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1
FLOATING POINT FORMAT CONVERTER

FIELD OF THE INVENTION

This mvention pertains to the field of the field of floating
point format conversion, and more particularly to method for
converting from a first floating point number format having a
first base value to a second floating point number format
having a second base value.

BACKGROUND OF THE INVENTION

Floating point number representations are commonly used
to represent real numbers 1n digital computing applications. A
floating point number has an associated base value, and 1s
described by three integers: a sign value, a significand, and an
exponent. The sign value, the significand and the exponent are
encoded using binary representations and stored 1n memory
in a defined format, such as the formats defined 1n the well-
known IEEE Standard for Floating-Point Arithmetic 754-
2008. In various references, the signmificand 1s sometimes
referred to as the “mantissa,” the “fraction,” or the “payload.”

(Given a number represented in a floating point format, the
value of a real number result R 1s obtained using the following,
equation:

R=(-1"xMxB* (1)

where B 1s the base (typically 2 or 10), S 1s the s1ign bit and has
a value of zero for positive numbers or one for negative
numbers, E 1s the exponent and M 1s the significand. For
example, 1I the base 1s B=10, the sign 1s S=1 (indicating
negative), the significand 1s M=12345, the exponent 1s E=-3,
and, then the value of the resulting real number1s R=-12.345.

For many years most digital computing systems encoded
floating point numbers using a binary floating point format
having a base of B=2 (as defined 1n IEEE 754-1985). This
format 1s still in predominant use 1n most desktop computers.
The new 2008 version of this standard (IEEE 754-2008)
introduces decimal tloating point formats that are based on a
base of B=10.

Tables 1 and 2 give the number of significant figures in the
significand, together with the range of supported exponent

values (E_. <E<E ) for the binary and decimal floating
point formats, respectively, defined in IEEE 754-2008.

— i

TABL.

(L]

1

Standard binarv floating point formats (B = 2).

binaryl6 binary32 binary64 binaryl2¥
significant digits 11 24 53 113
E .. +15 +127 +1023 +16383
E .. -14 -126 -1022 —16382
TABLE 2
Standard decimal floating point formats (B = 10).

decimal32 decimal64 decimall28

significant digits 7 16 34

E_ . +96 +384 +6144

E. . -95 -383 -6143
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As discussed 1n the article “Decimal Floating-Point: Algor-

1sm for Computers” (Proc. 16th IEEE Symposium on Com-
puter Arithmetic, 2003) by Cowlishaw, decimal floating point
formats have the advantage that a hand-calculated value will
give the same result as a computer-calculated result. How-
ever, defining a new floating point format causes ditficult
compatibility 1ssues with older floating point formats.

To convert from a first floating point format to a second

floating point format, it 1s necessary to solve for a new sig-
nificand and a new exponent that will give the equivalent real
number. Mathematically, this corresponds to:

M xB F1=M,x B2 (2)

where the subscript “1” corresponds to the first floating point
format having a first base B,, and the subscript “2” corre-

sponds to the second floating point format having a second
base B,. Accordingly, E, 1s a first exponent and M, 1s a first
1S a

significand for the first floating point format, and E,
second exponent and M, 1s a second significand for the sec-
ond floating point format.

One way to solve Eq. (2) for the second exponent E, and the
second significand M, would be to let M,=M, and solve the

equation for E,:

loghB (3)

(Ezjrm.f = El XlﬂgﬂzBl = El X IGgBZ

where the logarithms 1n the log B,/log B, term have an arbi-
trary base. However, both E, and E, must be stored as inte-

gers. Therefore 1n practice, E, 1s set to the integer portion of
this quantity:

(4)

F— Iﬂt[El XngBZBI] = Int| £ X

logB ]

logB,

where the operator Int[A] gives an integer portion of a real
number A. Therefore, there will be a remainder portion that
must be icorporated into the value of M,. It can be shown
that the new value of M, will be:

M, =M, x B, el xiog Bliog B2l =pf xbias

(35)
where Rem(A,B) 1s the remainder of (A/B), and

biaS:BERE‘m [E1xiog Bl/log B2,1]

(6)

The value of E, determined using Eq. (4) can be calculated
quickly 1 a digital computer using simple fixed point multi-
plication. Note that since B, and B, are constants, the value of
log B,/log B, can be stored as a predefined constant. The

difficulty comes with the computation of M, using Eq. (5). In
particular, the exponentiation operation of raising the base B,
to a power 1s not conducive to simple fixed point arithmetic.

One way to compute the value of M, 1s to use a Taylor series
expansion of the equation. However, this involves many cal-
culations and has accuracy problems. Most practical imple-
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mentations pre-compute the value of the bias in Eq. (6) for
every possible different E, and store the results in a look-up
table (LUT). However, this approach has the disadvantage
that 1t requires a significant amount of memory. For example,
il the first tfloating point format 1s the “binary64” format
described in IEEE 754-2008, the LUT needs to store 2,046
different values, each of which requires 33 bits of storage
memory, for a total of about 13.2 Kbytes of storage memory.
Similarly, 1f the first floating point format 1s the “binary128”
format described in IEEE 754-2008, the LUT needs to store
32,766 different values, each of which requires 113 bits of
storage memory, for a total of about 452 Kbytes of storage
memory. The appropriate LUT memory needs to be set aside
for each pair of formats for which it 1s necessary to convert.
The memory requirements become particularly significant
when implementing this conversion in a hardware processor
such as a Floating-point umt (FPU).

FIG. 1 shows a flowchart of a LUT-based method for con-
verting from a binary floating point number 10 having an
input base B, =2, to a decimal floating point number 835 having
an output base B,=10. This basic approach 1s used 1n the
publically available Decimal Floating-Point Math Library
available from Intel Corporation of Santa Clara, Calif.

A decode tloating point format step 15 1s used to decode the
binary floating point number 10 to extract a corresponding
iput sign value 20 (S, ), an mput exponent 235 (E,), and an
input significand 30 (M, ). An output sign value 35 (S,) 1s
simply set to be equal to the mput sign value 20 (S, ). Accord-
ing to Eq. (4), the mput exponent 25, 1s multiplied by a
predetermined constant 45 (log 2/log 10=log,,2) using a mul-
tiplier 40 to compute an output exponent 50 (E, ). The multi-
plier 40 includes the application of an Int[.] operator so that
the resulting output exponent 50 (E,) 1s an integer. An apply
bias LUT step 60 1s used to determine a bias value 63 by
addressing a bias LUT 355 with the input exponent 25 (E,).
The bias LUT 35 stores pre-computed bias values 65 for every
possible value of the mput exponent 25 (E, ) according to Eq.
(6). (As mentioned above, i1f the binary floating point number
10 15 1n the “binary128” format described in IEEE 754-2008,
the bias LUT 55 needs to store 32,766 different entries.) The
input significand 30 (M, ) 1s multiplied by the bias value 65
using a multiplier 70 to compute the output significand 75
(M.,). The combination of the operations associated with the
apply bias LUT step 60 and the multiplier 70 implement the
computation given in Eq. (4).

A normalize floating point number step 80 1s used to nor-
malize the components of the output floating point number
according to the requirements of the specific output floating
point format. A floating point format specification, such as the
alorementioned IEEE 754-2008 standard, requires that the
significand satisiy certain conditions before it 1s encoded.
(For example, 11 the output tloating point number 1s a decimal
floating point number, the encoding specification requires
that the significand must be an 1nteger.) The normalize tloat-
ing point number step 80 modifies the output significand 735
(M,) so that it can be correctly encoded. This 1s done by
multiplying or dividing the output significand 75 (M,) by
powers of the output base B, until it satisfies the required
conditions. In the case where the output floating point number
1s a decimal floating point number, the computed significand
must be multiplied by powers of ten until all fractional digits
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are zero (or msignificant). The output exponent 50 (E,) must
be decremented or incremented by a corresponding value so
that the real number value of the floating point number

remains unchanged. The normalize floating point number
step 80 may also include a rounding operation to round off
any insigmificant digits.

An encode tloating point format step 83 encodes the output
sign value 35 (S,), the output exponent 50 (E, ) and the output

significand 75 (M, ) according to the specification for desired
decimal floating point format (e.g., according to the IEEE
754-2008 standard) to produce the decimal floating point
number 83.

The method shown 1n FIG. 1 can easily be adapted to
convert from a decimal floating point number to a corre-
sponding binary floating number by making appropriate
adjustments to the constant 45 and the values stored in the
bias LUT 55. In this case, the value of the constant 45 will be
log 10/log 2=log,10, and the bias LUT 55 stores pre-com-
puted bias values 65 for every possible value of the mput
exponent 25 (E, ) according to Eq. (6) using an input base of
B,=10 and an output base of B,=2.

There remains a need for a method to convert between
different tloating point formats that 1s simultaneously accu-
rate, computationally efficient and requires a minimal amount
of memory.

SUMMARY OF THE INVENTION

The present mvention represents a computer program
product for converting a first floating point number repre-
sented 1n a first floating point format to an equivalent second
floating point number 1n a second tloating point format, the
first tloating point format having an associated first base value
and being represented by a first significand value and a first
exponent value, and the second floating point format having
an associated second base value different from the first base
value and being represented by a second significand value and
a second exponent value, wherein either the first base value or
the second base value 1s an integer power of two, and the other
base value 1s not a power of two, comprising a non-transitory
tangible computer readable storage medium storing an
executable algorithm for causing a data processing system to
perform the steps of:

determining the second exponent value for the second
floating point number by multiplying the first exponent value
by a predefined constant and taking the integer portion of the
result, the predefined constant being substantially equivalent
to the logarithm of the first base value divided by the loga-
rithm of the second base value;

determining a bias value that 1s substantially equivalent to
the first base value raised to the first exponent value divided
by the second base value raised to the second exponent value,
wherein the determination of the bias value includes:

determiming an intermediate bias value by addressing a

look-up table with the exponent value corresponding to
the base that 1s not a power of two; and

determining the bias value by applying a binary shiit opera-

tion to the intermediate bias value, wherein a magmitude
of the binary shift 1s determined responsive to the expo-
nent value corresponding to the base that 1s a power of
two; and
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determining the second significand value for the second
floating point number by multiplying the first significand
value by the bias value.

This invention has the advantage that it requires a smaller
amount of memory for storing look-up tables relative to cur-
rent implementations, and additionally produces results that
are more accurate.

It has the additional advantage that 1t 1s less costly to

implement 1n a hardware floating-point unit due to requiring
a reduced number of logic gates.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a flow chart for a prior art method of converting
from a binary floating point format to a decimal tloating point
format:

FI1G. 2 1s a high-level diagram showing the components of

a system for tlow according to an embodiment of the present
invention; and

FIG. 3 1s a flow chart for a method of converting from a
binary floating point format to a decimal floating point format
in accordance with one embodiment of the present invention;

FIG. 4 1s a flow chart for a method of converting from a
decimal floating point format to a binary floating point format
in accordance with one embodiment of the present invention;
and

FIG. 5 1s a flow chart for a method of converting from a
binary tfloating point format to a decimal floating point format
in accordance with a second embodiment of the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, some embodiments of the
present invention will be described 1n terms that would ordi-
narily be implemented as software programs. Those skilled in
the art will readily recognize that the equivalent of such
soltware may also be constructed 1n hardware. Because arith-
metic algorithms and systems are well known, the present
description will be directed in particular to algorithms and
systems forming part of, or cooperating more directly with,
the method 1n accordance with the present invention. Other
aspects of such algorithms and systems, together with hard-
ware and software for producing and otherwise processing,
the 1mage signals involved therewith, not specifically shown
or described herein may be selected from such systems, algo-
rithms, components, and elements known in the art. Given the
system as described according to the invention in the follow-
ing, software not specifically shown, suggested, or described
herein that 1s useful for implementation of the mvention 1s
conventional and within the ordinary skill 1n such arts.

The 1nvention 1s inclusive of combinations of the embodi-
ments described herein. References to “a particular embodi-
ment” and the like refer to features that are present 1n at least
one embodiment of the invention. Separate references to “an
embodiment” or “particular embodiments™ or the like do not
necessarily refer to the same embodiment or embodiments;
however, such embodiments are not mutually exclusive,
unless so indicated or as are readily apparent to one of skill in
the art. The use of singular or plural in referring to the
“method” or “methods™ and the like 1s not limiting. It should
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6

be noted that, unless otherwise explicitly noted or required by

context, the word “or” 1s used 1n this disclosure 1n a non-
exclusive sense.

FIG. 2 1s a high-level diagram showing the components of
a system for converting a first floating point number repre-
sented 1n a first tloating point format to an equivalent second
floating point number 1n a second floating point format
according to an embodiment of the present invention. The
system includes a data processing system 110, a peripheral
system 120, a user interface system 130, and a data storage
system 140. The peripheral system 120, the user interface

system 130 and the data storage system 140 are communica-

tively connected to the data processing system 110.

The data processing system 110 includes one or more data
processing devices that implement the processes of the vari-
ous embodiments of the present ivention, including the
example processes described herein. The phrases “data pro-
cessing device” or “data processor” are intended to include
any data processing device, such as a central processing unit
(“CPU”), a desktop computer, a laptop computer, a main-
frame computer, a personal digital assistant, a Blackberry™,

a digital camera, cellular phone, or any other device for pro-
cessing data, managing data, or handling data, whether imple-
mented with electrical, magnetic, optical, biological compo-
nents, or otherwise.

The data storage system 140 includes one or more proces-
sor-accessible memories configured to store information,
including the information needed to execute the processes of
the various embodiments of the present invention, including
the example processes described herein. The data storage
system 140 may be a distributed processor-accessible
memory system 1including multiple processor-accessible
memories communicatively connected to the data processing
system 110 via a plurality of computers or devices. On the
other hand, the data storage system 140 need not be a distrib-
uted processor-accessible memory system and, consequently,
may 1nclude one or more processor-accessible memories
located within a single data processor or device.

The phrase “processor-accessible memory” 1s mtended to
include any processor-accessible data storage device,
whether volatile or nonvolatile, electronic, magnetic, optical,
or otherwise, including but not limited to, registers, floppy
disks, hard disks, Compact Discs, DVDs, flash memories,
ROMs, and RAMs.

The phrase “communicatively connected” 1s mtended to
include any type of connection, whether wired or wireless,
between devices, data processors, or programs 1n which data
may be communicated. The phrase “communicatively con-
nected” 1s mntended to 1include a connection between devices
or programs within a single data processor, a connection
between devices or programs located 1n different data proces-
sors, and a connection between devices not located 1n data
processors at all. In this regard, although the data storage
system 140 1s shown separately from the data processing
system 110, one skilled 1n the art will appreciate that the data
storage system 140 may be stored completely or partially
within the data processing system 110. Further 1n this regard,
although the peripheral system 120 and the user interface
system 130 are shown separately from the data processing
system 110, one skilled 1n the art will appreciate that one or
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both of such systems may be stored completely or partially

within the data processing system 110.
The peripheral system 120 may include one or more
devices configured to provide digital content records to the

data processing system 110. For example, the peripheral sys-
tem 120 may include digital still cameras, digital video cam-

eras, cellular phones, or other data processors. The data pro-
cessing system 110, upon receipt of digital content records
from a device in the peripheral system 120, may store such

digital content records 1n the data storage system 140.

The user interface system 130 may include a mouse, a
keyboard, another computer, or any device or combination of
devices from which data 1s input to the data processing system
110. In this regard, although the peripheral system 120 1s

shown separately from the user interface system 130, the
peripheral system 120 may be included as part of the user
interface system 130.

The user interface system 130 also may include a display
device, a processor-accessible memory, or any device or com-
bination of devices to which data 1s output by the data pro-
cessing system 110. In this regard, 11 the user interface system
130 includes a processor-accessible memory, such memory
may be part of the data storage system 140 even though the
user interface system 130 and the data storage system 140 are
shown separately 1n FIG. 2.

The present imnvention 1s a new and more efficient way to
convert numbers between different floating point formats
having different base values. As discussed earlier, the prior art
methods for converting between ditferent floating point for-
mats generally involve the use of a large bias LUT 55 (FIG. 1)

to store the results of the bias calculations given 1n Eq. (6).
During the process of implementing a tloating point format
conversion process, the inventor of the present invention pro-
duced a bias LUT 55 of this type and noticed some surprising
and unexpected patterns that occurred in the bias values
stored 1n the bias LUT 55. In particular, 1t was observed that
for the case of converting from a binary floating point number
to a decimal tloating point number, that every value 1n the bias
LUT was a power of two divided by a power of ten. An
investigation of the source of these unexpected patterns led to
the discovery of an unobvious and previously undiscovered
relationship between the bias value 65 and the mnput exponent
25 (E,) and the output exponent 50 (E,). According to the
method of the present invention, this useful relationship can
be exploited to provide an improved method to convert
between different floating point formats that requires signifi-
cantly fewer computing resources.

A dertvation of this usetul relationship 1s now provided.
Solving Eq. (2) for M, gives:

(7)

where B, 1s the first base, E, 1s the first exponent and M, 1s the
first significand for the first floating point format, and B, 1s the
second base, E, 1s the second exponent, and M, 1s the second
significand for the second tloating point format. Substituting
Eq. (7) mto Eq. (35) gives:
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phl (8)

1 Rem|E xlogB{ /toghA,1

szfz

Cancelling M, from both sides of the equation and rearrang-
ing to solve for the bias value of Eq. (6) gives the result that:

(9)

1
. Rem[E xlogB1 HlogB .1 Bf
bias = B, By xlogBy flogB ll

sz

A variation of this equation that 1s useful 1n some embodi-
ments 1s given by rearranging the fraction on the right side:

(10)
bias = B

Rem|E | xlogh| jloghy,1]
» =

Thus i1t can be seen from Eq. (9) and Eq. (10) that the complex

expression for the bias given 1n Eq. (6) can be replaced by a
ratio o two much simpler expressions. Using this expression,
the bias value can be calculated without the need for any
Taylor series approximations, and can therefore be deter-
mined with higher accuracy. Additionally, when either the
first base B, orthe second base B, 1s a power of two, the factor
including the power of two base can convemently be applied
using a binary shiit operation which 1s very computationally
ellicient.

For the important case of converting from a binary floating,
point number (B,=2) to a decimal floating point number
(B,=10), Eq. (9) can be used to provide a bias value
(bias, _,,) of:

NE] (11)
7 = 10752 x 2%1

biasy10 =

Likewise, for the reverse case of converting from a decimal
floating point number (B,;=10) to a binary floating point num-
ber (B,=2), Eq. (10) can be used to provide a bias value
(bias,, .,) of:

—E2 (12)

= 10%1 x 272

biasip-y = 0 E

In both Egs. (11) and (12) 1t can be seen that the bias values
include two factors: a first factor which i1s a power of ten, and
a second factor which 1s a power of two. The power of ten
factor can be calculated 1n a variety of ways. In one embodi-
ment, the power of ten factor 1s determined by computing a
“tens LUT” which stores the result of the exponentiation
calculation for every possible value of the exponent. It should
be noted from Tables 1 and 2 that since the range of exponents
for the decimal floating point format 1s substantially larger
than the range of exponents for the corresponding binary
floating point format, the number of entries 1n the tens LUT

will be significantly smaller than the number of entries in the
bias LUT 55 of FIG. 1. The power of two factor in Eqgs. (11)
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and (12) can conveniently be applied by applying a binary

shift operation to the value obtained from the tens LUT. Thus
highly precise bias values can be calculated using a look-up

operation, followed by a binary shift operation. Both of these
operations are highly efficient for computation using either
soltware or hardware implementations.

FI1G. 3 shows a flow chart of a method for converting from
a binary floating point number 10 having an input base B, =2
to a decimal tloating point number 90 having an output base
B.,=10 according to an embodiment of the present invention.
Where elements of this embodiment are common with the
prior art configuration of FIG. 1, common part numbers have
been used.

As described with respect to FIG. 1, the decode floating
point format step 15 1s used to decode the binary floating point
number 10 to extract the corresponding input sign value 20
(S, ), the input exponent 235 (E, ), and the input significand 30
(M, ). The output sign value 35 (S,) 1s simply set to be equal
Eq. (4), the input
exponent 25, 1s multiplied by a predetermined constant 435

to the input sign value 20 (S, ). According to

using a multiplier 40 to compute the output exponent 50 (E.,).
The value of the predetermined constant 45 1s substantially
equal to log 2/log 10=log,,2. In the context of the present
invention, the term “substantially equal” should be inter-
preted to mean that the value 1s calculated and stored using a
digital representation having some specified precision. The
value of the constant 1s therefore equal to the desired result to
within the precision limitations of the digital representation.
The multiplier 40 includes the application of an Int[. | operator
so that the resulting output exponent 50 (E,) 1s an integer. In
equation form, this 1s given by:

(13)

b = Illt[El XngmQ] = Int| £| X

log? ]
loglQ)

where the appropriate base values have been substituted into
Eqg. (4)

An apply tens LUT step 200 1s used to determine an inter-
mediate bias value 210 by addressing a tens LUT 203 using
the output exponent 50 (E,). In one embodiment, the tens

LUT 205 (bias,[E,]) stores the result of the calculation:

(14)

bias;[E;] = = 10752

1052

for every possible value of the output exponent 50 (E,). The
values stored in the tens LUT 205 range from 107" to
10~%"=, where the values of E_ . and E_ _for common deci-
mal floating point formats are given 1n Table 2. Because the
range of values 1s very large, the values stored in the tens LUT
205 are preferably stored as a fixed point number, together
with a shift value indicating the number of bits that the fixed
point number should be shifted to provide the desired result.

It should be noted that 11 the tens LUT 203 1s designed to
use with a particular floating point precision level (e.g., for
converting from binary128 to decimal128), itcan also be used
for converting between all other defined formats having lower
precision levels (e.g., for converting from binary64 to deci-
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mal64). Therefore, it will generally be desirable to build the

tens LUT 203 for the highest precision level of interest, and 1t
can then also be used to convert tloating point numbers having
a lower precision.

A binary shift step 215 1s used to apply a binary shiit
operation to the intermediate bias value 210 to determine the
bias value 65. The binary shiit step 215 effectively multiplies
the intermediate bias value 210 by the factor 2”! by shifting
the bits
intermediate bias value 210 can be multiplied by 2° by shift-

oy E, bit positions. For example, 1f E,=3, then the

ing the bits of the intermediate bias value 210 by 3 bit posi-
tions. For the case where the values stored in the tens LUT 2035
are stored as a fixed point number, together with a shift value
indicating the number of bits that the fixed point number
should be shifted, the binary shift step 2135 can simulta-

neously apply both binary shift operations. The binary shift

step 213 1s typically implemented using a shiit register.

Once the bias value 65 has been calculated, the rest of the

steps are equivalent to those 1n FIG. 1. The mnput significand
30 (M, ) 1s multiplied by the bias value 65 using the multiplier

70 to compute the output significand 75 (M, ). The normalize
floating point number step 80 1s then used to normalize the
components of the output tloating point number according to
the requirements of the specific output floating point format,
and the encode floating point format step 85 encodes the
output sign value 33 (S, ), the output exponent 50 (E,) and the
output significand 75 (M,) according to the specification for
desired decimal tloating point format (e.g., according to the
IEEE 754-2008 standard) to produce the decimal floating
point number 85.

The si1ze of the memory that must be set aside for storing,
the tens LUT 205 1n the FIG. 3 embodiment 1s significantly
less than that required to store the bias LUT 535 in the prior art
FIG. 1 implementation. Consider the case where the binary
floating point format for the binary floating point number 10
1s the “binary64” format, and the decimal floating point for-
mat for the decimal floating point number 90 1s the “deci-
mal64” format, both formats being described 1n IEEE 754-
2008. In this example, the bias LUT 35 of FIG. 1 would need
to store 2046 different entries, whereas the tens LUT 205 of
FIG. 3 would only need to store 768 different values, thus
providing a substantial reduction in the required storage
memory.

FIG. 4 shows a flow chart of an analogous method for
converting from a decimal floating point number 90 having an
input base B, =10 to a binary floating point number 10 having
an output base B,=2 according to an embodiment of the
present invention. It can be seen that many of the elements of
this configuration are identical to the method shown 1n FIG. 3.
In this case, the input exponent 25, 1s multiplied by a different
predetermined constant 220 (log 10/log 2=log,10) to com-
pute the output exponent 50 (E,). In equation form:

(15)

loglO
£, = Int[E) Xlog,10] =Int ]

log2

Ey X

In this case, the apply tens LUT step 200 1s used to deter-
mine an intermediate bias value 210 by addressing atens LUT
2035 with the negative of the mput exponent 23 (-E, ) rather
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than the output exponent 50 as in FIG. 4. The resulting inter-

mediate bias values will therefore have the value of 10°".
The binary shift step 215 1s used to apply a binary shift

operation to the mntermediate bias value 210 to determine the

bias value 65. In this case, the binary shiit step 215 effectively
multiplies the intermediate bias value 210 by the factor 2772,

For example, 11 E,=3, then the intermediate bias value 210 can
be multiplied by 27° by shifting the bits of the intermediate
bias value210 by 3

stored 1n the tens LUT 205 are stored as a fixed point number,

hit locations. For the case where the values

together with a shift value indicating the number of bits that

the fixed point number should be shifted, the binary shiit step

215 can simultaneously apply both binary shiit operations.
An attractive feature of the configurations shown 1n FIGS.

3 and 4 1s that the same tens LUT 205 1s used 1n both cases.
Theretfore, no additional LUT storage memory is required to

convert between binary floating point numbers and decimal
floating point numbers 1n both the forward and reverse direc-
tions. This 1s a significant advantage over the prior art con-
figuration shown in FIG. 1, where different bias LUTs 55

would be required for the forward and reverse conversions.

Once the bias value 65 has been calculated, the rest of the
steps are equivalent to those 1n FIG. 3, except that the nor-
malize floating point number step 80 and the encode floating,
point format step 85 are performed according to the specifi-
cation for desired binary tloating point format (e.g., according
to the IEEE 754-2008 standard) to produce the binary floating
point number 10.

As discussed earlier, the normalize floating point number
step 80 typically involves scaling the output significand 75
(M.,,) by factors of the output base B,. For the case where the
output tloating point number has a base B,=2, this scaling can
be done using a binary shift operation. In some embodiments,
the binary shiit step 215 can be combined with the binary shift
applied i the normalize floating point number step 80 to
reduce the computation time.

As noted earlier, the range of values that are stored 1n the
tens LUT 2035 according to the embodiments of FIGS. 3 and
4 1s quite large. While this problem can be addressed by
storing the values in the tens LUT 205 as fixed point numbers,
together with corresponding shift values indicating the num-
ber of bits that the fixed point number should be shifted, this
adds complexity to the implementation and requires alloca-
tion of additional memory to store the shift values. F1IG. 51s a
flow chart showing an alternate embodiment which over-
comes these limitations. In this case, an apply reverse bias
LUT step 305 1s used to determine an intermediate bias value
310 by addressing a reverse bias LUT 300 using the output
exponent 50 (E,).

Thereverse bias LUT 300 stores the values of the following
expression for every possible value of the output exponent 50

(E,):

2.’111‘ [E~logy 10]

1052

bias;|E>] = OE =

where:

E',=Int[E, log,10] (17)
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Thereverse bias LUT 300 can be shown to exactly correspond
to the bias LUT that would be used according to the configu-
ration of FIG. 1 for performing the reverse conversion from
the decimal floating point number 90 to the binary floating
point number 10 (hence, the “reverse” designation), except
that the reverse bias LUT 300 would need to be addressed
with -E,.

It can be seen that the intermediate bias value 310 given by
Eq. (16) 1s approximately the same as the desired bias value
given by Eq. (11) except that E', 1s only an approximation for
the mput exponent 25 (E,). This 1s due to the fact that the
multiplier 40 will map several different E, values to the same
E, value. For example, E, values of 7, 8 and 9 will all map to
an E, value of 2. As aresult, the intermediate bias value can be
off by a factor of two given by 2'=2x, 2°=4x or 2°=8x relative
to the desired bias value given by Eq. (11). The binary shift
step 315 1s used to correct for this factor of two. In particular,
the binary shift step 315 applies a binary shift operation to the
intermediate bias value 310, where the magnitude of the shiit
AE, 1s given by:

AE ,=E,—-E',=E,~Int[E- log,10] (18)

An advantage of the configuration of FIG. 3 1s that the same
reverse bias LUT 300 can be used for both the forward and
reverse conversions. This greatly reduces the memory
requirements relative to the prior art configuration of FIG. 1.
Consider the case where binary floating point number 10 1s
the “binary64” format, and the decimal floating point format
for the decimal floating point number 90 1s the “decimal64”
format, both formats being described in IEEE 754-2008. If
both the forward and reverse conversions are implemented
using the FIG. 1 configuration, the bias LUT 55 for the for-
ward conversion would need to store 2,046 entries, each of
which requires 53 bits, and the bias LUT 53 for the reverse
conversion would need to store 768 entries, each of which
requires S0 bits. The total memory required to store the two
bias LUTs 55 would be about 17.9 Kbytes. On the other hand,
if the method of FIG. 5 1s used to implement the forward
conversion from the binary floating point format to the deci-
mal floating point format, and the method of FIG. 1 1s used to
implement the reverse conversion, only the single reverse bias
L. UT 300 needs to be stored. In this case, the reverse bias LUT
300 needs to store 768 entries, each of which requires 53 bats,
for a total of about 5.0 Kbytes. This 1s a savings ol approxi-
mately 72% 1n the amount of storage memory.

As with the tens LUT 205, 1t should be noted that i1t the
reverse bias LUT 300 1s designed to use with a particular
floating point precision level (e.g., for converting from
binary128 to decimal128), 1t can also be used for converting
between all other defined formats having lower precision
levels (e.g., for converting from binary64 to decimal64).
Theretore, 1t will generally be desirable to build the reverse
bias LUT 300 for the highest precision level of interest, and 1t
can then also be used to convert floating point numbers having
a lower precision.

The embodiments of the present invention described rela-
tive to FIGS. 3-5 all involve converting between binary tloat-
ing point numbers 10 and decimal floating point numbers 90.
It will be obvious to one of ordinary skill in the art that the
method of the present invention can easily be adapted to work
with floating point numbers having other bases as well. Nota-
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bly, the same advantages can be achieved 1f the binary floating,
point number 10 1s replaced with a floating point number
having a base that 1s an integer power of two, and the decimal
floating point number 90 1s replaced with a floating point
number having any arbitrary base that 1s not an integer power
of two. Consider the case where the binary tloating point
number 10 of FIG. 3 is replaced with a floating point number
having a base that 1s a different integer power of two (e.g.,
B=2"=4, B=2"=8 or B=2"=16). In order to properly account
for different base, the magnitude of the shift applied by the
binary shift step 215 needs to be adjusted accordingly. For
example, 11 the input floating point number has a base of
B,=4, then the binary shift step 215 can be used to multiply
the intermediate bias value 210 by the factor 4°'=2°*! by
shifting the bits of the intermediate bias value 210 by 2xE, bat
positions. Likewise, the value of the constant 45 and the
contents of the tens LUT 205 will also need to be adjusted
accordingly by substituting the new base values into the cor-
responding equations. For example, 1f the decimal floating,
point number 90 1s replaced with a floating point number
having a base of nine then tens LUT 2035 would need to be
replaced with a “mines LUT” where the “10” mn Eq. (14) 1s
replaced with a “9.” Analogous changes can also be made to
use different bases with the embodiments of FIGS. 4 and 5 as
well.

Embodiments of the present invention can be implemented
in a variety of ways. In some embodiments, the methods can
be implemented as software packages that can be executed by
host computers. In other embodiments, the methods can be
implemented 1n various hardware configurations. Most com-
puters include a hardware Floating-Point Unit (FPU) which
performs calculations with floating point numbers. In current
systems, the FPU 1s generally incorporated within a Central
Processing Umt (CPU) or a microprocessor. However, 1n
some configurations, the FPU can be an independent proces-
sor. Most FPUs today are based on binary floating point
numbers. However, in the future it 1s expected that many
FPUs will use decimal floating point numbers. Therelore,
conversion between binary and decimal floating point for-
mats will be an increasingly important function that must be
included in FPU designs.

To design an FPU, chip designers generally write Register
Transfer Language (RTL) code. (There are a number of dii-
terent RTL languages that can be used including VHDL and
Verilog.) The RTL code can then be synthesized into a hard-
ware design. In the hardware design, the various calculations
and look-up tables are implements using arrangements of
logic gates. The number of logic gates will have a direct eil

ect
on the final cost of the design. Therefore, there 1s a significant
benefit to reducing the amount of look-up table memory
required 1n a FPU design. As noted above, the method of the
present invention can reduce the amount of look-up table
memory by about 72% relative to the current approaches. The
use of the floating point conversion methods described above
will therefore have the result of significantly reducing the
number of logic gates that are required to implement the FPU,
and will produce a substantial cost savings.

A computer program product can include one or more
non-transitory, tangible, computer readable storage medium,
for example; magnetic storage media such as magnetic disk
(such as a tloppy disk) or magnetic tape; optical storage media

10

15

20

25

30

35

40

45

50

55

60

65

14

such as optical disk, optical tape, or machine readable bar
code; solid-state electronic storage devices such as random
access memory (RAM), or read-only memory (ROM); or any
other physical device or media employed to store a computer
program having instructions for controlling one or more com-

puters to practice the method according to the present inven-
tion.
The mvention has been described in detail with particular

reference to certain preferred embodiments thereof, but 1t will
be understood that vanations and modifications can be
cifected within the spirit and scope of the mvention.

PARTS LIST

10 binary floating point number
15 decode floating point format step
20 1nput sign value

235 mput exponent

30 input significand

35 output sign value

40 multiplier

45 constant

50 output exponent

535 bias LUT

60 apply bias LUT step

65 bias value

70 multiplier

75 output significand

80 normalize floating point number step
83 encode floating point format step
90 decimal floating point number
110 data processing system

120 peripheral systems

130 user interface system

140 data storage system

200 apply tens LUT step

205 tens LUT

210 intermediate bias value

215 binary shift step

220 constant

300 reverse bias LUT

305 apply reverse bias LUT step
310 intermediate bias value

315 binary shift step

The mvention claimed 1s:
1. A computer program product for converting a first tloat-

ing point number represented 1n a first floating point format to
an equivalent second floating point number 1n a second float-
ing point format, the first tloating point format having an
associated first base value and being represented by a first
significand value and a first exponent value, and the second
tfloating point format having an associated second base value
different from the first base value and being represented by a
second significand value and a second exponent value,
wherein either the first base value or the second base value 1s
an integer power of two, and the other base value 1s not an
integer power of two, comprising a non-transitory tangible
computer readable storage medium storing an executable
algorithm for causing a data processing system to perform the
steps of:
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determining the second exponent value for the second
floating point number by multiplying the first exponent
value by a predefined constant and taking the integer
portion of the result, the predefined constant being sub-
stantially equivalent to the logarithm of the first base
value divided by the logarithm of the second base value;

determining a bias value that 1s substantially equivalent to
the first base value raised to the first exponent value
divided by the second base value raised to the second
exponent value wherein the determination of the bias
value includes:
determining an intermediate bias value by addressing a
look-up table with the exponent value corresponding to
the base that 1s not an integer power of two; and

determining the bias value by applying a binary shift opera-
tion to the intermediate bias value, wherein a magmtude
of the binary shift 1s determined responsive to the expo-
nent value corresponding to the base that 1s an integer
power of two; and

determining the second significand value for the second

floating point number by multiplying the first signifi-
cand value by the bias value.

2. The computer program product of claim 1 wherein the
binary shift operation i1s applied using a shiit register.

3. The computer program product of claim 1 wherein the
first floating point format 1s a binary floating point format
having a first base value of two and the second floating point
format 1s a decimal floating point format having a second base
value of ten.

4. The computer program product of claim 3 wherein the
binary floating point format 1s an IEEE 754-2008 binary
tfloating point format and the decimal floating point format 1s
an IEEE 754-2008 decimal floating point format.

5. The computer program product of claim 1 wherein the
first tfloating point format 1s a decimal floating point format
having a first base value of ten and the second floating point
format 1s a binary floating point format having a second base
value of two.

6. The computer program product of claim 5 wherein the
binary floating point format 1s an IEEE 754-2008 binary
floating point format and the decimal floating point format 1s
an IEEE 754-2008 decimal floating point format.

7. The computer program product of claim 1 wherein the
first floating point format further includes a first sign value
and the second tloating point format further includes a second
sign value, and wherein the second sign value 1s set to be equal
to the first sign value.

8. The computer program product of claim 1 further includ-
ing performing a normalization process to the second tloating
point number, where the normalization process includes:

multiplying or dividing the second significand value by a

scale value equal to the second base value raised to an
integer power to provide a modified second significand
value, wherein the modified second significand value
talls within a specified range; and

decrementing or incrementing the second exponent value

by a corresponding value equal to the integer power to
provide a modified second exponent value.

9. The computer program product of claim 1 wherein the
first tloating point format has an associated first binary encod-
ing mcluding a first set of exponent bits representing the first
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exponent value and a first set of significand bits representing

the first significand value, and further including determining,
the first exponent value and the first significand value by
decoding the first set of exponent bits and the first set of
significand bits, respectively.

10. The computer program product of claim 1 wherein the
second floating point format has an associated second binary
encoding including a second set of exponent bits representing
the second exponent value and a second set of significand bits
representing the second significand value, and further includ-
ing performing an encoding process to determine the second
set of significand bits and the second set of exponent bits
needed to represent the second significand value and the
second exponent value, respectively.

11. The computer program product of claim 1 wherein the
base value that 1s an integer power of two 1s equal to two so
that the corresponding tloating point number is a binary tloat-
ing point number, wherein the base value that 1s not an integer
power ol two 1s equal to ten so that the corresponding floating
point number 1s a decimal floating point number.

12. The computer program product of claim 1 wherein the
non-transitory tangible computer readable storage medium 1s
a component of a hardware floating-point unait.

13. A computer program product for converting a binary
floating point number represented 1n a binary floating point
format to an equivalent decimal floating point number 1n a
decimal floating point format, the binary floating point format
having an associated {irst base value of two and being repre-
sented by a first significand value and a first exponent value,
and the decimal floating point format having an associated
second base value of ten and being represented by a second
significand value and a second exponent value, comprising a
non-transitory tangible computer readable storage medium
storing an executable algorithm for causing a data processing,
system to perform the steps of:

determining the second exponent value for the decimal

tfloating point number by multiplying the first exponent
value by a predefined constant and taking the integer
portion of the result, the predefined constant being sub-
stantially equivalent to the logarithm of two divided by
the logarithm of ten;

determiming a bias value that i1s substantially equivalent to

two raised to the first exponent value divided by ten
raised to the second exponent value, wherein the deter-
mination of the bias value includes:
determining an intermediate bias value by addressing a
look-up table with the second exponent value; and

determining the bias value by applying a binary shiit opera-
tion to the intermediate bias value, wherein a magmitude
of the binary shift 1s determined responsive to the first
exponent value; and

determining the second significand value for the second

floating point number by multiplying the first signifi-
cand value by the bias value.

14. The computer program product of claim 13 wherein the
look-up table stores representations of the intermediate bias
values for a range of different possible second exponent val-
ues, and wherein the intermediate bias values are determined

by:

bias,[E,]=107*2
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where E, 1s the second exponent value and bias [E,] 1s the
intermediate bias value.

15. The computer program product of claim 13 wherein the
magnitude of the binary shift includes a term equal to the first
exponent value.

16. The computer program product of claim 13 wherein the
stored representations of the intermediate bias values
includes a fixed point number and a shiit value, and wherein
the magnitude of the binary shift includes a term equal to the
shift value.

17. The computer program product of claim 13 wherein the
determination of the magnitude of the binary shift 1s also
responsive to the second exponent value.

18. The computer program product of claim 17 wherein the
determination of the magnitude of the binary shiftis given by:

AE =E,-Int[E, log, 10]

where E, 1s the first exponent value, E, 1s the second exponent
value, and AE, 1s the magmitude of the binary shift.

19. The computer program product of claim 13 wherein the
look-up table stores representations of the mtermediate bias
values for a range of different possible second exponent val-
ues, and wherein the intermediate bias values are determined

by:

nt og
o int[Eylogy 10]

bfﬂSf [Ez] = 10E2

where E, 1s the second exponent value and bias [E,] 1s the
intermediate bias value.

20. The computer program product of claim 13 wherein the
non-transitory tangible computer readable storage medium 1s
a component of a hardware floating-point unait.

21. A floating-point unit including a floating point format
converter for converting a binary floating point number rep-
resented 1n a binary tloating point format to an equivalent
decimal floating point number in a decimal floating point
format, the binary floating point format having an associated
first base value of two and being represented by a first sig-
nificand value and a first exponent value, and the decimal
floating point format having an associated second base value
of ten and being represented by a second significand value
and a second exponent value, comprising:

a multiplier for determining the second exponent value for
the decimal floating point number by multiplying the
first exponent value by a predefined constant and taking
the integer portion of the result, the predefined constant
being substantially equivalent to the logarithm of two
divided by the logarithm of ten;

a look-up table unit for determining an intermediate bias
value by addressing an intermediate bias look-up table
with the second exponent value;
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a shiit register for determining a bias value by applying a
binary shift operation to the intermediate bias value, the
magnitude of the binary shift being determined respon-
stve to the first exponent value, wherein the determined
bias value 1s substantially equivalent to two raised to the
first exponent value divided by ten raised to the second

exponent value; and
a multiplier for determining the second significand value

for the second floating point number by multiplying the
first significand value by the bias value.

22. The floating-point unit of claim 21 further including a
normalization unit for applying a normalization process to the
second floating point number, where the normalization pro-
cess 1ncludes:

a multiplier or divider for multiplying or dividing the sec-

ond significand value by a scale value equal to the sec-
ond base value raised to an integer power to provide a
modified second significand value, wherein the modi-
fied second significand value falls within a specified
range; and

a signed adder for decrementing or incrementing the sec-

ond exponent value by a corresponding value equal to
the integer power to provide a modified second exponent
value.

23. The floating-point unit of claim 21 wherein the first
floating point format has an associated first binary encoding
including a set of first exponent bits representing the first
exponent value and a first set of significand bits representing
the first significand value, and further including a decoding
unit for applying a decoding process to determine the first
exponent value and the first significand value by decoding the
first set of exponent bits and the first set of significand baits,
respectively.

24. The floating-point unit of claim 21 wherein the second
floating point format has an associated second binary encod-
ing including a second set of exponent bits representing the
second exponent value and a second set of significand bits
representing the second significand value, and further includ-
ing an encoding unit for applying an encoding process to
determine the second set of significand bits and the second set
ol exponent bits needed to represent the second significand
value and the second exponent value, respectively.

235. The floating-point unit of claim 21 further including a
reverse floating point format converter for converting a deci-
mal tloating point number represented in the decimal floating
point format to an equivalent binary floating point number in
the binary floating point format, wherein the reverse floating
point format converter includes a look-up table unit for deter-
mining a bias value by addressing the intermediate bias look-
up table associated with the floating point format converter
using a negative ol the exponent value for the decimal floating
point number.
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