache placements will be useless.

2. Flow pre-caching [22]: In this approach the IP address of
a tlow 1s cached before its port number information 1is
retrieved. If an arriving packet matches a cached tlow, corre-
sponding tflow ID 1s assigned to the packet and the packet
traverses through the pipeline with minimum load without
performing any operation. The port number 1s retrieved from
an outbound flow table at the end.

If an arriving packet does not match any of the cached
flows, 1t 1s directed to the selected mnput stage, lookup begins
and the inbound flow table (flow cache) 1s updated using flow
ID only. When a packet exits the pipeline, 1t writes the search
result to the outbound flow table which will then be used by
the rest of the flow.

If cache 1s notused, intra-flow packet order 1s preserved but
cash use of any type obviously necessitates a suitable re-
ordering mechanism.

Dual Input/Output SRAM Use:

One can also replace SRAMSs 1n PEs in SAAFFIL-BT with
dual mput/output SRAMSs allowing the processing of two
keys at a time to increase the throughput. For this, only the
logic umit 1n PEs should be modified while keeping the
memory size of SRAMs unchanged.

Four-Side SAAFFIL-BT with Dual Input/Output SR AM:s:

SAAFFIL-BT can also be extended so that it can have a
four-side mput boundary as illustrated 1n FIG. 14.

In this way, the number of input stage PEs doubles 1n return
for a two fold increase 1n combinational logic. Bidirectional
links between PEs are required 1n this extension. Each PE gets
search requests from four neighbors, processes two at a time
and forwards the traversing {frame again to two of 1ts four
neighbors. From which queues the two traversing frames will

10

15

20

25

30

35

40

45

50

55

60

65

16

be fetched depends on a suitable scheduling algorithm. In
order to specity the search side as west (north) or east (south),
the 1nitial stride value can be used.

Three-Pointer Case:

Since the availability of PEs closely depends on the lengths
of pipelines, having shorter pipelines is critical for SAAFFIL
performance. In section 4.3 use FCNS representation was
proposed to implement a BT. Even 11 1t performs better than
binary trie, FCNS causes BT to lose 1ts shorter search path
advantage to a certain extent. As an enhancement, using a
three-pointer representation of BT 1s proposed 1n this mnven-
tion 1nstead. Despite minor modifications i combinational
logic the memory size decreases 1n this extension and more
benellt 1s obtained from dual root partitioming. FIG. 15 illus-
trates an example BT both with two and three-pointer repre-
sentations.

Each child 1s assigned an id starting with zero from the
rightmost child. s 1s the index of the child node that the third
pointer points at. In other words, s shows the length of con-
secutive ‘0’s to be skipped after the °1’ bit 1n the prefix for
upper BT's and the length of consecutive ‘1’s to be skipped
after the ‘0’ bit for lower BTs. In FIG. 15¢, s 1s two and
therefore the third pointer points to the third child from the
right.

In addition to shortening the pipeline lengths, three-pointer
use also provides a reduction 1in the number of nodes or
pointers. Table 2 gives the search path lengths of prefixes in
FIG. 15 with two and three-pointer representations, sepa-
rately.

TABLE 2

Search path length of prefixes for FIG. 15

Two-pointer Rep. Three-pointer Rep.

Prefix Table # of Hop #of # of Hop # of
Next without Hop with without Hop with
Hop Prefix Partitioning Partitioning Partitioning Partitioning

P1 01000 2 2 2 2

P3 10000 1 1 1 1

P2 00010 4 4 2 2

P3 11011 5 3 5 1

P6 11101 5 4 5 2

P7 00011 5 5 3 3

P6 00110 4 4 2 2

P4 00111 5 2 3 2

P4 01001 5 5 3 3

P5 01101 5 4 5 2

P2 01110 4 5 4 3

P5 10001 5 5 3 3

P1 10011 5 2 3 3

P77 10101 5 3 5 4

P6 11000 2 2 2 2

P8 11100 3 5 3 3

P4 11001 5 4 3 2

Total 70 60 54 40

For this example, three-pointer representation brings a
reduction of approximately %23 (from 70 to 34) in total
search path lengths. The table also 1llustrates increasing ben-
efit of dual root partitioning if three-pointer representation 1s
used. In two-pointer case, use ol dual root partitioming
decreases total prefix search length by approximately %14
(from 70 to 60) whereas in three-pointer case this reduction 1s
%26 (Irom 54 to 40).

This extension does not increase SRAM size due to a need
for extra pointer storage however 1t may atiect the tree node

US 8,724,624 B2

17

distribution over memory units. Traversing frame size should
be updated accordingly and a suitable logic should be
designed 1n such a situation.

Simulation Results:

SAAFFIL-BT 1s simulated using Visual C++. Due to the
unavailability of public IP traces associated with their corre-
sponding routing tables, two methods were followed for gen-
erating IP packet traces to be used in the simulations of the
ivention. First, three packet traces were generated by using
an available real life backbone routing table from [29]. These
synthetically generated packet traces have uniformly distrib-
uted burst lengths in iterval [1, k] where k 1s selected as 2, 5,
and 10 for cases T1, T2 and T3, respectively. Second, the
corresponding routing tables of real life backbone IP packet
traces T4 and TS5 from [30] were constructed by using real life
prefix length distributions [29].

Simulations were performed for 16x16 SAAFFIL-BT hav-
ing 32 selector units at most. As a CR strategy a simple
priority based scheduling mechanism 1s used. The simula-
tions are performed with and without cache. When employed,
cache size 1s assumed to be 50. One may implement a cache
with small CAM, hence the cache search can be assumed to be
performed 1n a single clock cycle.

FIFO queue size and the threshold value for congestion
control are selected as 30 and 10, respectively. The 1nitial
stride value 1s used as 8. In dual root partitioning, one can
move the trie split level up or down to balance the number of
prefixes in each partition. In simulations of the invention, this
split level is selected as the 77 level of BT for two-side
SAAFFIL-BT and 5” level of BT for four-side extension for
T4 and T5. This split level is selected as the 37 level of BT for
both two-side SAAFFIL-BT and 1ts { {

four-side extension for
T1,T2 and T3 cases. In four-side SAAFFIL-BT, in specitying
the search side as west (north) or east (south), the 1mitial stride
value was used as follows: 11 the decimal equivalent of 1nitial
stride value 1s higher than 100 for T1, T2 and T3 (85 for T4
and T3) than the search side 1s selected as ast, otherwise west.
A round robin scheduler for selecting any of the two queues 1s
used.

The routing table used in the simulations of the present
invention 1s first applied to the MIPS algorithm [28] and
disjoint prefixes are obtained first. By using MIPS, although
not observed for synthetic traces, a compression of approxi-
mately %50 (a decrease from 280,339 to 135,712 prefixes) 1s
achieved in real life backbone routing table example (T1, T2
and T3 cases). The BT based forwarding table 1s constructed
from these disjoint prefixes and then 1t 1s mapped onto PEs.

Throughput: Table 3 presents the throughput (number of
lookups performed in one cycle (also speedup)) of SAAFFIL-
BT for some combinations of the proposed extensions for
different packet traces.

TABLE 3

Throughput of SAAFFII.-BT

T1 T2 T3 T4 T5
SAAFFIL 8.87 6.57 4.61 6.80 5.82
SAAFFIL - ¢ 8.89 6.60 4.83 R .46 7.99
SAAFFIL-BT 8.95 6.56 4.66 7.83 7.12
SAAFFIL-BT - ¢ 8.96 6.61 497 10.16 9.79
SAAFFIL-BT - d 17.66 1407 10.07 16.04 14.42
SAAFFIL-BT - ¢/d 17.72 1403 1034 19.00 19.86
SAAFFIL-BT - d/f 23.60 19.64 13.08 1938 16.19
SAAFFIL-BT - c¢/d/f 23.60 19.77 1342 19.83 22.68
SAAFFIL-BT - d/fit 2095 2140 1417 2095 16.44
SAAFFIL-BT - c/d/fit 2095 2157 14.84 2622 27.25

10

15

20

25

30

35

40

45

50

55

60

65

18

For comparison SAAFFIL throughput in corresponding
test cases are also given. Illustrating the effect of all combi-
nations of the proposed extensions requires an experiment
design with excessive number of possibilities therefore Table
3 lists a selected group of combinations only. The results for
with-and-without cache cases can be compared easily. It 1s
observed that each individual extension is beneficial to a
certain extent but by employing all, rather than a particular
combination, a substantially high throughput figure of
approximately 27 for real life traces can be achieved in this
invention.

Conclusions such as the following are also possible: 1)
cache use 1s more beneficial for real traffic traces, 1.e., T4 and
T3, and 11) cache use 1s more beneficial for three pointer
extension because this extension shortens the pipeline length
and implicitly the time spent for retrieving the search result.

FIG. 16 illustrates, as an example, the instantaneous
throughput fluctuation during the simulation of SAAFFIL-
BT—d/1/t for T4 and SAAFFIL-BT—<c/d/1/t for T3. Instan-
taneous throughput 1s defined as the average number of IP
lookups calculated at every 10th cycle over a past window
s1ze of 10.

Instantaneous throughput does not fluctuate drastically but
stays within a reasonable band of 10 after a transient period
for T4. It fluctuates within a band of 20 for TS but still not
staying in low throughput state long. This figure can be used
to calculate the required mput butler size 1n an overall router
design effort and indicates that this bufler size need not be
EXCEeSss1ve.

Based on the simulations of the present invention, 1t 1s
concluded that each of the 256 SRAM units should store

fewer than 4K nodes for T1, T2 and T3 cases and fewer than
8K nodes for T4 and T5 cases, the reason for this difference
being the application of MIPS algorithm to prefix tables. As
was stated earlier, MIPS algorithm provides compression on
real life backbone routing tables (T1, T2 and T3) while 1t
expands the synthetically generated prefix tables correspond-
ing to real packet traces (T4 and T5). For each node 1n the
memory, 32 bits are stored (two 13-bit pointer fields, a 5-bit
port number field and a valid bit). Therefore the total memory
needed to store the whole routing table 1n SAAFIL-BT 1s
256x2'°x32=65536 Kbits=8 MB (for T4 and TS5 cases).
SRAM size in PEs 1s used 1n determining the system clock
frequency as follows:

The clock rate of the overall system depends on the
memory access times. Table 4 lists the SRAM access times
for different sizes and for different VLSI technologies, which
are estimates obtained using the CACTI tool [31]. The larger
the memory, the longer 1s the access time. In SAAFFIL-BT, a
single clock cycle includes one FIFO queue read/write and
one SRAM read operation, therefore, clock cycle duration
can be chosen to be approximately 1.2 ns using 65 nm SRAM
technology (assuming a FIFO queue size of 64 rows and
SRAM size of 8192 rows). It 1s observed, from Table 3, that
the speedup for real traces 1s approximately 8 i SAAF-
FIL——c hence 1t 1s concluded that SAAFFIL may process 6.67
billion packets per second, 1.¢., corresponding to arouter front
end speed of approximately 2 Tbps assuming 40 byte IP
packets. For SAAFFIL-BT employing all of the proposed
extensions, the throughput reaches to approximately 27.
Assuming that the access times of a simple SRAM and a dual
input/output SRAM are equal, SAAFFIL-BT now achieves a
router front end speed of approximately 7 Tbps.

US 8,724,624 B2

19
TABL,

T
=N

SRAM access time estimates 1n nano second

No of rows 65 nm 45 nm 32 nm
32 0.4723 0.2701 0.1873

64 0.4895 0.2804 0.1945

128 0.5143 0.2952 0.2050

256 0.5460 0.2936 0.2205

512 0.5845 0.338% 0.2393
1024 0.6095 0.3471 0.2552
2048 0.6267 0.3666 0.2604
4096 0.6839 0.4067 0.2921
8192 0.8311 0.4992 0.3623

Delay statistics: Table 5 presents the average lookup delay
tor SAAFFIL, SAAFFIL-BT and its possible extensions 1n a
similar manner to throughput results given 1n Table 3.

TABL

(L.

D

Average lookup delay of SAAFFII-BT n clock cvcles

T1 T2 T3 T4 T5

SAAFFIL 14.87 1550 1647 1417 14.42
SAAFFIL - ¢ 14.84 1542 1587 11.87 12.06
SAAFFIL-BT 12.10 12.82 13.8%8 11.25 11.75
SAAFFIL-BT - ¢ 12.09 12.74 13.09 0.50 9.65
SAAFFIL-BT - d 1037 1023 10.62 8.81 9.11
SAAFFIL-BT - ¢/d 10.37 1020 10.49 8.08 8.04
SAAFFIL-BT - d/f 0.38 0.47 9.96 024 9.10
SAAFFIL-BT - ¢/d/f 0.37 0.46 0.84 8.67 8.11
SAAFFIL-BT - d/fit 5.35 6.02 6.81 6.94 7.08
SAAFFIL-BT - c/d/fit 5.35 6.01 6.61 654 5.91

It 1s observed that each individual extension 1s beneficial in
decreasing the average delay to a certain extent but by
employing all, rather than a particular combination, a lower
average delay figure of approximately 6 forreal life traces can
be achieved. Conclusions similar to the ones 1n throughput
subsection are also possible.

FI1G. 17 depicts, as an example, the lookup delay histogram
obtained during the simulation of the real traces T4 and T5.
Although the theoretical worst-case lookup delay, 1.e., FIFO
queue size 1n each PExnumber of IP bits used throughout the
search, 1s high for the proposed architecture, average delay 1s
found to be rather low. Lookup delay 1s between 2 to 50 clock
cycles with very few packets being subject to delays that are
larger than 20 and the average delay 1s approximately 6 1n this
case. The basic architecture SAAFFIL also shows a similar
characteristic but with an average delay of approximately 14
cycles demonstrating that SAAFIL-BT and 1ts extensions are
quite elfective not only 1n increasing the throughput of the
base architecture SAAFFIL, but also in decreasing the aver-
age lookup delay.

Overall comparison: Table 6 compares extended SAAF-
FIL-BT with other parallel solutions proposed earlier in the
literature. The data either corresponds to the best reported
value 1n the respective paper or 1s a calculated value if such a
best 1s not reported, the calculation being based on a suitable
cycle time assumption. Table 6 shows that SAAFFIL-BT
takes the lead among existing IP lookup approaches with a
substantially safe margin.

10

15

20

25

30

35

40

45

50

55

60

65

20
TABL.

(Ll

6

Comparison with existing parallel architectures

Throughput Delay Cycle Time Speed
(lookup per cycle) (cycles) (ns) (Tbps)
TCAM [13] 8.5 — — 0.224
Baboescu et 0.5 16 3 0.0353
al. [14]
CAMP [15] 0.8 — — 0.160
POLP [16] 8 25 2.5 1
SAAFFIL 8 12 1.2 2
SAAFFIL-BT * 27 6 1.2 7
Trie node distribution over memory units: The number of
trie nodes stored 1n SRAM block of each PE 1s illustrated 1n

FIG. 18a, as an example, for SAAFFIL-BT—~<c/d/f/t for T5. x

and y axis indicate PE 1ndices and taxis shows the number of
total BT nodes stored in the corresponding memory unit. It 1s
observed that the distribution can be regarded as acceptably
balanced noting that no extra effort has been paid for balanc-
ing. By trnial and error, better throughput and delay perfor-
mance 1s obtained by assigning no cluster rootnodes at corner

PEs during mapping.

Search load distribution: FIG. 185 1llustrates the total num-
ber of search operations in SRAM block of each PE, as an
example, for SAAFFIL-BT—<c/d/T/tfor'T5. It 1s observed that
the load on PEs are acceptably balanced over all PEs.

Number of SUs and cache size optimization: FIG. 19
depicts the average throughput and average delay versus
cache size versus number of SUs for SAAFFIL-BT—c/d/1/t
for T4. The following conclusions are possible: (1) throughput
does not change for SU>32 (1) cache use 1s eflective 1n
increasing the throughput but 1s increasing cache size above
16 does not change the throughput (111) average delay
increases with increasing number of SUs (1v) increasing
cache size decreases the average delay slightly (v) number of
SUs=32 and cache s1ze=50 seems reasonable choices.
References:

[1] M. A. R. Sanchez, E. W. Biersack, and W. Dabbous,
“Survey and Taxonomy of IP Address Lookup Algo-
rithms,” IEEE Network, vol. 15, pp. 8-23, 2001.

[2] H. J. Chao, “Next Generation Routers,” Proc. of IEEE,
vol. 90, pp. 1518-1538, 2002.

[3] M. J. Akhbarizadeh, M. Nourani, and C. D. Cantrell,
“Prefix Segregation Scheme for a TCAM Based IP For-
warding Engine,” IEEE Micro, vol.25, pp. 48-63, August
2005.

[4] A. J. McAuley and P. Francis, “Fast Routing Table Lookup
Using CAMSs,” Proc. of IEEE INFOCOM 93, vol. 3, pp.
1382-1391, April 1993.

[5] M. Kobayashi, T. Murase, and A. Kuriyama, “A Longest
Prefix Match Search Engine for Multi-gigabit IP Process-

ing,” Proc. of IEEE International Conference on Commu-
nications, vol. 3, pp. 1360-1364, June 2000.

[6] V. C. Ravikumar, R. N. Mahapatra, and L. N. Bhuyan,
“Fase CAM: An Energy and Storage Efficient TCAM-
based Router Architecture for IP Lookup,” IEEE Transac-
tions on Computers, vol. 54, pp. 521-533, 2005.

7] D. Shah and P. Gupta, “Fast Updating Algorithms for
TCAMSs,” IEEE Micro, pp. 37-477, January-February 2001.

[8] K. Pagiamtzis and A. Sheikholeslami, “Content-address-
able Memory (CAM) Circuits and Architectures: A Tuto-
rial and Survey,” IEEE Journal of Solid-State Circuits, vol.
41, pp. 712-727, March 2006.

[9] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power
Efficient TCAMSs for Forwarding Engines,” Proc. of IEEE
INFOCOM 03, vol.1, pp. 42-52, March 2003.

US 8,724,624 B2

21

[10] R. Panigrahy and S. Sharma, “Reducing TCAM Power
Consumption and Increasing Throughput,” Proc. of 10t/
[EELE Symp. High-Performance Interconnects (HOTT 02),
pp. 107-112, 2002.

[11] R. V. C. Rab1 and N. Mahapatra, “TCAM Architecture
for IP Lookup Using Prefix Properties,” IEEE Micro, vol.
24, pp. 60-68, April 2004.

[12] C. S. Lin, J. C. Chang, and B. D. Liu, “Design for
Low-power, Low-cost and High-reliability Precomputa-
tion-based Content-Addressable Memory,” Proc. of Asia-
Pacific Conf. Circuits Systems, vol. 2, pp. 319-324, 2002.

[13] M. J. Akhbarizadeh, M. Nourani, R. Panigrahy, and S.
Sharma, “A TCAM-based Parallel Architecture for High-
speed Packet Forwarding,” IEEE Trans. Computers, vol.
56, no. 1, pp. 58-72, 2007.

[14] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, “A
Tree Based Router Search Engine Architecture with Single
Port Memories,” Proc. of ISCA 05, pp. 123-133, 2005.

[15] S. Kumar, M. Becchi, P. Crowley, and J. Turner, “Camp:
Fast and E
ANCS 06, pp. 51-60, 2006.

[16] W. Jiang, Q. Wang, and V. K. Prasanna, “Beyond
TCAMSs: An SRAM-based Parallel Multi-pipeline Archi-
tecture for Terabit IP Lookup” Proc. of IEEE INFO-
COM 08, pp. 2458-2466, 2008.

[17] W. hang and V. K. Prasanna, “Multi-terabit IP Lookup
Using Parallel Bidirectinal Pipelines™ Proc. of Computing
Frontiers, pp. 241-250, 2008.

[18

[19] J. Hasan and T. N. Vyjaykumar, “Dynamic Pipelining;:
Making IP Lookup Truly Scalable”, Proc. of ACM SIG-
COMM 03, pp. 205-216, 2003.

[20] A. Basu and G. Narlikar, “Fast Incremental Updates for
Pipelined Forwarding Engines,” Proc. of INFOCOM 03,
vol. 1, pp. 64-74, 2003.

[21] W. J1ang and V. K. Prasanna, “A Memory-balanced Lin-
car Pipeline Architecture for Trie-based IP Lookup™, Proc.
of IEEE HOTI'O7, pp. 83-90, August 2007.

[22] W. Jiang and V. K. Prasanna, “Parallel IP Lookup Using
Multiple SRAM Based Pipelines,” Proc. of IEEE
IPDPS’08, pp. 1-14, April 2008.

[23] H. Le, W. Jiang, and V. K. Prasanna, “Scalable High
Throughput SRAM-based Architecture for IP Lookup
Using FPGA”, Proc. of FPL08, pp. 137-142, September
2008.

[24] W. Jiang and V. K. Prasanna, “Multi-way Pipelining for
Power Efficient IP Lookup,” Proc. of IEEE GLOBE-
COM 08, pp. 1-5, December 2008.

[25] W. Jiang and V. K. Prasanna, “Towards Green Routers:
Depth Bounded Multi Pipeline Architecture for Power
Efficient IP Lookup”, Proc. of IPCCC’08, pp. 185-192,
December 2008.

[26] Y. K. Chang, “Simple and Fast IP Lookups Using Bino-
mial Spanning Trees,” Computer Communications, vol.
28, pp. 529-339, 2005.

[27] G. Wang and N. F. Tzeng, “TCAM-based Forwarding
Engine with Minimum Independent Prefix Set (MIPS) for
Fast Updating,” Proc. of IEEE ICC’06, vol. 1, pp. 103-109,
June 2006.

[28] O. Erdem and C. F. Bazlamacci, “MIPS Extension for a
TCAM Based Parallel Architecture for Fast IP Lookup”,

Proc. of 24th Int. Symp. on Computer and Information
Sciences (ISCIS’09), pp. 310-315, September 2009.

5

10

15

Hificient IP Lookup Architecture,” Proc. of 20

25

30

35

40

45

50

55

60

22

[29] “BGP Routing Table Analysis Reports™ http://bgp.pota-
roo.net, 2007.

[30] “AMPATH-I Traces” http://pma.nlanr.net
[31] P. Shivakumar and N. Jouppi, “Cacti Tool” http://quid.h-
pl.hp.com:9081/cacty/

The mvention claimed 1s:

1. An Internet Protocol (IP) lookup engine for use 1n a
router recerving data packets from a network, the router hav-
ing a plurality of input ports and output ports, each data packet
having a header and a body, comprising:

a specially designed systolic array processing element (PE)
composed of an SRAM, a FIFO queue and an associated
peripheral logic circuitry;

a two dimensional and circular organization of PEs in the
form of Vnmxvnm for constructing a plurality of inter-
secting parallel pipelines of different length for process-
ing the header of each of the data packets to determine to
which output port the data packets should be routed;

a plurality of selector units (SUs) and a plurality of con-
tention resolvers (CRs) 1n front of mput stages of the
systolic array; and

a congestion control unit for activating and deactivating the
plurality of selector units (SUs) to adjust mput traffic
rate;

wherein the plurality of intersecting parallel pipelines form
a plurality of nodes at a plurality of intersection loca-
tions.

2. The Internet Protocol (IP) lookup engine of claim 1,
wherein the plurality of nodes traversed during the search
depends on the bits between the most significant set bit posi-
tion and the least significant set bit position in the search key
(IP address).

3. The Internet Protocol (IP) lookup engine of claim 2,
wherein the plurality of nodes are divided into two groups,
one group containing nodes that have greater number of zero
bits 1n their addresses and the other group containing the
nodes that have greater number of one bits in their addresses,
both partitions being represented as separate but similar bino-
mial tries with approximately haltf the original depth, with
root node address being all zeros 1n one partition and all ones
in the other partition, thereby reducing the average path
length of the trie representation.

4. The Internet Protocol (IP) lookup engine of claim 2,
wherein upper BT clustering, where the preceding zeros of
prefixes are removed, which corresponds to partitioning the
upper part of the binomaial trie into multiple clusters based on
the number of preceding zeros that are removed, where the
number of removed preceding zeros 1s used as the cluster
index; and

wherein lower BT clustering, where the preceding ones are
removed Irom prefixes and multiple clusters are
obtained using the number of preceding ones that are
removed, where the number of deleted preceding ones 1s
used as cluster index thereby reducing the average path
length of the trie representation.

5. The Internet Protocol (IP) lookup engine of claim 4,
wherein while computing index for storing root of a subtrie
onto a corresponding PE a left child node of each trie node 1s
stored 1n south neighboring PE, a right Child node of each trie
node 1s stored 1n east neighboring PE, and long subrie paths
are stored by using wrap-around connection.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

