12 United States Patent

US008717368B1

(10) Patent No.: US 8.717.368 B1

Kopylov et al. 45) Date of Patent: May 6, 2014
(54) DECOMPOSING ANIMATIONS INTO 2009/0119597 Al 5/2009 Vaughan et al.
PRIMITIVES FOR BROWSER-DEPENDENT 38(1)3// e A ligg?g goodm;l |
1 I<cn CL 4al.
RENDERING 2010/0045662 Al 2/2010 Boothroyd et al.
(75) Inventors: Igor Kopylov, Brooklyn, NY (US); OTHER PUBLICATIONS
Alexander Paul Favaro, Bronxville, NY o _ _
(US) Rosener, William Ph.D., Comparison of Web-based Graphics: For-
mats and Compatibility Issues, Oklahoma Higher Education Teach-
- _ SRS ing and Learning Conference, Apr. 20, 2006, website: http://arapaho.
(73) Assignee: Google Inc., Mountain View, CA (US) nsuok.edu/~rosener/papers/graphics/graphics.html.
(*) Notice: Subject to any disclaimer, the term of this % ited by examiner
patent 1s extended or adjusted under 35 y
U.S.C. 154(b) by O days. Primary Examiner — Said Broome
_ (74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch &
(21) Appl. No.: 13/486,910 Birch, LLP
(22) Filed: Jun. 1, 2012 (57) ARSTRACT
L A method for computer-implemented rendering of an anima-
Related U.S. Application Data tion presentation includes receiving, at a server, a request to
(63) Continuation of application No. 13/273,629, filed on view the amimation presentation on a computing device,
Oct. 14, 2011, now Pat. No. 8,212.821. obtaining information identitying a browser application run-
ning on the computing device, determiming requirements of a
nt. Cl1. resentation technology supporte the browse, decompos-
51) Int.Cl P ' hnology supported by the b d P
Go6T 13/00 (2011.01) ing the animation presentation into animation primitives
(52) U.S. CL compatible with the presentation technology, and transmiut-
USPC oo 345/473; 345/419; 345/949 ting the animation primitives to the computing device. A
(58) Field of Classification Search computer-implemented method to render an animation pre-
None sentation 1nclude replacing an animation type within an ani-
See application file for complete search history. mation page structure of the animation presentation with an
anmimation primitive, tlattening the animation, updating the
(56) References Cited anmimation page drawing objects to point to the rendered docu-

U.S. PATENT DOCUMENTS

6,396,500 Bl 5/2002 Qureshi et al.

6,587,574 B1* 7/2003 Jeannin 382/107
2004/0202052 A1*® 10/2004 Lev .o, 368/76
2005/0108691 Al1* 5/2005 Lauetal.cc.eoetn. 717/136
2009/0044123 Al 2/2009 Tilton et al.

ment module object, grouping the animation primitives mnto
sequences to create a timeline for the animation page, and
adjusting delays of the animations so as to begin at a correct
point 1n time. A system for implementing the rendering of
animations 1s described.

18 Claims, 9 Drawing Sheets

Receive a request to view an
animation presentation

605

e

|

Receive identifying information on the
browser application

610

/

l

Determine requirements of the
presentation technology supported by the
browser application

615

/

h J

Decompose the animation
presentation into primitives

620

Y

625

Transmit data stream containing
animation primitives

\

k J

Delegate animation primitives to
different portions of data stream

630

U.S. Patent May 6, 2014

'-'n-:-u'-:-:u'x'x\:-:-:u N

'I-"I-"h"lu
q. . : Nﬂ-:: P

llllllllllllll

[
++++++++++++++++++++++
=

e

L
T_I'TTT'!"!!‘I'T‘TT"‘T T

107

Sheet 1 0of 9

P,

n

7,
7

Ny "'."!."*.‘H."-."-.‘ﬁ.

l!-li

o,

ol
.

A AL A A,

j

2

il
5"
,

.

%3
:F:
//ﬁf%/_

l-llll

-
L]

*-I.

AL, #’.ﬂHﬂ#ﬂ!ﬂ.‘*ﬁ"ﬂ#f
A
.-"".-""

.

L e

"'I-+l 21

lllllllll

-..-.-.“-..-.:-,

!Ill

+

-2
af-':'-i’-:'-’-'f-':"-"-f

lllllllll

*&-:-b-.ﬂ-:ah*am-

1111!

-

3 :-_::!'g.‘h.‘-.'-:ﬁ.‘-."-.‘m‘u X % \
" ‘*:i.

& '#&-ﬁ'
RN m ”
{‘vﬁh.'\-‘- I o

o Tl_"‘""k' AN

I RN RN
£ RN

11111111111111

111111111111
Loa +

FIG. 1

US 8,717,368 Bl

U.S. Patent May 6, 2014 Sheet 2 of 9 US 8,717,368 B1

20
| Communications |
1/0 ;
| Interface
/ A A 205
203
Frocessor
ROM
P
201 \\
207
Dalabase
RAM
X ™
4 209
211 — I |

US 8,717,368 Bl

Sheet 3 of 9

May 6, 2014

U.S. Patent

o,

3
r
F
3

.h\\.

s
e
.

FREFEF rEE N

i

FIG. 3A

FIG. 3B

+T0 M

TN

F1G. 3C

US 8,717,368 Bl

U.S. Patent May 6, 2014 Sheet 4 of 9

L
- " ..
Eal ?; ' -ll-
> - ¥
f Y 3} » ™
= * ! :
e * -
¥ b -
-+
* " -
- : i 1 =
o ke T Py v
. - - -
- &
] \ ’
i L £
- 1
* -
~
*
&

o
-k

;o
o o ok,

T -

FIG. 3E

. o .
O e e
L N R R N

n EC] 'lllhl.ll‘l LI

ra a2 d b ar 418 Fa
. (]

.+
- ata
P .
i .
‘i.'ll I'i'i"l"l"l-“'ll" + i
Rl T e [A L] T .
i LR
T r = F 45 L] ..
T
™k w .
SR
= .
.
'
.

4
4
a
'
Ll
L]
[
a

S o
‘ \"".::{h ey
[] L] L |
A R
l\ I.l o L] l.l. ‘.l. [} .
.. N
s = -'q':l_-l-i

FI1G. 3F

U.S. Patent May 6, 2014 Sheet 5 of 9 US 8,717,368 B1

.. [
1 v +4 4 +r
P R o
T 11T ¥ F -

- -

FIG. 3H

4

4
Fs

4

4

2T

'
4
a

Py

4.4 4 4

1
[

1
1
F
1

g - -
Fafa' e e Tete e Tn ey
W ksl T EF T
= v m m -

"'l- LILBE Y

-
+

%4 dkrrr ko
E == w T mo
'rlli.llilll-'|
F
irlrll-‘-l‘-r.-lll'_-
r+ W T RE <+
r CRE I I
b 4+ + -
LK |

LA B R |
PR T P I
ok okt hwE T
3 it

- ra
LT

N N
PERE Y TS NI
o
-

T
T+ rr+
T
-+ mr

T - Ll
rr ¥ b hrF
e,

-
1

L | l‘il‘l+l+1+

U.S. Patent May 6, 2014 Sheet 6 of 9 US 8,717,368 B1

mhd N S r . T o
I L] - - - MM ! . Al e T A RN
EE kN RN u won om ok Bon h Bk kv ks

RN, A - T -'a N ' . . . M '

e .

-
ar ko + r

* 4% rdd+Fh - T
T Er o w

- Ll
- Wt

LY 3 .
k% b BT AT RN
B4 h % % %" B %
T = mww o

L AL RN

e tata
T LR B IR

i-‘l-"i‘ i +

[a = 3 iy 8 a
1 % & L] 4+ % 4 &I B EE +5

-+ n
a % r Y%k b YTr Ry +hh R FT o+
=T 1T mEm T r o -, =

+ r L]
3
‘i‘_ ++l‘-l'+.+.-i‘ 1 = 4 i' +i++‘i+li +I‘Iii
+ - T 1 4

+ 4 4
4 + 4 -
-

'

m - LI

T r b1 AT H AT+
- . 1 - . 1

a (O I A iy T
T % b hhh bk d T R oTT
1+ ko - RN FE AN
L E T] - = s omn
+ * %" B E kT W 4+
kT _hk 4 & 1
1 =k h T F AT A
T F LR]

FIG. 3K

U.S. Patent May 6, 2014 Sheet 7 of 9 US 8,717,368 B1

400 407

~

405 autoStart

. =

410
\} Sequence
+
_ duration
domid I —— -
RenderedAnimation Duration l
+

412

delay

AnimationPrimitive

414

FI1G. 4

U.S. Patent

200

May 6, 2014 Sheet 8 of 9

Replace animation type with
corresponding animation primitive

Flatten animation
Point rendered animations to
DOM elements

Group animations Into sequences
to create timeline

Adjust animation delays to begin
at correct point in time

Generate SVG for PNG viewer
by running animated state

through Java SVG
implementation

FI1G. 5

US 8,717,368 Bl

305

510

J15

520

525

530

U.S. Patent May 6, 2014 Sheet 9 of 9 US 8,717,368 B1

600

605
Recelve a request to view an
animation presentation

— 610
Receive identifying information on the
browser application
Determine requirements of the 615

presentation technology supported by the

browser application

" 620
Decompose the animation -
presentation into primitives
625
Transmit data stream containing
animation primitives
|
630

Delegate animation primitives to
different portions of data stream

FIG. 6

US 8,717,368 Bl

1

DECOMPOSING ANIMATIONS INTO
PRIMITIVES FOR BROWSER-DEPENDENT
RENDERING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation application of and claims
priority to U.S. application Ser. No. 13/273,629, filed Oct. 14,
2011, now U.S. Pat. No. 8,212,821 entitled Decomposing
Animations into Primitives for Browser-Dependent Render-
ing, which 1s hereby incorporated by reference 1n 1ts entirety.

FIELD OF DISCLOSUR.

L1

The present disclosure relates generally to rendering ani-
mations on a computing device, and 1n particular to decom-
posing the animation 1nto primitives for browser-dependent
rendering.

BACKGROUND

Presentation software typically allows objects to be ani-
mated 1n a large number of ways. An object’s position, rota-
tion, scale, color, etc. can all be animated, and a single ani-
mation may manipulate multiple properties simultaneously.
This poses a problem for web-based presentation software,
because not all web browsers may be able to render all pos-
sible animations. Even 1f browsers support a particular ani-
mation, different browsers may have diflerent mechanisms
for supporting 1t. For example, some browsers support ani-
mations using Synchronized Multimedia Integration Lan-
guage (SMIL), a markup language for describing multimedia
presentations, while others support animation via Javascript.
Because of these browser inconsistencies, a different imple-
mentation of each animation may need to be created for each
browser.

In the viewer, some level of animation support 1s necessary
for all browsers. If the browser supports Scalable Vector
Graphics (SVG), where images and their behaviors are
defined 1n XML text files, the full range of animations can be
available. If not, the animations will be limited to what can be
achieved by cross-fading two Portable Network Graphics
(PNG) mmages (e.g. incremental reveal). The animation
framework needs to be flexible enough to support at least
these two cases.

It 1s important for text to be animatable 1n the same way as
any shape. That 1s, text should be move-able, scalable, rotate-
able, etc. Also, since animations can 1terate ‘by paragraph’ or
‘by word’, these effects should be applicable to any portion of
the text. This requirement has some consequences for the
SVG rendering.

In the editor, though the rendering 1s done with SVG, text
1s rendered using a <canvas> element. This 1s necessary for
rendering text quickly during wysiwyg (“What You See Is
What You Get”) editing, but since the canvas 1s a pixel butter,
it does not scale with the rest of the SVG rendering. To get
around this limitation, the editor has logic to re-render every
canvas when the document 1s scaled. The same logic would be
necessary in the viewer if canvas text was used.

Furthermore, for parts of text to be separately animatable,
cach part would need to be rendered to 1ts own canvas. Man-
aging all of these canvases and re-rendering them when they
need to be scaled would significantly increase the complexity
of the viewer. Fortunately, in the viewer, the wysiwyg editing
requirement disappears, and the text can be replaced with
SVG paths. The down-side of this approach 1s that the text

10

15

20

25

30

35

40

45

50

55

60

65

2

paths cannot be generated on the client. That 1s, producing an
SVG rendering with animatable text always requires a request
to the server.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates a client-server system 1n accordance with
an embodiment of the invention;

FIG. 2 1illustrates a server component diagram in accor-
dance with an embodiment of the invention;

FIGS. 3A-3K 1llustrate a sampling of primitives in accor-
dance with an embodiment of the invention;

FIG. 4 illustrates a page structure for an animation render-
ing in accordance with an embodiment of the ivention;

FIG. 5 illustrates a process 1n accordance with an embodi-
ment of the invention; and

FIG. 6 illustrates a process 1n accordance with an embodi-
ment of the mvention.

DETAILED DESCRIPTION

To provide an overall understanding of the invention, one
or more embodiments will now be described, including sys-
tems and methods for rendering animations on a variety of
browser applications resident on computing devices by a
server. However, 1t will be understood by one of ordinary skill
in the art that the systems and methods described herein may
be adapted and modified as 1s appropriate for the application
being addressed and that the systems and methods described
herein may be employed in other suitable applications, and
that such other additions and modifications will not depart
from the scope thereof.

FIG. 1 depicts a client-server system suitable for rendering
ammations. Client-server system 100 includes a server 101
and multiple client computing devices 103 through 109.
These client computing devices may include desktop com-
puters 103, 105, laptop computer 107, and handheld elec-
tronic device 109. Computing devices that can be used in
client-server system 100 are not limited to the devices
depicted i FIG. 1 and can encompass a wide variety of
devices. Fach computing device can communicate with
server 101 through connection to an electronic communica-
tion network. The devices can communicate with the server
through a local area network (LAN), wide area network
(WAN), an Internet connection, or any other form of elec-
tronic communication. Each computing device in system 100
has an Internet browser installed on 1t. Internet browsers
allow computing devices to view web pages on the Internet.
Examples of Internet browsers include Google Chrome,
Microsolit Internet Explorer, and Mozilla Firefox, but the
types of Internet browsers contemplated are not limited to the
ones listed. Server 101 can store animation presentations that
can be accessed by any computing device 1 system 100. One
or more users can access the server 101 through the comput-
ing devices to view and edit the ammmation presentations, with
suitable permissions. Server 101 controls rendering of these
animation presentations on the computing devices to ensure
uniform appearance regardless of the specific presentation
technology supported by the browser application. Although
illustrated as a single device 1n FIG. 1, server 101 may be
implemented as, for example, a single computing device or as
multiple distributed computing devices.

The server in client-server system 100 will now be dis-
cussed 1n greater detail. FIG. 2 depicts a server 200 which
includes a processor 201, mput and output devices 203, a
communications interface 205, read-only memory (ROM)

207, random access memory (RAM) 209, database 211, and

US 8,717,368 Bl

3

bus 213. The bus 213 enables every component in server 200
to electronically communicate with each other. Input/output
devices 203 may include a keyboard, mouse, display screen,
touchpad, speakers, or any other compatible input or output
device. Communications interface 205 may be a network
connection, Internet connection, or any other type of elec-
tronic communication component. In one embodiment, the
communications interface 205 can communicate with mul-

tiple client computing devices, such as desktop computers
103, 105, laptop 107, and handheld device 109. Database 211
can store electronic animation presentations that can be
accessed by client computing devices through communica-
tions mtertace 205. In one aspect of the invention, database
211 can be a remote datastore connected to server 101.

Processor 201 may be configured to perform tasks such as
decomposing the animation presentations into primitives and
sending the animation primitives stored in database 211 to
multiple client computing devices using communications
interface 205, receiving edits to animation presentations
stored 1n database 211 from client computing devices, and
determining parameters for various presentation technology
applications supported by browser applications running on
the client computing devices. Processor 201 may be config-
ured to ensure that animation presentations stored in database
211, and distributed to different computing devices having
various browser applications, will have umiform appearance
across the client computing devices by decomposing the ani-
mation presentations into primitives that are dependent on the
presentation technology used by the browser applications.

Processors suitable for the execution of a computer pro-
gram 1nclude, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Processor 201 may be a pro-
cessing unit, a field programmable gate array, discrete analog
circuitry, digital circuitry, an application specific integrated
circuit, a digital signal processor, a reduced instruction set
computer processor, an AVR processor, etc. Processor 201
may access a computer application program stored in non-
volatile mternal memory (e.g., ROM 207), RAM 209, or
stored 1n external memory. When executed, the computer
application program may cause processor 201 to perform one
or more methods 1n accordance with an embodiment of the
invention, as described below.

Generally, a processor will receive instructions and data
from RAM or ROM or both. The essential elements of a
computer are a processor for performing nstructions and one
or more memory devices for storing instructions and data.
Computer-readable media suitable for storing computer pro-
gram 1nstructions and data, such as database 211, include all
forms of non-volatile memory, media and memory devices,
including by way of example semiconductor memory
devices, e.g., EPROM, EEPROM, and flash memory devices;
magnetic disks, e.g., internal hard disks or removable disks;
magneto-optical disks; and CDROM and DVD-ROM disks.
The processor and the memory can be supplemented by, or
incorporated 1n, special purpose logic circuitry.

Systems and methods 1n accordance with one or more
aspects of the invention implement animations by decompos-
ing each animation into a small set of animation primitives.
Each primitive may have a start and end time and a start and
end value. The times can be, for example, 1n the range [0, 1],
where 0 1s the beginning of the animation and 1 1s theend. The
start and end values may be dependent on the type of primi-
tive. For example, a rotation primitive has start and end degree
values, while a translation primitive has start and end coordi-
nates.

10

15

20

25

30

35

40

45

50

55

60

65

4

In accordance with an embodiment of the invention, primi-
tives can be combined arbitrarily, so a small number of primi-
tives are enough to produce a very large array of various
amimation presentations. Because animations break down
into primitives, browser inconsistencies can beresolved at the
primitive level. A different implementation of each primitive
could be necessary for each browser, but a different 1imple-
mentation of each animation may not be necessary. Once a
tull set of primitives 1s implemented, new animations can be
created using those primitives without requiring any extra
browser compatibility work. Amimations can be expressed as
a combination of a small number of animation primitives. If
those primitives work cross-browser, any animation made up
from them automatically does as well. New animations can be
added without worrying about browser compatibility as long
as they can be expressed 1n terms of the primitives.

FIGS. 3A-3K illustrate representative primitives 1n accor-
dance with the ivention. Each primitive has associated
parameters that describe the action that the primitive under-
goes when operated on by the browser-dependant presenta-
tion technology.

FIG. 3 A 1llustrates the primitive fillColor(from—to). Fill-
Color changes a shape’s fill color (represented in grey scale 1n

FIG. 3A). The “from” and *“to” parameters represent color
values. The shape’s original fill color i1s represented by
‘SHAPE_FILL_COLOR’—e.g., fillColor(SHAPE_FILL_

COLOR—green). FIG. 3B illustrates the primitive filter
(name), which applies a named filter to the shape. Filters
mampulate objects on the pixel level, moditying color and/or
opacity—e.g., lilter(Desaturate). FIG. 3C illustrates the
primitive lineColor(from—to). LineColor changes a shape’s
line color, where the parameters “from” and “to” are color

values. The shape’s original line color 1s represented by the
parameter ‘SHAPE_LINE_COLOR’—e.g., lineColor

(SHAPE_LINE_COLOR-—green).

FIG. 3D illustrates the primitive mask(name), which
applies a named mask eflect to the shape (for example, a
circular mask). Mask effects make some part of the image
transparent. A mask can be thought of as a shape that lies on
top of the animated shape and defines which portions of it are
visible and/or hidden. One graphical element 1s used to define
the visible part of another. So 11 B masks A, only the part of A
intersecting with B 1s displayed. More precisely, the parts of
A where B 1s opaque are opaque 1n the final image, and the
parts of A where B 1s transparent are transparent in the final
image. If B were semi-transparent in some places, the result-
ing 1mage would also have semi-transparent places. To apply
a mask, an element sets 1ts ‘mask’ property to the ID of some
‘mask’ element.

Any animation where the graphic appears 1n parts (e.g.,
presentation graphics program effects such as: wipe, random
bars, checkerboard, etc.) 1s using a mask. Importantly, some
of those animations are just one of the other animation primi-
tives applied to the mask instead of the animated object. For
example, Wipe 1s a rectangular mask that 1s translated across
the object. Similarly, Checkerboard 1s a mask made out of
many rectangles that are scaled across the object. So, if trans-
late and scale can be implemented with SMIL, then these
amimations can be implemented with SMIL as well.

Random Bars, on the other hand, does not cleanly break
down 1nto the other animation primitives. The name implies
that the bars are generated programmatically using a random
number generator. Animations like this cannot be 1mple-
mented using SMIL, though 1t might be possible to make a
deterministic version that looks random enough. In general,
mask animations, like Random Bars, that cannot be expressed

US 8,717,368 Bl

S

as animation primitives acting on the mask can need their own
rendering logic. This makes each one 1ts own animation
primitive.

FIG. 3E illustrates the primitive motionPath(path). The
primitive motionPath moves a shape along a given path—=e.g.,
motionPath(Hook), which causes the shape to move along the
dotted lines shown in FIG. 3E. The primitive opacity
(from—to) 1s 1illustrated 1n FIG. 3F. Opacity changes the
opacity (or transparency) of the shape. The parameters
“from” and “to” can be numbers between 0 and 1, inclusive.
At one range, the shape would be rendered completely trans-
parent, at the other end of the range the shape would be
opaque—e.g., opacity(1—0.3).

FI1G. 3G illustrates the primitive rotate(from—to) rotates
the shape. The shape would be rotated from 1ts mitial “from™
orientation to another position given by the “to” parameter
(“from” and “to” can be expressed in degrees, radians, etc.),
where 0° corresponds to the rotation at which the shape was
placed on the slide. Positive values indicate a counter-clock-
wise rotation, and negative values a clockwise one—e.g.,
rotate(0°—=180°). FIG. 3H 1illustrates the primitive scale
(from,—to,, from —to,). The primitive scales the shape in
the x and y directions, where the parameters “from_ ", “to_,”
“from,,” and “to,” are real numbers. A value of' 1 corresponds
to the original size. Values greater than one correspond to an
increase 1n size. Values between 0 and 1 correspond to a
decrease 1n si1ze. Values less than O perform a retlection——e.g.
scale(1—=-1, 1—=0.3).

FIG. 31 illustrates the primitive skew(ifrom —to_,
from,—to,). The primitive skews the shape in the x and y
directions, where the parameters “from_”, “to ,” “from,,” and
“to,” can be expressed in degrees, RADIANS, etc. A value of
0° corresponds to the skew at which the shape was placed on
the slide. Positive values 1indicate a counter-clockwise skew,
and negative values a clockwise one—e.g., skew(0—-30°,
0°—=40°). FIG. 3] 1illustrates the parameter textProperty
(from—t0), which changes a text property of a shape. The
parameters “from” and “to” can be ‘bold’, ‘underline’,
‘1talic’, a color value, etc. The shape’s original text color 1s
represented by ‘SHAPE_TEXT_COLOR’—e.g., textProp-
erty(SHAPE_TEXT_COLOR—green). FIG. 3K 1illustrates

the parameter translate(from, —to,, from —to). The primi-
tive translates the shape 1n the x and y directions. The param-
eters “from,”, “to,,” “from,,” and *“to,” can be expressed as
percentages, ratios, etc. A parameter value of (0,0) corre-
sponds to the position at which the shape was placed on the
slide. Parameter values are 1n terms of the page width/height.
For example, a parameter value (100%, 100%) corresponds to
a position off of the bottom, right corner of the page, and a
parameter value of (-100%, —100%) corresponds to a posi-
tion off of the top, left corner—e.g., translate(0—0,
0—-10%).

For browsers without SVG support (e.g., Internet Explorer
versions prior to ver. 9.0) animations can be displayed by a
sequence of rendered PNGs from server 101. This approach
could still accommodate opacity changes by using Javascript/
CSS to change the opacity of entire images. Other animations
could be simulated by rendering PNGs of a page as it appears
in the middle of an animation and then fading between those
interpolated images. However, this would require download-
ing extra images, which may be too expensive for what 1s still
a loss of fidelity.

SMIL 1s a language for declaratively defining animations
directly 1n SVG. For example, a rectangle fading out over 5

seconds after a 10 second delay can be expressed with:

10

15

20

25

30

35

40

45

50

55

60

65

6

<rect>

<animate attributeType="CSS” attributeName="opacity”

from="1" to="0" dur="5 s” begin="10 s”/>

</rect>

This approach can be used to animate most of the CSS
properties and XML attributes of SVG elements. The anima-
tion 1s handled by the browser, which means 1t doesn’t rely on
the JavaScript thread for timing. The begin attribute can also
include events like ‘click’ in 1ts value. For example, a begin
value of “click+35 s” would start the animation 5 seconds after
a click. Animation elements can also be accessed with Java-
script through the document object module (DOM) and
started programmatically. Unfortunately, SMIL 1s not sup-
ported very consistently across browsers.

For browsers that support SVG, but not SMIL, Javascript
can 1mitate 1n code what SMIL does declaratively. The code
could use setTimeout to update the relevant SVG attributes or
style properties incrementally between their iitial and final
values. The downside of this approach 1s that the amimations
are tied to the Javascript thread. Their performance can
depend heavily on Javascript performance. Nonetheless,
JavaScript animations do allow browsers with SVG support,
but no SMIL support to have essentially the same animations.

CSS3 provides an alternative to SMIL for defining anima-
tions declaratively. The approach 1s somewhat different. First,
the CSS property to be animated 1s declared and given a
duration:

fade {

transition-property: opacity;

transition-duration: 2 s;}

Now, whenever the opacity value of an element with the
‘fade’ class 1s changed via Javascript, instead of updating the
value immediately, the browser will change 1t gradually over
2 seconds. As with SMIL, the browser times the animation.
Javascript 1s used to set the final value. The CSS approach
could be considered simpler than SMIL, though not as pow-
erful.

Unlike SMIL, CSS transitions can only be used to animate
style properties, not XML attributes. For SVG, that 1s a some-
what limited set of properties. Notably, SVG transforms (ro-
tate, scale, skew, translate) cannot be modified with style
properties. Also, the usual style properties for positioning
(left, right, top, bottom) have no effect on SVG elements. In
other words, CSS transitions cannot represent all of the ani-
mation primitives. In accordance with an aspect of the inven-
tion, a workaround to this limitation of CSS 1s to wrap ani-
mated shapes i an HITML div element inside a foreignObject
clement inside the SVG. The div element could then be styled
using the top, left, etc. style properties, and those style prop-
erties could be animated using CSS transitions. However, it 1s
noted that this approach significantly increased the complex-
ity of an approach which has simplicity as one of 1ts main
benefits. Ultimately, until the gap between CSS and SVG 1s
filled 1n, CSS transitions may not be the best approach for
implementing animation primitives on SVGQG. It could, how-
ever, be used to animate opacity transitions on PNGs for
browsers that don’t support SVG, but do support CSS Tran-
sitions.

In accordance with an embodiment of the invention, the
primitives 1illColor, lineColor, and opacity can be imple-
mented with SMIL, SVG+JS or CSS3 ftransitions. With
SMIL, opacity can be amimated using the ‘animate’ element.
Primitives {illColor and lineColor can use the ‘animateColor’
element instead, because their values are colors, but the
behavior of the two elements 1s essentially the same. This
code animates the fill color between two colors over a two
second period:

US 8,717,368 Bl

7

<animateColor ID="11llColorAnim™ attribute Type="CSS"

attributeName="11l1"" from="rgb(0,255,0)” to="rgb(11,83,
148)”

dur="2 s” begin="1ndefinite”/>

The ‘indefinite’ begin value means that the animation waill
only be started programmatically, and so the element also has
an ID to make accessing it from Javascript easier.

With SVG+IS, the same interpolation that the browser
would take care of in the SMIL case 1s done 1n Javascript. The
SVG element’s style properties are updated at regular inter-
vals with repeated calls to setTimeout until the animation 1s
over. With CSS3 transition, the transition-duration property 1s
first set so that the browser knows to change properties gradu-
ally. Then the appropnate style property 1s changed to start the
animation.

In accordance with an embodiment of the invention, the
primitives rotate, scale, skew, translate can be implemented
with SMIL and SVG+JS. With SMIL, all four can be ani-
mated using the ‘ammatelransform’ element. This code

rotates an element 180° over a two second period:
<animateTransform ID="rotateAnim” attributeName=

“transform”™

attribute Type="XML" type="rotate” from="180" to="0"
dur="2 s”

begin="1ndefinite” additive="sum™/>

The type 1s one of ‘rotate’, ‘scale’, ‘skewX’, ‘skewY and
‘translate’. The ‘attributeName’ specifies that this animation
1s acting on the ‘transform’ attribute of the element 1t 1s
ammating. The ‘transform’ attribute 1s a list of transforma-
tions (e.g. [rotate(90), scale(0.5), translate(0, 100)]). The
‘additive’ property specifies whether the ‘transform’ attribute
1s overwritten by this amimation, or whether the animation
just adds to the list. A value of ‘replace’ indicates the former,
and ‘sum’ the latter. For these primitives, ‘sum’ 1s the appro-
priate value, because the animation shouldn’t override any
transformation that was already applied to the shape.

With SVG+1S, Javascript handles the interpolation of the
transform. A new transformation 1s added to the ‘transform’
attribute and this transformation 1s updated at regular inter-
vals with repeated calls to setTimeout until the animation 1s
over.

The primitive motionPath can be implemented with SMIL
and SVG+JS. With SMIL, motionPath can be implemented
using the ‘animateMotion’ element. This code moves an ele-
ment along the path with the ID ‘motion’:

<animateMotion dur="2 s begin="1ndefinite”>

<mpath xlink:href="#motion”/>

</ammmateMotion>

With SVG+IS, Javascript iterpolates a value between O
and the length of the motion path. That value 1s then turned
into a point using the path element’s getPointAtLength
method. At each animation step, the animated SVG element’s
“transform’ property 1s updated to move it to that point, in
much the same way 1t would be during a translate animation.

The primitive filter can be implemented with SMIL and
SVG+IS. Filter operates on the rendered pixels of SVG ele-
ments, to produce effects—Itor example, brightening, blur-
ring and specular lighting. SVG provides several different
filters with varying cross-browser support. Their attributes
can be amimated with the SMIL ‘animate’ element or with
Javascript, 1n the same way as previous element attributes.

The primitive textProperty can be implemented when text
1s rendered into the SVG as paths (in the viewer), then the
text’s color can be manipulated in the same ways as fill and
line color. When the text 1s rendered to canvas (1n the editor),
the text would be animated with Javascript regardless of
SMIL support. The canvas would be re-rendered at each step

10

15

20

25

30

35

40

45

50

55

60

65

8

of the animation. For bold, underline, and 1talics interpolation
between values might not be possible. So text would move
directly from normal to italic, for example, rather than slant-
ing gradually. In the SVG paths case, this would mean swap-
ping 1n new paths for the text. In the canvas case, this would
mean re-rendering. Animations on text may be organized into
sub-parts (e.g. animating by letter, by word, or by bullet),
therefore changes would be required to allow rendering text
that has sub-parts 1n different animation states.

In accordance with an embodiment of the invention, ani-
mations are stored in an ordered list on each page. Each
amimation references the ID of the drawing object 1t animates
and has a map of properties specitying how the animation
behaves. This structure simplifies the animation commands
and their transformation logic. A single animation applied ‘by
word’ could correspond to animating several attributes on the
paths for each word, timed so the words appear one by one. In
order to actually display them, the animations must be ren-
dered into a representation that describes how they will act on
the rendered image rather than on the model, and the rendered
image must provide access to the animated parts.

FIG. 4 1llustrates a page structure 400 for an animation
rendering 1n accordance with an embodiment of the mnven-
tion. Timeline 405 contains all of the animations on a page. It
1s an ordered list of sequences, each triggered by a successive
click 1n the viewer. The autoStart tlag 407 specifies whether
the first sequence 1s triggered automatically when the page 1s
mitially displayed. Sequence 410 1s a set of Rendered Anima-
tions 412, all of which are triggered to start when the sequence
1s started. However, since Rendered Animations can specily a
delay, they do not necessarily start playing at the same time.

In accordance with an embodiment of the invention, Ren-
dered Animation 412 1s a set of ammation primitives that
apply to a particular (DOM) element. Parameters within the
Rendered Animation specily the duration over which the ani-
mation primitives act and a delay to wait between being
triggered and starting to play. AnimationPrimitive 414 repre-
sents one of the primitives (described above). Each primitive
specifies a start and end time between 0 and 1, which 1s scaled
by its parent Rendered Animation 412 to a duration 1n sec-
onds.

The page structure 400 does not include the start condition
or 1teration type properties of the model animations. The start
condition either determines which sequence the rendered ani-
mation goes 1n, or 1ts delay in that sequence. The iteration
type turns a single model animation into several rendered
amimations—one for each part (e.g., word, paragraph, etc.) of
the animated shape. Every rendered animation has an explicit
position 1n the timeline and animates exactly one object in the
rendering.

FIG. 5 illustrates process 500 in accordance with an
embodiment of the mnvention. Process 300 assigns animation
primitives by replacing, step 505, each animation’s type with
the animation primitives that correspond to that type. Process
500 continues at step 510, where the animations are flattened.
The flattening step applies to those animations that affect
parts of an object. For example, an animation might be a “Fly
in from left, by paragraph.” The end result 1s that rather than
the animated shape flying in from the left, each paragraph of
text in the shape flies 1n from the left. The flattening step takes
one such animation and flattens it out into multiple rendered
amimations, each of which corresponds to just one of the
paragraphs. The animated parts of the shape could be sections
of text (e.g., Paragraph, Line, Word, Letter, etc.), or they could
be parts of the shape (e.g., Outline, Fill, etc.). One animation
can 1terate over multiple objects, but the rendered animations
produced by process 500 can apply to a single DOM element

US 8,717,368 Bl

9

corresponding to a single paragraph, word, letter, etc. After
the drawing objects on a page are rendered, the animations are
updated, step 515, to point to the rendered DOM elements
instead of the animated shape. The copies are 1dentical to the
original except for the element that they point to.

To create the timeline 405 the animations are grouped 1nto
sequences, step 520, based on their start conditions. There
will be one sequence for every animation that starts ‘on click’.
All animations that start ‘after previous’ or ‘with previous’ are
put in the same sequence as the first ‘on click” animation that
precedes them. The delays of the animations within the
sequence are adjusted (1f needed), step 525, so that they begin
at the correct point 1n time. It the first animation does not start
‘on click’, any animations before the first ‘on click” animation
are put 1n their own sequence, and the timeline autoStart flag
407 1s set to true.

For the PNG viewer, a PNG 1s generated, step 530, from the
SVG state of the model before any animations and at the end
of every sequence. Having a frame at the end of every
sequence 1s just one possible way to break the animation up
into 1images. This 1s a good balance between showing enough
change and not creating too many 1images. These images can
be generated by running the animated state of the SVG
through a Java SVG implementation. For browsers that do not
support SVG, the appropriate SVGs thus can be produced on
server 101, and then a rendering of that SVG 1n PNG format
1s sent to the client computing device. Since the PNG viewer
will operate on these 1images rather than the SVG rendering, a
new timeline 405 1s created that just fades 1n successive
1mages.

In the SVG cases, the viewer will request a page and
receive a JavaScript Object Notation (JSON) response with
the animation-ready SVG, and the senalized timeline. The
timeline 1s de-serialized and used to update the SVG to the
state 1t should be 1n before the animations play. Then the SV
can be displayed, and the timeline can be used to play the
animations.

In the PNG case, the server’s JSON response cannot con-
tain the actual images. Instead 1t can contain, along with the
timeline, a map from 1mage ID to a URL for that image. The
image IDs can be referenced 1n the timeline, but 1t may be up
to the viewer to create the DOM 1mage elements for the URLs
and assign them the appropriate IDs. Once the 1mage ele-
ments are created, the timeline can be used to advance the
animation, just as 1 the SVG case.

Client computing device 103, 1035, 107, 109 recerves Time-
line 405 from server 101 and applies the animations to the
rendered elements. This process may be divided among three
classes—AnimationPlayer(timeline), SequencePlayer(se-
quence), and PrimitiveApplier()

The AnmimationPlayer 1s the top level object used by the
viewer, and keeps track of the currently playing sequence.

init() creates a SequencePlayer for each sequence 1n the
timeline and calls gotoStart;

next() calls gotoEnd on the current SequencePlayer, and
plays the next one;

previous() calls gotoStart on the current SequencePlayer.

The SequencePlayer 1s responsible for running the anima-
tion loop to play sequences.

gotoStart() applies the primitives in all of the rendered
amimations in the sequence at time O;

play() starts an animation loop that applies primitives at
the appropriate time; gotoEnd() applies the primitives 1n all
of the rendered animations 1n the sequence at time 1.

The Primitive Applier 1s responsible for moditying the
DOM based on an animation primitive.

10

15

20

25

30

35

40

45

50

55

60

65

10

apply(element, primitive, time) applies a primitive to an
clement at a time between O and 1.

In the PNG case, the server must also be able to apply
primitives, so that 1t can produce the images. However, 1t does
not need to maintain a current sequence or an animation loop.
Theretfore, the server will have a PrimitiveApplier, just like
the one on the client, but not the other two classes. The server
can apply all of the primitives 1n the timeline at time 0 to
produce the first image. Then for each sequence, 1t can apply
all of the primitives in that sequence at time 1 to produce each
of the successive 1images.

The stmplest way to preview animations 1n the editor 1s to
get the SVG rendering and timeline from the server (just like
in the viewer) and replace the editing surface with the ani-
mated rendering. All of the viewer classes could be reused, so
this approach would require little extra code beyond what 1s
already 1n the viewer. However, every time the document 1s
changed and an animation is previewed, a server request may
need to be made. Depending on the connection speed and the
s1ze of the rendered SV G, this might not be user-noticeable,
but i1t does create trailic between client and server.

In accordance with an aspect of the invention, one possible
optimization 1s to separate the rendering of the SVG and the
timeline. Since the SVG rendering needs text paths, 1t needs
to be done on the server. However, the timeline could be
generated on the client computing device. As long as the
client and server use the same method for assigning IDs, the
client-generated timeline should match up to the server gen-
crated SVG. With this approach, the SVG would need to be
fetched when any animated drawing objects are modified, or
iI an animation’s iteration type 1s changed. But, 1f a user just
wants to try out a few different ammmations on an object, server
requests may not be necessary. This approach would require
duplicating the animation rendering logic on the client com-
puting device.

If text could be rendered using the SVG <text> element,
then the server may not be needed to render the text paths. The
server would still need to provide word-widths to provide
consistent line-breaks, but this 1s substantially less traific then
the SVG paths. With this change, the client computing device
could render both the SVG and the timeline, so animations
could be previewed without any server requests.

FIG. 6 illustrates process 600 in accordance with an
embodiment of the invention. Process 600 renders an anima-
tion presentation by decomposing the presentation into primi-
tives. The server receives a request, step 605, to view the
animation presentation on the computing device. The anima-
tion 1tself may be resident 1n a storage device accessible by
the server. Information identifying the browser application
running on the computing device where the animation 1s to be
presented 1s recerved, step 610, by the server. The server
determines, step 615, the requirements of the presentation
technology supported by the identified browser application.
The anmimation presentation 1s decomposed, step 620, at the
server 1nto animation primitives compatible with the presen-
tation technology supported by the browser application—i.¢.,
performing process 300 (FI1G. §), which produces page struc-
ture 400 (F1G. 4). Each of the animation primitive has param-
cters 1dentitying a start time, an end time, and/or an end value.
A data stream containing the animation primitives 1s trans-
mitted, step 625, to the computing device. The data stream
can include an expression of the animation presentation as a
combination of the animation primitives. Depending on the
browser application’s formatting, transfer, and other require-
ments, the animation primitives can be delegated, step 630, to
different portions of the data stream. The presentation tech-
nology features can be used to resolve inconsistencies among

US 8,717,368 Bl

11

a plurality of different browser applications requesting the
same animation presentation. A second animation can be
rendered by expressing the second animation in terms of an
altered combination of the animation primitives. Alterna-
tively, the anmimation can be altered by including one or more
additional amimation primitives in the data stream.

In accordance with an embodiment of the invention, a
computer program application stored 1n non-volatile
memory, or computer-readable medium (e.g., hard drive,
flash memory, CD ROM, magnetic media, etc.) may include
code or executable instructions that when executed may
instruct or cause a controller or processor to perform methods
discussed herein such as a method of rendering an animation
presentation on a computing device by decomposing the ani-
mation presentation into primitives.

While there have been shown and described fundamental
novel features of the invention as applied to one or more
embodiments, 1t will be understood that various omissions,
substitutions, and changes in the form, detail, and operation
of these embodiments may be made by those skilled 1n the art
without departing from the spirit and scope of the invention.
Substitutions of elements from one embodiment to another
are also fully intended and contemplated. The ivention 1s
defined solely with regard to the claims appended hereto, and
equivalents of the recitations therein.

We claim:

1. A computer-implemented method for rendering an ani-
mation presentation on a computing device 1 communica-
tion with a server, the method comprising:

receiving, at the server, a request from the computing

device to view the animation presentation on the com-
puting device;

obtaining, at the server based on the request from the com-

puting device, information identifying a browser appli-
cation running on the computing device, the information
including at least one of a name and a version of the
browser application;

determining, at the server, requirements of a presentation

technology supported by the identified browser applica-
tion;

decomposing, by the server, the animation presentation

into animation primitives compatible with the presenta-

tion technology supported by the browser application,

said decomposing including expressing the animation

presentation as a combination of said animation primi-

tives compatible with the presentation technology,

cach of said animation primitives corresponding to an
animation type associated with the animation presen-
tation,

cach said animation primitive having at least one of a
start time, an end time, a start value, and an end value,
where the start value and the end value relate to a
characteristic of the animation primitive, and

said combination of said animation primitives including,
at least two different types ol animation primitives;
and

generating, storing i memory, and transmitting to the

computing device a data stream containing the anima-
tion primitives.

2. The method of claim 1, further including rendering a
second ammation by expressing the second animation 1in
terms of an altered combination of the animation primitives.

3. The method of claim 1, further including altering the
amimation by including one or more additional animation
primitives 1n the data stream.

10

15

20

25

30

35

40

45

50

55

60

65

12

4. The method of claim 1, wherein the data stream includes
an expression of the animation presentation as a combination
of the animation primitives.

5. The method of claim 1, wherein the decomposing step
applies the supported presentation technology features to
resolve inconsistencies among a plurality of browser appli-
cations.

6. A non-transitory computer readable program encoded in
a non-transitory computer readable medium comprising;

an executable computer program code configured to

instruct a system to render an amimation presentation on
a computing device in communication with a server, the

executable computer program code comprising the steps
of:

recewving, at the server, a request from the computing
device to view the animation presentation on the com-
puting device;

obtaining, at the server based on the request from the com-
puting device, information identifying a browser appli-
cation running on the computing device, the information
including at least one of a name and a version of the
browser application;

determining, at the server, requirements of a presentation
technology supported by the identified browser applica-
tion;

decomposing, by the server, the animation presentation
into animation primitives compatible with the presenta-
tion technology supported by the browser application,
said decomposing including expressing the animation
presentation as a combination of said animation primi-
tives compatible with the presentation technology,

cach of said animation primitives corresponding to an ani-
mation type associated with the animation presentation,

cach said amimation primitive having at least one of a start
time, an end time, a start value, and an end value, where
the start value and the end value relate to a characteristic
of the animation primitive, and

said combination of said animation primitives including at
least two different types of animation primitives; and

generating and transmitting to the computing device a data
stream containing the animation primitives.

7. The non-transitory computer readable program of claim

6, wherein the decomposing step applies the supported pre-
sentation technology features to resolve inconsistencies
among a plurality of browser applications.

8. The non-transitory computer readable program of claim

6, further including nstructions configured to alter the ani-
mation by including one or more additional animation primi-
tives 1n the data stream.

9. The non-transitory computer readable program of claim

6, further including instructions configured to render a second
anmimation by expressing the second amimation 1n terms of an
altered combination of the animation primitives.

10. A system for rendering an animation presentation, the

system comprising;:

a server 1n communication with one or more computing,
devices connected to an electronic communication net-
work;

the server including a processor, an input/output device 1n
communication with the electronic communication net-
work, and a database having stored therein one or more
animation presentations;

the processor, connected to the input/output device and the
database, configured to:

recerve a request to view at least one of the animation
presentations from the computing device;

US 8,717,368 Bl

13

obtain mnformation based on the request from the comput-
ing device 1dentifying a browser application running on
the computing device, the information including at least
one of a name and a version of the browser application;

determine requirements of a presentation technology sup-
ported by the 1dentified browser application;

decompose the anmimation presentation into animation
primitives compatible with the presentation technology
supported by the browser application, said decomposing
including expressing the animation presentation as a
combination of said animation primitives compatible
with the presentation technology,

cach of said animation primitives corresponding to an ani-
mation type associated with the animation presentation,

cach said amimation primitive having at least one of a start
time, an end time, a start value, and an end value, where
the start value and the end value relate to a characteristic
of the animation primitive, and

said combination of said animation primitives including at
least two different types of animation primitives; and

generate and transmit to the computing device via the
input/output device a data stream containing the anima-
tion primitives.

11. The system of claim 10, wherein respective computing

devices 1nclude differing presentation technologies, and the
processor 1s configured to control decomposing of the anima-

10

15

20

25

14

tion presentation into animation primitives so that the render-
ing of the animation presentation on the differing presenta-
tion technologies will have uniform appearance.

12. The system of claim 10, wherein one or more users
access the server using a computing device so as to view or
edit the animation presentations stored 1n the database.

13. The system of claim 10, wherein the server 1s imple-
mented as one of a single computing device and multiple
distributed computing devices.

14. The system of claim 10, wherein the processor 1s con-
figured to combine a plurality of animation primitives to
produce an array of various animation presentations.

15. The method of claim 1, wherein the presentation tech-
nology supported by the identified browser application
includes one or more of SVG, SMIL, Javascript, and CSS3.

16. The method of claim 1, where at least one of the
ammation primitives 1s a FillColor animation primitive type
or a Skew animation primitive type.

17. The medium of claim 6, where at least one of the
ammation primitives 1s a FillColor animation primitive type
or a Skew animation primitive type.

18. The system of claim 10, where at least one of the
anmimation primitives 1s a FillColor animation primitive type
or a Skew animation primitive type.

% o e = x

	Front Page
	Drawings
	Specification
	Claims

